JP6374724B2 - Cavity tube polishing equipment - Google Patents

Cavity tube polishing equipment Download PDF

Info

Publication number
JP6374724B2
JP6374724B2 JP2014154936A JP2014154936A JP6374724B2 JP 6374724 B2 JP6374724 B2 JP 6374724B2 JP 2014154936 A JP2014154936 A JP 2014154936A JP 2014154936 A JP2014154936 A JP 2014154936A JP 6374724 B2 JP6374724 B2 JP 6374724B2
Authority
JP
Japan
Prior art keywords
electrode
liquid
polishing
hollow tube
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014154936A
Other languages
Japanese (ja)
Other versions
JP2016030859A (en
Inventor
義明 井田
義明 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUI GALVANIZING CO., LTD
Original Assignee
MARUI GALVANIZING CO., LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUI GALVANIZING CO., LTD filed Critical MARUI GALVANIZING CO., LTD
Priority to JP2014154936A priority Critical patent/JP6374724B2/en
Publication of JP2016030859A publication Critical patent/JP2016030859A/en
Application granted granted Critical
Publication of JP6374724B2 publication Critical patent/JP6374724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は空洞管の内面を電解研磨する研磨装置に関し、特に、気泡の影響を少なくした空洞管の研磨装置に関する。   The present invention relates to a polishing apparatus for electrolytic polishing an inner surface of a hollow tube, and more particularly to a polishing device for a hollow tube with less influence of bubbles.

陽電子と電子を衝突させ、ビッグバン状態を形成する装置としてリニアコライダが建設されようとしている(ILC計画)。リニアコライダには図8に示すように、両端にフランジ101a、101bを有し、軸方向に周期的に径が変化するニオブの空洞管100が使用される。この装置で所定の効果を得るための要素の1つとして、このニオブの空洞管100の内面が平滑になっているか否かがある。   A linear collider is being built as a device that collides positrons and electrons to form a big bang state (ILC project). As shown in FIG. 8, the linear collider uses a niobium hollow tube 100 having flanges 101a and 101b at both ends and whose diameter periodically changes in the axial direction. One of the elements for obtaining a predetermined effect in this apparatus is whether or not the inner surface of the niobium hollow tube 100 is smooth.

ところが、空洞管100は、成形時に過大な圧力や熱を掛けるところから、その内表面の組織は不均一に歪んだ状態となっている。この表面状態をこのままにしておくと、電気的特性、磁気的特性も不均一な状態となり、結果として、電子や陽子に所定の速度を与えることができなくなる。そこで、空洞管の内面を所定の厚さ、研磨する方法が開発されている。   However, since the hollow tube 100 is subjected to excessive pressure and heat during molding, the structure of the inner surface thereof is unevenly distorted. If this surface state is left as it is, the electrical and magnetic characteristics are also non-uniform, and as a result, a predetermined speed cannot be given to electrons and protons. Therefore, a method of polishing the inner surface of the hollow tube to a predetermined thickness has been developed.

特開平11−350200では空洞管に棒状の電極を挿入して電解研磨をする構成が開示されているが、電極が空洞管の内面形状に沿った形状ではないので、部分によって研磨むらができることになる。そこで、本願出願人はPCT JP 2013/068593で、電極軸に、空洞管の内周面形状に対応する単翼を少なくとも1枚備え、前記単翼を電極軸に巻回した収納状態と、前記単翼を電極軸から径方向に延伸した稼動状態に遷移可能な研磨用電極を提案している。これによって、空洞管の内面形状と、電極の形状が符合し、空洞管の内面を均一に研磨することができることになる。   Japanese Patent Laid-Open No. 11-350200 discloses a structure in which a rod-shaped electrode is inserted into a hollow tube and electropolishing is performed. However, since the electrode is not shaped along the inner surface of the hollow tube, uneven polishing can be caused by a portion. Become. Therefore, the applicant of the present invention is PCT JP 2013/068593, and the electrode shaft is provided with at least one single blade corresponding to the inner peripheral surface shape of the hollow tube, and the storage state in which the single blade is wound around the electrode shaft; We have proposed a polishing electrode capable of transitioning to an operating state in which a single blade is extended radially from an electrode shaft. As a result, the shape of the inner surface of the hollow tube matches the shape of the electrode, and the inner surface of the hollow tube can be uniformly polished.

特開平11−350200JP-A-11-350200 PCT JP 2013/068593PCT JP 2013/068593

前記PCT JP 2013/068593に開示の研磨用電極は、空洞管の内面を研磨する電極としては極めて有効であり、今後広く利用されるものと思われる。この電極を用いて電解研磨をする場合、空洞管を縦に設置し、空洞管の下の開口部から研磨液を供給して、上の開口部から排出する方法が採られる。空洞管内を研磨しているときに発生する気泡を下からの研磨液の流れで上に追い出そうとする意図である。   The polishing electrode disclosed in PCT JP 2013/068593 is extremely effective as an electrode for polishing the inner surface of a hollow tube, and is expected to be widely used in the future. When electrolytic polishing is performed using this electrode, a method is adopted in which a hollow tube is installed vertically, a polishing liquid is supplied from an opening below the hollow tube, and discharged from an upper opening. The intention is to expel bubbles generated when the inside of the hollow pipe is being polished upward by the flow of the polishing liquid from below.

ただ、ここで対象となる空洞管は内部に周期的な凹凸があり、上記のように下からの単純な研磨液の流れでは、前記気泡が滞留する部分が生じる。気泡が滞留すると、その部分は電解面の状態が悪くなることは当然の成り行きとなる。   However, the target hollow tube has periodic irregularities inside, and a portion where the bubbles stay is generated in the flow of the simple polishing liquid from below as described above. When the bubbles stay, it is natural that the electrolytic surface of the portion deteriorates.

本願は、上記従来の事情に鑑みて提案されたものであって、研磨処理時に発生する気泡の影響を抑えることを目的とするものである。   The present application has been proposed in view of the above-described conventional circumstances, and an object thereof is to suppress the influence of bubbles generated during the polishing process.

本発明は内径が位置によって変化する空洞管を研磨する電極を用いた研磨装置において、以下の構成を採っている。   The present invention employs the following configuration in a polishing apparatus using an electrode for polishing a hollow tube whose inner diameter varies depending on the position.

まず、本発明に使用する研磨用電極は、電極軸に、空洞管の内周面形状に対応する少なくとも1枚以上の単翼から構成される翼電極を備え、前記翼電極を電極軸に巻回した収納状態と、前記翼電極を電極軸から径方向に延伸した稼動状態に遷移可能な構成となっている。 First, the polishing electrode used in the present invention includes a blade electrode composed of at least one single blade corresponding to the inner peripheral surface shape of the hollow tube on the electrode shaft, and the blade electrode is wound around the electrode shaft. It is configured to be able to transition between a rotated storage state and an operation state in which the blade electrode is extended in the radial direction from the electrode shaft.

この研磨用電極が、前記電極軸と空洞管の軸が一致するように空洞管に挿入設置される。   This polishing electrode is inserted and installed in the cavity tube so that the electrode axis and the axis of the cavity tube coincide.

本発明では前記電極軸にパイプを用い、当該電極軸の空洞管の各膨らみに対応する位置に、前記電極軸の内側から外側に貫通する給液孔が設けられる。研磨液タンクから供給された研磨液は、前記電極軸のいずれか一方の端に設けられた液導入口を介して前記パイプである電極軸に供給される。更に、当該電極軸に設けられた前記給液孔を介して空洞管に研磨液が充填されることになる。通液部が、前記空洞管とパイプの間に設けられ、前記給液孔を介して供給された研磨液が前記通液部を介して液排出口に集められ、ここから研磨液タンクに戻す構成になっている。   In the present invention, a pipe is used for the electrode shaft, and a liquid supply hole penetrating from the inside to the outside of the electrode shaft is provided at a position corresponding to each bulge of the hollow tube of the electrode shaft. The polishing liquid supplied from the polishing liquid tank is supplied to the electrode shaft that is the pipe through a liquid inlet provided at one end of the electrode shaft. Further, the hollow tube is filled with the polishing liquid through the liquid supply hole provided in the electrode shaft. A liquid passing part is provided between the hollow pipe and the pipe, and the polishing liquid supplied through the liquid supply hole is collected at the liquid discharge port through the liquid passing part, and is returned from here to the polishing liquid tank. It is configured.

電解研磨中に研磨液に発生する気泡が、空洞管を構成する膨らみに滞留しようとする、が、前記給液孔から供給される研磨液が乱流となり、前記気泡を一箇所に滞留しないように、しかも早く各膨らみから追い出すように作用し、研磨の質を上げることができる。   Bubbles generated in the polishing liquid during electropolishing try to stay in the bulges forming the hollow tube, but the polishing liquid supplied from the liquid supply hole becomes turbulent and does not stay in one place. In addition, it can act to expel each bulge quickly and improve the quality of polishing.

本発明の電極の使用状態を示す側面図。The side view which shows the use condition of the electrode of this invention. 本発明の単位の電極の収納状態を示す平面図。The top view which shows the accommodation state of the electrode of the unit of this invention. 本発明の単位の電極の稼動状態を示す平面図。The top view which shows the operating state of the electrode of the unit of this invention. 本発明の電極の実施形態を示す斜視図。The perspective view which shows embodiment of the electrode of this invention. 図4の分解斜視図。The disassembled perspective view of FIG. 翼電極が複数の場合の実施の形態を示す斜視図。The perspective view which shows embodiment in the case where there are a plurality of blade electrodes. 図6の分解斜視図。FIG. 7 is an exploded perspective view of FIG. 6. 空洞管の正面図Front view of hollow tube

図1は本発明の係る空洞管の電解装置を用いて、電界研磨をしている状態を示す図であり、図4、図5は本発明に使用する電極の1単位(空洞管の1つの膨らみに対応)を示す基本的な概念図であり、以下、まず、単位の電極について説明する。   FIG. 1 is a diagram showing a state in which electropolishing is performed using the hollow tube electrolysis apparatus according to the present invention, and FIGS. 4 and 5 show one unit of an electrode used in the present invention (one of the hollow tubes). In the following, the unit electrode will be described first.

図4は、本発明に使用する電極を示す斜視図、図5は図4の分解斜視図であって、両者とも空洞管を省略した状態を示す。図2は図4の平面図であって、収納状態を示す図、図3は図4の平面図であって、稼動状態を示す図である。尚、収納状態、稼動状態については以下に説明する。   4 is a perspective view showing an electrode used in the present invention, and FIG. 5 is an exploded perspective view of FIG. 4, both showing a state in which a hollow tube is omitted. FIG. 2 is a plan view of FIG. 4 showing the storage state, and FIG. 3 is a plan view of FIG. 4 showing the operating state. The storage state and the operation state will be described below.

電極軸21には、基端が軸方向に所定幅で外周端が、研磨対象物の空洞管100のふくらみ部の内面形状に対応する形状となっており、少なくとも外周端が金属で構成された薄板よりなる単翼22a、22b・・を、1枚もしくは複数枚(図示では4枚)、周方向に等間隔に配置して翼電極22を形成する。   The electrode shaft 21 has a base end with a predetermined width in the axial direction and an outer peripheral end corresponding to the shape of the inner surface of the bulge portion of the hollow tube 100 to be polished, and at least the outer peripheral end is made of metal. A single blade or a plurality of thin blades 22a, 22b,... (Four in the drawing) are arranged at equal intervals in the circumferential direction to form the blade electrode 22.

翼電極22を構成する各単翼22a、22b・・は、可撓性を有しており、電極軸21に巻回された状態で、最小径となり、この状態で、電極軸21と同心に配置された収納筒29に収納されるようになっている。前記収納筒29に収納された状態の各単翼22a、22b・・の先端に対応する位置に、軸方向のスリット群23(23a、23b・・)が設けられ、当該スリット群を構成する各スリット23a、23b・・に、各単翼22a、22b・・の先端部が、収納筒29の外部に僅かに出る程度に挿通しておく。これによって、電極軸21と収納筒29とを相対的に回転することによって、各単翼22a、22b・・の先端を径方向に挿抜することができ、各単翼22a、22b・・の先端の径を調整できる構成(径調整手段:電極軸21+翼電極22+収納筒29+スリット群23)とする。   Each of the single blades 22a, 22b,... Constituting the blade electrode 22 has flexibility and has a minimum diameter when wound on the electrode shaft 21, and in this state, is concentric with the electrode shaft 21. It is accommodated in the arranged storage cylinder 29. A slit group 23 (23a, 23b,...) In the axial direction is provided at a position corresponding to the tip of each single blade 22a, 22b,. .. Are inserted through the slits 23a, 23b,... To such a degree that the tip portions of the single blades 22a, 22b,. Thus, by rotating the electrode shaft 21 and the storage cylinder 29 relatively, the tips of the single blades 22a, 22b,... Can be inserted and removed in the radial direction, and the tips of the single blades 22a, 22b,. The diameter can be adjusted (diameter adjusting means: electrode shaft 21 + blade electrode 22 + housing cylinder 29 + slit group 23).

尚、前記電極軸21に収納筒29を同心に配置する構成として、例えば、
電極軸21に当該電極軸21より径が大きく、収納筒29の径に符合するス
ペーサ30を嵌める構成とすることが考えられる。
In addition, as a configuration in which the storage cylinder 29 is concentrically disposed on the electrode shaft 21, for example,
It can be considered that a spacer 30 having a diameter larger than that of the electrode shaft 21 and matching the diameter of the storage cylinder 29 is fitted to the electrode shaft 21.

上記のように翼電極22は、収納状態と、稼動状態の2つの態様を採る。   As described above, the blade electrode 22 takes two modes, that is, a storage state and an operation state.

すなわち、平面視で図2に示すように、各単翼22a、22b・・の先端が、収納筒29の各スリット23a、23b・・から僅かに出た状態が収納状態であり、また、平面視で図3に示すように、電極軸21と収納筒29を相対的に回転させ、各単翼22a、22b・・の外周端が、空洞管100の内周面近くに押し出された状態(各単翼22a、22b・・の外周端と空洞管100の内
周面との距離が例えば1cm前後)が稼動状態である。
That is, as shown in FIG. 2 in plan view, the state where the tips of the single blades 22a, 22b,... Slightly protrude from the slits 23a, 23b,. As shown in FIG. 3, the electrode shaft 21 and the housing cylinder 29 are relatively rotated, and the outer peripheral ends of the single blades 22 a, 22 b... Are pushed out near the inner peripheral surface of the cavity tube 100 ( The distance between the outer peripheral ends of the single blades 22a, 22b,... And the inner peripheral surface of the hollow tube 100 is, for example, about 1 cm).

以上のように単位の電極20を構成するが、空洞管100の内周面のふくらみの数は1つではなく、図8に示すように軸方向に周期的に複数個ある。従って、実際の電極20は、図6、図7に示すように、電極軸21の長さを空洞管100の軸の長さに対応させ、翼電極22の数は、空洞管100の内面のふくらみの数に対応させて設けられる。更に、図6、図7に示すように、収納筒29も、電極軸21と略同じ長さとし、1組のスリット群23(23a、23b、・・)が設けられるとともに、当該スリット群が軸方向の複数の単翼に共通に設けられる。   Although the unit electrode 20 is configured as described above, the number of bulges on the inner peripheral surface of the hollow tube 100 is not one, but there are a plurality of periodic swells in the axial direction as shown in FIG. Therefore, as shown in FIGS. 6 and 7, the actual electrode 20 has the length of the electrode shaft 21 corresponding to the length of the shaft of the hollow tube 100, and the number of blade electrodes 22 is the number of the inner surface of the hollow tube 100. It is provided corresponding to the number of bulges. Further, as shown in FIGS. 6 and 7, the storage cylinder 29 is also substantially the same length as the electrode shaft 21, and is provided with a set of slit groups 23 (23a, 23b,...). Common to a plurality of single wings in the direction.

前記電極軸21としてはパイプを用い、内部を研磨液が通過できるようにしておく。更に、各膨らみに対応して少なくとも1つの給液孔211が、電極軸21の内外を貫通して設けられる。これによって、後に説明するように、各膨らみに対応して研磨液が供給されることになり、膨らみ内での研磨液の乱流が起きて、気泡の影響を抑えることができる。   A pipe is used as the electrode shaft 21 so that the polishing liquid can pass therethrough. Further, at least one liquid supply hole 211 corresponding to each bulge is provided through the inside and outside of the electrode shaft 21. Thus, as will be described later, the polishing liquid is supplied corresponding to each bulge, and the turbulent flow of the polishing liquid in the bulge occurs, so that the influence of bubbles can be suppressed.

図1は、上記のように構成した電極を使用して、空洞管の内面を研磨する装置を示した側面図である。   FIG. 1 is a side view showing an apparatus for polishing the inner surface of a hollow tube using the electrode configured as described above.

基台10上に、架台11が設けられ、当該架台11の中央下側には、液導入口14が設けられ、当該液導入口14には研磨液タンク15からの研磨液がポンプ16を介して供給されるようになっている。さらに、以下に説明するように電極軸21を介して架台11上に載置される空洞管100の内部に研磨液が導入できるようになっている。   A base 11 is provided on the base 10, and a liquid introduction port 14 is provided below the center of the base 11. A polishing liquid from a polishing liquid tank 15 is supplied to the liquid introduction port 14 via a pump 16. Are being supplied. Further, as described below, the polishing liquid can be introduced into the hollow tube 100 placed on the gantry 11 via the electrode shaft 21.

上記架台11の上側には、研磨対象物である空洞管100が一方のフランジ101aを利用して固定される。この状態で、上記収納状態の電極20が空洞管100の上端から差し込まれる。このとき、電極20の電極軸21は、前記液導入口14に回転自在に貫通され、その下端は、前記液導入口14に開口される。   On the upper side of the gantry 11, a hollow tube 100 as an object to be polished is fixed using one flange 101a. In this state, the accommodated electrode 20 is inserted from the upper end of the cavity tube 100. At this time, the electrode shaft 21 of the electrode 20 is rotatably passed through the liquid introduction port 14, and the lower end thereof is opened to the liquid introduction port 14.

電極軸21に対しては更に。その軸芯にリード軸213が液導入口14の下側に回転自在に導出され、電源から電力が端子17を介して供給されるようになっている。   Further to the electrode shaft 21. A lead shaft 213 is rotatably led to the lower side of the liquid inlet 14 at the shaft core, and power is supplied from the power source via the terminal 17.

上記のように電極20が空洞管100に挿通された状態で、作業者は、収納筒29の上端を手で持って電極軸21を回転させ、各単翼22a、22b・・の径を延伸して、前記稼動状態を形成しておく。   With the electrode 20 inserted through the hollow tube 100 as described above, the operator rotates the electrode shaft 21 while holding the upper end of the storage cylinder 29 by hand, and extends the diameter of each single blade 22a, 22b,. Then, the operating state is formed.

次いで、空洞管100の他方のフランジ101b上に液導出口19が固定される。このとき、電極軸21が、液導出口19の上端の上に液密にかつ回転自在に突出するようになっている。   Next, the liquid outlet 19 is fixed on the other flange 101 b of the hollow tube 100. At this time, the electrode shaft 21 protrudes in a liquid-tight and rotatable manner on the upper end of the liquid outlet port 19.

空洞管100の上側には液導出口19が設けられ、以下のように各膨らみを介して空洞管100の上側に溢れた研磨液を受け止め、研磨液タンク15に戻すようになっている。   A liquid outlet 19 is provided on the upper side of the hollow pipe 100 so as to receive the polishing liquid overflowing the upper side of the hollow pipe 100 through each bulge and return it to the polishing liquid tank 15 as described below.

すなわち、空洞管100の各膨らみを連結する細径部(前記電極20が挿通されている)は研磨液が通過できる余裕があり、通液部212となる。各膨らみに給液孔211から供給された研磨液は前記通液部212を介して液導出口19に排出され、研磨液タンク15に戻る構造になっている。   That is, the narrow-diameter portion (where the electrode 20 is inserted) that connects the bulges of the hollow tube 100 has a margin through which the polishing liquid can pass and becomes the liquid passage portion 212. The polishing liquid supplied to each bulge from the liquid supply hole 211 is discharged to the liquid outlet 19 through the liquid passage 212 and returned to the polishing liquid tank 15.

尚、架台11上での安定性を確保するために空洞管100を固定する支持枠18が図示しない支柱で支えられる。   In addition, in order to ensure the stability on the gantry 11, the support frame 18 which fixes the cavity pipe | tube 100 is supported by the support | pillar which is not illustrated.

上記、空洞管100の取り付け構造、電極20の設置構造は上記以外に種々考えることができるのでここではさらなる説明を省略するが、上記のように差し込まれた電極20(電極軸21、翼電極22、収納筒29)は、電極軸21に回転力を与えると空洞管100に対して回転できる構成となっており、電極軸21が回転すると、各単翼22a、22b・・・が空洞管100の内部で回転することになる。また、上記回転力は駆動手段120より与えられる構成としてもよい。   Since the mounting structure of the hollow tube 100 and the installation structure of the electrode 20 can be variously considered in addition to the above, further explanation is omitted here, but the electrode 20 (electrode shaft 21 and blade electrode 22 inserted as described above) is omitted here. The storage cylinder 29) is configured to be able to rotate with respect to the hollow tube 100 when a rotational force is applied to the electrode shaft 21, and when the electrode shaft 21 rotates, each single blade 22a, 22b. Will rotate inside. The rotational force may be applied from the driving unit 120.

上記の構成で、給液ポンプ16で研磨液タンク15から液導入口14に研磨液が導入される。液導入口14に導かれた研磨液は電極軸21の下端の開口部から、各膨らみに対応する位置の給液孔211を介して、所定の流速で空洞管100の膨らみに充填される。さらに通液部212を介して液導出口19に集められ、研磨液タンク15に戻るようになっている。   With the above configuration, the polishing liquid is introduced from the polishing liquid tank 15 into the liquid inlet 14 by the liquid supply pump 16. The polishing liquid guided to the liquid inlet 14 is filled from the opening at the lower end of the electrode shaft 21 into the bulge of the hollow tube 100 at a predetermined flow rate through the liquid supply hole 211 at a position corresponding to each bulge. Further, the liquid is collected in the liquid outlet 19 via the liquid passage part 212 and returned to the polishing liquid tank 15.

上記のように研磨液を循環しながら電極軸21と空洞管100の間に研磨に必要な電圧を掛けて、電極軸21をゆっくり回転させると、空洞管100の内面が研磨されることになるが、このとき、多数の気泡が発生し、この気泡が溜まると、その部分の電解品質は落ちることになる。本発明では、上記のように通液孔211を設けて、ここから各膨らみに研磨液を供給するようにしているので、各膨らみ内で研磨液の乱流が発生し、気泡が一箇所に滞留しないように通液部212を介して液排出口19に押し出されるようになっている。従って、良質の電解処理が得られることになる。   When the electrode shaft 21 is slowly rotated by applying a voltage necessary for polishing between the electrode shaft 21 and the cavity tube 100 while circulating the polishing liquid as described above, the inner surface of the cavity tube 100 is polished. However, at this time, a large number of bubbles are generated, and when the bubbles are accumulated, the electrolytic quality of the portion is lowered. In the present invention, the liquid passage hole 211 is provided as described above, and the polishing liquid is supplied to each bulge from here, so that the turbulent flow of the polishing liquid is generated in each bulge and the bubbles are in one place. It is pushed out to the liquid discharge port 19 through the liquid passage part 212 so as not to stay. Therefore, a good quality electrolytic treatment can be obtained.

上記のようにして研磨が終了すると、研磨液を排出して(例えば、液導入口14に設けたドレン(図示しない)から)、洗浄水を給液ポンプ16から空洞管100に送り込んで洗浄する。その後、電極20を収納状態にして、空洞管100から抜き取ることによって作業は終了することになる。   When polishing is completed as described above, the polishing liquid is discharged (for example, from a drain (not shown) provided in the liquid inlet 14), and cleaning water is sent from the liquid supply pump 16 to the cavity tube 100 for cleaning. . Thereafter, the electrode 20 is placed in the retracted state, and the work is completed by removing the electrode 20 from the hollow tube 100.

以上説明したように、本発明は、内径が部分によって変化する空洞管の内面を、その内径に合わせた単翼を持った翼電極を広げる構成の電極で研磨するについても、発生する気泡を効率的に除去することができ、その内面を均一に研磨することができる。高速加速器をはじめ、より高い精度を必要とする製品に適用することができる。また、電解研磨だけでなく電解メッキに応用できることは勿論である。   As described above, the present invention is effective even when the inner surface of a hollow tube whose inner diameter varies depending on the portion is polished with an electrode having a configuration in which a blade electrode having a single blade matching the inner diameter is expanded. The inner surface can be uniformly polished. It can be applied to products that require higher accuracy, such as high-speed accelerators. Of course, it can be applied not only to electropolishing but also to electroplating.

10 基台
11 架台
14 液導入口
17 液導出口
21 電極軸
20 電極
21 電極軸
22 翼電極
22a、22b・・単翼
23 スリット群
23a、23b・・スリット
29 収納筒
100 空洞管
211給液孔
212通液部
DESCRIPTION OF SYMBOLS 10 Base 11 Base 14 Liquid inlet 17 Liquid outlet 21 Electrode shaft 20 Electrode 21 Electrode shaft 22 Blade electrode 22a, 22b .. Single blade 23 Slit group 23a, 23b .. 212 fluid passage

Claims (1)

電極軸に、空洞管の内周面形状に対応する少なくとも1枚以上の単翼から構成される翼電極を備え、前記翼電極を電極軸に巻回した収納状態と、前記翼電極を電極軸から径方向に延伸した稼動状態に遷移可能な研磨用電極を、前記電極軸と空洞管の軸芯を一致させて空洞管に装着した、空洞管の研磨装置において、
パイプを用いた前記電極軸と、
当該電極軸のいずれか一方の端から研磨液を供給する液導入口と、
空洞管に対して研磨液を前記翼電極に対応する位置で供給する、前記パイプに設けられた給液孔と、
前記空洞管とパイプの間に設けた通液部と
前記通液部から排出される研磨液を研磨液タンクに戻す液排出口
を備えたことを特徴とする空洞管の研磨装置。
The electrode axis, with at least one extension wings electrode composed of a single blade corresponding to the inner peripheral shape of the cavity tube, and accommodated state wound with the blade electrode to the electrode axis, the electrode axis the blade electrode In the hollow tube polishing apparatus, the polishing electrode capable of transitioning from the radially extending operation state to the working state is mounted on the hollow tube with the electrode axis and the axial center of the hollow tube aligned.
The electrode shaft using a pipe;
A liquid inlet for supplying a polishing liquid from one end of the electrode shaft;
Supplying a polishing liquid at a position corresponding to the blade electrode with respect to the cavity tube, and a liquid supply hole provided in the pipe,
A polishing apparatus for a hollow pipe, comprising: a liquid passing part provided between the hollow pipe and the pipe; and a liquid discharge port for returning the polishing liquid discharged from the liquid passing part to a polishing liquid tank.
JP2014154936A 2014-07-30 2014-07-30 Cavity tube polishing equipment Active JP6374724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154936A JP6374724B2 (en) 2014-07-30 2014-07-30 Cavity tube polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154936A JP6374724B2 (en) 2014-07-30 2014-07-30 Cavity tube polishing equipment

Publications (2)

Publication Number Publication Date
JP2016030859A JP2016030859A (en) 2016-03-07
JP6374724B2 true JP6374724B2 (en) 2018-08-15

Family

ID=55441428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154936A Active JP6374724B2 (en) 2014-07-30 2014-07-30 Cavity tube polishing equipment

Country Status (1)

Country Link
JP (1) JP6374724B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613877B1 (en) * 2018-02-02 2021-03-03 Marui Galvanizing Co., Ltd Electrolytic polishing method and device
JP7437016B2 (en) * 2020-02-03 2024-02-22 マルイ鍍金工業株式会社 Electrolytic polishing method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123799A (en) * 1984-07-10 1986-02-01 Mitsubishi Heavy Ind Ltd Electrolytic polishing method of hollow niobium body
JPH08165600A (en) * 1994-12-14 1996-06-25 Yamaguchi Seisakusho:Kk Method for polishing inner face of stainless steel vessel and device therefor
US9689086B2 (en) * 2012-07-11 2017-06-27 Marui Galvanizing Co., Ltd. Electrode for polishing hollow tube, and electrolytic polishing method using same

Also Published As

Publication number Publication date
JP2016030859A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
US9689086B2 (en) Electrode for polishing hollow tube, and electrolytic polishing method using same
US9745863B2 (en) Method of manufacturing rotary machine, method of plating rotary machine, and rotary machine
JP6374724B2 (en) Cavity tube polishing equipment
US20170030385A1 (en) Dissolver tube having mesh screen, and method for producing mesh screen
JP6576939B2 (en) Cavity tube polishing rotor
US11021807B2 (en) Electrolytic polishing method and device
TW201611152A (en) Substrate electrolytic processing apparatus and paddle for use in such substrate electrolytic processing apparatus
JP6326672B2 (en) Hollow shaft heat treatment method, hollow shaft heat treatment apparatus and screw shaft manufacturing method
JP6804086B2 (en) Electrolytic processing equipment and method
JP6231838B2 (en) Cavity tube partial electrolytic polishing jig and electrolytic polishing method
JP7437016B2 (en) Electrolytic polishing method and device
JP6231835B2 (en) Electrolytic polishing equipment for hollow tube
KR101510043B1 (en) Electropolishing device
JP2018127669A (en) Barrel plating apparatus
JP2013170500A (en) Method of manufacturing impeller of centrifugal rotary machine
KR101608594B1 (en) Plating equipment with no contact dipping roller and method using same
JP6879550B2 (en) Electroforming equipment
JP2017094223A (en) Washing brush roll
JP2016124059A5 (en) Wire processing apparatus and processing tank
JP6567929B2 (en) Electroforming method and electroforming apparatus
TW201720559A (en) Electrochemical processing apparatus and a processing method wherein the electrolyte flow field at the periphery of the workpiece is in a spiral vortex state, for performing electrochemical processing to form a thread on the surface a workpiece
CN201362749Y (en) Rotary drum device of minitype chip component end processing device
JP2016020548A (en) Yarn processing apparatus
CN104746095A (en) Cathode device for removing oxide skin of stainless steel pipe by using micro-arc plasmas in solution
ITBO20080374A1 (en) EQUIPMENT FOR HEATING FLUIDS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180720

R150 Certificate of patent or registration of utility model

Ref document number: 6374724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250