JP2014119210A - Supercooling release device and ice maker - Google Patents

Supercooling release device and ice maker Download PDF

Info

Publication number
JP2014119210A
JP2014119210A JP2012275813A JP2012275813A JP2014119210A JP 2014119210 A JP2014119210 A JP 2014119210A JP 2012275813 A JP2012275813 A JP 2012275813A JP 2012275813 A JP2012275813 A JP 2012275813A JP 2014119210 A JP2014119210 A JP 2014119210A
Authority
JP
Japan
Prior art keywords
release device
supercooling
container
supercooling release
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012275813A
Other languages
Japanese (ja)
Other versions
JP6125822B2 (en
Inventor
Daisuke Mito
大介 三戸
Masatake Iribe
真武 入部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2012275813A priority Critical patent/JP6125822B2/en
Publication of JP2014119210A publication Critical patent/JP2014119210A/en
Application granted granted Critical
Publication of JP6125822B2 publication Critical patent/JP6125822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a supercooling release device that dispenses with tuning of an oscillation frequency of ultrasonic vibrations, and an ice maker.SOLUTION: A supercooling release device for being attached to a container or piping, through which supercooled water passes, includes an ultrasonic vibration generation unit that has a plane of vibration and an ultrasonic transducer and that can be attached to the container or the piping, and a reflector that has a reflecting surface separated from the plane of vibration and that is fixed in the state of facing the plane of vibration.

Description

本発明は、過冷却解除装置および製氷装置に関する。   The present invention relates to a supercooling release device and an ice making device.

近年、過冷却水を用いた各種の設備が提案されている。例えば、空調システムにおいては、過冷却状態にした水を水槽内へ導き、水槽内で過冷却状態を解除することにより、水とのスラリー状態にある氷を製造して蓄冷することが行われている。過冷却状態の解除にあたっては、過冷却状態の水を大気中に放出して壁等の固体表面に衝突させて相変化させるものや、過冷却水が導かれる容器内にトリガー物質を入れるもの(例えば、特許文献1を参照)や、超音波振動を使ったもの(例えば、特許文献2を参照)が提案されている。なお、超音波振動は、各種の製造物の表面洗浄等にも用いられている(例えば、特許文献3−4を参照)。   In recent years, various facilities using supercooled water have been proposed. For example, in an air-conditioning system, water in a supercooled state is guided into a water tank, and the supercooled state is released in the water tank, thereby producing ice in a slurry state with water and storing the ice. Yes. To release the supercooled state, discharge the supercooled water into the atmosphere and make it collide with a solid surface such as a wall to change the phase, or put a trigger substance in a container to which the supercooled water is introduced ( For example, refer to Patent Document 1) and those using ultrasonic vibration (for example, refer to Patent Document 2). In addition, ultrasonic vibration is used also for the surface washing | cleaning etc. of various products (for example, refer patent document 3-4).

特開2004−85181号公報JP 2004-85181 A 特許第3855068号公報Japanese Patent No. 3855068 特開2005−131602号公報JP 2005-131602 A 特開2000−107710号公報JP 2000-107710 A

過冷却水が通過する容器又は配管に超音波振動子を取り付けて超音波を発生させる場合、容器内又は配管内での乱反射等により超音波振動が減衰してしまう。よって、安定したトリガー効果を得るためには、発振周波数を取り付け箇所に応じてチューニングする必要があった。   When an ultrasonic vibrator is attached to a container or pipe through which supercooled water passes, ultrasonic vibrations are attenuated due to irregular reflection in the container or pipe. Therefore, in order to obtain a stable trigger effect, it is necessary to tune the oscillation frequency according to the attachment location.

本発明は、このような課題に鑑みてなされたものであり、超音波振動の発振周波数のチューニングが不要な過冷却解除装置および製氷装置を提供することを課題とする。   This invention is made in view of such a subject, and makes it a subject to provide the supercooling cancellation | release apparatus and ice making apparatus which do not need the tuning of the oscillation frequency of an ultrasonic vibration.

上記課題を解決するため、本発明では、超音波振動子を有する超音波振動発生部の振動面から離間し且つ振動面に対向する反射板を設けた。   In order to solve the above problems, in the present invention, a reflecting plate is provided that is separated from the vibration surface of the ultrasonic vibration generating unit having the ultrasonic vibrator and faces the vibration surface.

詳細には、過冷却水が通過する容器又は配管に取り付ける過冷却解除装置であって、振動面と超音波振動子とを有し、前記容器又は配管に取付可能な超音波振動発生部と、反射面が前記振動面から離間し且つ前記振動面に対向した状態で固定された反射板と、を備える。   Specifically, it is a supercooling release device attached to a container or pipe through which supercooled water passes, and has a vibration surface and an ultrasonic vibrator, and an ultrasonic vibration generator that can be attached to the container or pipe; And a reflecting plate fixed in a state where the reflecting surface is separated from the vibrating surface and faces the vibrating surface.

上記過冷却解除装置では、振動面から射出された超音波が反射面で反射する。よって、この過冷却解除装置を容器又は配管に取り付けた状態で超音波振動子を駆動すると、容器又は配管内を通過する過冷却水のうち、振動面と反射面との間にある過冷却水が超音波振動を受け、氷結晶を生成することになる。この氷結晶は、過冷却解除を誘発する物質として拡散し、容器又は配管内の全体で過冷却解除を誘発可能である。   In the supercooling release device, the ultrasonic wave emitted from the vibration surface is reflected by the reflection surface. Therefore, when the ultrasonic vibrator is driven with the supercooling release device attached to the container or the pipe, the supercooling water between the vibrating surface and the reflecting surface among the supercooling water passing through the container or the pipe. Is subjected to ultrasonic vibration to produce ice crystals. This ice crystal diffuses as a substance that induces supercooling release, and can induce supercooling release throughout the container or piping.

上記過冷却解除装置によれば、過冷却解除を実現するための超音波は、振動面からの波と反射面からの反射波とが支配的となり、容器又は配管内の壁面からの波はほとんど影響
しない。そして、上記過冷却解除装置では、反射面が振動面から離間し且つ振動面に対向した状態の反射板が固定されているため、振動面と反射面との間に発生する超音波の状態は、過冷却解除装置の取り付け箇所にほとんど左右されない。よって、上記過冷却解除装置であれば、取り付け箇所に応じたチューニングを行わなくても、安定したトリガー効果を得ることが可能である。
According to the above-described supercooling release device, the ultrasonic wave for realizing supercooling release is dominated by the wave from the vibration surface and the reflected wave from the reflection surface, and almost no wave from the wall surface in the container or pipe. It does not affect. In the above-described supercooling release device, since the reflecting plate is fixed so that the reflecting surface is separated from the vibrating surface and faces the vibrating surface, the state of the ultrasonic wave generated between the vibrating surface and the reflecting surface is It is hardly affected by the mounting location of the supercooling release device. Therefore, if it is the said supercooling cancellation | release apparatus, it is possible to acquire the stable trigger effect, without performing the tuning according to an attachment location.

なお、前記過冷却解除装置は、前記容器又は配管の開口部に取り付ける装置であり、前記超音波振動発生部は、前記振動面が前記開口部を塞ぐ状態で前記容器又は配管に取付可能であり、前記反射板は、前記超音波振動発生部に固定されているものであってもよい。この過冷却解除装置では、反射板が超音波振動発生部に固定されているため、振動面と反射面との間に発生する超音波の状態は、過冷却解除装置の取り付け箇所にほとんど左右されない。よって、上記過冷却解除装置であれば、取り付け箇所に応じたチューニングを行わなくても、安定したトリガー効果を得ることが可能である。   The supercooling release device is a device that is attached to the opening of the container or the pipe, and the ultrasonic vibration generating unit can be attached to the container or the pipe with the vibration surface closing the opening. The reflection plate may be fixed to the ultrasonic vibration generator. In this supercooling release device, since the reflecting plate is fixed to the ultrasonic vibration generating unit, the state of ultrasonic waves generated between the vibration surface and the reflecting surface is hardly affected by the mounting location of the supercooling release device. . Therefore, if it is the said supercooling cancellation | release apparatus, it is possible to acquire the stable trigger effect, without performing the tuning according to an attachment location.

また、前記反射板は、前記超音波振動発生部を前記容器又は配管に取り付ける方向に移動させた状態において前記開口部を通過可能な大きさを有するものであってもよい。このように構成される過冷却解除装置であれば、反射板を容器又は配管内に容易に配置した状態とすることができる。また、保守点検や装置の交換等を容易に行うことができる。   In addition, the reflection plate may have a size that can pass through the opening in a state where the ultrasonic vibration generation unit is moved in a direction to be attached to the container or the pipe. If it is the supercooling cancellation | release apparatus comprised in this way, it can be set as the state which has arrange | positioned the reflecting plate easily in a container or piping. In addition, maintenance and inspection, device replacement, and the like can be easily performed.

また、前記反射板は、前記反射面が平面であり、前記反射面と前記振動面との間の距離が、前記超音波振動発生部が射出する超音波の4分の1波長の奇数倍となる位置で固定されるものであってもよい。このように構成される過冷却解除装置であれば、共振を利用した安定したトリガー効果を得ることが可能である。   The reflecting plate has a flat reflecting surface, and the distance between the reflecting surface and the vibrating surface is an odd multiple of a quarter wavelength of the ultrasonic wave emitted by the ultrasonic vibration generating unit. It may be fixed at a position. With the supercooling release device configured as described above, it is possible to obtain a stable trigger effect using resonance.

また、前記反射板は、前記反射面が凹状の曲面、或いは、前記反射面が同心円状に分割されており、分割された各領域の反射面が各々凹状の曲面の一部を形成するものであってもよい。このように構成される過冷却解除装置であれば、反射板から反射する反射波が特定の箇所に集中するため、過冷却水の振幅が増大して安定したトリガー効果を得ることが可能である。   Further, the reflecting plate is such that the reflecting surface is a concave curved surface, or the reflecting surface is divided concentrically, and each of the divided reflecting surfaces forms a part of a concave curved surface. There may be. With the supercooling release device configured as described above, the reflected wave reflected from the reflector is concentrated at a specific location, so that the amplitude of the supercooling water is increased and a stable trigger effect can be obtained. .

また、本発明は、製氷装置としての側面から捉えることも可能である。すなわち、本発明は、例えば、過冷却水が螺旋状に旋回しながら流通する円筒状の容器と、前記円筒状の容器の底板または天板の軸心部分に取り付けられた上記何れかに記載の過冷却解除装置と、を備える、製氷装置であってもよい。   Further, the present invention can also be understood from the aspect as an ice making device. That is, the present invention includes, for example, a cylindrical container in which supercooled water flows while swirling spirally, and any one of the above attached to a bottom plate or a top plate of the cylindrical container. It may be an ice making device provided with a supercooling release device.

容器内又は配管内に継続的に流入する過冷却水を超音波振動で過冷却解除し、連続的な製氷を実現しようとする場合に至っては、容器内又は配管内へ氷結晶が付着しないよう、容器又は配管全体を超音波振動させる方策が考えられるが、多大な超音波振動を発生させる必要が生じる。しかし、上記製氷装置であれば、過冷却水が螺旋状に旋回しながら流通する円筒状の容器の底板または天板の軸心部分に過冷却解除装置を取り付けているので、過冷却解除装置の周りには過冷却解除装置の取り付け面を底とする円錐状のよどみ領域が形成される。よどみ領域の内部では氷結晶の滞留時間が長いため、過冷却がほぼ完全に解除されて相変化がほぼ停止した氷水が循環しており、固体表面への氷の付着は起こらない。このため、過冷却解除装置の振動板や反射板にライニングなどの処置を施さなくても、氷が付着すること無く、連続的な製氷を実現可能である。   When supercooling water continuously flowing into the container or pipe is released by supersonic vibration to achieve continuous ice making, ice crystals do not adhere to the container or pipe. Although a method of ultrasonically vibrating the container or the entire pipe can be considered, it is necessary to generate a large amount of ultrasonic vibration. However, in the above ice making device, the supercooling release device is attached to the axial center portion of the bottom plate or top plate of the cylindrical container through which the supercooling water circulates while spirally rotating. A conical stagnation region is formed around the bottom of the attachment surface of the supercooling release device. In the stagnation region, ice crystals stay for a long time, so ice water whose supercooling has been almost completely released and phase change has stopped circulates, and ice does not adhere to the solid surface. For this reason, continuous ice making can be realized without ice adhering without performing lining or the like on the diaphragm or reflector of the supercooling release device.

上記過冷却解除装置および製氷装置であれば、超音波振動の発振周波数のチューニングが不要となる。   The supercooling release device and the ice making device do not require tuning of the oscillation frequency of ultrasonic vibration.

実施形態に係る過冷却解除装置の斜視図の一例である。It is an example of the perspective view of the supercooling release apparatus which concerns on embodiment. 過冷却解除装置を上から見た場合の構成図の一例である。It is an example of the block diagram at the time of seeing a supercooling cancellation | release apparatus from the top. 図2において符号a−aで示す線で過冷却解除装置を切断した場合の断面図の一例である。It is an example of sectional drawing at the time of cut | disconnecting a supercooling cancellation | release apparatus by the line shown by code | symbol aa in FIG. 実施形態に係る過冷却解除装置の第1変形例を示した図の一例である。It is an example of the figure which showed the 1st modification of the overcooling cancellation | release apparatus which concerns on embodiment. 実施形態に係る過冷却解除装置の第2変形例を示した図の一例である。It is an example of the figure which showed the 2nd modification of the supercooling release apparatus which concerns on embodiment. 過冷却解除装置を適用した製氷装置の斜視図の一例である。It is an example of the perspective view of the ice making apparatus to which the supercooling release device is applied. 製氷装置を下側から見た図の一例である。It is an example of the figure which looked at the ice making apparatus from the lower side. 図7において符号b−bで示す線で製氷装置を切断した場合の断面図の一例である。It is an example of sectional drawing at the time of cut | disconnecting an ice making apparatus by the line shown with code | symbol bb in FIG. 過冷却解除を行っている時の製氷装置内の様子を示した図の一例である。It is an example of the figure which showed the mode in the ice making apparatus when supercooling cancellation | release is performed.

以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態の一例であり、本発明の技術的範囲を以下の態様に限定するものではない。   Hereinafter, embodiments of the present invention will be described. Embodiment shown below is an example of embodiment of this invention, and does not limit the technical scope of this invention to the following aspects.

<過冷却解除装置の実施形態>
図1は、本発明の実施形態に係る過冷却解除装置1の斜視図の一例である。過冷却解除装置1は、図1に示すように、超音波振動を発生する超音波振動発生部2と、超音波を反射する反射板3とを備える。超音波振動発生部2は、過冷却解除装置1を取り付ける容器又は配管の開口部を塞ぐように取り付け可能な振動板4と、振動板4に取り付けられた超音波振動子5とを有しており、超音波振動子5を駆動することにより振動板4が振動する。超音波振動子5は、超音波を射出するものであり、既存のあらゆる超音波振動子を適用可能である。例えば、ランジュ板型超音波振動子といわれるタイプのものであれば、振動面4S全体を振動させて平面状の波を射出可能である。反射板3は、振動面4Sと対向するように支柱6を介して振動板4に固定される部材であり、超音波振動子5が振動面4Sから射出した超音波を振動面4Sへ反射させる反射面3Sを有している。また、反射板3は、超音波振動発生部2を容器又は配管に取り付ける方向に移動させ、容器又は配管に設けられている開口部に振動板4を取り付ける際、当該開口部を通過可能な大きさに形成されている。反射面3Sは、振動面4Sと平行な平面であり、振動面4Sから射出された超音波を正反対の方向へ反射する。反射面3Sは、振動面4Sから射出された波に反射波を重ね合わせることにより、反射板3が無い場合よりも大きな振幅を得ることを目的としている。なお、過冷却水や過冷却解除された氷水スラリーの流れを阻害することを防止するために、反射板3は水流の方向と平行になるように設置することが好ましい。また、反射板3の固定については、少なくとも超音波射出時に固定されていればよい。また、反射板3は、振動板4ではなく容器又は配管に固定してもよい。
<Embodiment of supercooling release device>
FIG. 1 is an example of a perspective view of a supercooling release device 1 according to an embodiment of the present invention. As shown in FIG. 1, the supercooling release device 1 includes an ultrasonic vibration generating unit 2 that generates ultrasonic vibrations and a reflector 3 that reflects the ultrasonic waves. The ultrasonic vibration generating unit 2 includes a vibration plate 4 that can be attached so as to close an opening of a container or a pipe to which the supercooling release device 1 is attached, and an ultrasonic vibrator 5 attached to the vibration plate 4. The diaphragm 4 vibrates by driving the ultrasonic vibrator 5. The ultrasonic transducer 5 emits ultrasonic waves, and any existing ultrasonic transducer can be applied. For example, in the case of a type called a Lange plate type ultrasonic vibrator, the entire vibration surface 4S can be vibrated to emit a planar wave. The reflection plate 3 is a member fixed to the vibration plate 4 via the support column 6 so as to face the vibration surface 4S, and reflects the ultrasonic wave emitted from the vibration surface 4S to the vibration surface 4S. It has a reflective surface 3S. The reflector 3 moves in the direction in which the ultrasonic vibration generator 2 is attached to the container or the pipe, and is large enough to pass through the opening when the diaphragm 4 is attached to the opening provided in the container or the pipe. Is formed. The reflecting surface 3S is a plane parallel to the vibrating surface 4S, and reflects the ultrasonic waves emitted from the vibrating surface 4S in the opposite direction. The purpose of the reflecting surface 3S is to obtain a larger amplitude than when there is no reflecting plate 3 by superimposing the reflected wave on the wave emitted from the vibrating surface 4S. In order to prevent obstructing the flow of the supercooled water or the ice water slurry that has been released from the supercooling, it is preferable to install the reflector 3 so as to be parallel to the direction of the water flow. Further, the reflection plate 3 may be fixed at least during ultrasonic emission. Further, the reflector 3 may be fixed to the container or the pipe instead of the diaphragm 4.

図2は、過冷却解除装置1を上から見た場合の構成図の一例である。超音波振動子5、振動板4および反射板3は、上から見ると円形になっている。また、過冷却解除装置1を取り付けるための取付孔8および支柱6は、構造的強度を確保可能な適当な箇所に配置されている。なお、支柱6は、反射板3を固定可能な強度を有していれば如何なるものであってもよいが、例えば、過冷却水の流動抵抗とならないように断面を流線形状にしてもよい。   FIG. 2 is an example of a configuration diagram when the supercooling release device 1 is viewed from above. The ultrasonic transducer 5, the diaphragm 4 and the reflector 3 are circular when viewed from above. Moreover, the attachment hole 8 and the support | pillar 6 for attaching the supercooling cancellation | release apparatus 1 are arrange | positioned in the suitable location which can ensure structural strength. In addition, the support | pillar 6 may be anything as long as it has the intensity | strength which can fix the reflecting plate 3, For example, you may make a cross-section into a streamline shape so that it may not become the flow resistance of supercooling water. .

図3は、図2において符号a−aで示す線で過冷却解除装置1を切断した場合の断面図の一例である。なお、超音波振動子5は既存のあらゆるものを適用可能であるため、図3では、超音波振動子5の内部構造について図示を省略している。過冷却解除装置1は、図3に示すように、Oリング溝7が振動板4に設けられている。よって、Oリング溝7にOリングを嵌めた状態の過冷却解除装置1を、取付孔8に通したボルトで容器又は配管に取
り付けることにより、過冷却水が流れる流路の水密性を確保可能である。
FIG. 3 is an example of a cross-sectional view of the supercooling release device 1 taken along the line aa in FIG. Since any existing ultrasonic transducer 5 can be applied, the internal structure of the ultrasonic transducer 5 is not shown in FIG. As shown in FIG. 3, the supercooling release device 1 is provided with an O-ring groove 7 in the diaphragm 4. Therefore, by attaching the supercooling release device 1 with the O-ring fitted to the O-ring groove 7 to the container or the pipe with the bolts passing through the mounting holes 8, the watertightness of the flow path through which the supercooling water flows can be secured. It is.

上記過冷却解除装置1であれば、振動面4Sから射出した超音波を振動面4Sへ反射させる反射面3Sが備わっているので、振動面4Sと反射面3Sとの間でキャビテーションが容易に発生する。また、支柱6を介して超音波振動発生部2に固定された反射板3が、振動面4Sから一定の距離に反射面3Sを形成しているため、振動面4Sからの波と反射面3Sからの反射波との重なり具合が、過冷却解除装置1を取り付ける容器又は配管の形状等に依存することが無い。このため、振動面4Sと反射面3Sとの間にある過冷却水の相変化を容易に誘発し、過冷却を解除することが可能である。   The supercooling release device 1 includes the reflection surface 3S that reflects the ultrasonic wave emitted from the vibration surface 4S to the vibration surface 4S, so that cavitation easily occurs between the vibration surface 4S and the reflection surface 3S. To do. Further, since the reflecting plate 3 fixed to the ultrasonic vibration generating unit 2 via the support column 6 forms the reflecting surface 3S at a certain distance from the vibrating surface 4S, the wave from the vibrating surface 4S and the reflecting surface 3S are formed. The degree of overlap with the reflected wave from is not dependent on the shape or the like of the container or piping to which the supercooling release device 1 is attached. For this reason, it is possible to easily induce a phase change of the supercooling water between the vibration surface 4S and the reflecting surface 3S and to cancel the supercooling.

なお、反射面3Sと振動面4Sとの間の距離Aは、反射板3と振動板4との間に流入した過冷却水を超音波振動子5の超音波で相変化させることが可能であれば、如何なる距離であってもよい。しかし、反射板3は、振動面4Sから射出された波と反射面3Sから反射された反射波との重ね合わせによって大きな振幅を得ることを目的としている。よって、反射面3Sと振動面4Sとの間の距離Aが大きいと、反射面3Sによる反射波の減衰量や周囲への拡散量が増し、振動面4Sから射出された波と反射面3Sから反射された反射波との重ね合わせによる効果が低減する。そこで、反射面3Sと振動面4Sとの間の距離Aは、過冷却解除装置1を取り付ける容器又は配管の仕様や過冷却水の流速等を勘案して適宜決定することが望ましい。   The distance A between the reflecting surface 3S and the vibrating surface 4S can change the phase of the supercooled water flowing between the reflecting plate 3 and the vibrating plate 4 with the ultrasonic waves of the ultrasonic vibrator 5. Any distance can be used. However, the purpose of the reflecting plate 3 is to obtain a large amplitude by superimposing the wave emitted from the vibration surface 4S and the reflected wave reflected from the reflecting surface 3S. Therefore, if the distance A between the reflecting surface 3S and the vibrating surface 4S is large, the attenuation amount of the reflected wave by the reflecting surface 3S and the diffusion amount to the surroundings increase, and the wave emitted from the vibrating surface 4S and the reflecting surface 3S The effect of superimposition with the reflected wave reflected is reduced. Therefore, it is desirable that the distance A between the reflecting surface 3S and the vibration surface 4S is appropriately determined in consideration of the specifications of the container or piping to which the supercooling release device 1 is attached, the supercooling water flow rate, and the like.

また、振動面4Sから射出された波と反射面3Sから反射された反射波との重ね合わせによる振幅を大きくするには、例えば、反射面3Sから反射された反射波の波形が、振動面4Sから射出された波の波形と重なるようにすることが好ましく、また、振動面4Sと反射面3Sとの間に定在波が形成されるとより好ましい。反射面3Sから反射された反射波の波形が、振動面4Sから射出された波の波形と重なり、定在波が形成されるようにするには、反射面3Sと振動面4Sとの間の距離Aを以下のように設定する。   Further, in order to increase the amplitude by superimposing the wave emitted from the vibration surface 4S and the reflection wave reflected from the reflection surface 3S, for example, the waveform of the reflection wave reflected from the reflection surface 3S is changed to the vibration surface 4S. It is preferable to overlap with the waveform of the wave emitted from, and more preferably, a standing wave is formed between the vibration surface 4S and the reflection surface 3S. In order for the waveform of the reflected wave reflected from the reflecting surface 3S to overlap the waveform of the wave emitted from the vibrating surface 4S to form a standing wave, between the reflecting surface 3S and the vibrating surface 4S. The distance A is set as follows.

すなわち、振動板4は、固体であるため、定在波現象における固定端として作用する。そこで、反射面3Sから反射された反射波の波形が、振動面4Sから射出された波の波形と重なり、定在波が形成されるようにするには、反射面3Sと振動面4Sとの間の距離Aを、例えば、超音波振動子5が射出する超音波の4分の1波長の奇数倍の距離、すなわち、以下の式(1)を満たす距離にする。

Figure 2014119210
That is, since the diaphragm 4 is solid, it acts as a fixed end in the standing wave phenomenon. Therefore, in order for the waveform of the reflected wave reflected from the reflecting surface 3S to overlap the waveform of the wave emitted from the vibrating surface 4S to form a standing wave, the reflecting surface 3S and the vibrating surface 4S are The distance A between them is, for example, a distance that is an odd multiple of a quarter wavelength of the ultrasonic wave emitted by the ultrasonic transducer 5, that is, a distance that satisfies the following expression (1).
Figure 2014119210

なお、超音波の周波数nと超音波の波長λとは、以下の式(2)を満たす関係にある。そこで、反射面3Sと振動面4Sとの間の距離Aを上記の式(1)に基づいて決定する際は、以下の式(2)に従い、超音波振動子5が発振する超音波の周波数nや過冷却水中の音速cにも留意する。

Figure 2014119210
The ultrasonic frequency n and the ultrasonic wavelength λ satisfy the following expression (2). Therefore, when determining the distance A between the reflecting surface 3S and the vibrating surface 4S based on the above equation (1), the frequency of the ultrasonic wave oscillated by the ultrasonic transducer 5 according to the following equation (2). Note also n and the speed of sound c in the supercooled water.
Figure 2014119210

反射面3Sと振動面4Sとの間の距離Aを、上記の式(1)を満たす距離とすることにより、振動面4Sと反射面3Sの間には振動面4Sが波の腹、反射面3Sが波の節となるような定在波が形成される。このような定在波が形成された共振状態では、波の腹の部分では大きな圧力振幅によって強いキャビテーションが発生し、振動面4Sと反射面3Sと
の間にある過冷却水の相変化を容易に誘発し、過冷却を解除することが可能である。
By setting the distance A between the reflecting surface 3S and the vibrating surface 4S to satisfy the above formula (1), the vibrating surface 4S is located between the vibrating surface 4S and the reflecting surface 3S. A standing wave is formed in which 3S becomes a wave node. In the resonance state in which such a standing wave is formed, strong cavitation occurs due to a large pressure amplitude in the antinode portion of the wave, and the phase change of the supercooling water between the vibrating surface 4S and the reflecting surface 3S is easy. It is possible to release the supercooling.

なお、水中を通過する超音波は、水温の変化に応じて音速が変化し得る。しかし、共振状態とするためのパラメータは、上記の式(1)に示したように、予め設定した振動面4Sと反射面3Sの距離および水中での超音波の波長だけである。よって、水温の変化によって水中の音速が変化する場合には、水温にあわせて振動数を微調整することにより、定在波を形成することが可能である。   Note that the speed of sound of ultrasonic waves passing through water can change according to changes in water temperature. However, as shown in the above equation (1), the parameters for making the resonance state are only the preset distance between the vibration surface 4S and the reflection surface 3S and the wavelength of the ultrasonic wave in water. Therefore, when the speed of sound in water changes due to a change in water temperature, it is possible to form a standing wave by finely adjusting the frequency according to the water temperature.

<過冷却解除装置の第1変形例>
図4は、上記過冷却解除装置1の第1変形例を示した図の一例である。第1変形例に係る過冷却解除装置1Aは、反射板3Aの反射面3SAが凹状の曲面である。その他の構成については上記実施形態に係る過冷却解除装置1と同様であるため、同一の符号を付してその説明を省略する。
<First Modification of Supercooling Release Device>
FIG. 4 is an example of a diagram showing a first modification of the supercooling release device 1. In the supercooling release device 1A according to the first modification, the reflecting surface 3SA of the reflecting plate 3A is a concave curved surface. Since other configurations are the same as those of the supercooling release device 1 according to the above-described embodiment, the same reference numerals are given and description thereof is omitted.

反射面3SAは、振動面4Sから射出された超音波の反射波が特定の箇所に集中するよう、凹状の曲面にしたものである。超音波の反射波を特定の箇所に収束させることにより、当該特定の箇所においては大きな振幅が得られ、強いキャビテーションが発生する。よって、反射面3SAを形成する凹状の曲面は、例えば、いわゆるパラボラアンテナの反射器を形成している回転放物面のようなパラボラ形状であれば、超音波の反射波を一点に収束させてより強いキャビテーションを発生させることが可能である。   The reflecting surface 3SA is a concave curved surface so that the reflected wave of the ultrasonic wave emitted from the vibration surface 4S is concentrated on a specific location. By converging the reflected wave of the ultrasonic wave to a specific location, a large amplitude is obtained at the specific location and strong cavitation occurs. Therefore, for example, if the concave curved surface forming the reflecting surface 3SA is a parabolic shape such as a parabolic surface forming a reflector of a so-called parabolic antenna, the reflected ultrasonic wave is converged to one point. It is possible to generate stronger cavitation.

<過冷却解除装置の第2変形例>
図5は、上記過冷却解除装置1の第2変形例を示した図の一例である。第2変形例に係る過冷却解除装置1Bは、反射板3Bの反射面3SBが同心円状に分割されており、分割された各領域の反射面3SB−1,2,3,4が各々凹状の曲面の一部を形成する。反射板3Bの反射面3SBがフレネルレンズのように同心円状に分割されているため、反射板3Bは、断面視すると反射面3SBがのこぎり状となる。なお、その他の構成については上記実施形態に係る過冷却解除装置1と同様であるため、同一の符号を付してその説明を省略する。
<Second Modification of Supercooling Release Device>
FIG. 5 is an example of a diagram showing a second modification of the supercooling release device 1. In the supercooling release device 1B according to the second modification, the reflection surface 3SB of the reflection plate 3B is concentrically divided, and the reflection surfaces 3SB-1, 2, 3, and 4 of the divided regions are respectively concave. Form part of a curved surface. Since the reflection surface 3SB of the reflection plate 3B is concentrically divided like a Fresnel lens, the reflection surface 3SB has a saw-like shape when viewed in cross section. In addition, since it is the same as that of the supercooling cancellation | release apparatus 1 which concerns on the said embodiment about another structure, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

反射面3SBは、振動面4Sから射出された超音波の反射波が、振動面4Sの中心と反射面3SBの中心との間を結ぶ直線上の領域に収束する特定の箇所に収束するよう、各領域の反射面3SB−1,2,3,4が各々凹状の曲面の一部を形成するようにしたものである。超音波の反射波を、振動面4Sの中心と反射面3SBの中心との間を結ぶ直線上の領域に収束させることにより、当該直線状の領域においては大きな振幅が得られ、強いキャビテーションが発生する。よって、反射面3SBは、当該直線状の領域に超音波の反射波を集中させて強いキャビテーションを発生させることが可能である。   The reflective surface 3SB is converged to a specific location where the reflected wave of the ultrasonic wave emitted from the vibration surface 4S converges to a region on a straight line connecting the center of the vibration surface 4S and the center of the reflection surface 3SB. The reflecting surfaces 3SB-1, 2, 3, and 4 in the respective regions are each formed as a part of a concave curved surface. By converging the reflected wave of the ultrasonic wave to a region on a straight line connecting the center of the vibration surface 4S and the center of the reflection surface 3SB, a large amplitude is obtained in the straight region and strong cavitation occurs. To do. Thus, the reflective surface 3SB can generate strong cavitation by concentrating the reflected wave of the ultrasonic wave on the linear region.

<過冷却解除装置の適用例>
図6は、過冷却解除装置1を適用した製氷装置10の斜視図の一例である。なお、本適用例では、上記実施形態に係る過冷却解除装置1を適用した場合を示すが、製氷装置10は、上記第1変形例に係る過冷却解除装置1Aおよび上記第2変形例に係る過冷却解除装置1Bの何れについても適用可能である。
<Application example of supercooling release device>
FIG. 6 is an example of a perspective view of an ice making device 10 to which the supercooling release device 1 is applied. Although this application example shows a case where the supercooling release device 1 according to the above embodiment is applied, the ice making device 10 is related to the supercooling release device 1A according to the first modification example and the second modification example. It can be applied to any of the supercooling release devices 1B.

製氷装置10は、円筒状の過冷却解除容器11を備える。過冷却解除容器11は、上部や下部が閉じられた密閉構造の円筒状容器であり、側面の下側には過冷却水を流入させるための流入口12が設けられ、側面の上側には過冷却状態の解除によって生成された氷水スラリーを流出させるための流出口13が設けられている。   The ice making device 10 includes a cylindrical supercooling release container 11. The supercooling release container 11 is a sealed cylindrical container with an upper part and a lower part closed. An inflow port 12 for allowing supercooling water to flow in is provided on the lower side of the side, and the supercooling release container 11 is provided on the upper side. An outlet 13 is provided for allowing the ice-water slurry generated by releasing the cooling state to flow out.

なお、流入口12及び流出口13の取り付け角は、次のように設定されている。図7は
、製氷装置10を下側から見た図の一例である。流入口12は、図7から明らかなように、過冷却水が過冷却解除容器11の内周面に沿うように容器内に流入するよう、流入口12の軸心が過冷却解除容器11の周面の接線に沿って取り付けられている。また、流出口13は、図7から明らかなように、容器内で生成された氷水スラリーが、過冷却解除容器11の内周面に沿うように過冷却水が容器内に流入することにより発生する螺旋状の旋回流に乗って容器から流出しやすいよう、流出口13の軸心が過冷却解除容器11の周面の接線に沿って取り付けられている。
In addition, the attachment angle of the inflow port 12 and the outflow port 13 is set as follows. FIG. 7 is an example of a view of the ice making device 10 as viewed from below. As is clear from FIG. 7, the inlet 12 has an axial center of the inlet 12 of the supercooling release container 11 so that the supercooling water flows into the container along the inner peripheral surface of the supercooling release container 11. It is attached along the tangent of the peripheral surface. Further, as is apparent from FIG. 7, the outlet 13 is generated when the ice water slurry generated in the container flows into the container along the inner peripheral surface of the supercool release container 11. The axial center of the outlet 13 is attached along the tangent of the peripheral surface of the subcooling release vessel 11 so that it can easily flow out of the vessel on the spiral swirling flow.

また、流入口12及び流出口13の取り付け位置は、次のように設定されている。図8は、図7において符号b−bで示す線で製氷装置10を切断した場合の断面図の一例である。容器内で生成される氷水スラリーは、過冷却水よりも比重が軽いため、図8から明らかなように、流出口13が流入口12よりも上側に配置されている。そして、過冷却解除容器11の容量に無駄が生じないよう、流入口12は過冷却解除容器11の側面の最も下側に配置され、流出口13は過冷却解除容器11の側面の最も上側に配置される。   Moreover, the attachment position of the inflow port 12 and the outflow port 13 is set as follows. FIG. 8 is an example of a cross-sectional view of the ice making device 10 taken along the line indicated by the reference sign bb in FIG. Since the ice water slurry generated in the container has a specific gravity lighter than that of the supercooled water, the outlet 13 is disposed above the inlet 12 as is apparent from FIG. The inlet 12 is disposed on the lowermost side of the supercooling release container 11 and the outlet 13 is located on the uppermost side of the supercooling release container 11 so that the capacity of the supercooling release container 11 is not wasted. Be placed.

過冷却解除装置1は、このように構成される過冷却解除容器11の底部の中心に設けられた開口部9に取り付けられている。よって、過冷却解除容器11内に過冷却水を流通させた状態で過冷却解除装置1を作動させると、過冷却解除容器11内の下部で過冷却状態が解除されて氷水スラリーが生成し始める。なお、開口部9は円形になっており、その径は反射板3の径よりも大きく形成されているので、超音波振動発生部2を過冷却解除容器11に取付ける際に、反射板3を開口部9に容易に挿入可能となっている。これにより、過冷却解除装置1の脱着がしやすくなり、保守点検や装置の交換を容易に行うことができる。また、不図示であるが、過冷却解除容器11の下流側の流路には水抜弁を備えた水抜管が設けられており、保守点検や交換の際には過冷却解除容器11の上流側の流路に設けたバルブを閉めて水抜弁を開けて過冷却解除容器11内の水を排出して行う。   The supercooling release device 1 is attached to an opening 9 provided at the center of the bottom of the supercooling release container 11 configured as described above. Therefore, when the supercooling release device 1 is operated in a state where the supercooling water is circulated in the supercooling release container 11, the supercooling state is released in the lower part of the supercooling release container 11, and ice water slurry starts to be generated. . Since the opening 9 is circular and has a diameter larger than that of the reflector 3, the reflector 3 is attached when the ultrasonic vibration generator 2 is attached to the supercooling release container 11. It can be easily inserted into the opening 9. Thereby, the supercooling release device 1 can be easily attached and detached, and maintenance and inspection and device replacement can be easily performed. Although not shown, a water drain pipe provided with a water drain valve is provided in the flow path on the downstream side of the supercool release container 11, and the upstream side of the supercool release container 11 is provided for maintenance inspection and replacement. The valve provided in the flow path is closed and the drain valve is opened to discharge the water in the supercooling release container 11.

なお、過冷却解除容器11や流入口12、流出口13の形状、位置等はこれらに限定されるものではない。例えば、旋回流による連続的な製氷を実現する容器のその他の形状としては、円錐形の容器を挙げることができる。また、過冷却解除装置1を単なる過冷却解除のトリガーとして用いるのであれば、過冷却解除装置1は、様々な形状の容器や配管、更には、流動の停止している過冷却水を蓄えた容器や配管等に適用してもよい。また、製氷装置10は、上下を逆さまにしてもよいし、螺旋状の旋回流が逆方向となるよう、流入口12や流出口13の向き等を変更してもよい。   In addition, the shape of the supercooling cancellation | release container 11, the inflow port 12, and the outflow port 13, a position, etc. are not limited to these. For example, as another shape of the container that realizes continuous ice making by swirling flow, a conical container can be cited. In addition, if the supercooling release device 1 is used as a simple supercooling release trigger, the supercooling release device 1 stores various shapes of containers and piping, and further stores supercooled water whose flow has stopped. You may apply to a container, piping, etc. In addition, the ice making device 10 may be turned upside down, or the direction of the inflow port 12 and the outflow port 13 may be changed so that the spiral swirl flow is reversed.

図9は、過冷却解除を行っている時の製氷装置10内の様子を示した図の一例である。製氷装置10の過冷却解除容器11内に過冷却水を流通させた状態で過冷却解除装置1を作動させると、キャビテーションにより過冷却解除が行われ、振動面4Sと反射面3Sとの間に微細な氷結晶が生成される。過冷却解除容器11内では上部へ向かう螺旋状の旋回流が生じているので、キャビテーションによって発生した氷結晶は、振動面4Sと反射面3Sとの間から流出し、旋回流に乗って容器内に拡散し、過冷却解除容器11内の過冷却水を相変化させる。一旦このような製氷状態になった後は、生成した氷結晶が新たな過冷却解除のトリガーとなるため、超音波振動を停止させても過冷却解除容器11に新たに流入する過冷却水を連続的に解除させる効果が継続する。よって、一旦製氷状態となった後は、過冷却解除装置1を停止しても、流入口12へ過冷却水を送り込み続けるだけで、流出口13から氷水スラリーの流出が継続される。   FIG. 9 is an example of a diagram illustrating a state in the ice making device 10 when the supercooling is released. When the supercooling release device 1 is operated with the supercooling water flowing in the supercooling release container 11 of the ice making device 10, the supercooling release is performed by cavitation, and the vibration surface 4S and the reflecting surface 3S are interposed. Fine ice crystals are produced. In the supercooling release container 11, a spiral swirl flow toward the upper part is generated, so that ice crystals generated by cavitation flow out from between the vibration surface 4S and the reflection surface 3S and ride on the swirl flow in the container. And the phase of the supercooling water in the supercooling release vessel 11 is changed. Once such an ice-making state has been reached, the generated ice crystals serve as a trigger for releasing new supercooling, so that the supercooling water that newly flows into the supercooling release container 11 even if the ultrasonic vibration is stopped. The effect of releasing continuously continues. Therefore, once the ice-making state is established, even if the supercooling release device 1 is stopped, the ice water slurry continues to flow out from the outlet 13 simply by continuing to feed the supercooling water to the inlet 12.

なお、製氷装置10は、流入口12から流入した水が流出口13へ到達するまでの時間が4.1秒となるように過冷却水の流量或いは過冷却解除容器11の形状または大きさを調整してもよい。4.1秒というのは、相変化を開始した過冷却水中で、過冷度が0になるまで氷核が結晶成長するのに必要な時間であり、例えば特許第3855068号公報に
開示されている値である。結晶の成長速度は、超音波の有無とは無関係であり、過冷却水温度のみで定まる。よって、流入口12から流入する過冷却水の温度が同じであれば、トリガーのかけ方によらず、過冷却解除されるまでの時間は同じとなる。上記製氷装置10について実証実験を行った結果、過冷却水の過冷度2.0Kの場合において、過冷却解除容器11内の滞在時間が4.1秒となるように流量を調整しながら過冷却解除装置1を作動させたところ、経路が閉塞することもなく、製氷運転を安定的に継続できることが確認された。なお、このときの過冷却解除装置1の超音波の出力密度は31.4kW/mである。
In addition, the ice making device 10 sets the flow rate of the supercooling water or the shape or size of the supercooling release container 11 so that the time until the water flowing in from the inlet 12 reaches the outlet 13 is 4.1 seconds. You may adjust. 4.1 seconds is the time required for crystal growth of ice nuclei until the degree of supercooling reaches 0 in the supercooled water that has started phase change, and is disclosed in, for example, Japanese Patent No. 3855068. It is a value. The crystal growth rate is independent of the presence or absence of ultrasonic waves, and is determined only by the supercooling water temperature. Therefore, if the temperature of the supercooling water flowing in from the inlet 12 is the same, the time until the supercooling is released is the same regardless of how the trigger is applied. As a result of the demonstration experiment on the ice making device 10, when the supercooling water has a supercooling degree of 2.0 K, the ice making device 10 is controlled to adjust the flow rate so that the residence time in the supercooling release container 11 is 4.1 seconds. When the cooling release device 1 was operated, it was confirmed that the ice making operation can be stably continued without blocking the path. In addition, the output density of the ultrasonic wave of the supercooling release device 1 at this time is 31.4 kW / m 2 .

ところで、相変化が進行中の過冷却水中では、生成した氷結晶が固体表面に付着しやすいために流路の閉塞を起こしやすい。よって、上記製氷装置10は、例えば、過冷却解除容器11の内面に熱伝導率の小さな樹脂材料でライニングを施すことにより、生成した氷結晶が過冷却解除容器11の内面に付着するのを予防することが好ましい。熱伝導率の小さな樹脂材料としては、例えば、PVC(polyvinyl chloride:熱伝導率0.14W/mK)、アクリル樹脂(熱伝導率0.18W/mK)、ABS樹脂(熱伝導率0.18W/mK)等を挙げることができる。   By the way, in the supercooled water in which the phase change is in progress, the generated ice crystals are likely to adhere to the solid surface, so that the flow path is likely to be blocked. Therefore, the ice making device 10 prevents the generated ice crystals from adhering to the inner surface of the supercooling release container 11 by lining the inner surface of the supercooling release container 11 with a resin material having a low thermal conductivity, for example. It is preferable to do. Examples of the resin material having a small thermal conductivity include PVC (polyvinyl chloride: thermal conductivity 0.14 W / mK), acrylic resin (thermal conductivity 0.18 W / mK), and ABS resin (thermal conductivity 0.18 W / mK). mK) and the like.

また、過冷却解除装置1の振動板4や反射板3は、超音波を射出したり反射したりする関係上、水中で腐食の虞が無い金属材料(例えば、SUS304やSUS316、各種のアルミニウム合金等)で形成することが好ましく、また、超音波の減衰を防ぐため、ライニング等を表面に施すことは好ましくない。ここで、金属材料は熱伝導率が大きいため、氷の付着に対する懸念が生じるようにも一見考えられる。しかし、本適用例に係る製氷装置10のように、過冷却水が螺旋状に旋回しながら流通する円筒状の容器の底板または天板の軸心部分に過冷却解除装置1を取り付けた場合、過冷却解除装置1の周りには過冷却解除装置1の取り付け面を底とする円錐状のよどみ領域が形成される。よどみ領域の内部では氷結晶の滞留時間が長いため、過冷却がほぼ完全に解除されて相変化がほぼ停止した氷水が循環しており、固体表面への氷の付着は起こらない。このため、過冷却解除装置1の振動板4や反射板3にライニングなどの処置を施さなくても、氷が付着することは無い。   In addition, the diaphragm 4 and the reflector 3 of the supercooling release device 1 are metal materials (for example, SUS304, SUS316, various aluminum alloys) that have no risk of corrosion in water because they emit or reflect ultrasonic waves. Etc.), and in order to prevent attenuation of ultrasonic waves, it is not preferable to apply lining or the like to the surface. Here, since the metal material has a large thermal conductivity, it may seem that there is a concern about the adhesion of ice. However, as in the ice making device 10 according to this application example, when the supercooling release device 1 is attached to the axial center portion of the bottom plate or top plate of the cylindrical container in which the supercooled water flows while spirally swirling, Around the supercooling release device 1, a conical stagnation region with the mounting surface of the supercooling release device 1 as the bottom is formed. In the stagnation region, ice crystals stay for a long time, so ice water whose supercooling has been almost completely released and phase change has stopped circulates, and ice does not adhere to the solid surface. For this reason, ice does not adhere even if the diaphragm 4 and the reflecting plate 3 of the supercooling release device 1 are not subjected to treatment such as lining.

なお、過冷却解除装置1の適用対象によっては、このようなよどみ領域が形成されない場合もあり得る。この場合、必要に応じてライニングを適宜施すことが好ましい。   Note that such a stagnation region may not be formed depending on the application target of the supercooling release device 1. In this case, it is preferable to appropriately perform lining as necessary.

1,1A,1B・・過冷却解除装置
2・・超音波振動発生部
3・・反射板
3S、3SA,3SB・・反射面
4・・振動板
4S・・振動面
5・・超音波振動子
6・・支柱
7・・Oリング溝
8・・取付孔
9・・開口部
10・・製氷装置
11・・過冷却解除容器
12・・流入口
13・・流出口
1, 1A, 1B ··· Supercooling release device 2 · Ultrasonic vibration generator 3 · Reflector 3S, 3SA, 3SB · · Reflecting surface 4 · Vibrating plate 4S · · Vibrating surface 5 · · Ultrasonic vibrator 6 ·· Support 7 · · O-ring groove 8 · Mounting hole 9 · Opening portion 10 · Ice making device 11 · Supercooling release container 12 · Inlet 13 · · Outlet

Claims (7)

過冷却水が通過する容器又は配管に取り付ける過冷却解除装置であって、
振動面と超音波振動子とを有し、前記容器又は配管に取付可能な超音波振動発生部と、
反射面が前記振動面から離間し且つ前記振動面に対向した状態で固定された反射板と、を備える、
過冷却解除装置。
A supercooling release device attached to a container or piping through which supercooled water passes,
An ultrasonic vibration generator having a vibration surface and an ultrasonic vibrator, and attachable to the container or the pipe;
A reflecting plate fixed in a state where the reflecting surface is separated from the vibrating surface and faces the vibrating surface;
Supercooling release device.
前記過冷却解除装置は、前記容器又は配管の開口部に取り付ける装置であり、
前記超音波振動発生部は、前記振動面が前記開口部を塞ぐ状態で前記容器又は配管に取付可能であり、
前記反射板は、前記超音波振動発生部に固定されている、
請求項1に記載の過冷却解除装置。
The supercooling release device is a device attached to the opening of the container or piping,
The ultrasonic vibration generating unit can be attached to the container or pipe in a state where the vibration surface closes the opening,
The reflector is fixed to the ultrasonic vibration generator.
The supercooling release device according to claim 1.
前記反射板は、前記超音波振動発生部を前記容器又は配管に取り付ける方向に移動させた状態において前記開口部を通過可能な大きさを有する、
請求項2に記載の過冷却解除装置。
The reflector has a size capable of passing through the opening in a state where the ultrasonic vibration generator is moved in a direction to be attached to the container or pipe.
The supercooling release device according to claim 2.
前記反射板は、前記反射面が平面であり、前記反射面と前記振動面との間の距離が、前記超音波振動発生部が射出する超音波の4分の1波長の奇数倍となる位置で固定される、
請求項1から3の何れか一項に記載の過冷却解除装置。
The reflecting plate is such that the reflecting surface is a plane, and the distance between the reflecting surface and the vibrating surface is an odd multiple of a quarter wavelength of the ultrasonic wave emitted by the ultrasonic vibration generating unit. Fixed in,
The supercooling release device according to any one of claims 1 to 3.
前記反射板は、前記反射面が凹状の曲面である、
請求項1から4の何れか一項に記載の過冷却解除装置。
The reflecting plate is a curved surface having a concave reflection surface,
The supercooling release device according to any one of claims 1 to 4.
前記反射板は、前記反射面が同心円状に分割されており、分割された各領域の反射面が各々凹状の曲面の一部を形成する、
請求項1から5の何れか一項に記載の過冷却解除装置。
In the reflecting plate, the reflecting surface is divided concentrically, and each of the divided reflecting surfaces forms a part of a concave curved surface.
The supercooling release device according to any one of claims 1 to 5.
過冷却水が螺旋状に旋回しながら流通する円筒状の容器と、
前記円筒状の容器の底板または天板の軸心部分に取り付けられた請求項1から6の何れか一項に記載の過冷却解除装置と、を備える、
製氷装置。
A cylindrical container in which supercooled water flows while spirally swirling;
The supercooling release device according to any one of claims 1 to 6, which is attached to a shaft center portion of a bottom plate or a top plate of the cylindrical container.
Ice making equipment.
JP2012275813A 2012-12-18 2012-12-18 Supercooling release device and ice making device Active JP6125822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275813A JP6125822B2 (en) 2012-12-18 2012-12-18 Supercooling release device and ice making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275813A JP6125822B2 (en) 2012-12-18 2012-12-18 Supercooling release device and ice making device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016207492A Division JP6374933B2 (en) 2016-10-24 2016-10-24 Ice making apparatus and ice making method

Publications (2)

Publication Number Publication Date
JP2014119210A true JP2014119210A (en) 2014-06-30
JP6125822B2 JP6125822B2 (en) 2017-05-10

Family

ID=51174190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275813A Active JP6125822B2 (en) 2012-12-18 2012-12-18 Supercooling release device and ice making device

Country Status (1)

Country Link
JP (1) JP6125822B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798095U (en) * 1980-12-08 1982-06-16
JPS6063487U (en) * 1983-10-06 1985-05-04 日本特殊陶業株式会社 Ultrasonic vibration device for cleaning
JPS61239883A (en) * 1985-04-15 1986-10-25 Hitachi Ltd Apparatus for determination of concentration of microbial cell
JPS62236591A (en) * 1986-04-08 1987-10-16 松下電器産業株式会社 Cloth amount detector of washing machine
JPH0188235U (en) * 1987-11-30 1989-06-12
JPH03271673A (en) * 1990-03-20 1991-12-03 Uetsuto Master Kk Method and device for manufacturing artificial snow
JPH05317606A (en) * 1992-05-26 1993-12-03 Kawasaki Steel Corp Ultrasonic defoaming device and continuous defoaming method using this device
JPH07100434A (en) * 1993-10-07 1995-04-18 Shimada Phys & Chem Ind Co Ltd Ultrasonic vibrator and ultrasonic cleaning device
JPH0924347A (en) * 1995-07-11 1997-01-28 Yoshihide Shibano Ultrasonic wave washing device
JPH09504998A (en) * 1994-09-07 1997-05-20 サントレード リミテツド Use of ultrasonic waves to solidify melt or supersaturated solution on conveyor belt or receiver drum
JP2000117247A (en) * 1998-10-19 2000-04-25 Toto Ltd Water purification/sterilization device
JP2001208595A (en) * 2000-01-24 2001-08-03 Omron Corp Liquid level-measuring device
JP2001241705A (en) * 2000-02-25 2001-09-07 Takasago Thermal Eng Co Ltd Method for relieving supercooling and ice plant
JP2002131298A (en) * 2000-10-23 2002-05-09 Ngk Spark Plug Co Ltd Liquid level deterioration detection device
JP2002172389A (en) * 2000-12-05 2002-06-18 Kobe Steel Ltd Ultrasonic treatment apparatus for organic waste liquid
JP2003232621A (en) * 2002-02-08 2003-08-22 Nippon Signal Co Ltd:The Baggage size measuring device
JP2004085181A (en) * 2002-06-25 2004-03-18 Ishikawajima Harima Heavy Ind Co Ltd Ice heat storage device
JP2006147982A (en) * 2004-11-24 2006-06-08 Oki Electric Ind Co Ltd Self-cleaning method of exposure device and exposure device
JP2011031156A (en) * 2009-07-31 2011-02-17 Olympus Corp Washing apparatus

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798095U (en) * 1980-12-08 1982-06-16
JPS6063487U (en) * 1983-10-06 1985-05-04 日本特殊陶業株式会社 Ultrasonic vibration device for cleaning
JPS61239883A (en) * 1985-04-15 1986-10-25 Hitachi Ltd Apparatus for determination of concentration of microbial cell
JPS62236591A (en) * 1986-04-08 1987-10-16 松下電器産業株式会社 Cloth amount detector of washing machine
JPH0188235U (en) * 1987-11-30 1989-06-12
JPH03271673A (en) * 1990-03-20 1991-12-03 Uetsuto Master Kk Method and device for manufacturing artificial snow
JPH05317606A (en) * 1992-05-26 1993-12-03 Kawasaki Steel Corp Ultrasonic defoaming device and continuous defoaming method using this device
JPH07100434A (en) * 1993-10-07 1995-04-18 Shimada Phys & Chem Ind Co Ltd Ultrasonic vibrator and ultrasonic cleaning device
JPH09504998A (en) * 1994-09-07 1997-05-20 サントレード リミテツド Use of ultrasonic waves to solidify melt or supersaturated solution on conveyor belt or receiver drum
JPH0924347A (en) * 1995-07-11 1997-01-28 Yoshihide Shibano Ultrasonic wave washing device
JP2000117247A (en) * 1998-10-19 2000-04-25 Toto Ltd Water purification/sterilization device
JP2001208595A (en) * 2000-01-24 2001-08-03 Omron Corp Liquid level-measuring device
JP2001241705A (en) * 2000-02-25 2001-09-07 Takasago Thermal Eng Co Ltd Method for relieving supercooling and ice plant
JP2002131298A (en) * 2000-10-23 2002-05-09 Ngk Spark Plug Co Ltd Liquid level deterioration detection device
JP2002172389A (en) * 2000-12-05 2002-06-18 Kobe Steel Ltd Ultrasonic treatment apparatus for organic waste liquid
JP2003232621A (en) * 2002-02-08 2003-08-22 Nippon Signal Co Ltd:The Baggage size measuring device
JP2004085181A (en) * 2002-06-25 2004-03-18 Ishikawajima Harima Heavy Ind Co Ltd Ice heat storage device
JP2006147982A (en) * 2004-11-24 2006-06-08 Oki Electric Ind Co Ltd Self-cleaning method of exposure device and exposure device
JP2011031156A (en) * 2009-07-31 2011-02-17 Olympus Corp Washing apparatus

Also Published As

Publication number Publication date
JP6125822B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
US9011698B2 (en) Method and devices for sonicating liquids with low-frequency high energy ultrasound
US6749406B2 (en) Ultrasonic pump with non-planar transducer for generating focused longitudinal waves and pumping methods
ES2771350T3 (en) Ultrasonic cleaning of vessels and tubes
JP2013544644A5 (en)
HUT76410A (en) Anharmonic acoustic resonator, method for producing acoustic resonance in a chamber, acoustic compression system
JP6374933B2 (en) Ice making apparatus and ice making method
JP6125822B2 (en) Supercooling release device and ice making device
JP2005305233A (en) Atomization apparatus for forming film
JP6523528B2 (en) Ice making apparatus and ice making method
US11536499B2 (en) Refrigeration machine
JP5803354B2 (en) Fluid ejecting apparatus and medical device
WO2009041854A1 (en) Fluid media heat-mass-and-energy exchange method and device for carrying out said method
JP3855068B2 (en) How to cancel overcooling
JP2005186030A (en) Ultrasonic radiator, ultrasonic radiating unit, ultrasonic radiating device, and ultrasonic processing device using the same
RU2503896C2 (en) Device for heating liquids
JP2020015941A (en) Ultrasonic processing device and method of supplying fine bubble
US20220143563A1 (en) Non-invasive mixing of liquids
RU2463104C2 (en) Method and device for intensification of mass exchange gas- and liquid-phase processes by acoustic vibrations
US9185484B2 (en) Hydrodynamic modulator
RU2305608C1 (en) Hydrodynamic generator of acoustic vibration
Bai et al. Circular motion of submillimeter-sized acoustic bubbles attached to a boundary by high-speed image analysis
RU2218971C1 (en) Film-type evaporator
JPS5933576Y2 (en) Transducer cooling device
RU2245744C1 (en) Pulsator
RU28396U1 (en) Device for sound-luminescent control of impurities in running water (options)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6125822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150