JPH05317606A - Ultrasonic defoaming device and continuous defoaming method using this device - Google Patents

Ultrasonic defoaming device and continuous defoaming method using this device

Info

Publication number
JPH05317606A
JPH05317606A JP13352092A JP13352092A JPH05317606A JP H05317606 A JPH05317606 A JP H05317606A JP 13352092 A JP13352092 A JP 13352092A JP 13352092 A JP13352092 A JP 13352092A JP H05317606 A JPH05317606 A JP H05317606A
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
bubbles
defoaming
bubble detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13352092A
Other languages
Japanese (ja)
Inventor
Takahiro Ogawa
恭弘 小川
Hitoshi Aizawa
均 相澤
Akiyuki Iwatani
明之 岩谷
Shigeyoshi Adachi
重好 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13352092A priority Critical patent/JPH05317606A/en
Publication of JPH05317606A publication Critical patent/JPH05317606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To improve the consumption unit of liquid at the time of cyclically using a foamable liquid and to prevent the pollution of an ambient environment. CONSTITUTION:The foam building up on a liquid surface is detected by a foam detecting sensor 42. Ultrasonic waves are emitted from an ultrasonic transmitter 46 by the foam detection signal from the foam detecting sensor 42 to destroy the froth on the liquid surface. This ultrasonic defoaming device is provided in the middle of a circulating pipeline. As a result, the need for the defoaming liquid is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波消泡装置及びこ
れを使った連続消泡方法に係り、特に、発泡性液体を循
環使用する際の液体の原単位改善及び周辺環境汚染防止
に好適な、超音波消泡装置及びこれを使った連続消泡方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic defoaming device and a continuous defoaming method using the same, and more particularly, to improving the basic unit of liquid when circulating a foaming liquid and preventing environmental pollution. The present invention relates to a suitable ultrasonic defoaming device and a continuous defoaming method using the same.

【0002】[0002]

【従来の技術】従来、発泡性液体を循環使用する際も、
図1に示すような一般的な循環管路を用いていた。
2. Description of the Related Art Conventionally, when circulating a foaming liquid,
A general circulation line as shown in FIG. 1 was used.

【0003】この循環管路において、液体はリザーブタ
ンク10に蓄えられており、該リザーブタンク10の下
部に設けられた送液ノズル12から送液ポンプ14で昇
圧され、送液管路16を通って液使用場所18に圧送さ
れる。液使用場所18で使用された残りの液は、返送ポ
ンプ20で再び昇圧され、返送管路22を通って前記リ
ザーブタンク10に戻される。
In this circulation line, the liquid is stored in the reserve tank 10, the pressure is raised by the liquid feed pump 14 from the liquid feed nozzle 12 provided in the lower portion of the reserve tank 10, and the liquid passes through the liquid feed line 16. And is pumped to the liquid use place 18. The remaining liquid used at the liquid use place 18 is pressurized again by the return pump 20 and returned to the reserve tank 10 through the return pipe line 22.

【0004】このような循環管路における発泡は、主と
して液使用場所18から返送管路22の間で発生し、泡
の混入した液がリザーブタンク10に戻るため、循環を
続けるとリザーブタンク10の空間部は泡で充満し、開
口部10Aより外部に溢れ出す。発泡性液体の泡はタン
ク外に出ても消え難く、周辺を汚染し、漏出が続くの
で、液体の損失も大きなものとなっていた。
Such foaming in the circulation pipe mainly occurs between the liquid use place 18 and the return pipe 22, and the liquid mixed with the foam returns to the reserve tank 10. Therefore, if the circulation is continued, the reserve tank 10 will be discharged. The space is filled with bubbles and overflows from the opening 10A. The bubbles of the effervescent liquid were hard to disappear even when they went out of the tank, and the surroundings were contaminated, and the leakage continued, resulting in a large loss of the liquid.

【0005】従来は、この対策として、図2に示すよう
に、リザーブタンク10の蓋11に泡排出用のノズル1
1Aを設け、泡を隣接した消泡タンク24に導いて、そ
のノズル24Aから消泡液をスプレーして破泡(泡の破
壊)していた。消泡液としては、水あるいは循環液を用
いていたが、水を使用すると水が混入した液体は再使用
ができないため、液体の損失は避けられないし、循環液
自体を用いても、微細な泡が残って、やはり再使用は困
難であった。
Conventionally, as a countermeasure against this, as shown in FIG. 2, a nozzle 1 for discharging bubbles is attached to a lid 11 of a reserve tank 10.
1A was provided, the foam was guided to the adjacent defoaming tank 24, and the defoaming liquid was sprayed from the nozzle 24A to break the foam (break the foam). As the defoaming liquid, water or a circulating liquid was used.However, when water is used, the liquid mixed with water cannot be reused, so the loss of the liquid is unavoidable, and even if the circulating liquid itself is used, it is not Bubbles remained and again it was difficult to reuse.

【0006】この他、液体をスプレーして泡を破壊する
方法や装置としては、特開平1−123100号に、鋼
板の洗浄で発生した処理液の泡に対し、この処理液と同
種で且つこれより低温の処理液を噴射することにより、
効果的に消泡して泡の流出を防止し、処理液として回収
することが提案されている。又、同種のものとして、特
開平3−153887号に、金属材料の油汚れ等を洗浄
し、発泡したアルカリ洗浄液の上層部をオーバーフロー
タンクに導き、該オーバーフロータンク内の発泡部に対
して霧状水をスプレーして、貯留槽内アルカリ洗浄液の
洗浄性を維持しながら、その発泡部を消泡する方法が提
案されている。
In addition to the above, as a method and apparatus for spraying a liquid to destroy bubbles, Japanese Patent Laid-Open No. 123100/123100 discloses that the bubbles of the treatment liquid generated during the cleaning of the steel sheet are of the same type as this treatment liquid and By injecting a lower temperature processing liquid,
It has been proposed to effectively defoam to prevent the bubbles from flowing out and to collect them as a treatment liquid. Further, as the same type, in Japanese Patent Laid-Open No. 3-153887, the upper layer portion of a foamed alkali cleaning liquid which is washed with oil stains of a metal material is introduced into an overflow tank, and the foamed portion in the overflow tank is atomized. A method has been proposed in which water is sprayed to defoam the foamed portion while maintaining the cleaning property of the alkaline cleaning liquid in the storage tank.

【0007】又、機械的に泡を破壊する装置としては、
特公平2−20001号に、板羽根を設けたモータを、
間隔を設けて板羽根外周に配置した脚付きのフロートに
設置し、板羽根を水面上の直近の空間で回転するように
した浮上式消泡装置により、水面上を移動して発生する
泡を羽根に衝突させて消泡する消泡装置が提案されてい
る。
Further, as a device for mechanically breaking bubbles,
Japanese Examined Patent Publication No. 2-20001 with a motor provided with blades,
Installed in a float with legs arranged at the outer periphery of the plate blades at intervals, the floating vane defoaming device that rotates the plate blades in the space closest to the water surface removes bubbles generated on the water surface. A defoaming device has been proposed that defoams by colliding with a blade.

【0008】更に、機械的に泡を破壊する方法と液体を
スプレーして泡を破壊する方法を併用したものとして、
特開昭64−56897号に、めっき液上面の泡にめっ
き液を散布し、泡を攪拌することにより、微粒子分散系
電気めっき液の泡を確実に消泡し、めっき浴の長時間継
続使用を可能にする方法が提案されている。
Further, as a combination of a method of mechanically breaking bubbles and a method of spraying a liquid to break bubbles,
In JP-A-64-56897, the plating solution is sprayed on the bubbles on the upper surface of the plating solution and the bubbles are stirred to surely eliminate the bubbles of the fine particle dispersion type electroplating solution, and to continuously use the plating bath for a long time. A method for enabling the above is proposed.

【0009】この他、泡と液体を分けるための泡分離装
置も、特開昭52−20703等で提案されている。
In addition to this, a bubble separating device for separating bubbles from a liquid has been proposed in Japanese Patent Laid-Open No. 52-20703.

【0010】[0010]

【発明が解決しようとする問題点】このように、種々の
対策が提案されているが、いずれも装置が複雑であった
り、効果が不十分であったりして、簡便さと効果の確実
さの点で問題があった。
As described above, various measures have been proposed. However, in either case, the device is complicated or the effect is insufficient, so that the simplicity and the certainty of the effect are not ensured. There was a problem in terms.

【0011】近年、循環液の種類の多様化には極めて著
しいものがあり、樹脂系のような発泡性液体の占める割
合も大きくなってきており、循環管路の連続消泡装置に
対する要求は強まっている。
In recent years, the diversification of the types of circulating liquids has been extremely remarkable, and the proportion of foaming liquids such as resin-based materials has also increased, and the demand for continuous defoaming devices for circulation lines has increased. ing.

【0012】本発明は、このような現状に鑑みて成され
たものであり、既存設備にも容易に採用可能で、周辺汚
染がなく、循環液の原単位を改善することが可能な超音
波消泡装置及びこれを使った連続消泡方法を提供するこ
とを課題とする。
The present invention has been made in view of such a situation as described above, and can be easily adopted in existing equipment, and there is no contamination of the surroundings, and an ultrasonic wave capable of improving the basic unit of circulating fluid is used. An object is to provide a defoaming device and a continuous defoaming method using the same.

【0013】[0013]

【問題点を解決するための手段】本発明は、超音波消泡
装置において、液面上に盛上る泡の存在を検出するため
の泡検出センサと、該泡検出センサからの泡検出信号に
より超音波を照射して、液面上の泡を破壊する超音波送
信子とを備えることにより、前記課題を達成したもので
ある。
SUMMARY OF THE INVENTION The present invention provides an ultrasonic defoaming apparatus which uses a bubble detection sensor for detecting the presence of bubbles rising on the liquid surface and a bubble detection signal from the bubble detection sensor. The object is achieved by including an ultrasonic wave transmitter that irradiates ultrasonic waves to destroy bubbles on the liquid surface.

【0014】又、リザーブタンク内の発泡性液体を送液
ポンプにより圧送してその一部を使用し、残りを返送ポ
ンプにより前記リザーブタンクに返送して循環使用する
配管経路の連続消泡方法において、循環管路の途中に消
泡タンクを設けて液体の圧力を開放すると共に、液面を
一定に保ち、液面に成長して盛り上がる泡を泡検出セン
サで検出し、該泡検出センサからの泡検出信号により、
液面上方に設置した超音波送信子から超音波を間欠的に
照射して消泡し、消泡処理した液を圧送することなく自
重で前記リザーブタンクに戻すことにより、同じく前記
課題を達成したものである。
Further, in a continuous defoaming method of a piping path in which a foaming liquid in a reserve tank is pressure-fed by a liquid-feeding pump, a part of it is used, and the rest is returned to the reserve tank by a return pump for cyclical use. , A bubble-removing tank is provided in the middle of the circulation line to release the pressure of the liquid, keep the liquid level constant, and detect bubbles that grow and rise on the liquid surface with the bubble detection sensor. By the bubble detection signal,
The same problem was achieved by intermittently irradiating ultrasonic waves from an ultrasonic transmitter installed above the liquid level to defoam, and returning the defoamed liquid to the reserve tank by its own weight without pressure feeding. It is a thing.

【0015】[0015]

【作用】本発明においては、液面上に盛り上がる泡の存
在を泡検出センサで検出し、該泡検出センサからの泡検
出信号により超音波送信子から超音波を照射して、液面
上の泡を破壊するようにしている。従って、泡検出セン
サと超音波送信子を設けるだけの比較的簡単な構成で破
泡でき、既存設備にも容易に採用可能であり、しかも、
泡が周囲に漏出して周辺を汚染することがない。更に、
消泡液が不要であるため、循環液の原単位を改善するこ
とができる。
In the present invention, the presence of bubbles rising on the liquid surface is detected by the bubble detection sensor, and the ultrasonic wave is emitted from the ultrasonic transmitter according to the bubble detection signal from the bubble detection sensor. I try to destroy the bubbles. Therefore, it is possible to break bubbles with a relatively simple configuration that only requires a bubble detection sensor and an ultrasonic transmitter, and can be easily adopted in existing equipment.
Bubbles do not leak out and contaminate the surrounding area. Furthermore,
Since the defoaming liquid is unnecessary, the unit consumption of the circulating liquid can be improved.

【0016】本発明は、又、系内で発生した泡をリザー
ブタンクに戻さず、循環管路の途中に消泡タンクを設け
て液体の圧力を開放すると共に、液面を一定に保持して
泡を自由に成長させる。次に、盛り上がった泡を泡検出
センサで検出し、該泡検出センサからの泡検出信号によ
り、液面上方に設置した超音波送信子から泡に向って超
音波を間欠的に照射して消泡し、泡を一定レベルに抑え
ながら、消泡処理した液を圧送することなく自重でリザ
ーブタンクに戻すようにした場合には、循環管路の消泡
を連続して確実に行うことができ、更に、消泡タンクか
らリザーブタンクに戻す際にポンプ等により再び発泡し
てしまうことが無い。
According to the present invention, the foam generated in the system is not returned to the reserve tank, but a defoaming tank is provided in the middle of the circulation line to release the pressure of the liquid and keep the liquid level constant. Let the bubbles grow freely. Next, the raised bubble is detected by the bubble detection sensor, and the ultrasonic wave is intermittently emitted from the ultrasonic transmitter installed above the liquid surface toward the bubble by the bubble detection signal from the bubble detection sensor. When foaming is performed and the foam is suppressed to a certain level and returned to the reserve tank by its own weight without sending the defoamed liquid under pressure, it is possible to ensure continuous defoaming of the circulation line. Moreover, when returning from the defoaming tank to the reserve tank, foaming does not occur again by a pump or the like.

【0017】ここで、超音波を連続的でなく間欠的に照
射する理由は、適正な出力と周波数を有する超音波を用
いれば、消泡は極めて短時間で達成されることと、消泡
後も無意味に照射を継続すれば、かえって発泡したり、
超音波の別の作用である溶解成分の凝集が起こり、液組
成に悪影響を及ぼす等の弊害を生じ、又、超音波振動子
の寿命も短くなってしまうからである。
The reason for irradiating the ultrasonic waves intermittently instead of continuously is that defoaming can be achieved in an extremely short time by using ultrasonic waves having an appropriate output and frequency, and If you continue to irradiate meaninglessly, instead of foaming,
This is because aggregation of dissolved components, which is another action of ultrasonic waves, causes adverse effects such as having an adverse effect on the liquid composition, and also shortens the life of the ultrasonic vibrator.

【0018】[0018]

【実施例】以下図面を参照して、本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】本発明の第1実施例は、図3に示す如く、
リザーブタンク10、送液ポンプ14、送液管路16、
液使用場所18、返送ポンプ20及び返送管路22を有
する従来と同様の循環管路において、本発明に係る消泡
タンク30を、返送管路22とリザーブタンク10の間
の、処理済み液が自重で前記リザーブタンクに戻るため
に必要なレベルに設け、該消泡タンク30と密閉構造と
したリザーブタンク10をサイホン管34で接続したも
のである。
The first embodiment of the present invention is as shown in FIG.
Reserve tank 10, liquid feed pump 14, liquid feed line 16,
The defoaming tank 30 according to the present invention is provided with the treated liquid between the return pipe 22 and the reserve tank 10 in the same circulation pipe as the conventional one having the liquid use place 18, the return pump 20 and the return pipe 22. The defoaming tank 30 is provided at a level necessary for returning to the reserve tank by its own weight, and the defoaming tank 30 and the reserve tank 10 having a closed structure are connected by a siphon pipe 34.

【0020】前記消泡タンク30の側面には、液面から
泡がある一定高さまで盛り上ったことを検出して、泡検
出信号を発生するための泡検出センサ42が設けられて
いる。この泡検出センサ40としては、例えば透過光を
検出する光電センサや静電容量センサを用いることがで
きる。
On the side surface of the defoaming tank 30, there is provided a bubble detection sensor 42 for detecting the rise of bubbles from the liquid surface to a certain height and generating a bubble detection signal. As the bubble detection sensor 40, for example, a photoelectric sensor or a capacitance sensor that detects transmitted light can be used.

【0021】又、前記消泡タンク30の上部には、超音
波振動素子48と、ホーン50からなる超音波送信子4
6が液面に対向して取り付けられている。このホーン5
0は、超音波発信器44から供給される超音波の周波数
に共振する形状で製作されている。
The ultrasonic transmitter 4 including an ultrasonic vibration element 48 and a horn 50 is provided above the defoaming tank 30.
6 is attached to face the liquid surface. This horn 5
0 is manufactured in a shape that resonates at the frequency of the ultrasonic wave supplied from the ultrasonic transmitter 44.

【0022】更に、消泡タンク30の中の液面近傍に
は、泡が通過可能な透孔を有する反射スクリーン52
が、液面全体を覆うように設けられている。この液と泡
を機械的に分離するための反射スクリーン52は、液中
にあっても、液面上にあってもよい。この反射スクリー
ン52と前記超音波送信子46のホーン50の先端面
(図では下面)との距離は、反射スクリーン52とホー
ン50の間に定在波が立つように、超音波発信周波数の
1/4波長の奇数倍の距離に設定されている。
Further, near the liquid surface in the defoaming tank 30, a reflection screen 52 having a through hole through which bubbles can pass.
Is provided so as to cover the entire liquid surface. The reflective screen 52 for mechanically separating the liquid and the bubbles may be in the liquid or on the liquid surface. The distance between the reflection screen 52 and the tip surface (the lower surface in the figure) of the horn 50 of the ultrasonic transmitter 46 is set at 1 of the ultrasonic transmission frequency so that a standing wave is generated between the reflection screen 52 and the horn 50. The distance is set to an odd multiple of / 4 wavelength.

【0023】以下、実施例の作用を説明する。The operation of the embodiment will be described below.

【0024】前記リザーブタンク10内の薬液は、送液
ポンプ14で液使用場所18に運ばれて使用される。使
用済みの薬液は、返送ポンプ20で消泡タンク30に戻
される。この際、泡は主に液使用場所18から返送管路
22の間で発生する。
The chemical liquid in the reserve tank 10 is carried to the liquid use place 18 by the liquid feed pump 14 and used. The used chemical liquid is returned to the defoaming tank 30 by the return pump 20. At this time, bubbles are mainly generated between the liquid use place 18 and the return pipe line 22.

【0025】従って、消泡タンク30に収集された薬液
の液面には泡が発生しており、その泡がある一定高さま
で増量したことが泡検出センサ42で検出されると、超
音波発信器44から超音波の電気エネルギーが超音波振
動素子46に印加され、該超音波振動素子46は、該当
する周波数で振動する。ホーン50は、この周波数に共
振する形状で製作されているので、超音波振動が増幅さ
れ、超音波の圧力振幅がホーン50の先端面より液面に
照射される。
Therefore, bubbles are generated on the liquid surface of the chemical solution collected in the defoaming tank 30, and when the bubble detection sensor 42 detects that the amount of the bubbles has increased to a certain height, ultrasonic waves are transmitted. The electric energy of ultrasonic waves is applied from the container 44 to the ultrasonic vibration element 46, and the ultrasonic vibration element 46 vibrates at the corresponding frequency. Since the horn 50 is manufactured in a shape that resonates at this frequency, the ultrasonic vibration is amplified and the pressure amplitude of the ultrasonic wave is applied to the liquid surface from the tip surface of the horn 50.

【0026】消泡タンク30内の液面上の泡は、順次送
られてくる泡混じりの薬液及び新たな泡に押し上げられ
ることになるので、上にある泡ほど放置時間の長い泡で
ある。泡膜(泡の膜)50には、一般に図4に示す排液
作用があり、時間の経過した泡膜ほど、排液作業でその
膜厚は薄く弱くなり、最後は分子同士の電気的反発力で
泡膜の強さが保たれている。従って、発生直後の泡に超
音波を照射するよりも、泡が成長し、泡膜が薄くなって
から超音波を照射した方が破泡が容易である。
Since bubbles on the liquid surface in the defoaming tank 30 are pushed up by the chemical liquid containing bubbles and new bubbles which are sequentially sent, the bubbles on the upper side have a longer standing time. The bubble film (foam film) 50 generally has the drainage action shown in FIG. 4, and the film thickness becomes thinner and weaker during the drainage work as the bubble film with time elapses, and finally the electrical repulsion between the molecules. The strength of the foam film is maintained by the force. Therefore, it is easier to rupture the bubbles when the ultrasonic waves are applied after the bubbles grow and the film becomes thinner, than when the bubbles immediately after the generation are irradiated with the ultrasonic waves.

【0027】そこで、消泡タンク30の中の泡が時間と
共に増加し、その高さが増したことを泡検出センサ42
で検出して、超音波発信器44に発信指令を送る。
Then, the bubble detection sensor 42 indicates that the bubbles in the defoaming tank 30 increase with time and the height thereof increases.
And sends a transmission command to the ultrasonic transmitter 44.

【0028】超音波発信器44は、図5のように、間欠
的に超音波を発振し、これと同期してホーン50の先端
面より超音波の圧力振幅が照射される。照射された超音
波の圧力振幅は、平面波に近く指向性が鋭いので、反射
スクリーン52で反射した圧力振幅と重なり、図6のよ
うな定在波が発生する。従って、定在波の腹に位置する
圧力が泡膜の強度以上であれば、そこにある泡は破壊さ
れて元の液体に戻る。
As shown in FIG. 5, the ultrasonic transmitter 44 intermittently oscillates ultrasonic waves, and in synchronization with this, ultrasonic wave pressure amplitude is emitted from the tip surface of the horn 50. Since the pressure amplitude of the applied ultrasonic waves is close to a plane wave and has a sharp directivity, it overlaps with the pressure amplitude reflected by the reflection screen 52, and a standing wave as shown in FIG. 6 is generated. Therefore, if the pressure at the antinode of the standing wave is equal to or higher than the strength of the foam film, the foam there is destroyed and returns to the original liquid.

【0029】ホーン50とスクリーン52の距離を適当
に選べば、定在波の圧力振幅の腹が複数発生するので破
泡量が増える。又、前述の排液作用によって、上にある
液ほど破泡し易い。
If the distance between the horn 50 and the screen 52 is properly selected, a plurality of antinodes of the pressure amplitude of the standing wave are generated, so that the amount of bubble breakage increases. In addition, due to the above-mentioned drainage action, the upper liquid is more likely to be broken.

【0030】ここで、超音波を間欠照射しているのは、
超音波の圧力振幅が強力であるため、破泡後も照射を続
けると、液中にキャビテーションが発生し、逆に発泡を
促進してしまうからである。
Here, the reason why the ultrasonic wave is intermittently radiated is
This is because the pressure amplitude of ultrasonic waves is so strong that if irradiation is continued even after foam breaking, cavitation will occur in the liquid and foaming will be promoted.

【0031】以上のように破泡して泡が減少すれば、泡
検出センサ42出力の泡検出信号がオフとなり、超音波
の発信を停止する。
When the bubbles are broken and the bubbles are reduced as described above, the bubble detection signal output from the bubble detection sensor 42 is turned off, and the transmission of ultrasonic waves is stopped.

【0032】以後、この動作を繰り返す。Thereafter, this operation is repeated.

【0033】消泡タンク30内で破泡された薬液は、自
重でサイホン管32を介してリザーブタンク10に戻
り、循環使用される。
The chemical solution that has been defoamed in the defoaming tank 30 returns to the reserve tank 10 through its siphon tube 32 by its own weight and is circulated.

【0034】次に本発明の第2実施例を詳細に説明す
る。
Next, the second embodiment of the present invention will be described in detail.

【0035】この第2実施例は、前記第1実施例と同様
の循環経路に使用される消泡タンク30において、図7
に示す如く、反射スクリーン52を省略し、消泡タンク
30内の液面32を超音波の反射に利用するようにした
ものである。
In this second embodiment, the defoaming tank 30 used in the same circulation path as in the first embodiment is shown in FIG.
As shown in FIG. 5, the reflection screen 52 is omitted, and the liquid surface 32 in the defoaming tank 30 is used to reflect ultrasonic waves.

【0036】この第2実施例では、ホーン50の先端面
と液面32の間隔が、1/4波長の奇数倍になっていな
いと、破泡に有効な定在波が発生しない。そこで、この
第2実施例では、液面32のレベルを液面レベル検出器
60で常時監視しており、液面32が1/4波長の奇数
倍になったときに、接点62を閉じる。更に、この状態
で泡検出センサ42が泡を検出すると接点64が閉じ、
超音波発信器44の超音波照射指令がオンとなって、図
5の間欠照射を開始し、泡検出センサ42又は液面レベ
ル検出器60の出力がオフとなるまで破泡を行う。
In the second embodiment, a standing wave effective for breaking bubbles does not occur unless the distance between the tip surface of the horn 50 and the liquid surface 32 is an odd multiple of 1/4 wavelength. Therefore, in the second embodiment, the level of the liquid surface 32 is constantly monitored by the liquid level detector 60, and the contact 62 is closed when the liquid surface 32 becomes an odd multiple of ¼ wavelength. Further, when the bubble detection sensor 42 detects a bubble in this state, the contact 64 is closed,
The ultrasonic wave irradiation command of the ultrasonic wave transmitter 44 is turned on, the intermittent irradiation in FIG. 5 is started, and the bubbles are broken until the output of the bubble detection sensor 42 or the liquid level detector 60 is turned off.

【0037】この第2実施例においては、消泡タンク3
0内に反射スクリーン52を設ける必要がない。
In this second embodiment, the defoaming tank 3
It is not necessary to provide the reflective screen 52 in 0.

【0038】次に、本発明の第3実施例を詳細に説明す
る。
Next, a third embodiment of the present invention will be described in detail.

【0039】この第3実施例は、従来例と同様の循環管
路において、図8に示す如く、消泡タンク30を用いる
ことなく、返送管路22の途中に超音波送信子46を設
けたものである。
In the third embodiment, as shown in FIG. 8, an ultrasonic transmitter 46 is provided in the return conduit 22 without using the defoaming tank 30 in the same circulation conduit as the conventional one. It is a thing.

【0040】この第3実施例においては、水平状態の返
送管路22の途中に、上流側から流量センサ70と反射
スクリーン52が設けられ、T字状とした前記返送管路
22の端面で、前記反射スクリーン52と対向する位置
に、超音波送信子46を設けている。前記ホーン50の
先端面と反射スクリーン52との距離は、前記第1実施
例と同様に、超音波発振周波数の1/4波長の奇数倍の
距離とされている。
In the third embodiment, a flow sensor 70 and a reflection screen 52 are provided from the upstream side in the middle of the return pipe 22 in a horizontal state, and the end face of the return pipe 22 is T-shaped, An ultrasonic transmitter 46 is provided at a position facing the reflection screen 52. The distance between the tip surface of the horn 50 and the reflection screen 52 is a distance that is an odd multiple of a quarter wavelength of the ultrasonic oscillation frequency, as in the first embodiment.

【0041】この第3実施例において、返送ポンプで液
体が送られてくると、そこには必ず泡が混在しているの
で、泡検出センサとしての流量センサ70が薬液の存在
を検出して、超音波発信器に発信指令を送る。すると、
反射スクリーン52とホーン50の先端面の間に定在波
が発生して、反射スクリーン52を通過した泡が破泡さ
れる。液体に戻った薬液は、リザーブタンクに滴下して
循環使用される。
In the third embodiment, when liquid is sent by the return pump, bubbles are always mixed therein, so the flow rate sensor 70 as a bubble detection sensor detects the presence of the chemical liquid, Send a transmission command to the ultrasonic transmitter. Then,
A standing wave is generated between the reflection screen 52 and the tip surface of the horn 50, and the bubbles passing through the reflection screen 52 are broken. The liquid medicine returned to the liquid is dropped into a reserve tank and is circulated for use.

【0042】この第3実施例によれば、消泡タンクを設
ける必要がなく、返送管路22の途中に反射スクリーン
52や超音波送信子46等を設けるだけでよいので、既
存設備への適用が極めて容易である。
According to the third embodiment, there is no need to provide a defoaming tank, and it is only necessary to provide the reflection screen 52, the ultrasonic transmitter 46, etc. in the middle of the return conduit 22, so that the present invention can be applied to existing equipment. Is extremely easy.

【0043】[0043]

【発明の効果】以上説明した通り、本発明によれば、リ
ザーブタンクや消泡タンクを開放する必要がなく、泡の
漏出がなくなるので、周辺の汚染が完全に防止できる。
又、破泡後の液が再使用できるので、原単位が改善され
る。更に、構造が単純で、既存設備に容易に採用でき
る。又、超音波を間欠的に照射するようにした場合に
は、ランニングコストが極めて安い等の優れた効果を有
する。
As described above, according to the present invention, it is not necessary to open the reserve tank and the defoaming tank, and the leakage of bubbles is eliminated, so that the contamination of the surroundings can be completely prevented.
Further, since the liquid after the foam breaking can be reused, the unit consumption is improved. Furthermore, the structure is simple and can be easily adopted in existing equipment. Further, when the ultrasonic waves are intermittently applied, there is an excellent effect that the running cost is extremely low.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な循環管路の構成を示す管路図FIG. 1 is a pipeline diagram showing the configuration of a general circulation pipeline.

【図2】従来の消泡装置の一例の構成を示す要部断面図FIG. 2 is a sectional view of an essential part showing the configuration of an example of a conventional defoaming device.

【図3】本発明に係る超音波消泡装置の第1実施例が採
用された循環管路の構成を示す管路図
FIG. 3 is a pipeline diagram showing a configuration of a circulation pipeline in which the first embodiment of the ultrasonic defoaming apparatus according to the present invention is adopted.

【図4】本発明の原理を説明するための線図FIG. 4 is a diagram for explaining the principle of the present invention.

【図5】本発明の実施例における超音波の照射状態を示
すタイムチャート
FIG. 5 is a time chart showing the irradiation state of ultrasonic waves in the example of the present invention.

【図6】前記実施例における定在波の発生状態を説明す
るための線図
FIG. 6 is a diagram for explaining a generation state of a standing wave in the above embodiment.

【図7】本発明の第2実施例における消泡タンクの構成
を示す断面図
FIG. 7 is a sectional view showing the structure of a defoaming tank according to a second embodiment of the present invention.

【図8】本発明の第3実施例の要部構成を示す断面図FIG. 8 is a sectional view showing the configuration of the main parts of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…リザーブタンク 14…送液ポンプ 16…送液管路 18…液使用場所 20…返送ポンプ 22…返送管路 30…消泡タンク 32…液面 34…サイホン管 42…泡検出センサ 44…超音波発信器 46…超音波送信子 52…反射スクリーン 60…液面レベル検出器 70…流量センサ 10 ... Reserve tank 14 ... Liquid feed pump 16 ... Liquid feed pipe 18 ... Liquid use place 20 ... Return pump 22 ... Return pipe 30 ... Defoaming tank 32 ... Liquid level 34 ... Siphon pipe 42 ... Bubble detection sensor 44 ... Super Sound wave transmitter 46 ... Ultrasonic wave transmitter 52 ... Reflective screen 60 ... Liquid level detector 70 ... Flow rate sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩谷 明之 岡山県倉敷市水島川崎通一丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 足立 重好 岡山県倉敷市水島川崎通一丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiyuki Iwatani 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no address) Inside the Mizushima Steel Works, Kawasaki Steel Co., Ltd. (72) Inventor Shigeyoshi Adachi Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Prefecture 1-chome (no street number) Kawasaki Steel Co., Ltd. Mizushima Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】液面上に盛上る泡の存在を検出するための
泡検出センサと、 該泡検出センサからの泡検出信号により超音波を照射し
て、液面上の泡を破壊する超音波送信子と、 を備えたことを特徴とする超音波消泡装置。
1. A bubble detection sensor for detecting the presence of bubbles rising on a liquid surface, and an ultrasonic wave which is irradiated with ultrasonic waves by a bubble detection signal from the bubble detection sensor to destroy bubbles on the liquid surface. An ultrasonic defoaming device, comprising: a sound wave transmitter.
【請求項2】請求項1において、前記超音波を間欠的に
照射することを特徴とする超音波消泡装置。
2. The ultrasonic defoaming device according to claim 1, wherein the ultrasonic wave is intermittently applied.
【請求項3】請求項1又は2において、前記泡が成長
し、泡膜が薄くなってから前記超音波を照射することを
特徴とする超音波消泡装置。
3. The ultrasonic defoaming device according to claim 1, wherein the ultrasonic wave is irradiated after the bubble has grown and the foam film has become thin.
【請求項4】請求項1乃至3のいずれかに1項におい
て、前記超音波振動子が液面と対向配置され、該液面と
振動子の間に超音波の定在波を発生させて、その腹で破
泡することを特徴とする超音波消泡装置。
4. The ultrasonic transducer according to any one of claims 1 to 3, wherein the ultrasonic transducer is disposed so as to face a liquid surface, and an ultrasonic standing wave is generated between the liquid surface and the transducer. , An ultrasonic defoaming device characterized by breaking bubbles in its belly.
【請求項5】請求項1乃至3のいずれか1項において、
前記泡が通過可能な透孔を有する反射板が振動子と対向
配置され、該反射板と振動子の間に超音波の定在波を発
生させて、その腹で破泡することを特徴とする超音波消
泡装置。
5. The method according to any one of claims 1 to 3,
A reflecting plate having a through hole through which the bubbles can pass is arranged to face the oscillator, and a standing wave of ultrasonic waves is generated between the reflecting plate and the oscillator, and the bubbles are broken in the belly. Ultrasonic defoaming device.
【請求項6】請求項5において、前記反射板が液面位置
に配設されていることを特徴とする超音波消泡装置。
6. The ultrasonic defoaming device according to claim 5, wherein the reflection plate is disposed at a liquid surface position.
【請求項7】リザーブタンク内の発泡性液体を送液ポン
プにより圧送してその一部を使用し、残りを返送ポンプ
により前記リザーブタンクに返送して循環使用する配管
経路の連続消泡方法において、 循環管路の途中に消泡タンクを設けて液体の圧力を開放
すると共に、液面を一定に保ち、 液面に成長して盛り上がる泡を泡検出センサで検出し、 該泡検出センサからの泡検出信号により、液面上方に設
置した超音波送信子から超音波を間欠的に照射して消泡
し、 消泡処理した液を圧送することなく自重で前記リザーブ
タンクに戻すことを特徴とする循環管路における連続消
泡方法。
7. A continuous defoaming method for a piping path, wherein a foaming liquid in a reserve tank is pressure-fed by a liquid feed pump, a part of the liquid is used, and the rest is returned to the reserve tank by a return pump for circulation. , A defoaming tank is installed in the middle of the circulation line to release the pressure of the liquid, keep the liquid level constant, and detect bubbles that grow and rise on the liquid level with the bubble detection sensor. A bubble detection signal is used to intermittently irradiate ultrasonic waves from an ultrasonic transmitter installed above the liquid surface to defoam, and the defoamed liquid is returned to the reserve tank by its own weight without pressure feeding. Continuous defoaming method in circulating circulation line.
JP13352092A 1992-05-26 1992-05-26 Ultrasonic defoaming device and continuous defoaming method using this device Pending JPH05317606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13352092A JPH05317606A (en) 1992-05-26 1992-05-26 Ultrasonic defoaming device and continuous defoaming method using this device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13352092A JPH05317606A (en) 1992-05-26 1992-05-26 Ultrasonic defoaming device and continuous defoaming method using this device

Publications (1)

Publication Number Publication Date
JPH05317606A true JPH05317606A (en) 1993-12-03

Family

ID=15106707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13352092A Pending JPH05317606A (en) 1992-05-26 1992-05-26 Ultrasonic defoaming device and continuous defoaming method using this device

Country Status (1)

Country Link
JP (1) JPH05317606A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086339A1 (en) * 2006-01-26 2007-08-02 Toyo Seikan Kaisha, Ltd. Defoaming method
JP2014119210A (en) * 2012-12-18 2014-06-30 Takasago Thermal Eng Co Ltd Supercooling release device and ice maker
JP2015059255A (en) * 2013-09-20 2015-03-30 マルイ鍍金工業株式会社 Electrolytic polishing apparatus for hollow tube
CN104591328A (en) * 2014-12-30 2015-05-06 浙江海洋学院 Method for removing foams from circulating culture water body
CN104645672A (en) * 2013-11-18 2015-05-27 上海兴全电力技术有限公司 High-power ultrasonic efficient defoaming device
US9550971B2 (en) 2009-04-14 2017-01-24 Therapeutic Proteins International, LLC Universal bioreactors and methods of use
CN106861924A (en) * 2017-03-14 2017-06-20 昆明理工大学 A kind of self-adapting type flotation defoaming device
WO2020081128A1 (en) 2018-10-16 2020-04-23 Sartorius Stedim North America Inc. Foam mitigation in bioreactors using ultrasound
US20200340898A1 (en) * 2017-12-04 2020-10-29 Shimadzu Corporation Fine bubble elimination method and fine bubble elimination device, and bubble size distribution measuring method and bubble size distribution measuring device
WO2023071419A1 (en) * 2021-11-01 2023-05-04 中冶南方工程技术有限公司 Alkali cleaning defoaming system for cold rolled strip steel
WO2023247018A1 (en) * 2022-06-21 2023-12-28 Infors Ag Foam mitigation device for bioreactor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026288B2 (en) 2006-01-26 2011-09-27 Toyo Seikan Kaisha, Ltd. Defoaming method
US8329764B2 (en) 2006-01-26 2012-12-11 Toyo Seikan Kaisha, Ltd. Defoaming method
JP5321778B2 (en) * 2006-01-26 2013-10-23 東洋製罐株式会社 Defoaming method
WO2007086339A1 (en) * 2006-01-26 2007-08-02 Toyo Seikan Kaisha, Ltd. Defoaming method
US9550971B2 (en) 2009-04-14 2017-01-24 Therapeutic Proteins International, LLC Universal bioreactors and methods of use
JP2014119210A (en) * 2012-12-18 2014-06-30 Takasago Thermal Eng Co Ltd Supercooling release device and ice maker
JP2015059255A (en) * 2013-09-20 2015-03-30 マルイ鍍金工業株式会社 Electrolytic polishing apparatus for hollow tube
CN104645672A (en) * 2013-11-18 2015-05-27 上海兴全电力技术有限公司 High-power ultrasonic efficient defoaming device
CN104645672B (en) * 2013-11-18 2017-12-22 上海兴全电力技术有限公司 The efficient defoaming device of high-power ultrasonics
CN104591328A (en) * 2014-12-30 2015-05-06 浙江海洋学院 Method for removing foams from circulating culture water body
CN106861924A (en) * 2017-03-14 2017-06-20 昆明理工大学 A kind of self-adapting type flotation defoaming device
US20200340898A1 (en) * 2017-12-04 2020-10-29 Shimadzu Corporation Fine bubble elimination method and fine bubble elimination device, and bubble size distribution measuring method and bubble size distribution measuring device
US11898949B2 (en) * 2017-12-04 2024-02-13 Shimadzu Corporation Fine bubble elimination method and fine bubble elimination device, and bubble size distribution measuring method and bubble size distribution measuring device
WO2020081128A1 (en) 2018-10-16 2020-04-23 Sartorius Stedim North America Inc. Foam mitigation in bioreactors using ultrasound
WO2023071419A1 (en) * 2021-11-01 2023-05-04 中冶南方工程技术有限公司 Alkali cleaning defoaming system for cold rolled strip steel
WO2023247018A1 (en) * 2022-06-21 2023-12-28 Infors Ag Foam mitigation device for bioreactor

Similar Documents

Publication Publication Date Title
JPH05317606A (en) Ultrasonic defoaming device and continuous defoaming method using this device
RU2565705C2 (en) Cleaner, cleaning and cleaning monitoring
US2987068A (en) Apparatus for ultrasonic cleaning
KR960705964A (en) Ultrasonic Agitator
US9662686B2 (en) Ultrasonic cleaning method and apparatus
WO1997038775A1 (en) Apparatus for degassing liquids
CA1175542A (en) Apparatus and method for ultrasonic inspection
US10661314B2 (en) Cleaning apparatus and method using an acoustic transducer
Dedhia et al. Static foam destruction: role of ultrasound
JP5078822B2 (en) Cleaning method and cleaning device
CN110935686B (en) Suspension type ultrasonic-low frequency vibration combined cleaning method
CN108160601B (en) Ultrasonic cleaning method
JPH11508644A (en) Method and apparatus for chemical electrolytic treatment of conductive plates and foils
JPH0796103A (en) Ultrasonic defoaming device
JP5831128B2 (en) Microbubble cleaning device and cleaning method
JP3840843B2 (en) Water treatment method and apparatus
US7299662B2 (en) Ultrasonic cleaning system for cleaning a plurality of parallel extending, strand like products, such as example wire, profiles and pipes
JP2005161164A (en) Method for deaerating coating fluid and apparatus therefor
JP2011005359A (en) Organic waste liquid treatment apparatus and method
JP4247150B2 (en) Ultrasonic disinfection and decomposition equipment
EP0631801A1 (en) Apparatus for liquefying bubbles using ultrasonic wave
CN210172092U (en) Oil production platform MBR membrane ultrasonic cleaning device and sewage treatment plant
CN218026445U (en) Ultrasonic wave plating part cleaning equipment
JP4483664B2 (en) Sludge treatment equipment
JP2023029252A (en) Bubble detection device