JP2002172389A - Ultrasonic treatment apparatus for organic waste liquid - Google Patents

Ultrasonic treatment apparatus for organic waste liquid

Info

Publication number
JP2002172389A
JP2002172389A JP2000370666A JP2000370666A JP2002172389A JP 2002172389 A JP2002172389 A JP 2002172389A JP 2000370666 A JP2000370666 A JP 2000370666A JP 2000370666 A JP2000370666 A JP 2000370666A JP 2002172389 A JP2002172389 A JP 2002172389A
Authority
JP
Japan
Prior art keywords
ultrasonic
waste liquid
organic waste
ultrasonic vibrator
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000370666A
Other languages
Japanese (ja)
Inventor
Masahiko Miura
雅彦 三浦
Hideo Utsuno
秀夫 宇津野
Ryusuke Kitamura
竜介 北村
Akira Ishiyama
明 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000370666A priority Critical patent/JP2002172389A/en
Publication of JP2002172389A publication Critical patent/JP2002172389A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic treatment apparatus, which can efficiently perform (1) solubilization of organic sludge, such as crude sludge, surplus sludge, and digestive sludge, (2) decomposition and removal of toxic substances in slurry, such as sludge, or in waste liquid, (3) improvement of solid-liquid separation properties for separating treated water from a wastewater treatment process and improvement of sludge settleability, and the like with limited energy by an simple apparatus and operation to which acoustical effects have been applied. SOLUTION: This ultrasonic treatment apparatus for treating organic waste liquid with ultrasonic waves, is provided with a reflection plate opposite to the surface of an ultrasonic oscillating body to execute operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、(1)下水処理場
や屎尿処理場における下水処理過程、或いは食品工場や
化学工場の排水処理過程等から排出される有機性廃液の
生物学的な好気性処理または嫌気性処理、(2)前記各
工場の廃液、清浄な純水を製造する過程で副生する被処
理水や上下水道水および食品や飲料水等の滅菌・殺菌処
理、脱色処理、(3)前記の各種液体の滅菌・殺菌処
理、脱色処理の際やゴミ焼却等に伴って生成するダイオ
キシン、環境ホルモン、PCB等の難分解性物質の分解
処理、或いは(4)ダイオキシンやPCB等の難分解性
物質によって汚染された地下水、汚泥、浚渫土の処理等
に適用される超音波処理装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to (1) a biological process of an organic waste liquid discharged from a sewage treatment process in a sewage treatment plant or a human waste treatment plant, or a wastewater treatment process in a food factory or a chemical factory. Aerobic treatment or anaerobic treatment, (2) sterilization / sterilization treatment, decolorization treatment of treated water, water and sewage water, food and drinking water, etc. as a by-product in the process of producing purified water, waste liquid of each factory, (3) Dioxin, environmental hormones, decomposition of hardly decomposable substances such as PCBs generated during sterilization / sterilization treatment, decolorization treatment, garbage incineration, etc. of the above liquids, or (4) dioxin or PCB etc. The present invention relates to an ultrasonic treatment apparatus applied to the treatment of groundwater, sludge, and dredged soil contaminated by non-degradable substances.

【0002】[0002]

【従来の技術】上記(1)〜(4)に示した各種用途にお
いては、従来から被処理液やスラリー等を超音波処理す
る方法並びにその装置が知られている。例えば、特開昭
58-76200号には「有機性汚泥の嫌気性消化処理方法」
が、特開平11-300334号には「土壌中のダイオキシン類
等の有機塩素化合物の分解除去方法」が、同11-300347
号には「埋立浸出水中のダイオキシン類等の有機塩素化
合物の分解方法」が、同11-300390号には「汚泥中のダ
イオキシン類等の有機塩素化合物の分解除去方法」が、
特開2000-24698号には「廃水の生物学的処理方法及び装
置」が夫々提案されている。
2. Description of the Related Art For various uses described in the above (1) to (4), a method and an apparatus for ultrasonically treating a liquid to be treated or a slurry have been known. For example,
58-76200 "Anaerobic digestion of organic sludge"
However, JP-A-11-300334 discloses a method for decomposing and removing organic chlorine compounds such as dioxins in soil.
No. `` Method of decomposing organic chlorine compounds such as dioxins in landfill leachate '', No. 11-300390 `` Method of decomposing and removing organic chlorine compounds such as dioxins in sludge ''
Japanese Patent Application Laid-Open No. 2000-24698 proposes "biological treatment method and apparatus for wastewater".

【0003】また、超音波処理の効率を向上させる技術
として、特開2000-51853号には、超音波振動板とこれに
対して平行に対向配置した薄板により形成された通水路
に被処理水を滞留もしくは通水するようにした処理槽を
設け、前記薄板の1面が大気と接し、他面が被処理水と
接すると共に、前記超音波振動板には超音波振動子が面
接合され、この超音波振動子の振動周波数をフィードバ
ックして超音波振動子を駆動する高周波電源を制御し、
超音波振動子の振動周波数を振動系の機械共振周波数に
追従させる技術が提案されている。
As a technique for improving the efficiency of ultrasonic treatment, Japanese Patent Application Laid-Open No. 2000-51853 discloses a technique in which water to be treated is provided in a water passage formed by an ultrasonic vibration plate and a thin plate disposed in parallel with the ultrasonic vibration plate. Providing a treatment tank so as to stay or pass water, one surface of the thin plate is in contact with the atmosphere, the other surface is in contact with the water to be treated, and an ultrasonic vibrator is surface-bonded to the ultrasonic vibration plate, The vibration frequency of the ultrasonic vibrator is fed back to control a high frequency power supply for driving the ultrasonic vibrator,
A technique has been proposed in which the vibration frequency of an ultrasonic transducer follows the mechanical resonance frequency of a vibration system.

【0004】[0004]

【発明が解決しようとする課題】さらに、上記の他にも
超音波処理の効率を向上させる技術は提案されている。
例えば、超音波振動子を備えた処理槽内に無機質微粒子
添加して処理効率を向上させる技術があるが、該技術で
は処理済み汚泥に微粒子が混在し、その分離操作が必要
である。そこで、この問題点を解決するために、特開平
2-280900号には、処理槽の処理済み汚泥排出口に無機質
微粒子を通過させないスクリーンを装着する技術や処理
槽方向にのみ開く逆止弁付き無機質微粒子供給管を連結
する技術が提案されている。しかしながら、この技術で
は、スクリーンや逆止弁を必要とする煩雑さ、及びこれ
らのメンテナンスというランニング上の問題がある。
Further, other than the above, a technique for improving the efficiency of ultrasonic processing has been proposed.
For example, there is a technique for improving the processing efficiency by adding inorganic fine particles into a processing tank provided with an ultrasonic vibrator. However, in this technique, fine particles are mixed in the treated sludge, and a separation operation is required. In order to solve this problem, Japanese Patent Laid-Open Publication No.
No. 2-280900 proposes a technology for mounting a screen that does not allow inorganic fine particles to pass through the treated sludge outlet of the processing tank and a technology for connecting an inorganic fine particle supply pipe with a check valve that opens only in the direction of the processing tank. . However, in this technology, there are running problems such as complexity of requiring a screen and a check valve, and maintenance of these.

【0005】また、同9-75956号には、有機物含有液を
酸化剤の存在下に加熱処理して、有機物を分解除去する
方法において、酸化剤として過硫酸塩を用い、加熱処理
に際して超音波を照射する方法が提案されている。しか
しながら、この方法では、過硫酸塩を用い、更に加熱処
理する煩雑さがあり、また、加熱処理に伴う温度上昇に
より超音波振動子の共振周波数が変動してしまい回路が
複雑になるという問題がある。
Japanese Patent Application Laid-Open No. 9-75956 discloses a method for decomposing and removing an organic substance by heat-treating a liquid containing an organic substance in the presence of an oxidizing agent. Has been proposed. However, in this method, there is a problem that a persulfate is used, and the heat treatment is further complicated, and the resonance frequency of the ultrasonic vibrator fluctuates due to a rise in temperature accompanying the heat treatment, thereby complicating the circuit. is there.

【0006】特開2000-42541号には、超音波振動板と、
これに対して対向配置した板を1対とし、該1対の板の間
に形成された通水路に通水することにより被処理水を浄
化する処理槽において、前記超音波振動板の接液面と前
記対向配置板の接液面の距離L(cm)を、単位面積当た
りの出力W(w/cm2)、周波数f(Hz)から求められる
下記式[A]で規定するとともに、式[A]の係数aを
5×104以上とする技術が提案されている。 L=a×W/f ・・・ [A]
Japanese Patent Application Laid-Open No. 2000-42541 discloses an ultrasonic vibration plate,
On the other hand, a pair of plates arranged opposite to each other, and in a treatment tank that purifies the water to be treated by flowing water through a water passage formed between the pair of plates, the liquid contact surface of the ultrasonic vibration plate The distance L (cm) between the liquid contact surfaces of the opposed arrangement plate is defined by the following formula [A] obtained from the output W (w / cm 2 ) per unit area and the frequency f (Hz), and the formula [A] ] Coefficient a
Techniques for increasing the size to 5 × 10 4 or more have been proposed. L = a × W / f [A]

【0007】この技術は、前記超音波振動板の接液面と
前記対向配置板の接液面の距離Lが式[A]で求めら
れ、式[A]の係数aが5×104以上である寸法設計のと
きに、キャビテーションの発生する強度以上の超音波を
照射することを特徴とするものであり、有機物などの有
害な物質を効率良く分解除去するには、距離Lに応じて
出力Wを変動させる必要がある。つまり、距離Lが大き
い場合は、これに伴い超音波出力の大きい装置が必要に
なるという問題点がある。
In this technique, a distance L between a liquid contact surface of the ultrasonic vibration plate and a liquid contact surface of the opposed arrangement plate is obtained by Expression [A], and a coefficient a of Expression [A] is 5 × 10 4 or more. It is characterized by irradiating an ultrasonic wave with an intensity higher than the intensity at which cavitation occurs at the time of dimensional design. In order to efficiently decompose and remove harmful substances such as organic substances, an output corresponding to the distance L is required. W needs to be varied. That is, when the distance L is large, there is a problem that a device having a large ultrasonic output is required.

【0008】本発明は、こういった状況に鑑みてなされ
たものであって、その目的は、音響学的効果を応用した
簡単な装置と操作により、少ないエネルギーで効率良
く、 (1)生汚泥・余剰汚泥・消化汚泥などの有機性汚泥の
可溶化 (2)汚泥などのスラリー中や廃液中の有害物質の分解
除去 (3)排水処理プロセスからの処理水の固液分離性改善
や汚泥の沈降性改善 などを行うことのできる超音波処理装置を提供すること
にある。
The present invention has been made in view of such circumstances, and has as its object to provide a simple apparatus and operation utilizing an acoustic effect to efficiently use a small amount of energy, and (1) raw sludge.・ Solubilization of organic sludge such as excess sludge and digested sludge (2) Decomposition and removal of harmful substances in slurry such as sludge and waste liquid (3) Improvement of solid-liquid separation of treated water from wastewater treatment process It is an object of the present invention to provide an ultrasonic treatment apparatus capable of improving sedimentation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すること
のできた本発明の超音波処理装置とは、超音波で有機性
廃液を処理する超音波処理装置において、超音波振動体
の表面に対向して、反射板を備えてなる点に要旨を有す
るものであり、前記超音波振動体の表面と、前記反射板
との距離がn・λ/2(但しnは自然数、λは超音波の波
長を示す)であると一層優れたの効果を発揮することが
できる。特に、前記超音波振動体と略同心状に筒状の反
射板を備えると好ましい。
Means for Solving the Problems The ultrasonic processing apparatus of the present invention which can achieve the above object is an ultrasonic processing apparatus for processing an organic waste liquid by ultrasonic waves, which is opposed to the surface of an ultrasonic vibrator. In addition, the present invention has a gist at the point that a reflector is provided, and the distance between the surface of the ultrasonic vibrator and the reflector is n · λ / 2 (where n is a natural number, and λ is (Indicating the wavelength), it is possible to exhibit a more excellent effect. In particular, it is preferable to provide a cylindrical reflector substantially concentrically with the ultrasonic vibrator.

【0010】更に、本発明は、超音波振動体の表面と、
処理容器内面との距離がn・λ/2(但しnは自然数、λ
は超音波の波長を示す)である有機性廃液の超音波処理
装置でも同様の効果を得ることができ、特に、前記処理
容器内面が筒状であり、前記超音波振動体と該処理容器
が同心状である事が好ましい。
[0010] Further, the present invention provides an ultrasonic vibrating body comprising:
The distance from the inner surface of the processing vessel is n · λ / 2 (where n is a natural number, λ
The same effect can be obtained with an organic waste liquid ultrasonic treatment apparatus that is an organic waste liquid. In particular, the inner surface of the treatment container is cylindrical, and the ultrasonic vibrator and the treatment container are Preferably, they are concentric.

【0011】また、超音波で有機性廃液を処理する超音
波処理装置において、超音波振動体の表面に生じる定在
波の節となる位置の全てまたは一部に、ドーナツ状の仕
切板を、前記超音波振動体がその中空を垂直方向に貫通
するように備えると本発明は達成することができる。
Further, in an ultrasonic treatment apparatus for treating an organic waste liquid by ultrasonic waves, a donut-shaped partition plate is provided at all or a part of a position of a node of a standing wave generated on the surface of the ultrasonic vibrator, The present invention can be achieved when the ultrasonic vibrator is provided so as to vertically penetrate the hollow.

【0012】超音波で有機性廃液を処理する超音波処理
装置において、超音波振動体と略同心状に筒状の反射板
が備えられていると共に、該反射板には、前記円柱状超
音波振動体の表面に生じる定在波の節となる位置の全て
または一部に、ドーナツ状の仕切板を、前記振動体がそ
の中空を垂直方向に貫通するように備えられてなる有機
性廃液の超音波処理装置も好ましい構成であり、前記超
音波振動体の表面と、前記反射板との距離がn・λ/2
(但しnは自然数、λは超音波の波長を示す)であると
一層の効果を得ることができる。
In an ultrasonic treatment apparatus for treating an organic waste liquid with ultrasonic waves, a cylindrical reflector is provided substantially concentrically with an ultrasonic vibrator, and the cylindrical ultrasonic wave is provided on the reflector. A donut-shaped partition plate is provided at all or a part of the position of the node of the standing wave generated on the surface of the vibrating body, and the organic waste liquid is provided so that the vibrating body penetrates the hollow in the vertical direction. An ultrasonic processing device is also a preferred configuration, and the distance between the surface of the ultrasonic vibrator and the reflection plate is n · λ / 2.
(Where n is a natural number and λ indicates the wavelength of the ultrasonic wave), a further effect can be obtained.

【0013】また、前記ドーナツ状の仕切板には、有機
性廃液の流通孔が形成されている構成や、前記超音波振
動体が中実または中空の棒状である構成の超音波処理装
置を用いることも好ましい。
The donut-shaped partition plate is provided with an ultrasonic treatment device having a structure in which a flow hole for organic waste liquid is formed and a structure in which the ultrasonic vibrator has a solid or hollow rod shape. It is also preferred.

【0014】[0014]

【発明の実施の形態】本発明者らは、上記の課題を解決
する為に様々な角度から検討した。その結果、音響学的
効果を応用し、超音波処理装置の処理容器内に反射板も
しくは仕切板を配置すると、或いは、超音波振動体表面
と処理容器内面との距離をn・λ/2(但しnは自然数、
λは超音波の波長を示す)にすると、少ないエネルギー
で効率良く有機性廃液を処理することができることを見
出して本発明の超音波処理装置を提供することができ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have studied from various angles in order to solve the above problems. As a result, the acoustic effect is applied, and a reflection plate or a partition plate is disposed in the processing container of the ultrasonic processing apparatus, or the distance between the surface of the ultrasonic vibrator and the inner surface of the processing container is n · λ / 2 ( Where n is a natural number,
(λ represents the wavelength of the ultrasonic wave), it was found that the organic waste liquid can be efficiently treated with little energy, and the ultrasonic treatment apparatus of the present invention was provided.

【0015】以下、本発明の構成及び作用効果を図面を
用いて更に詳しく説明するが、下記に示す構成は本発明
を限定する性質のものではなく、前・後記の趣旨に基づ
いて設計変更することはいずれも本発明の技術的範囲に
含まれるものである。
Hereinafter, the structure and operation and effect of the present invention will be described in more detail with reference to the drawings. However, the structure shown below does not limit the present invention, and the design is changed based on the above and following points. All of these are included in the technical scope of the present invention.

【0016】有機性廃液の超音波処理装置では、超音波
によってキャビテーションバブルの発生・拡散・膨張・
圧壊が生じ、その際に数1000℃、数100気圧の反応場が
形成される。さらに、キャビティの周囲の水、溶存した
酸素、窒素などから、水素ラジカル,酸素ラジカル,ヒ
ドロキシラジカル,窒素ラジカルなどが発生するととも
に、発生したラジカルによって過酸化水素、亜硝酸、硝
酸などの酸化性化合物が発生する。その結果、有機性汚
泥やスラリー中または廃液中の有害物質は、キャビテー
ションや各ラジカル、酸化性化合物との反応によって、
可溶化または分解除去が行われる。
In an ultrasonic treatment apparatus for organic waste liquid, generation, diffusion, expansion, and cavitation bubbles are generated by ultrasonic waves.
Crushing occurs, at which time a reaction field of several thousand degrees Celsius and several hundred atmospheres is formed. Further, hydrogen radicals, oxygen radicals, hydroxyl radicals, nitrogen radicals, etc. are generated from water, dissolved oxygen, nitrogen, etc. around the cavity, and oxidizing compounds such as hydrogen peroxide, nitrous acid, nitric acid, etc. are generated by the generated radicals. Occurs. As a result, harmful substances in organic sludge and slurry or waste liquid are cavitation, radicals, reaction with oxidizing compounds,
Solubilization or decomposition removal is performed.

【0017】図1の(a)は本発明装置の一構成例を示
した断面図である。図中3は処理容器、11はホーンチッ
プ型超音波振動体、21aは反射板、1は被処理液の流入
口、2は被処理液の排出口である。図1では、ホーンチッ
プ型超音波振動体11は上下に振動し、超音波振動体表面
11aから超音波が発生する。発生した超音波の進行波
と、反射板21aからの反射波が互いに干渉して、強い振
幅が生じ、高い疎密変化を促すことによって、被処理液
中に高温高圧のキャビティが高密度に発生し、被処理液
は効率良く処理される。また、超音波振動体表面11aと
反射板21aとの距離31aがn・λ/2であると、更に超音波
の増幅が起こり、有機性廃液の処理効率は向上する。し
かしながら、超音波は距離の増加に伴い減衰するので、
nが大きすぎる場合、つまり、距離31aが大きい場合
は、反射板21aの効果を十分に得ることはできない。そ
こで、最も好ましいのはn=1、つまり、超音波振動体
表面11aと反射板21aとの距離31aがλ/2の場合である。
尚、反射板の形状は図1の(a)のような平面状のもの
でも良いが、反射板21aからの反射波が効率良く超音波
振動体表面11aに戻るように、図1の(b)に示した様な
凹型の反射板21bを用いると更に処理効率が向上する。
FIG. 1A is a sectional view showing an example of the configuration of the device of the present invention. In the figure, reference numeral 3 denotes a processing container, 11 denotes a horn-tip type ultrasonic vibrator, 21a denotes a reflection plate, 1 denotes an inlet for a liquid to be processed, and 2 denotes an outlet for the liquid to be processed. In FIG. 1, the horn tip type ultrasonic vibrator 11 vibrates up and down, and the surface of the ultrasonic vibrator
Ultrasonic waves are generated from 11a. The generated ultrasonic traveling wave and the reflected wave from the reflecting plate 21a interfere with each other to generate a strong amplitude, which promotes a high / low density change. The liquid to be treated is efficiently treated. Further, when the distance 31a between the ultrasonic vibrator surface 11a and the reflector 21a is n · λ / 2, the amplification of the ultrasonic wave further occurs, and the treatment efficiency of the organic waste liquid is improved. However, ultrasonic waves attenuate with increasing distance,
If n is too large, that is, if the distance 31a is large, the effect of the reflector 21a cannot be sufficiently obtained. Therefore, the most preferable case is n = 1, that is, the case where the distance 31a between the ultrasonic vibrator surface 11a and the reflector 21a is λ / 2.
The shape of the reflector may be a flat shape as shown in FIG. 1A, but the shape of the reflector shown in FIG. 1B may be such that the reflected wave from the reflector 21a efficiently returns to the ultrasonic vibrator surface 11a. The use of the concave reflector 21b as shown in (1) further improves the processing efficiency.

【0018】しかしながら、図1で示したように、処理
容器内に反射板を設けると、処理容器の内面と反射板と
の間に空間ができ、該空間内の被処理液は完全には処理
できないという若干の問題がある。そこで、前記空間に
被処理液が入らないように、障壁等を設ける工夫しても
良いが、図2の(a)のような構成にすると更に効率良
く被処理液を処理できる。図2の(a)は本発明の他の
構成例であり、処理容器3の内面を反射板として利用し
た例である。図1と対応する部分には同一の符号を付し
重複説明を避ける。ホーンチップ型超音波振動体の表面
11aから発生する進行波は処理容器内面[図2の(a)で
は処理容器3の底面]で反射し、ホーンチップ型超音波
振動体の表面11aと処理容器内面との間で進行波と反射
波が互いに干渉して、強い振幅が生じ、高い疎密変化を
促し、処理容器3内の被処理液は効率良く処理される。
However, as shown in FIG. 1, when a reflection plate is provided in the processing container, a space is formed between the inner surface of the processing container and the reflection plate, and the liquid to be processed in the space is completely treated. There is some problem that cannot be done. Therefore, a barrier or the like may be provided so that the liquid to be treated does not enter the space, but the liquid to be treated can be treated more efficiently with the configuration shown in FIG. FIG. 2A shows another configuration example of the present invention, in which the inner surface of the processing container 3 is used as a reflector. Parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and redundant description will be avoided. Surface of horn tip type ultrasonic vibrator
The traveling wave generated from 11a is reflected on the inner surface of the processing container [the bottom surface of the processing container 3 in FIG. 2A], and is reflected between the surface 11a of the horn-tip type ultrasonic vibrator and the inner surface of the processing container. The waves interfere with each other to generate a strong amplitude, which promotes a high density change, and the liquid to be processed in the processing container 3 is efficiently processed.

【0019】また、超音波振動体表面11aと処理容器3の
内面との距離31bは、超音波のn・λ/2であると更に超
音波の増幅が起こり、処理効率は向上する。最も好まし
いのはn=1の場合である。
If the distance 31b between the ultrasonic vibrator surface 11a and the inner surface of the processing vessel 3 is n.lambda./2 of the ultrasonic wave, the ultrasonic wave is further amplified, and the processing efficiency is improved. Most preferred is when n = 1.

【0020】尚、処理容器3の形状は図2の(a)のよう
に平面状でも良いが、反射波が効率良く超音波振動体表
面11aに戻るように、図2の(b)に示した様な凹型の処
理容器3を用いると更に処理効率が向上する。
Although the shape of the processing vessel 3 may be flat as shown in FIG. 2A, it is shown in FIG. 2B so that the reflected wave can efficiently return to the ultrasonic vibrator surface 11a. When such a concave processing container 3 is used, the processing efficiency is further improved.

【0021】次に、超音波振動体が中実または中空の棒
状である場合を示す。棒状超音波振動体としては、例え
ば、特公平5-43437号で提案されているものがあり、共
振子に縦方向の定在波と、横収縮によって上記定在波の
伸縮振動節に生じる横振幅の半径方向分(遠心方向分)
とを発生し、これを液体または浴中に放出させるもので
ある。この場合、半径方向分を管状共振子の内部に発生
し、それぞれの共振子の壁体から直角に放出している。
使用周波数の収縮振動節に横収縮を発生するために、共
振子の縦軸は音波の半波長λ/2の整数倍に整合されてい
る。また、共振子は中空成形体であるが、場合によって
は共振子内部に液体を供給しても良い。
Next, a case where the ultrasonic vibrating body is a solid or hollow rod-like body will be described. As the rod-shaped ultrasonic vibrator, for example, there is one proposed in Japanese Patent Publication No. Hei 5-43437, and a standing wave in the longitudinal direction is generated in the resonator, and a lateral vibration generated in the stretching vibration node of the standing wave due to lateral contraction. Radial component of amplitude (centrifugal component)
And releases it into the liquid or bath. In this case, radial components are generated inside the tubular resonators and are emitted at right angles from the walls of the respective resonators.
The longitudinal axis of the resonator is aligned with an integral multiple of the half-wavelength λ / 2 of the sound wave in order to generate a lateral contraction in the contraction oscillator of the working frequency. Although the resonator is a hollow molded body, a liquid may be supplied to the inside of the resonator in some cases.

【0022】中実または中空の棒状(以下、「円筒型」
と称する場合がある)超音波振動体を用いた場合の本発
明例の一構成例を図3に示す。図中3は処理容器、12は棒
状の超音波振動体、21は筒状の反射板、1は被処理液の
流入口、2は被処理液の排出口である。筒状の反射板21
は、棒状超音波振動体12と同心状になるように配置され
ている。従って、棒状超音波振動体12から放射状に発生
した超音波(進行波)と反射板21からの反射波とが互い
に干渉し、強い振幅が生じ、高い疎密変化を促すことに
よって、被処理液中に高温高圧のキャビティが高密度に
発生し、被処理液は処理される。また、棒状超音波振動
体12の表面と反射板21との距離31aは、超音波の波長の
n・λ/2であるときに処理効率が向上し、好ましくはn
=1の場合である。
Solid or hollow rod (hereinafter referred to as "cylindrical")
FIG. 3 shows an example of the configuration of an example of the present invention when an ultrasonic vibrator is used. In the figure, 3 is a processing container, 12 is a rod-shaped ultrasonic vibrator, 21 is a cylindrical reflector, 1 is an inflow port of the liquid to be treated, and 2 is an outlet of the liquid to be treated. Cylindrical reflector 21
Are arranged so as to be concentric with the rod-shaped ultrasonic vibrator 12. Therefore, the ultrasonic waves (progressive waves) radially generated from the rod-shaped ultrasonic vibrator 12 and the reflected waves from the reflection plate 21 interfere with each other to generate a strong amplitude, which promotes a high and low density change. A high-temperature and high-pressure cavity is generated at a high density, and the liquid to be treated is processed. Further, when the distance 31a between the surface of the rod-shaped ultrasonic vibrator 12 and the reflecting plate 21 is n · λ / 2 of the wavelength of the ultrasonic wave, the processing efficiency is improved.
= 1.

【0023】しかしながら、図3で示されるように、処
理容器3内に反射板21を設けると、処理容器3の内面と反
射板21の外面との間に空間ができ、該空間内の被処理液
が完全には処理できないという若干の問題がある。そこ
で、前記空間に被処理液が入らないように障壁等を設け
る等の工夫を施しても良いが、図4のような構成にする
と更に効率良く被処理液を処理できる。図4は、処理容
器3の内面を反射板として利用した例であり、処理容器3
と棒状超音波振動体12とは同心状に配置されている。図
3と対応する部分には同一の符号を付し重複説明を避け
る。棒状超音波振動体12から発生する進行波は処理容器
内面で反射し、棒状超音波振動体12の表面と処理容器内
面(図4では処理容器3の側面)との間で進行波と反射波
が互いに干渉し、強い振幅が生じ、高い疎密変化を促
し、処理容器3内の被処理液は効率良く処理される。
However, as shown in FIG. 3, when the reflection plate 21 is provided in the processing container 3, a space is formed between the inner surface of the processing container 3 and the outer surface of the reflection plate 21. There is a slight problem that the liquid cannot be completely processed. Therefore, some measures may be taken, such as providing a barrier or the like so that the liquid to be treated does not enter the space. However, if the structure shown in FIG. 4 is used, the liquid to be treated can be treated more efficiently. FIG. 4 is an example in which the inner surface of the processing container 3 is used as a reflection plate, and the processing container 3
The rod-shaped ultrasonic vibrator 12 and the rod-shaped ultrasonic vibrator 12 are arranged concentrically. Figure
The same reference numerals are given to the portions corresponding to 3 to avoid redundant description. The traveling wave generated from the rod-shaped ultrasonic vibrator 12 is reflected on the inner surface of the processing container, and the traveling wave and the reflected wave are generated between the surface of the rod-shaped ultrasonic vibrator 12 and the inner surface of the processing container (the side surface of the processing container 3 in FIG. 4). Interfere with each other, generate a strong amplitude, promote a high density change, and the liquid to be processed in the processing container 3 is efficiently processed.

【0024】また、棒状超音波振動体12を用いると、図
5に示した波動イメージ41の様に、棒状超音波振動体12
の表面に発生する定在波の伸縮振動時に発生する横振幅
による隣接波同士の干渉が起こる。つまり、定在波の位
相が正負逆転している位置(節)で、隣接波同士の干渉
が起こり、疎密変化が抑制され処理効率が悪くなる。そ
こで、図5に示したように、中実もしくは中空の棒状超
音波振動体12の表面に生じる定在波の節となる位置にド
ーナツ状の仕切板22を、棒状超音波振動体12が仕切板の
中空を垂直方向に貫通するように備えると、上記隣接波
同士の干渉による疎密変化の抑制を回避することがで
き、強い振幅が生じ、高い疎密変化が生じる領域を増大
できる。その結果、被処理液を効率良く処理することが
できる。尚、仕切板22は、棒状超音波振動体12に生じる
定在波の節となる位置に配置されるものであり、例え
ば、定在波の節が1つの場合は、仕切板22も一つとな
る。また、仕切板22は定在波の節となる位置から±λ/8
以下の距離になるように配置するのが好ましく、この範
囲では、隣接波同士の干渉を十分抑制する効果が得られ
る。
When the rod-shaped ultrasonic vibrator 12 is used,
As in the wave image 41 shown in FIG. 5, the rod-shaped ultrasonic vibrator 12
Interference between adjacent waves occurs due to the transverse amplitude generated at the time of stretching vibration of the standing wave generated on the surface. That is, at the position (node) where the phase of the standing wave is reversed in the positive and negative directions, interference between adjacent waves occurs, the change in density is suppressed, and the processing efficiency deteriorates. Therefore, as shown in FIG. 5, the donut-shaped partition plate 22 is separated from the solid-shaped or hollow rod-shaped ultrasonic vibrator 12 at a position serving as a node of a standing wave, and the rod-shaped ultrasonic vibrator 12 is partitioned. If the plate is provided so as to penetrate the hollow in the vertical direction, it is possible to avoid the suppression of the change in density due to the interference between adjacent waves, and it is possible to generate a strong amplitude and increase the area where the change in density is high. As a result, the liquid to be treated can be efficiently treated. Note that the partition plate 22 is disposed at a position serving as a node of the standing wave generated in the rod-shaped ultrasonic vibrator 12, for example, when there is one node of the standing wave, the partition plate 22 is also one. Become. In addition, the partition plate 22 is ± λ / 8 from the position where it becomes a node of the standing wave.
It is preferable to arrange them so as to have the following distance. In this range, an effect of sufficiently suppressing interference between adjacent waves can be obtained.

【0025】さらに一層の効果を得るためには、棒状超
音波振動体12の表面と、仕切板22を有する処理容器3の
内面との距離が、超音波の波長のn・λ/2であることが
好ましく、最も好ましいのはn=1の場合である。
In order to obtain a further effect, the distance between the surface of the rod-shaped ultrasonic vibrator 12 and the inner surface of the processing vessel 3 having the partition plate 22 is n · λ / 2 of the wavelength of the ultrasonic wave. It is preferable that n = 1.

【0026】図6は、本発明の他の構成例を示したもの
であり、中実もしくは中空である棒状の超音波振動体12
の表面に対向して筒状の反射板21が備えられていると共
に、反射板21には、棒状超音波振動体12に生じる定在波
の節となる位置にドーナツ状の仕切板22を、棒状超音波
振動体12が仕切板22の中空を垂直方向に貫通するように
備えられている。ここで、棒状超音波振動体12と筒状の
反射板21とは同心状になるように配置されている。図6
のような構成では、図5で説明した隣接波同士の干渉に
よる疎密変化の抑制を回避することができると共に、棒
状超音波振動体12の表面から発生する進行波と反射波の
干渉により処理効率は更に向上する。
FIG. 6 shows another embodiment of the present invention, in which a solid or hollow rod-shaped ultrasonic vibrator 12 is used.
A cylindrical reflecting plate 21 is provided opposite to the surface of the base plate, and the reflecting plate 21 has a donut-shaped partition plate 22 at a position serving as a node of a standing wave generated in the rod-shaped ultrasonic vibrator 12, The bar-shaped ultrasonic vibrator 12 is provided so as to penetrate the hollow of the partition plate 22 in the vertical direction. Here, the rod-shaped ultrasonic vibrator 12 and the cylindrical reflecting plate 21 are arranged concentrically. Figure 6
In such a configuration, it is possible to avoid the suppression of the change in density due to the interference between adjacent waves described in FIG. Is further improved.

【0027】図6においても、より一層効率良く被処理
液を処理するには、超音波振動体の表面と前記反射板と
の距離がn・λ/2であることが好ましく、最も好ましい
のはn=1の場合である。尚、処理容器3の内面と反射板
との間に空間ができた場合は、該空間に被処理液が入ら
ないように、障壁等を設けるなどの工夫すると一層処理
効率が向上する。
In FIG. 6 as well, in order to treat the liquid to be treated more efficiently, the distance between the surface of the ultrasonic vibrator and the reflector is preferably n · λ / 2, most preferably. This is the case where n = 1. When a space is formed between the inner surface of the processing container 3 and the reflector, processing efficiency is further improved by providing a barrier or the like so that the liquid to be processed does not enter the space.

【0028】ここで、図5や図6のように、ドーナツ状の
仕切板を処理容器内に設けると、本発明の効果を十分に
得ることができるが、有機性廃液(被処理液)が容器内
を流れ難くなるという若干の問題が生じる。そこで、こ
の問題を解決するには、図7の(a)に示した様に、ド
ーナツ状の仕切板22に有機性廃液の流通孔23を形成する
と、有機性廃液が流通孔23を通るので、流路を確保する
ことができ、処理効率が一層向上する。
Here, when a donut-shaped partition plate is provided in the processing container as shown in FIGS. 5 and 6, the effect of the present invention can be sufficiently obtained. There is a slight problem that it becomes difficult to flow in the container. In order to solve this problem, as shown in FIG. 7A, when the organic waste liquid circulation holes 23 are formed in the donut-shaped partition plate 22, the organic waste liquid passes through the circulation holes 23. Thus, the flow path can be secured, and the processing efficiency is further improved.

【0029】尚、仕切板に形成する流通孔の大きさや形
状、個数などは特に限定されず、処理容器内の所定の位
置に仕切板を設けることによって得られる効果を阻害さ
せない程度であれば良い。流通孔の形状の他の例として
は、図7の(b)に示したようなスリット状の流通孔24
が例示できる。
The size, shape, number, etc., of the flow holes formed in the partition plate are not particularly limited, as long as the effect obtained by providing the partition plate at a predetermined position in the processing vessel is not impaired. . As another example of the shape of the flow hole, a slit-shaped flow hole 24 as shown in FIG.
Can be exemplified.

【0030】また、上記では、ホーンチップ型超音波振
動体や中空または中実の棒状超音波振動体を用いた例を
示したけれども、中空または中実の棒状超音波振動体の
形状は、上記に限定されるものではなく、多角形(例え
ば、正方形や長方形)の成形体などでもよい。
In the above description, an example using a horn tip type ultrasonic vibrator or a hollow or solid rod-shaped ultrasonic vibrator has been described. However, the present invention is not limited to this, and may be a polygonal (for example, square or rectangular) molded body.

【0031】尚、被処理液は処理容器内を通水するよう
に操業しても良いし、被処理液を処理容器内に一度滞留
し、処理後排出するように操業してもよい。また、本願
添付図面では被処理液を処理容器下部から流入し処理容
器上部から排出している構成を示しているけれども、被
処理液を処理容器の上部から流入し、処理容器の下部か
ら排出する等の設計変更も可能である。更に、反射板と
は、波を反射するものであれば良く、その材質は特に限
定されるものではない。
The liquid to be treated may be operated so as to pass through the processing vessel, or the liquid to be treated may be once retained in the processing vessel and discharged after the treatment. Although the drawings attached to the present application show a configuration in which the liquid to be treated flows in from the lower part of the processing vessel and is discharged from the upper part of the processing vessel, the liquid to be treated flows in from the upper part of the processing vessel and is discharged from the lower part of the processing vessel. Such design changes are also possible. Furthermore, the reflector may be any as long as it reflects waves, and its material is not particularly limited.

【0032】[0032]

【実施例】実施例1 図1の(b)に示した装置を用い、超音波振動体表面と反
射板との距離の変化に伴う有機性廃液の可溶化率の変化
を調べた。超音波振動体にはホーンチップ型超音波振動
体(日本精機製US-600型超音波ホモジナイザー)を用い
た。超音波振動体の周波数は20kHz、出力は300Wであ
る。被処理液は、下水処理場余剰汚泥を水道水で希釈
し、濃度が10000ppmとなるように調製した。
EXAMPLE 1 Using the apparatus shown in FIG. 1 (b), the change in the solubilization rate of the organic waste liquid with the change in the distance between the surface of the ultrasonic vibrator and the reflector was examined. A horn tip type ultrasonic vibrator (US-600 type ultrasonic homogenizer manufactured by Nippon Seiki) was used as the ultrasonic vibrator. The frequency of the ultrasonic vibrator is 20 kHz and the output is 300 W. The liquid to be treated was prepared by diluting excess sludge of a sewage treatment plant with tap water so that the concentration became 10,000 ppm.

【0033】被処理液は1Lとし、超音波振動体の表面と
反射板との距離を40mm、50mm、60mm、70mm、80mm、90mm
と変化させて操業したときの、汚泥(被処理液)の可溶
化能を比較した。可溶化能は、超音波処理後の固形分
(ss:suspended substance)の減少量を可溶化率
(%)で算出したもので評価し、各距離に反射板を配置
した場合の処理時間(分)に対する可溶化率(%)を図
8のグラフに示す。
The liquid to be treated is 1 L, and the distance between the surface of the ultrasonic vibrator and the reflector is 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm
And the solubilizing ability of sludge (liquid to be treated) when the operation was changed. The solubilizing ability is evaluated by calculating the amount of reduction of the solid content (ss: suspended substance) after ultrasonic treatment in terms of the solubilization rate (%), and the processing time (min) when a reflector is disposed at each distance. Figure shows the solubilization rate (%) for
It is shown in the graph of 8.

【0034】また、超音波振動体表面と反射板との間の
音圧を測定し、反射板の効果を調べた。超音波振動体中
心下20mmにセンサーを振動体表面と平行になるように置
いた。測定機器には、圧力計(センサー:Kister6001、
アンプ:Kistler)、FFT(FFT:ファースト・フーリエ
・トランスファー、小野測器CF360)を用いた。超音波
振動体と反射板の距離の変化に対する音圧の変化を図9
に示す。
Further, the sound pressure between the surface of the ultrasonic vibrator and the reflector was measured to examine the effect of the reflector. A sensor was placed 20 mm below the center of the ultrasonic vibrator so as to be parallel to the surface of the vibrator. The measuring devices include a pressure gauge (sensor: Kister6001,
Amplifier: Kistler) and FFT (FFT: First Fourier Transfer, Ono Sokki CF360) were used. Figure 9 shows the change in sound pressure with respect to the change in the distance between the ultrasonic vibrator and the reflector.
Shown in

【0035】ここで、水中での音の伝播速度は1440m/秒
であり、振動体の周波数は20kHzであるので、超音波の
波長λは72mmである。
Here, the sound propagation speed in water is 1440 m / sec, and the frequency of the vibrator is 20 kHz, so that the wavelength λ of the ultrasonic wave is 72 mm.

【0036】図8と図9から次の様に考察できる。超音波
振動体の表面と反射板の距離が40mmのときに可溶化率並
びに音圧が最大となっている。これは超音波の波長がλ
/2(36mm)であることと一致しており、λ/2のところに
反射板を備えることによって顕著な効果を得ることがで
きる。また、超音波振動体の表面と反射板との距離が70
mmの場合でも十分な効果を得ることができ、これは超音
波振動体の表面と反射板の距離がλ(72mm)の場合に相
当している。しかしながら、水中では音波の減衰が激し
いので、超音波振動体の表面と反射板の距離はλ(72m
m)より若干小さい方がよい。
8 and 9 can be considered as follows. When the distance between the surface of the ultrasonic vibrator and the reflector is 40 mm, the solubilization rate and the sound pressure are maximum. This is because the wavelength of the ultrasonic wave is λ
/ 2 (36 mm), and a remarkable effect can be obtained by providing a reflector at λ / 2. Also, the distance between the surface of the ultrasonic vibrator and the reflector is 70
Even in the case of mm, a sufficient effect can be obtained, which corresponds to the case where the distance between the surface of the ultrasonic vibrator and the reflector is λ (72 mm). However, since the sound wave is strongly attenuated in water, the distance between the surface of the ultrasonic vibrator and the reflector is λ (72 m
It is better to be slightly smaller than m).

【0037】実施例2 <予備実験>水中での円筒型振動体側面から出ている超
音波(定在波)の位相差を測定した。円筒型超音波振動
体にはテルソニックスイス製円筒型超音波振動体RS-20-
48-4(φ48mm×752mm、SUS316L製)を用い、電源にはテ
ルソニックスイス製超音波発生用電源装置MRG-20-1400-
Rを用いた。振動体側壁から8〜10mmのところに圧力計
(センサー:Kister6001、アンプ:Kistler)を置き、3
0mm間隔で位相差を測定した。位相差とは、振動体底面
に置いた場合の位相を基準とした場合の、各測定点での
位相との差を意味する。各点での位相差を図10に示す。
図10を見ると、約130mm間隔で位相が逆転しているのが
分かる。ここで、SUS316L中の音波の伝播速度は5200m/
秒であり、振動体の周波数が20kHzであるので、波長λ
は260mmとなり、約130mm間隔で位相が逆転していること
と一致する。
Example 2 <Preliminary Experiment> The phase difference of the ultrasonic wave (standing wave) emitted from the side surface of the cylindrical vibrator in water was measured. The cylindrical ultrasonic vibrator RS-20- cylindrical ultrasonic vibrator made by Telsonic Switzerland
48-4 (φ48mm × 752mm, made of SUS316L), power source for ultrasonic generation MRG-20-1400- made by Telsonic Switzerland
R was used. Place a pressure gauge (sensor: Kister6001, amplifier: Kistler) 8 to 10 mm from the side wall of the vibrating body.
The phase difference was measured at 0 mm intervals. The phase difference means a difference from the phase at each measurement point with reference to the phase when placed on the bottom surface of the vibrating body. FIG. 10 shows the phase difference at each point.
From FIG. 10, it can be seen that the phases are reversed at intervals of about 130 mm. Here, the propagation speed of the sound wave in SUS316L is 5200m /
Second, and the frequency of the vibrating body is 20 kHz.
Is 260 mm, which is consistent with the fact that the phase is reversed at intervals of about 130 mm.

【0038】<本実験>図5に示した装置を用い、棒状
の超音波振動体として、テルソニックスイス製円筒型超
音波振動体RS-20-48-4(φ48mm×752mm、SUS316L製)を
用い、電源にはテルソニックスイス製超音波発生用電源
装置MRG-20-1400-Rを用いた。超音波振動体の周波数は2
0kHzであり、電源の出力は700Wである。処理容器はφ20
0mm×800mmのものを用い、予備実験で得た位相が0とな
るところ(130mm間隔)に仕切板を設置した場合(本発
明例)と、仕切板を設置していない場合(比較例)の可
溶化率を比較した。結果を図11に示す。
<Experiment> Using the apparatus shown in FIG. 5, a cylindrical ultrasonic vibrator RS-20-48-4 (φ48 mm × 752 mm, SUS316L) made by Telsonic Switzerland was used as a rod-like ultrasonic vibrator. The power supply used was a power supply unit for ultrasonic generation MRG-20-1400-R manufactured by Telsonic Switzerland. The frequency of the ultrasonic vibrator is 2
0kHz and the power output is 700W. Processing vessel is φ20
When a partition plate is installed at a place where the phase obtained in the preliminary experiment becomes 0 (interval of 130 mm) using a thing of 0 mm × 800 mm (example of the present invention), and when no partition plate is installed (comparative example) The solubilization rates were compared. The results are shown in FIG.

【0039】ここで、水中での音の伝播速度は1440m/秒
であり、振動体の周波数は20kHzであるので、超音波の
波長λは72mmである。つまり、円筒型超音波振動体の表
面と処理容器側面との距離がλとなっている。また、被
処理液は、下水処理場余剰汚泥を水道水で希釈し、濃度
が10000ppmとなるように調製した。
Here, the sound propagation speed in water is 1440 m / sec, and the frequency of the vibrating body is 20 kHz, so that the wavelength λ of the ultrasonic wave is 72 mm. That is, the distance between the surface of the cylindrical ultrasonic vibrator and the side surface of the processing container is λ. The liquid to be treated was prepared by diluting excess sludge in a sewage treatment plant with tap water so that the concentration became 10,000 ppm.

【0040】図11を見て分かるように、超音波振動体の
表面に生じる定在波の節となる位置に仕切板(隔壁)が
ある場合の方が、有機性廃液の可溶化率は高く、約2倍
近く処理効率が向上している。つまり、水中での円筒型
振動体側面から出ている超音波の位相が0となるところ
に仕切板を備えると、超音波振動体の表面に発生する定
在波の伸縮振動時に発生する横振幅による隣接波同士の
干渉が抑制されている。よって、疎密変化の抑制を回避
することができるので、強い振幅が生じ、高い疎密変化
が生じる領域を増大することができ、可溶化率が向上し
た。
As can be seen from FIG. 11, the solubilization rate of the organic waste liquid is higher when there is a partition plate (partition wall) at a position where a standing wave is generated on the surface of the ultrasonic vibrator. , The processing efficiency is improved almost twice. In other words, if a partition plate is provided at a place where the phase of the ultrasonic wave coming out from the side of the cylindrical vibrating body in water becomes 0, the lateral amplitude generated during the stretching vibration of the standing wave generated on the surface of the ultrasonic vibrating body , Interference between adjacent waves is suppressed. Therefore, it is possible to avoid the suppression of the density change, so that a strong amplitude is generated, a region where a high density change is generated can be increased, and the solubilization rate is improved.

【0041】[0041]

【発明の効果】音響学的効果を応用した簡単な装置と操
作により、少ないエネルギーで効率良く、(1)生汚泥
・余剰汚泥・消化汚泥などの有機性汚泥の可溶化、
(2)汚泥などのスラリー中や廃液中の有害物質の分解
除去、(3)排水処理プロセスからの処理水の固液分離
性改善や汚泥の沈降性改善など、を行うことのできる超
音波処理装置を提供することができた。
[Effects of the Invention] With a simple device and operation applying an acoustic effect, it is possible to efficiently (1) solubilize organic sludge such as raw sludge, excess sludge and digested sludge with little energy.
(2) Ultrasonic treatment that can decompose and remove harmful substances in slurry such as sludge and waste liquid, and (3) improve solid-liquid separation of treated water from wastewater treatment process and sedimentation of sludge Equipment could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の一構成例を示す断面図である。FIG. 1 is a cross-sectional view showing one configuration example of the device of the present invention.

【図2】本発明装置の他の構成例を示す断面図である。FIG. 2 is a sectional view showing another configuration example of the device of the present invention.

【図3】本発明装置の他の構成例を示す断面図である。FIG. 3 is a sectional view showing another configuration example of the device of the present invention.

【図4】本発明装置の他の構成例を示す断面図である。FIG. 4 is a sectional view showing another configuration example of the device of the present invention.

【図5】本発明装置の他の構成例を示す断面図である。FIG. 5 is a sectional view showing another configuration example of the device of the present invention.

【図6】本発明装置の他の構成例を示す断面図である。FIG. 6 is a sectional view showing another configuration example of the device of the present invention.

【図7】本発明装置で用いるドーナツ状の仕切板の一例
である。
FIG. 7 is an example of a donut-shaped partition plate used in the apparatus of the present invention.

【図8】超音波振動体の表面と反射板との距離の変化に
伴う可溶化率の変化を示すグラフである。
FIG. 8 is a graph showing a change in the solubilization rate with a change in the distance between the surface of the ultrasonic vibrator and the reflector.

【図9】超音波振動体の表面と反射板との距離の変化に
伴う音圧の変化を示すグラフである。
FIG. 9 is a graph showing a change in sound pressure with a change in the distance between the surface of the ultrasonic vibrator and the reflector.

【図10】円筒型超音波振動体の表面に発生する定在波
の位相差を示すグラフである。
FIG. 10 is a graph showing a phase difference of a standing wave generated on the surface of the cylindrical ultrasonic vibrator.

【図11】処理容器内に配置した隔壁の効果を示すグラ
フである。
FIG. 11 is a graph showing an effect of a partition arranged in a processing container.

【符号の説明】[Explanation of symbols]

1 被処理液の流入口 2 被処理液の排出口 3 処理容器 11 ホーンチップ型超音波振動体 11a ホーンチップ型超音波振動体の表面 12 棒状超音波振動体 21 筒状の反射板 21a,21b 反射板 22 ドーナツ状の仕切板 23 流通孔 24 スリット状の流通孔 31a 超音波振動体表面と反射板との距離 31b 超音波振動体表面と処理容器内面との距離 41 波動イメージ(定在波) 1 Inlet for liquid to be treated 2 Outlet for liquid to be treated 3 Processing vessel 11 Horn-tip ultrasonic vibrator 11a Surface of horn-tip ultrasonic vibrator 12 Rod ultrasonic vibrator 21 Cylindrical reflector 21a, 21b Reflector 22 Donut-shaped partition 23 Flow hole 24 Slit flow hole 31a Distance between ultrasonic vibrator surface and reflector 31b Distance between ultrasonic vibrator surface and inner surface of processing vessel 41 Wave image (standing wave)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 竜介 神戸市中央区脇浜町1丁目3番18号 株式 会社神戸製鋼所神戸本社内 (72)発明者 石山 明 神戸市中央区脇浜町1丁目3番18号 株式 会社神戸製鋼所神戸本社内 Fターム(参考) 4D037 AA11 AB02 AB14 BA26 BB04 4D059 AA04 AA05 AA09 AA23 BF20 BK12 BK22  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Ryusuke Kitamura 1-3-18 Wakihamacho, Chuo-ku, Kobe Kobe Steel, Ltd. Kobe Head Office (72) Akira Ishiyama 1-3-3, Wakihamacho, Chuo-ku, Kobe No. 18 Kobe Steel Ltd. Kobe Head Office F-term (reference) 4D037 AA11 AB02 AB14 BA26 BB04 4D059 AA04 AA05 AA09 AA23 BF20 BK12 BK22

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 超音波で有機性廃液を処理する超音波処
理装置において、超音波振動体の表面に対向して、反射
板を備えてなることを特徴とする有機性廃液の超音波処
理装置。
1. An ultrasonic treatment apparatus for treating an organic waste liquid with ultrasonic waves, comprising an ultrasonic treatment apparatus, wherein a reflection plate is provided opposite to a surface of the ultrasonic vibrator. .
【請求項2】 前記超音波振動体の表面と、前記反射板
との距離がn・λ/2(但しnは自然数、λは超音波の波
長を示す)である請求項1に記載の有機性廃液の超音波
処理装置。
2. The organic material according to claim 1, wherein the distance between the surface of the ultrasonic vibrator and the reflector is n · λ / 2 (where n is a natural number and λ indicates the wavelength of the ultrasonic wave). Ultrasonic treatment equipment for waste liquid.
【請求項3】 前記超音波振動体と略同心状に筒状の反
射板を備える請求項1または2に記載の有機性廃液の超音
波処理装置。
3. The ultrasonic treatment apparatus for organic waste liquid according to claim 1, further comprising a cylindrical reflector substantially concentric with the ultrasonic vibrator.
【請求項4】 超音波で有機性廃液を処理する超音波処
理装置において、超音波振動体の表面と、処理容器内面
との距離がn・λ/2(但しnは自然数、λは超音波の波
長を示す)であることを特徴とする有機性廃液の超音波
処理装置。
4. An ultrasonic treatment apparatus for treating an organic waste liquid with ultrasonic waves, wherein the distance between the surface of the ultrasonic vibrator and the inner surface of the processing vessel is n · λ / 2 (where n is a natural number and λ is an ultrasonic wave). Sonication apparatus for organic waste liquid.
【請求項5】 前記処理容器内面が筒状であり、前記超
音波振動体と該処理容器が同心状である請求項4に記載
の有機性廃液の超音波処理装置。
5. The apparatus for ultrasonically treating an organic waste liquid according to claim 4, wherein the inner surface of the processing container is cylindrical, and the ultrasonic vibrator and the processing container are concentric.
【請求項6】 超音波で有機性廃液を処理する超音波処
理装置において、超音波振動体の表面に生じる定在波の
節となる位置の全てまたは一部に、ドーナツ状の仕切板
を、前記超音波振動体がその中空を垂直方向に貫通する
ように備えてなることを特徴とする有機性廃液の超音波
処理装置。
6. An ultrasonic treatment apparatus for treating an organic waste liquid with ultrasonic waves, wherein a donut-shaped partition plate is provided at all or a part of a position of a node of a standing wave generated on the surface of the ultrasonic vibrator, An ultrasonic treatment apparatus for an organic waste liquid, wherein the ultrasonic vibrator is provided so as to penetrate the hollow in a vertical direction.
【請求項7】 超音波で有機性廃液を処理する超音波処
理装置において、超音波振動体と略同心状に筒状の反射
板が備えられていると共に、該反射板には、前記超音波
振動体の表面に生じる定在波の節となる位置の全てまた
は一部に、ドーナツ状の仕切板を、前記超音波振動体が
その中空を垂直方向に貫通するように備えてなることを
特徴とする有機性廃液の超音波処理装置。
7. An ultrasonic treatment apparatus for treating an organic waste liquid with an ultrasonic wave, comprising a cylindrical reflector substantially concentric with an ultrasonic vibrator, wherein the reflector includes the ultrasonic wave. A donut-shaped partition plate is provided at all or a part of a position of a node of a standing wave generated on the surface of the vibrating body, so that the ultrasonic vibrating body vertically penetrates the hollow. Ultrasonic treatment equipment for organic waste liquid.
【請求項8】 前記超音波振動体の表面と、前記反射板
との距離がn・λ/2(但しnは自然数、λは超音波の波
長を示す)である請求項7に記載の有機性廃液の超音波
処理装置。
8. The organic material according to claim 7, wherein the distance between the surface of the ultrasonic vibrator and the reflection plate is n · λ / 2 (where n is a natural number and λ indicates the wavelength of the ultrasonic wave). Ultrasonic treatment equipment for waste liquid.
【請求項9】 前記ドーナツ状の仕切板には、有機性廃
液の流通孔が形成されている請求項6〜8のいずれかに
記載の有機性廃液の超音波処理装置。
9. The ultrasonic treatment apparatus for an organic waste liquid according to claim 6, wherein a flow hole for the organic waste liquid is formed in the donut-shaped partition plate.
【請求項10】 前記超音波振動体が中実または中空の
棒状である請求項3,5,6〜9のいずれかに記載の有機性
廃液の超音波処理装置。
10. The ultrasonic treatment apparatus for an organic waste liquid according to claim 3, wherein the ultrasonic vibrator has a solid or hollow rod shape.
JP2000370666A 2000-12-05 2000-12-05 Ultrasonic treatment apparatus for organic waste liquid Withdrawn JP2002172389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000370666A JP2002172389A (en) 2000-12-05 2000-12-05 Ultrasonic treatment apparatus for organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000370666A JP2002172389A (en) 2000-12-05 2000-12-05 Ultrasonic treatment apparatus for organic waste liquid

Publications (1)

Publication Number Publication Date
JP2002172389A true JP2002172389A (en) 2002-06-18

Family

ID=18840516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000370666A Withdrawn JP2002172389A (en) 2000-12-05 2000-12-05 Ultrasonic treatment apparatus for organic waste liquid

Country Status (1)

Country Link
JP (1) JP2002172389A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052736A1 (en) * 2001-11-26 2003-06-26 Kimberly-Clark Worldwide, Inc. Apparatus for focussing ultrasonic acoustical energy within a liquid stream
JP2004188379A (en) * 2002-12-13 2004-07-08 Matsushita Ecology Systems Co Ltd Sludge treatment apparatus
US6818128B2 (en) * 2002-06-20 2004-11-16 The Halliday Foundation, Inc. Apparatus for directing ultrasonic energy
CN1318313C (en) * 2005-01-28 2007-05-30 中国石油化工股份有限公司<Del/> Supersonic process of treating organic waste water
WO2007069439A1 (en) * 2005-12-13 2007-06-21 Haru Miyake Ultrasonic treatment apparatus
JP2007275842A (en) * 2006-04-11 2007-10-25 Kanazawa Univ Sterilization apparatus and sterilization method for fluid
JP2008080191A (en) * 2006-09-26 2008-04-10 Elekon Kagaku Kk Ultrasonic sterilization apparatus
JP2010502428A (en) * 2006-09-08 2010-01-28 キンバリー クラーク ワールドワイド インコーポレイテッド Ultrasonic liquid delivery device
WO2011147920A1 (en) 2010-05-27 2011-12-01 Institut Polytechnique De Grenoble Device for the ultrasonic processing of a fluid, in particular of a liquid such as sludge
CN102351390A (en) * 2011-07-14 2012-02-15 上海交通大学 Highly efficient swirling desanding apparatus for sludge
CN102616883A (en) * 2012-03-28 2012-08-01 张家港睿能科技有限公司 Sewage preprocessor and sewage preprocessing device
KR101231252B1 (en) 2010-08-18 2013-02-07 뉴엔텍(주) Ultra Sonic Vessel Used in Sludge Treatment Equipment
KR101366546B1 (en) 2006-09-08 2014-02-25 킴벌리-클라크 월드와이드, 인크. Ultrasonic liquid treatment chamber and continuous flow mixing system
JP2014119210A (en) * 2012-12-18 2014-06-30 Takasago Thermal Eng Co Ltd Supercooling release device and ice maker
JP2017221882A (en) * 2016-06-14 2017-12-21 国立大学法人長岡技術科学大学 Soil decontamination apparatus
CN110356852A (en) * 2019-08-19 2019-10-22 哈尔滨工业大学 One kind can be used for ultrasonic long range suspending conveyer and support distances determine method
JP7023419B1 (en) * 2021-03-05 2022-02-21 三菱電機株式会社 Water treatment equipment and water treatment method
CN115569415A (en) * 2022-09-29 2023-01-06 汕头市潮阳区广业练江生态环境有限公司 Closed pressure cyclone sand setting device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052736A1 (en) * 2001-11-26 2003-06-26 Kimberly-Clark Worldwide, Inc. Apparatus for focussing ultrasonic acoustical energy within a liquid stream
US6818128B2 (en) * 2002-06-20 2004-11-16 The Halliday Foundation, Inc. Apparatus for directing ultrasonic energy
JP4519401B2 (en) * 2002-12-13 2010-08-04 パナソニックエコシステムズ株式会社 Ultrasonic treatment tank
JP2004188379A (en) * 2002-12-13 2004-07-08 Matsushita Ecology Systems Co Ltd Sludge treatment apparatus
CN1318313C (en) * 2005-01-28 2007-05-30 中国石油化工股份有限公司<Del/> Supersonic process of treating organic waste water
WO2007069439A1 (en) * 2005-12-13 2007-06-21 Haru Miyake Ultrasonic treatment apparatus
JP2007275842A (en) * 2006-04-11 2007-10-25 Kanazawa Univ Sterilization apparatus and sterilization method for fluid
KR101366546B1 (en) 2006-09-08 2014-02-25 킴벌리-클라크 월드와이드, 인크. Ultrasonic liquid treatment chamber and continuous flow mixing system
JP2010502428A (en) * 2006-09-08 2010-01-28 キンバリー クラーク ワールドワイド インコーポレイテッド Ultrasonic liquid delivery device
JP2008080191A (en) * 2006-09-26 2008-04-10 Elekon Kagaku Kk Ultrasonic sterilization apparatus
WO2011147920A1 (en) 2010-05-27 2011-12-01 Institut Polytechnique De Grenoble Device for the ultrasonic processing of a fluid, in particular of a liquid such as sludge
FR2960536A1 (en) * 2010-05-27 2011-12-02 Inst Polytechnique Grenoble DEVICE FOR TREATING A FLUID, IN PARTICULAR A LIQUID SUCH AS A SLUDGE, UNDER THE EFFECT OF ULTRASOUNDS
KR101231252B1 (en) 2010-08-18 2013-02-07 뉴엔텍(주) Ultra Sonic Vessel Used in Sludge Treatment Equipment
CN102351390B (en) * 2011-07-14 2013-07-17 上海交通大学 Highly efficient swirling desanding apparatus for sludge
CN102351390A (en) * 2011-07-14 2012-02-15 上海交通大学 Highly efficient swirling desanding apparatus for sludge
CN102616883A (en) * 2012-03-28 2012-08-01 张家港睿能科技有限公司 Sewage preprocessor and sewage preprocessing device
JP2014119210A (en) * 2012-12-18 2014-06-30 Takasago Thermal Eng Co Ltd Supercooling release device and ice maker
JP2017221882A (en) * 2016-06-14 2017-12-21 国立大学法人長岡技術科学大学 Soil decontamination apparatus
CN110356852A (en) * 2019-08-19 2019-10-22 哈尔滨工业大学 One kind can be used for ultrasonic long range suspending conveyer and support distances determine method
CN110356852B (en) * 2019-08-19 2021-02-05 哈尔滨工业大学 Ultrasonic long-distance suspension transmission device and supporting distance determination method
JP7023419B1 (en) * 2021-03-05 2022-02-21 三菱電機株式会社 Water treatment equipment and water treatment method
WO2022185526A1 (en) * 2021-03-05 2022-09-09 三菱電機株式会社 Water treatment apparatus and water treatment method
CN115569415A (en) * 2022-09-29 2023-01-06 汕头市潮阳区广业练江生态环境有限公司 Closed pressure cyclone sand setting device

Similar Documents

Publication Publication Date Title
JP2002172389A (en) Ultrasonic treatment apparatus for organic waste liquid
Tran et al. Sonochemical techniques to degrade pharmaceutical organic pollutants
US8999154B2 (en) Apparatus for treating Lake Okeechobee water
JP4813443B2 (en) Water treatment equipment
JP2008041578A (en) Plasma processing device and plasma processing method
JP2008173521A (en) Submerged plasma treatment apparatus and submerged plasma treatment method
JP6261814B2 (en) Washing apparatus and washing method, and membrane separation bioreactor
JP4431872B2 (en) Ballast water treatment method and apparatus
US11945014B2 (en) Coupled high and low-frequency ultrasound systems and methods for remediation of contaminated solids
KR200339736Y1 (en) Apparatus for activating energy and water treatment using ultrasonic vibration
JP4858957B2 (en) Liquid processing method and apparatus using ultrasonic chemical action by adding bubbles
JP4654134B2 (en) Purification system for soil contaminated with volatile organic compounds and purification method thereof
KR101217167B1 (en) Apparatus for mixing chemicals using ultrasonic waves
JP2004202322A (en) Ultrasonic treatment method and apparatus
KR20030090362A (en) A combined process and device of ozone and sonication for water/wastewater treatment
JP4357316B2 (en) Wastewater treatment equipment
US20090090675A1 (en) Process to remove salt or bacteria by ultrasound
JPH11197658A (en) Surfactant wastewater treatment apparatus
Ye et al. Effect of ultrasonic irradiation on COD and TSS in raw rubber mill effluent
JP3856558B2 (en) Ultrapure water sterilization method and sterilization ultrapure water supply system
KR101493962B1 (en) Apparatus for treating water using ozone and ultrasonic wave
JP2001300528A (en) Method for decomposing difficult-to-decompose organic matter
JP2001300510A (en) Method for biologically treating difficult-to-decompose organic matter
JP7163541B2 (en) ultrasonic chemical reactor
JP2001300526A (en) Method and device for decomposing difficult-to-decompose organic matter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205