JP4431872B2 - Ballast water treatment method and apparatus - Google Patents
Ballast water treatment method and apparatus Download PDFInfo
- Publication number
- JP4431872B2 JP4431872B2 JP2004192116A JP2004192116A JP4431872B2 JP 4431872 B2 JP4431872 B2 JP 4431872B2 JP 2004192116 A JP2004192116 A JP 2004192116A JP 2004192116 A JP2004192116 A JP 2004192116A JP 4431872 B2 JP4431872 B2 JP 4431872B2
- Authority
- JP
- Japan
- Prior art keywords
- ballast water
- water
- ballast
- irradiated
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
本発明は、バラスト水の処理方法に係り、特にバラスト水中に存在する微生物を死滅させて海水等の環境汚染を防止するためのバラスト水の処理方法に関する。 The present invention relates to a method for treating ballast water, and more particularly, to a method for treating ballast water for killing microorganisms present in ballast water to prevent environmental pollution such as seawater.
貨物船やタンカーなどが空荷で航行する際、船体を安定させるため、タンクにバラスト水(海水)を積み込むが、寄港先で荷物を積む際、外部に捨てられるので、その水に入っていた生物が本来の生息地でない環境中に広がり、世界各地で移入生物である貝や魚、海草類が繁殖し大きな問題となっている。
従来一般的に水中の微生物を死滅させようとしてとられている技術は、以下のごときものである。
[1]細菌類への対策として塩素滅菌処理がとられているが、滅菌対策としては有効であるが塩素と有機物が結びついて新たにトリハロメタンが生成されることが研究の結果わかってきた。トリハロメタンは発ガン性物質とされているので、この方法はベストの方法ではない。
[2]微生物には水中に浮遊しているSS分(固形分)に付着していることが多いので、凝集剤を用いて沈殿させ脱水処理する方法。
[3]多数の連通細孔を有する膜を使用し、微生物を濾過・除去する方法。
[4]オゾンによる酸化分解、紫外線による酸化分解。
When cargo ships and tankers navigate with empty cargo, ballast water (seawater) is loaded into the tank to stabilize the hull, but when loading cargo at the port of call, it was discarded outside, so it was in the water Living organisms spread in environments where they are not native habitats, and shellfish, fish, and seaweeds that are migratory organisms breed throughout the world, creating a major problem.
Conventionally, techniques generally used for killing microorganisms in water are as follows.
[1] Chlorine sterilization treatment has been taken as a countermeasure against bacteria, but it has been found as a result of research that trihalomethane is newly produced by combining chlorine and organic substances, although effective as a sterilization countermeasure. Since trihalomethane is considered a carcinogen, this method is not the best method.
[2] A method in which microorganisms often adhere to the SS content (solid content) floating in water, so that they are precipitated using a flocculant and dehydrated.
[3] A method of filtering and removing microorganisms using a membrane having many communicating pores.
[4] Oxidative decomposition by ozone, oxidative decomposition by ultraviolet rays.
これらの方法については、上記[1]は塩素の使用に対する拒否反応は、ますます高まっており、トリハロメタン生成は避けられない。
[2]、[3]、[4]についてはいずれも大量処理には向かない。
With regard to these methods, the above [1] has increasingly increased the rejection reaction to the use of chlorine, and the generation of trihalomethane is inevitable.
[2], [3], and [4] are all not suitable for mass processing.
この船舶の目的地への航行中、海水中には微生物が生息しており、それにより船舶が航行中に繁殖を繰り返し、バラスト水は汚染される。
こうして汚染されたバラスト水を目的地で、そのまま海域等へ廃棄すると寄港地の海水、土壌等を汚染し、生態系を破壊することになる。
そのため、国際海事機関(IMO)は生態系の破壊防止のため国際条約を採択したが、この条約に基づく処理規準は発表され、それによれば動物プランクトン、植物プランクトン、コレラ菌、大腸菌、腸球菌他あらゆる微生物が処理の対象とされている。
すなわち、IMOによるバラスト水処理装置の処理能力基準は、(1)50μm以上の生物(動物プランクトン):10個/m3未満、(2)10〜50μm未満の生物(植物プランクトン):10個/ml未満、(3)コレラ菌:1cfu/100ml未満、大腸菌:250cfu/100ml未満、(4)腸球菌:100cfu/100ml未満、である。
(cfu:colony forming unitの略称:細菌検査の結果に使用される単位で、培地で培養した菌がつくる集団(コロニー)の数。例えば「200cfu/ml以下」とは、「1ml中に200コロニー以下」という意味)
上記基準を達成するバラスト水の処理としては、バラスト水の廃棄処分が寄港地で短時間(1日以内位)にて大量(10万t程度)行われることから、短時間にて大量の処理ができる処理システムを採用しなければならないし、また確実に微生物を死滅させる処理システムでなければならない。
While the ship is sailing to its destination, microorganisms inhabit the seawater, so that the ship repeats breeding while navigating, and the ballast water is contaminated.
If the polluted ballast water is discarded to the sea area as it is, the seawater, soil, etc. of the port of call will be contaminated and the ecosystem will be destroyed.
Therefore, the International Maritime Organization (IMO) has adopted an international treaty to prevent the destruction of ecosystems, but the standards for treatment based on this treaty have been announced. All microorganisms are targeted for treatment.
That is, the treatment capacity standard of the ballast water treatment apparatus by IMO is (1) organisms of 50 μm or more (zooplankton): less than 10 / m 3 , (2) organisms of less than 10-50 μm (phytoplankton): 10 / Less than ml, (3) Vibrio cholerae: less than 1 cfu / 100 ml, E. coli: less than 250 cfu / 100 ml, (4) Enterococci: less than 100 cfu / 100 ml.
(Cfu: abbreviation of colony forming unit: the number of colonies formed by bacteria cultured in a medium, which is a unit used for the results of bacterial tests. For example, “200 cfu / ml or less” means “200 colonies in 1 ml” Meaning "
As for the treatment of ballast water that achieves the above standards, disposal of ballast water is carried out in a short time (less than one day) at the port of call in a short time (about 100,000 tons). It must be able to adopt a treatment system that can perform the process, and must be a treatment system that reliably kills microorganisms.
本発明は、前記課題を解決するものであって、下記方法によりバラスト水の微生物を死滅させるバラスト水の処理方法である。
(1)バラスト水を多数の導出管を束ねて構成したハニカム構造の導出管に導き、その中でバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在ずる微生物を破壊せしめて死滅することを特徴とするバラスト水の処理方法。
(2)前項(1)に記載のバラスト水の処理方法において、予めバラスト水に過酸化水素を添加混合し、その水中に超音波を照射することを特徴とするバラスト水の処理方法。
(3)前項(1)に記載のバラスト水の処理方法において、船舶のバラスト水に10ppm〜1,000ppmの次亜塩素酸ソーダ又は/及び塩素を添加し、その水中に超音波を照射することを特徴とするバラスト水の処理方法。
(4)前項(1)〜(3)のいずれか1項にに記載のバラスト水の処理方法におい、28〜200KHzの範囲から選ばれる各種周波数の複数種を同時にバラスト水中に照射することを特徴とするバラスト水の処理方法。
(5)前項(1)〜(3)のいずれか1項に記載のバラスト水の処理方法において、28〜200KHzの範囲から選ばれる各種周波数を経時的に切り替えて複数種の周波数の超音波を水中に照射することを特徴とするバラスト水の処理方法。
(6)前項(1)〜(3)のいずれか1項に記載のバラスト水の処理方法において1〜10MHzの周波数の超音波をバラスト水中に照射することを特徴とするバラスト水の処理方法。
(7)管壁に多数個の超音波振動子を線状配置又は面状配置に取り付けてなる角型又は丸型の管体であって、一端に被処理バラスト水の導入口を有し、他端に処理済みバラスト水の取り出し口を有してなるバラスト水の微生物死滅処理装置の多数本を束ねてハニカム構造状に配置してなることを特徴とするバラスト水の微生物死滅処理装置。
This invention solves the said subject, Comprising: It is the processing method of the ballast water which kills the microorganisms of ballast water by the following method.
(1) The ballast water is guided to a honeycomb-structured lead-out pipe configured by bundling a large number of lead-out pipes, in which the ballast water is irradiated with ultrasonic waves, and the microorganisms that are present in the ballast water by ultrasonic shock waves generated in the water. A method for treating ballast water characterized by destroying and dying.
(2) The ballast water treatment method as described in (1) above, wherein hydrogen peroxide is added to and mixed with ballast water in advance , and ultrasonic waves are irradiated into the water .
(3) In the ballast water treatment method described in (1) above , 10 ppm to 1,000 ppm of sodium hypochlorite or / and chlorine is added to the ballast water of the ship, and the water is irradiated with ultrasonic waves. method of processing characteristics and be Luba last water.
(4) In the ballast water treatment method according to any one of (1) to (3), the ballast water is simultaneously irradiated with a plurality of types having various frequencies selected from the range of 28 to 200 KHz. processing method of Luba last water be with.
(5) In the method for treating ballast water according to any one of (1) to (3) above, various frequencies selected from the range of 28 to 200 KHz are switched over time, and ultrasonic waves of a plurality of types of frequencies are used. method of processing characteristics and be Luba last water be irradiated to the water.
(6) above (1) to the processing characteristics and be Luba last water irradiating the ballast water
(7) A square or round tubular body in which a large number of ultrasonic transducers are attached to a tube wall in a linear arrangement or a planar arrangement, and has an inlet for treated ballast water at one end, A microbial killing apparatus for ballast water, characterized in that a plurality of microbial killing apparatuses for ballast water having an outlet for treated ballast water at the other end are bundled and arranged in a honeycomb structure.
バラスト水を簡単かつ短時間に微生物死滅処理ができるので、如何なる港にも寄港することができ、環境汚染することがない。 Since ballast water can be easily killed in a short period of time, it can be called at any port without causing environmental pollution.
本発明の実施の形態について説明する。
まず、超音波について説明すると、(1)超音波は水中や金属などによく伝わる音波などである。音波は波動であり、周波数と振幅によって決まる。振幅は音の強さに関係し、音圧で表される。
(2)超音波の大きな特長の一つにキャビテーション効果がある。50KHzの超音波を水中に照射したとき即1気圧(10万パスカル)以上になり、圧力が小さくなる負圧の時は真空(ゼロ気圧の空洞)になり、媒質が気化し、気泡が発生し、このような激しい正圧と負圧のはげしい繰り返しにより、媒質が引きちぎられ空洞が発生し、空洞がつぶれる時、衝撃波が発生し、その圧力は数百〜数千気圧になり、温度も4000℃以上といわれているが、気泡発生からつぶれる迄の時間は0.1マイクロ秒(1000万分の1秒)程度である。この時50キロヘルツの場合1秒間に50,000回上下の方向に振動し、その振動の距離は0.02mm(20μm)となり、上側に10μm、下側に10μm動き、この時の最大速度は、3.14m/秒となる。
振幅は、数十ミクロン(μm)と小さいが、加速度が大きくエネルギー密度は非常に大きい。圧電振動子が往復運動折り返し地点での加速度は重力加速度Gの約10万倍となる。
振幅は数10ミクロンと小さくても加速度が大きいので、音響エネルギー密度は非常に高いものになる。
(3)超音波を水中に照射する場合、水中でのエネルギーの減衰は空気に比べてはるかに小さいが、それでも水中にて減衰するので減衰を小さくし音響エネルギー密度を一定以上保持するためには径が30cm以下の角又は円状のパイプに多くの振動子を取り付け、そのパイプの中に微生物を含む水を通し、水が超音波の照射を受けている時間を10秒以上とすれば、キャビテーションが十分に働き、水に含まれる微生物のプランクトン、原虫、真菌、細菌、ウィルスは、破壊され分解・殺菌されて死滅する。
このパイプに取り付ける振動子の周波数は、例えば28KHz、50KHz、100KHz、200KHzの4種類とし、周波数によりその効果がおよぶ定在波を移動させるには、これらの異なる周波数のものを高速で切り替える方法が必要になる。
なお、微生物の種類によりエネルギーが大きい28KHzのみで超音波照射を行うこともある。また、必要により振動エネルギーをホーンによって収束させ、振幅を大きくさせ強力なエネルギーを照射する方法がある。
(4)過酸化水素水・次亜塩素酸ソーダ・塩素等はいずれも、酸化剤としての力をもっているが、超音波との併用により、僅かの添加量にて高い効果が可能となる。
Embodiments of the present invention will be described.
First, ultrasonic waves will be described. (1) Ultrasonic waves are sound waves that are often transmitted to water and metals. Sound waves are waves and are determined by frequency and amplitude. Amplitude is related to sound intensity and is represented by sound pressure.
(2) One of the major features of ultrasonic waves is the cavitation effect. When the ultrasonic wave of 50KHz is irradiated into water, the pressure immediately becomes 1 atm (100,000 Pascal) or more, and when the pressure is low, the pressure becomes vacuum (zero-pressure cavity), the medium is vaporized, and bubbles are generated. By such intense repetition of positive pressure and negative pressure, the medium is torn and a cavity is generated, and when the cavity is collapsed, a shock wave is generated, the pressure becomes several hundred to several thousand atmospheres, and the temperature is 4000 ° C. It is said that the time from the generation of bubbles to the collapse is about 0.1 microsecond (one tenth of a millionth of a second). At this time, in the case of 50 kilohertz, it vibrates up and down 50,000 times per second, the vibration distance is 0.02 mm (20 μm), 10 μm on the upper side, 10 μm on the lower side, the maximum speed at this time is 3.14 m / sec.
The amplitude is as small as several tens of microns (μm), but the acceleration is large and the energy density is very large. The acceleration at the point where the piezoelectric vibrator turns back and forth is about 100,000 times the gravitational acceleration G.
Since the acceleration is large even if the amplitude is as small as several tens of microns, the acoustic energy density is very high.
(3) When irradiating ultrasonic waves into water, the attenuation of energy in water is much smaller than that of air, but it still attenuates in water, so to reduce attenuation and maintain acoustic energy density above a certain level. If many vibrators are attached to a square or circular pipe with a diameter of 30 cm or less, water containing microorganisms is passed through the pipe, and the time that the water is irradiated with ultrasonic waves is 10 seconds or more, Cavitation works well, and microbial plankton, protozoa, fungi, bacteria, and viruses contained in water are destroyed, decomposed, sterilized, and killed.
The frequency of the vibrator attached to this pipe is, for example, four types of 28 KHz, 50 KHz, 100 KHz, and 200 KHz, and in order to move the standing wave whose effect depends on the frequency, there is a method of switching these different frequencies at high speed. I need it.
In addition, ultrasonic irradiation may be performed only at 28 KHz having a large energy depending on the type of microorganism. Further, there is a method of irradiating strong energy by converging vibration energy with a horn if necessary, increasing the amplitude.
(4) Hydrogen peroxide solution, sodium hypochlorite, chlorine, etc. all have power as oxidizing agents, but when used in combination with ultrasonic waves, a high effect can be achieved with a small amount of addition.
図2に示すものは本発明のハニカム構造型のバラスト水超音波処理装置で、限られた時間内に大量の処理を行うためのものである。
その一部を構成するバラスト水超音波処理装置の一例を図1により説明する。
すなわち、図1の断面図に示すごとく、ステンレス製の角パイプ1の壁面に超音波振動子2a、2b、2c・・を上下に、かつ間隔を置いて多数個取り付ける。
なお、超音波振動子2aは28KHz発振のもの、2bは50KHz発振のもの、2cは100KHz発振のものを示す。
この超音波照射処理パイプ100の入口10からバラスト水を導入し、超音波照射を行った後、出口20から微生物が死滅処理されたバラスト水が放出される。
本装置では、種々の周波数の超音波が照射されるので、大小各種微生物を効率的に死滅させることができる。
FIG. 2 shows a honeycomb structure type ballast water ultrasonic treatment apparatus of the present invention for performing a large amount of treatment within a limited time.
An example of the ballast water ultrasonic treatment apparatus constituting a part thereof will be described with reference to FIG.
That is, as shown in the cross-sectional view of FIG. 1, a plurality of
The
Ballast water is introduced from the
In this apparatus, since ultrasonic waves of various frequencies are irradiated, various large and small microorganisms can be efficiently killed.
図2に示すものは、限られた時間内に大量の処理を行うためのもので、その仕様をハニカム構造型としたものである。
図2(正面図)におけるハニカム構造のバラスト水超音波処理装置Aは、超音波照射処理パイプ100a、100b、100c・・が支持フレーム3に挿入されて上下左右に隣接・集束されてなるものである。
振動子2a、2b、2c・・を取り付けた角又は丸パイプにおいて、微生物を含む水が本パイプの中を通過する場合、10秒以上の時間を保持することとする。
図1に示す装置を用いるバラスト水の処理においては、その仕様を下記により算定設計した。
〈バラスト水処理能力50,000t/8h〉とすると、
・50,000t/8h→1.736t/秒の処理となる。
・ステンレス製角パイプ径を300mmとすると
0.3m×0.3m=0.09m2 (断面積)
角パイプの長さを6mとすると
0.09m2×6m=0.54m3 (容積)
・水の容量は1.736t/秒であり10秒間保持する場合は17.36tとなる。
17.36t÷0.54m3=32本/パイプの数
図2のパイプの数は36本であるので、この図の装置の容量で処理は可となる。
・よって、1秒間に1.736tの水をこのパイプに流せば10秒後には処理が終わり、このパイプから同じ量の処理後の水が排出されることとなる。
・振動子は28KHz〜200KHz迄を長さ6mの角パイプに12個取り付け、高周波電流により振動させるセラミック製のものを使用する。
上記図2のハニカム構造のバラスト水超音波処理装置によるバラスト水の処理結果によれば、前記国際海事機関(IMO)基準を十分に満たす微生物が死滅処理されたバラスト水が得られた。
なお、バラスト水への過酸化水素、塩素等の添加は、本装置に入る前に事前に添加し、攪拌した後本装置に導入して、超音波を照射する。
The one shown in FIG. 2 is for performing a large amount of processing within a limited time, and its specification is a honeycomb structure type.
The honeycomb structure ballast water ultrasonic treatment apparatus A in FIG. 2 (front view) is formed by inserting ultrasonic
In the square or round pipe to which the
In the treatment of ballast water using the apparatus shown in FIG. 1, the specifications were calculated and designed as follows.
<Ballast water treatment capacity 50,000t / 8h>
・ The processing is 50,000 t / 8 h → 1.736 t / sec.
・ Stainless steel square pipe diameter 300mm 0.3m × 0.3m = 0.09m 2 (Cross sectional area)
If the length of the square pipe is 6m, 0.09m 2 × 6m = 0.54m 3 (volume)
-The capacity | capacitance of water is 1.736 t / sec.
17.36 t ÷ 0.54 m 3 = 32 pipes / number of pipes Since the number of pipes in FIG. 2 is 36, processing is possible with the capacity of the apparatus in this figure.
-Therefore, if 1.736 t of water is flowed through this pipe per second, the treatment ends after 10 seconds, and the same amount of treated water is discharged from this pipe.
-Use 12 ceramic vibrators that are attached to a square pipe with a length of 6 m from 28 KHz to 200 KHz and vibrate with a high-frequency current.
According to the result of the ballast water treatment by the honeycomb structured ballast water ultrasonic treatment device of FIG. 2, ballast water in which microorganisms that sufficiently satisfy the International Maritime Organization (IMO) standards were killed was obtained.
Note that hydrogen peroxide, chlorine, and the like are added to the ballast water in advance before entering the apparatus, and after stirring, introduced into the apparatus and irradiated with ultrasonic waves.
バラスト水の廃棄による環境汚染が防止できるので、寄港地を選ばず何処へでも自由に寄港できる。 Since environmental pollution due to the disposal of ballast water can be prevented, it is possible to call anywhere regardless of the port of call.
1:ステンレス製の角パイプ、
2(2a、2b、2c・・):超音波振動子、
3:支持フレーム、
10:バラスト水の入口、
20:超音波照射処理されたバラスト水の出口、
100(100a、100b、100c・・):超音波照射処理パイプ、
A:ハニカム構造のバラスト水超音波処理装置、
1: Stainless steel square pipe,
2 (2a, 2b, 2c...): Ultrasonic transducer,
3: Support frame,
10: Ballast water entrance,
20: outlet of ballast water treated with ultrasonic irradiation,
100 (100a, 100b, 100c...): Ultrasonic irradiation processing pipe,
A: Ballast water ultrasonic treatment device having a honeycomb structure,
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192116A JP4431872B2 (en) | 2004-06-29 | 2004-06-29 | Ballast water treatment method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192116A JP4431872B2 (en) | 2004-06-29 | 2004-06-29 | Ballast water treatment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006007184A JP2006007184A (en) | 2006-01-12 |
JP4431872B2 true JP4431872B2 (en) | 2010-03-17 |
Family
ID=35775000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004192116A Expired - Fee Related JP4431872B2 (en) | 2004-06-29 | 2004-06-29 | Ballast water treatment method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4431872B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4699774B2 (en) * | 2005-02-18 | 2011-06-15 | 株式会社片山化学工業研究所 | Ship ballast water treatment method |
CN101553396B (en) * | 2006-12-09 | 2012-05-09 | 国立大学法人横滨国立大学 | Ship buoyancy control system |
EP2269956B8 (en) | 2008-04-23 | 2020-01-01 | Headway Technology Group (Qingdao) Co., Ltd. | A micro-current electrolysis sterilization algaecide device and method |
JP2011057048A (en) * | 2009-09-09 | 2011-03-24 | Shin Kurushima Dockyard Co Ltd | Structure for arranging ballast water processing apparatus in tanker |
CN101781043B (en) * | 2010-02-10 | 2012-09-26 | 青岛海德威科技有限公司 | Novel ballast water treatment method and device |
CN101786748B (en) | 2010-03-30 | 2012-06-13 | 青岛海德威科技有限公司 | Efficient inactivation and energy-saving ship ballast water process method and system |
JP5308390B2 (en) * | 2010-03-31 | 2013-10-09 | 富士フイルム株式会社 | Test substance detection method and test substance detection apparatus |
KR101153725B1 (en) | 2010-04-12 | 2012-06-14 | 한국기계연구원 | Sterilization apparatus using ultrasonics sterilization apparatus using ultrasonics |
EP2558179B1 (en) * | 2010-04-12 | 2020-08-05 | Flodesign Sonics Inc. | Use of ultrasound and acoustophoresis technology for separation of particulates from a host medium |
JP2013223437A (en) * | 2012-04-20 | 2013-10-31 | Bio Map Co | Creature extinction system |
JP5318989B2 (en) * | 2012-05-14 | 2013-10-16 | 株式会社新来島どっく | Arrangement structure of ballast water treatment equipment in tanker |
EP2890610B1 (en) * | 2012-08-30 | 2020-01-08 | Sembcorp Marine Repairs & Upgrades Pte. Ltd. | System and method of ballast water treatment with continuous biofouling control |
KR101567577B1 (en) | 2014-07-10 | 2015-11-20 | 한국기계연구원 | ballast water treating apparatus using squeeze effect |
CN110844968B (en) * | 2019-12-16 | 2024-08-06 | 无锡蓝天电子股份有限公司 | Detachable vibrating plate type ultrasonic treatment device |
-
2004
- 2004-06-29 JP JP2004192116A patent/JP4431872B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006007184A (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4431872B2 (en) | Ballast water treatment method and apparatus | |
KR100947558B1 (en) | Water treatment system for ballast water | |
Fetyan et al. | Water purification using ultrasound waves: application and challenges | |
US7595003B2 (en) | On-board water treatment and management process and apparatus | |
JP5756634B2 (en) | Method and apparatus for treating ballast water | |
JP4261955B2 (en) | Water purification method and apparatus | |
WO2000058824A1 (en) | Method and system for consistent cluster operational data in a server cluster using a quorum of replicas | |
KR20080018885A (en) | Ballast water treating apparatus and method of treating | |
JP2008264739A (en) | Filtering and sterilizing device | |
JP2002172389A (en) | Ultrasonic treatment apparatus for organic waste liquid | |
JP2005021814A (en) | Method and apparatus for treating ballast water | |
CN107827201A (en) | A kind of ballast water for ship ultraviolet sterilization device with self-cleaning function | |
JP2005342626A (en) | Method and device for treating ballast water and vessel mounted with the device | |
Dehghani et al. | Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage | |
KR101494678B1 (en) | Ballast water treatment apparatus | |
KR200339736Y1 (en) | Apparatus for activating energy and water treatment using ultrasonic vibration | |
JP2007105666A (en) | Ballast water treating apparatus and water treating apparatus | |
JP4694553B2 (en) | Water treatment apparatus and water treatment method | |
JP4658000B2 (en) | Cavitation sterilizer | |
KR101656529B1 (en) | Advanced electrolysis system using ultrasonic effects as enhancement equipments for ballast water treatment | |
WO2000058224A1 (en) | Reactor for cleaning and disinfection of aquatic media | |
US20200360890A1 (en) | Acoustic waves treatment device and method | |
US20090090675A1 (en) | Process to remove salt or bacteria by ultrasound | |
KR20120139421A (en) | Apparatus for mixing chemicals using ultrasonic waves | |
RU2325329C2 (en) | Method of liquid mediums sterilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091208 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |