JP2004085181A - Ice heat storage device - Google Patents

Ice heat storage device Download PDF

Info

Publication number
JP2004085181A
JP2004085181A JP2003149088A JP2003149088A JP2004085181A JP 2004085181 A JP2004085181 A JP 2004085181A JP 2003149088 A JP2003149088 A JP 2003149088A JP 2003149088 A JP2003149088 A JP 2003149088A JP 2004085181 A JP2004085181 A JP 2004085181A
Authority
JP
Japan
Prior art keywords
ice
main body
trigger substance
supercooling
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149088A
Other languages
Japanese (ja)
Other versions
JP4214837B2 (en
Inventor
Shoichiro Baba
馬場 尚一郎
Katsunori Ito
伊藤 勝規
Akira Akiyoshi
秋吉 亮
Masayoshi Hori
堀 政義
Masato Oguma
小熊 正人
Kenju Sato
佐藤 建樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003149088A priority Critical patent/JP4214837B2/en
Publication of JP2004085181A publication Critical patent/JP2004085181A/en
Application granted granted Critical
Publication of JP4214837B2 publication Critical patent/JP4214837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Confectionery (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To positively release a supercooling state with simple constitution at a low operation cost and to prevent a problem of ice sticking/growing on the inner surface of a supercooling release device. <P>SOLUTION: This ice heat storage device is constituted to produce ice by supplying supercooled water 58 to the supercooling release device 1. The supercooling release device 1 is provided with an approximately cylindrical body 2; a truncated cone part 3 formed to be gradually reduced in diameter on one end side of the body 2; an ice discharge port 4 formed on the other end side of the body 2; a supercooled water lead-in port 6 connected in a tangential direction near a connection part 5 between the body 2 and the truncated cone part 3; and a trigger material mixing port 7 formed to supply a trigger material 9 near the installed position of the supercooled water lead-in port 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、過冷却解除装置が簡単な構成及び低い運転コストで過冷却状態を確実に解除することができ、しかも過冷却解除装置内に氷が付着・成長する問題を防止するようにした氷蓄熱装置に関するものである。
【0002】
【従来の技術】
従来の氷蓄熱装置としては、図4に示す構成のものが知られている。この氷蓄熱装置は、圧縮機51と凝縮器52等からなる冷凍機53と、蒸発器として作用する過冷却器54とを備えている。過冷却器54は、例えば外管と内管から構成されており、水導入管55からの水56を内管に供給し、前記冷凍機53からの冷媒57を外管の内部に給排することにより、水56を例えば−2℃前後の過冷却温度に冷却するようにしている。上記冷凍機53及び過冷却器54としては上記以外にも種々の形式のものが提案されている。
【0003】
過冷却器54で過冷却状態に冷却された過冷却水58は、過冷却水配管59により過冷却解除装置60に送られて過冷却状態が解除され、過冷却状態の維持に必要な冷熱量が製氷潜熱に転換されて氷61が生成される。この氷61は粒状を有して過冷却水とともに流動可能なシャーベット状を呈しておりダイナミック氷と称されている。過冷却水58は、一般的に過冷却度が大きいほど過冷却状態が解除され易いが、一定過冷却度の範囲内で、且つ静止状態の下では、安定的に過冷却状態が維持される。しかし、衝撃、振動、流水の乱れ等の変化が作用すると容易に過冷却状態は解除される。
【0004】
従って、前記過冷却解除装置60としては、このような特性を利用して、例えば、過冷却水の流れの中に衝突板を設けて衝撃により過冷却状態を解除する衝突板方式、過冷却水の中に高速回転するプロペラを設けてキャビテーションにより過冷却状態を解除するプロペラ方式、過冷却水を箱で受けて電子冷却することにより過冷却状態を解除する局所冷却方式、超音波発信機によるキャビテーションを過冷却水に与えて過冷却状態を解除する超音波方式等が提案されている。
【0005】
過冷却解除装置60にて生成された氷61は、蓄熱タンク62に供給されて貯蔵される。そして、前記蓄熱タンク62内の水はフィルター63等を介してポンプ64により外部に取出され、更にこの水56は温度調節器65によって例えば0.5℃程度に温度が調節された後、水導入管55により再び過冷却器54に送られる。
【0006】
前記した過冷却解除装置60は、過冷却水58の過冷却状態を解除して氷を生成させるものであるため、生成した氷が過冷却解除装置60の内面や可動部等に付着・成長する問題が常にあり、このために過冷却解除装置60の運転が不能になる場合がある。
【0007】
従って、過冷却解除装置60の内面等に氷が付着・成長する問題を低減する方法として、前記したように過冷却水58に機械的或いは超音波等による衝撃を与えて過冷却状態を解除するのではなく、過冷却水58に種氷或いは気泡等の過冷却状態の解除を誘発するトリガー物質(引き金)を混合させて、過冷却水58中でこのトリガー物質を起点として過冷却状態を解除させる方法が提案されている。
【0008】
このような過冷却解除装置としては、截頭円錐形状を有する本体の大径側端部の軸中心から過冷却水を導入し、同時に大径側端部に接線方向から種氷又は気体を副流水とともに導入して副流水の旋回流によって過冷却解除を行うことにより氷を生成させ、その後は種氷又は気体の供給を停止し、生成した氷によって過冷却の自己解除を行わせるようにしたものがある(例えば、特許文献1参照)。
【0009】
又、円筒状の本体の上端に接線方向の過冷却水導入口を設け、下端には氷出口を設け、過冷却水導入口から過冷却水を導入して本体内に過冷却水による旋回流を形成させ、更に、本体の上端の軸心位置には、内部に冷媒を給排して冷却することにより過冷却状態の解除を開始させるようにした解除開始部を、下端が本体内に突出するように設け、且つ前記過冷却水導入口に連通する過冷却水配管の途中に、空気等を吹き込むための気体供給装置を接続したものがある(例えば、特許文献2参照)。
【0010】
【特許文献1】
特開2002−13846号公報
【特許文献2】
特開平06−74498号公報
【0011】
【発明が解決しようとする課題】
前記特許文献1では、図5に示す如き構成の過冷却解除装置60Aを示している。図5の過冷却解除装置60Aは、上端から下端に向けて縮径した截頭円錐形状を有する本体66の上端の軸中心に、図4の過冷却水配管59に接続された過冷却水導入口67を設け、下端には氷排出口68を設け、又、上端の外周には接線方向に接続した副流水導入口69を設けている。この副流水導入口69には、図4の蓄熱タンク62の氷を含む水を副流水ポンプ70により取出して副流水71として導くようにした副流水配管72を接続している。更に、前記副流水導入口69に接続される副流水配管72には、例えば空気を吹き込むための気体供給装置73が接続されている。
【0012】
図5の過冷却解除装置60Aを備えた氷蓄熱装置では、図4の副流水ポンプ70を駆動して蓄熱タンク62の氷を含む水を副流水配管72により副流水71として副流水導入口69から本体66内に接線方向から供給し、本体66内に旋回流を形成させる。この状態で、ポンプ64により蓄熱タンク62の水56をフィルター63を介して外部に取出し、温度調節器65により例えば0.5℃の温度に調節した後過冷却器54に導入して過冷却温度(例えば−2℃前後)に冷却し、冷却した過冷却水58を過冷却水配管59により過冷却解除装置60Aの過冷却水導入口67から本体66の軸中心に供給する。図5の本体66の軸中心に供給された過冷却水58は、旋回している副流水と衝突混合し、副流水内の種氷と接触することによりこれを起点として過冷却状態が解除されて氷を生成し、生成した氷は水と共に氷排出口68から蓄熱タンク62に供給される。
【0013】
上記したようなサイクロン式の過冷却解除装置60Aにおいて氷を安定して製造するためには、本体66内部で確実に過冷却状態を解除させること、及び本体66の内部で生成される氷を本体66の内面に付着・成長させないことが重要である。
【0014】
しかし、上記したように副流水71内の種氷を起点として過冷却状態を確実に解除させるために副流水71による旋回速度を高めても、副流水導入口69から本体66内の上端に供給された副流水71は旋回して下方に流動することになるために、本体66内の上端中心部には旋回流が弱まる部分が生じる。このとき、副流水導入口69にて本体66内に供給される副流水71中の氷或いは気体は、副流水導入口69から出た直後の過冷却水58と接触して氷を生成させるために、前記旋回流が弱まっている部分で生成した氷が過冷却水導入口67の出口近傍に付着・成長する問題がある。
【0015】
又、図5の装置においては、旋回速度が低いと本体66の内面に氷が付着・成長する問題がある。この問題を防止するためには、副流水導入口69から本体66内に吹き込む副流水71の流量を増加して旋回流速を高めることによって本体66内面の氷を剥ぎ取る効果を期待することも考えられる。しかし、このように副流水71の流量を増加した場合には、本体66に供給できる過冷却水58の流量が減少し、このために氷の製造能力が低下してしまう問題がある。
【0016】
更に、図5の装置では、副流水71を過冷却解除装置60Aに供給するための副流水ポンプ70及び蓄熱タンク62の氷水を導くための長い副流水配管72が必要となるために構成が複雑且つ大掛かりになる問題があり、更に副流水ポンプ70の運転コストも増加する問題がある。
【0017】
又、過冷却状態の解除を確実に行わせるために、副流水71に気体供給装置73を介して例えば空気によるトリガー物質を混入することが考えられているが、図5では下側に向かう旋回流を形成させるために、本体66の内部に上側に向かう引戻し流Xが発生し、この引戻し流Xが気泡に働く浮力の方向と同じであるために、供給された空気が本体66の軸中心上に集められて気柱74を形成してしまう。過冷却水中に気泡が混在している場合にはこの気泡が過冷却状態の解除に寄与することになるが、前記したような気柱74が形成されてしまうと有効な過冷却状態の解除効果が期待できない。従って、気体供給装置73によって空気を混入しても、本体66内において気泡による過冷却状態の解除を完了させることができない。
【0018】
一方、前記特許文献2では、上記図5とは異なる図6に示す如き構成の過冷却解除装置60Bを示している。図6のサイクロン式の過冷却解除装置60Bは、円筒状の本体75の上端の外周には接線方向の過冷却水導入口76を配置して前記過冷却水配管59(図4参照)に接続しており、又、下端には氷出口77を設けており、過冷却水導入口76から過冷却水58を導入することによって本体75内に過冷却水58による旋回流を形成させるようにしている。
【0019】
更に、本体75の上端の軸心位置には、内部に冷媒を給排して冷却することにより過冷却状態の解除を開始させるようにした解除開始部78を、下端が本体75内に突出するように設けている。又、前記過冷却水配管59の途中には、過冷却水58に例えば空気を吹き込むための気体供給装置73を接続している。
【0020】
上記過冷却解除装置60Bを備えた氷蓄熱装置では、図4のポンプ64により蓄熱タンク62から取出して温度調節器65により例えば0.5℃の温度に調節した水56を、過冷却器54に導入して過冷却温度(例えば−2℃前後)に冷却した後、過冷却水58を過冷却水配管59により過冷却解除装置60Bの過冷却水導入口76から本体75の上端に接線方向から供給し、これによって本体75の内部に下方に向かう旋回流を形成している。本体75内に供給された過冷却水58は、本体75の上端に設けた解除開始部78による冷却によって過冷却状態の解除が開始され、且つ過冷却水58の旋回によって過冷却状態の解除が完了されるようにしている。更に、副流水71に気体供給装置73を介し例えば空気によるトリガー物質を混入することによっても、過冷却状態の解除を完了させるようにしている。
【0021】
しかし、上記図6に示したサイクロン式の過冷却解除装置60Bにおいても、氷を安定して製造するために、本体75の内部で確実に過冷却状態を解除させること、及び本体75の内部で生成する氷が本体75の内面に付着・成長しないようにすることは重要であるが、解除開始部78において冷媒で冷却することによって過冷却状態の解除を開始させるようにしているために、この解除開始部78の運転が非常に難しく、冷却し過ぎると直ちに解除開始部78を起点として氷が付着・成長するという問題がある。
【0022】
更に、前記解除開始部78は冷凍機の冷媒を供給して冷却するために非常に複雑な構造を有しており、しかも冷凍機を運転するために運転コストも増加するという問題がある。
【0023】
又、過冷却水配管59の途中に気体供給装置73を設けて空気を混入しているが、過冷却水配管59の途中で空気を混入すると混入部で直ちに部分的な過冷却状態の解除が開始されてしまい、これによって生成した氷が、過冷却水配管59や過冷却水導入口76及び本体75の内面に接触して付着・成長する問題がある。
【0024】
更に、サイクロン式の過冷却解除装置60Bの場合においても、下側に向かう旋回流が形成される構造であるために本体66の内部に上側に向かう引戻し流Xが発生し、この引戻し流Xが気泡に働く浮力の方向と同じであるために、供給された空気が本体66の軸中心に集められて気柱74を形成してしまい、このために、気体供給装置73にて空気を混入しても、本体66内において気泡による過冷却状態の解除を完了させることができない。
【0025】
本発明は、上記したような従来の技術に存在する問題点に着目してなしたものであり、過冷却解除装置が簡単な構成及び低い運転コストで過冷却状態を確実に解除でき、しかも過冷却解除装置内に氷が付着・成長する問題を防止できる氷蓄熱装置を提供することを目的とする。
【0026】
【課題を解決するための手段】
請求項1記載の発明は、過冷却解除装置に過冷却水を供給して氷を製造する氷蓄熱装置であって、前記過冷却解除装置が、略筒形の本体と、該本体の一端側において徐々に縮径するよう形成した截頭円錐形部と、本体の他端側に形成した氷排出口と、本体と截頭円錐形部との繋ぎ部近傍において接線方向に接続した過冷却水導入口と、該過冷却水導入口の近傍位置にトリガー物質を供給するようにしたトリガー物質混入口と、を備えたことを特徴とする氷蓄熱装置、に係るものである。
【0027】
請求項2に記載の発明は、前記本体の截頭円錐形部が下側に、氷排出口が上側になるように配置されていることを特徴とする請求項1記載の氷蓄熱装置、に係るものである。
【0028】
請求項3に記載の発明は、前記トリガー物質混入口が、本体と截頭円錐形部との繋ぎ部近傍の周壁に備えられ、本体内の旋回流により壁圧が負圧になることによってトリガー物質混入口からトリガー物質を吸引するようにしてあり、前記トリガー物質混入口にトリガー物質流量調節弁を備えていることを特徴とする請求項1又は2に記載の氷蓄熱装置、に係るものである。
【0029】
請求項4に記載の発明は、前記トリガー物質混入口が、截頭円錐形部の端部に設けられていることを特徴とする請求項1又は2に記載の氷蓄熱装置、に係るものである。
【0030】
請求項5に記載の発明は、前記トリガー物質混入口に、トリガー物質供給装置を備えたことを特徴とする請求項1〜4のいずれか1つに記載の氷蓄熱装置、に係るものである。
【0031】
請求項6に記載の発明は、前記トリガー物質が気体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置、に係るものである。
【0032】
請求項7に記載の発明は、前記トリガー物質が氷を含む液体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置、に係るものである。
【0033】
上記手段によれば、次の如く作用する。
【0034】
請求項1に記載の発明では、本体と截頭円錐形部との繋ぎ部近傍に接線方向から接続した過冷却水導入口によって過冷却水を供給するようにしたので、本体内に氷排出口に向かう旋回流と閉塞された截頭円錐形部内に向かう強い旋回流とが形成されるようになり、よって本体と截頭円錐形部との繋ぎ部近傍にトリガー物質混入口にて供給される空気等の気体、或いは氷を含む液体からなるトリガー物質は、截頭円錐形部内の強い旋回流によって過冷却水と効果的に混合されるようになり、截頭円錐形部の内部において氷の生成が最大限に行われる。このとき截頭円錐形部の内部には強い旋回流が形成されているので、氷を剥ぎ取る効果が強く、よって截頭円錐形部の内面に氷が付着・成長する問題は防止される。
【0035】
更に、截頭円錐形部内で強い旋回流を形成した過冷却水は本体内を氷排出口に向かって徐々に旋回力を弱めながら流動することになるが、この間にもトリガー物質と過冷却水とが混合して良好な氷の生成を維持する。更に、トリガー物質混入口によって前記本体と截頭円錐形部との繋ぎ部近傍の周壁部から供給されるトリガー物質は、過冷却水に対して外周側から混合されるので、過冷却水との混合が非常に良好に行われるようになり、更に過冷却水が引戻し流を生じさせることなく氷排出口に向かって流動するので、トリガー物質が気体の場合においても、気柱の形成が防止される。又、気泡及び比重の小さい氷は本体内を氷排出口に向かって移動する間に徐々に軸中心側に集められることになるために、本体の軸中心部では過冷却状態の解除が促進されて解除が完了し、逆に本体の壁面近傍では下流に向かって旋回流が徐々に弱まることになるが氷の生成も弱まるので、本体の内面に氷が付着・成長する問題は防止される。
【0036】
請求項2に記載の発明では、本体の截頭円錐形部が下側に、氷排出口が上側になるように配置しているので、トリガー物質が気体の場合には、気泡が浮力の作用を受けて上側の氷排出口に向けて安定して上昇するようになり、よって気柱を形成する問題が更に防止され、氷の生成効果が更に高められる。
【0037】
請求項3に記載の発明では、前記トリガー物質混入口を本体と截頭円錐形部との繋ぎ部近傍の周壁に取付け、本体内の旋回流によって壁圧が負圧になることによりトリガー物質をトリガー物質混入口から吸引させるようにしているので、トリガー物質を供給するための装置と動力を必要とせず、よって構成の簡略化と運転コストの低減が図れる。
【0038】
請求項4に記載の発明では、トリガー物質混入口を截頭円錐形部の端部に設けているので、截頭円錐形部の端部からトリガー物質を供給することができる。
【0039】
請求項5に記載の発明では、前記トリガー物質混入口にトリガー物質供給装置を備えたので、本体及び截頭円錐形部の内部の旋回流による圧力の低下が少ない場合にもトリガー物質供給装置によってトリガー物質を確実に供給することができ、又、このときのトリガー物質供給装置の動力は小さくできる。
【0040】
請求項6に記載の発明では、前記トリガー物質に空気等の気体を用いているので、取扱いが容易である。
【0041】
請求項7に記載の発明では、トリガー物質に氷を含む液体を用いているので、氷蓄熱装置で製造した氷を含む氷水をトリガー物質として用いることができる。
【0042】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0043】
図4に示した如く、過冷却器54に水56を導入して過冷却状態に冷却した過冷却水58を過冷却解除装置60に供給して過冷却状態を解除することにより氷61を製造するようにしている氷蓄熱装置において、前記過冷却解除装置60として図1、図2に示す構成の過冷却解除装置1を備える。図1は過冷却解除装置の形態の一例を示す縦断面図、図2は図1のII−II方向矢視図である。
【0044】
図1、図2に示す過冷却解除装置1は、筒形の本体2を鉛直に有しており、該本体2の下端(一端側)には下側に向かって縮径した截頭円錐形部3を形成し、又、本体2の上端(他端側)には氷排出口4を備えている。図1では本体2の上端にも截頭円錐形部3’を形成してその端部軸中心に氷排出口4を形成するようした好適な例の場合を示しているが、截頭円錐形部3’を備えることなしに氷排出口4を設けたり、或いは本体2の上端に接線方向に氷排出口4を接続するようにしてもよい。又、前記本体2は完全な筒形ではなく全体がコーン状を有していてもよい。
【0045】
前記本体2の下端と截頭円錐形部3との繋ぎ部5の近傍には、接線方向に接続した過冷却水導入口6を設けており、該過冷却水導入口6は図4の過冷却水配管59に接続している。尚、図1の過冷却水導入口6は本体2の下端位置に設けているが、繋ぎ部5或いは截頭円錐形部3に設けてもよい。前記過冷却水導入口6は、その先端6aが本体2の内部に突出しており、且つその先端6aはノズル状に尖った形状となっている。
【0046】
一方、前記本体2の下端と截頭円錐形部3との繋ぎ部5の近傍、図1では本体2の下端の周壁に、トリガー物質混入口7を設けており、該トリガー物質混入口7にはトリガー物質流量調節弁8を設けている。前記したように、本体2内に形成される旋回流S1によって本体2の壁圧が負圧になるために、周壁に設けられたトリガー物質混入口7によってトリガー物質9が吸引されて自然に本体2内に供給されるようになる。従って、トリガー物質流量調節弁8は吸引されるトリガー物質9の供給量を調節するように作用する。トリガー物質混入口7は本体2に対して半径方向に取付けた場合を示しているが、本体2に対して接線方向に取付けてもよい。
【0047】
又、図1では、トリガー物質混入口7を本体2の下端周壁に設けた場合について図示したが、トリガー物質混入口7を截頭円錐形部3の周壁に設けるようしてもよい。
【0048】
更に、前記トリガー物質混入口7には、二点鎖線で示す如く空気等の気体、或いは氷を含む液体からなるトリガー物質9を供給するようにしたトリガー物質供給装置10を接続して設置してもよい。
【0049】
前記本体2の長さは、過冷却解除装置1内で過冷却状態が解除して完全に略0℃の氷水になるまでの時間が取れる長さに設定するのが好ましい。
【0050】
前記本体2及び截頭円錐形部3は非金属材料にて構成することが好ましい。又、本体2及び截頭円錐形部3を金属材料で構成する場合にはその内面に過冷却状態解除兼着氷防止層を形成しておくことが好ましい。過冷却状態解除兼着氷防止層としては、テフロン(登録商標)、ビニール、フェノール樹脂等の撥水性を有する高分子系材料、或いは撥水性を有するチタン酸化被膜等を用いることができる。一例としては金属筒体の内面にポリエチレンライニングしたものを用いることができる。
【0051】
次に上記形態例の作用を説明する。
【0052】
図1、図2の過冷却解除装置1において氷を製造する際には、図4のポンプ64からの水56を温度調節器65により例えば0.5℃の温度に調節し、この水56を過冷却器54に導入して過冷却温度(例えば−2℃前後)に冷却する。そして、過冷却器54によって冷却された過冷却水58は、過冷却水配管59により過冷却解除装置1の過冷却水導入口6に導かれ、本体2の下端と截頭円錐形部3との繋ぎ部5の近傍に接線方向から供給される。
【0053】
過冷却水58は、本体2と截頭円錐形部3との繋ぎ部5近傍に接続された過冷却水導入口6により接線方向から供給するので、本体2内の氷排出口4に向かう旋回流S1と截頭円錐形部3内に向かう強い旋回流S2とが形成される。このとき、截頭円錐形部3の下端は閉塞されていて下方に流動することができないために、截頭円錐形部3内で強い旋回流S2を形成した過冷却水は、本体2内側に向かって流動するようになり、よって図5、図6に示したような接線方向の導入部に向かう引戻し流Xは消失し、安定した上昇流Yが形成されるようになる。
【0054】
従って、本体2と截頭円錐形部3との繋ぎ部5近傍にトリガー物質混入口7によって供給される空気等の気体、或いは氷を含む液体からなるトリガー物質9は、截頭円錐形部3内の強い旋回流S2によって過冷却水58と効果的に混合され、截頭円錐形部3の内部において氷の生成が最大限に行われるようになる。このとき、截頭円錐形部3の内部には強い旋回流S2が形成されるので、氷を剥ぎ取る効果が強く、よって截頭円錐形部3の内面に氷が付着・成長する問題は防止される。このとき、前記過冷却水導入口6の先端6aが本体2の内部に突出し、且つその先端6aがノズル状に尖らせた形状を有しているので、過冷却水導入口6への氷の付着・成長も防ぐことができる。
【0055】
前記トリガー物質9としては、空気等の気体或いは氷を含む液体等を用いることができ、空気等の気体を用いた場合には取扱いが容易であり、又、氷を含む液体を用いた場合には、氷蓄熱装置で製造した氷を含む氷水を利用することができる。
【0056】
前記截頭円錐形部3内に形成された強い旋回流S2は、本体2内を氷排出口4に向かって徐々に旋回力を弱められて流動するが、この間にもトリガー物質9と過冷却水58とは混合を行って良好な氷の生成を維持する。一方、トリガー物質混入口7から前記本体2と截頭円錐形部3との繋ぎ部5近傍の周壁部に供給されるトリガー物質9は、過冷却水58に対して外周側から混合されることになるので、過冷却水58に対して非常に良好に混合されるようになり、このことからもトリガー物質9が気体の場合に気柱が形成される問題を防止できる。又、気泡及び比重の小さい氷は本体2内を氷排出口4に向かって移動する間に徐々に軸中心側に集まることになるために本体2の軸中心部では過冷却状態の解除が促進されて解除が完了し、逆に本体2の壁面近傍では下流に向かって旋回流が徐々に弱まることになるが氷の生成も弱まるので、本体2の内面に氷が付着・成長する問題は防止される。このとき、本体2の上端部にも截頭円錐形部3’を形成すると、該截頭円錐形部3’の内部に強い旋回流を形成させて、截頭円錐形部3’の内面に氷が付着・成長する問題も防止できる。
【0057】
前記本体2及び截頭円錐形部3は非金属材料で構成すると氷が付着し難くなるので好ましい。又、本体2及び截頭円錐形部3を金属材料で構成する場合には、その内面に、テフロン(登録商標)、ビニール、フェノール樹脂等の撥水性を有する高分子系材料、或いは撥水性を有するチタン酸化被膜等の過冷却状態解除兼着氷防止層を形成しておくと、氷が付着し難くなるので好適である。
【0058】
又、図1に示す如く、本体2の截頭円錐形部3が下側に、氷排出口4が上側になるように配置したことによって、トリガー物質9が気体の場合には、気泡が浮力の作用を受けて上側の氷排出口4に向けて安定して上昇するようになるので、気柱が形成される問題が更に確実に防止され、氷の生成効果が更に高められる。
【0059】
一方、図1に示す如く、本体2と截頭円錐形部3との繋ぎ部5近傍の周壁にトリガー物質混入口7を設けたので、本体2内の旋回流S1により壁圧が負圧になることによってトリガー物質混入口7の開口7’から大気をトリガー物質9として吸引することができる。従って、トリガー物質混入口7のトリガー物質流量調節弁8の開度を調節するのみで、トリガー物質9の供給量を調節することができ、トリガー物質9を供給するための装置と動力を省略することができ、よって構成の簡略化と運転コストの低減を図ることができる。
【0060】
又、上記したようにトリガー物質9と過冷却水58とが接触して過冷却状態が解除され、截頭円錐形部3及び本体2内で一旦氷が生成すると、以後は生成した氷核を起点として連続的に過冷却状態が解除されるようになるので、トリガー物質9の供給は初期のみに行い、以後はトリガー物質9の供給を停止するようにしてもよい。
【0061】
一方、二点鎖線で示すように、トリガー物質混入口7にトリガー物質供給装置10を接続して備えた場合には、本体2及び截頭円錐形部3の内部の旋回流S1,S2による圧力の低下が少ない場合にも、トリガー物質供給装置10によってトリガー物質9を確実に供給することができる。このときのトリガー物質供給装置10の動力は小さくてよい。
【0062】
図3は、本発明における過冷却解除装置の形態の他の例を示す縦断面図である。
【0063】
図3は、トリガー物質混入口7を截頭円錐形部3の下端の端部に設けた場合を示したものであり、図3の場合ではトリガー物質混入口7を截頭円錐形部3の端部の軸中心位置に設けているが、トリガー物質混入口7を偏心した位置に設けるようにしてもよい。又、図3のその他の構成については前記図1、図2に示した構成と同一であり、図3の構成が奏する作用効果も前記図1、図2の場合と略同等であるので詳細な説明は省略する。
【0064】
尚、本発明は上記形態例にのみ限定されるものではなく、トリガー物質としては空気以外のガス等の過冷却状態を解除できるものであれば種々のものを用い得ること、トリガー物質混入口の形状は種々選定し得ること、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0065】
【発明の効果】
本発明は、以上のように構成されているため、次のような優れた効果を奏し得る。
【0066】
請求項1に記載の発明によれば、本体と截頭円錐形部との繋ぎ部近傍に接線方向から接続した過冷却水導入口によって過冷却水を供給するようにしたので、本体内に氷排出口に向かう旋回流と閉塞された截頭円錐形部内に向かう強い旋回流とが形成されるようになり、よって本体と截頭円錐形部との繋ぎ部近傍にトリガー物質混入口にて供給される空気等の気体、或いは氷を含む液体からなるトリガー物質は、截頭円錐形部内の強い旋回流によって過冷却水と効果的に混合されるようになり、截頭円錐形部の内部において氷の生成が最大限に行われる。このとき截頭円錐形部の内部には強い旋回流が形成されているので、氷を剥ぎ取る効果が強く、よって截頭円錐形部の内面に氷が付着・成長する問題は防止される。
【0067】
更に、截頭円錐形部内で強い旋回流を形成した過冷却水は本体内を氷排出口に向かって徐々に旋回力を弱めながら流動することになるが、この間にもトリガー物質と過冷却水とが混合して良好な氷の生成を維持する。更に、トリガー物質混入口によって前記本体と截頭円錐形部との繋ぎ部近傍の周壁部から供給されるトリガー物質は、過冷却水に対して外周側から混合されるので、過冷却水との混合が非常に良好に行われるようになり、更に過冷却水が引戻し流を生じることなく氷排出口に向かって流動するので、トリガー物質が気体の場合においても、気柱の形成が防止される。又、気泡及び比重の小さい氷は本体内を氷排出口に向かって移動する間に徐々に軸中心側に集められることになるために、本体の軸中心部では過冷却状態の解除が促進されて解除が完了し、逆に本体の壁面近傍では下流に向かって旋回流が徐々に弱まることになるが氷の生成も弱まるので、本体の内面に氷が付着・成長する問題は防止される。
【0068】
請求項2に記載の発明では、本体の截頭円錐形部が下側に、氷排出口が上側になるように配置しているので、トリガー物質が気体の場合には、気泡が浮力の作用を受けて上側の氷排出口に向けて安定して上昇するようになり、よって気柱を形成する問題が更に防止され、氷の生成効果が更に高められる。
【0069】
請求項3に記載の発明では、前記トリガー物質混入口を本体と截頭円錐形部との繋ぎ部近傍の周壁に取付け、本体内の旋回流によって壁圧が負圧になることによりトリガー物質をトリガー物質混入口から吸引させるようにしているので、トリガー物質を供給するための装置と動力を必要とせず、よって構成の簡略化と運転コストの低減が図れる。
【0070】
請求項4に記載の発明では、トリガー物質混入口を截頭円錐形部の端部に設けているので、截頭円錐形部の端部からトリガー物質を供給することができる。
【0071】
請求項5に記載の発明では、前記トリガー物質混入口にトリガー物質供給装置を備えたので、本体及び截頭円錐形部の内部の旋回流による圧力の低下が少ない場合にもトリガー物質供給装置によってトリガー物質を確実に供給することができ、又、このときのトリガー物質供給装置の動力は小さくできる。
【0072】
請求項6に記載の発明によれば、前記トリガー物質に空気等の気体を用いているので、取扱いが容易である。
【0073】
請求項7に記載の発明によれば、トリガー物質に氷を含む液体を用いているので、氷蓄熱装置で製造した氷を含む氷水をトリガー物質として用いることができる。
【図面の簡単な説明】
【図1】本発明の氷蓄熱装置に備える過冷却解除装置の形態の一例を示す縦断面図である。
【図2】図1のII−II方向矢視図である。
【図3】本発明における過冷却解除装置の形態の他の例を示す縦断面図である。
【図4】一般的な氷蓄熱装置の概略構成を示すブロック図である。
【図5】従来の過冷却解除装置の一例を示す縦断面図である。
【図6】従来の過冷却解除装置の他の例を示す縦断面図である。
【符号の説明】
1  過冷却解除装置
2  本体
3  截頭円錐形部
4  氷排出口
5  繋ぎ部
6  過冷却水導入口
7  トリガー物質混入口
8  トリガー物質流量調節弁
9  トリガー物質
10  トリガー物質供給装置
58 過冷却水
61 氷
[0001]
TECHNICAL FIELD OF THE INVENTION
SUMMARY OF THE INVENTION The present invention is directed to an ice which is capable of reliably releasing a supercooled state with a simple configuration and a low operating cost by a supercooling release device, and also prevents ice from adhering and growing in the supercooling release device. The present invention relates to a heat storage device.
[0002]
[Prior art]
As a conventional ice heat storage device, one having a configuration shown in FIG. 4 is known. This ice heat storage device includes a refrigerator 53 including a compressor 51 and a condenser 52 and a supercooler 54 acting as an evaporator. The supercooler 54 includes, for example, an outer tube and an inner tube, supplies water 56 from a water introduction tube 55 to the inner tube, and supplies and discharges a refrigerant 57 from the refrigerator 53 to the inside of the outer tube. Thus, the water 56 is cooled to a supercooling temperature of, for example, about -2 ° C. As the refrigerator 53 and the subcooler 54, various types other than those described above have been proposed.
[0003]
The supercooled water 58 cooled to the supercooled state by the supercooler 54 is sent to the supercooling release device 60 by the supercooled water pipe 59 to release the supercooled state, and the amount of cold heat required to maintain the supercooled state Is converted to ice-making latent heat, and ice 61 is generated. The ice 61 has a granular shape and has a sherbet shape that can flow together with supercooled water, and is called dynamic ice. In general, the supercooling water 58 is more easily released from the supercooling state as the degree of supercooling is larger, but the supercooling state is stably maintained within a range of a constant degree of supercooling and under a stationary state. . However, when a change such as shock, vibration, or disturbance of flowing water acts, the supercooled state is easily released.
[0004]
Accordingly, the supercooling release device 60 utilizes such characteristics, for example, an impact plate type in which an impingement plate is provided in the flow of supercooled water and the supercooled state is released by an impact. Propeller system that releases supercooled state by cavitation by providing a high-speed rotating propeller inside, local cooling system that receives supercooled water in a box and electronically cools it, and cavitation by ultrasonic transmitter An ultrasonic system or the like has been proposed in which the supercooled state is released by giving water to supercooled water.
[0005]
The ice 61 generated by the subcooling release device 60 is supplied to and stored in the heat storage tank 62. Then, the water in the heat storage tank 62 is taken out to the outside by a pump 64 through a filter 63 and the like. Further, after the temperature of the water 56 is adjusted to, for example, about 0.5 ° C. by a temperature controller 65, the water is introduced. It is sent to the subcooler 54 again by the pipe 55.
[0006]
Since the above-described supercooling release device 60 releases the supercooled state of the supercooled water 58 to generate ice, the generated ice adheres to and grows on the inner surface, the movable portion, and the like of the supercooling release device 60. There is always a problem, which may render the operation of the subcooling release device 60 inoperable.
[0007]
Therefore, as a method of reducing the problem of ice adhering to and growing on the inner surface of the supercooling release device 60, the supercooled state is released by applying an impact to the supercooled water 58 by mechanical or ultrasonic waves as described above. Instead, the supercooled water 58 is mixed with a trigger substance (trigger) for inducing the release of the supercooled state such as seed ice or air bubbles, and the supercooled state is released from the trigger substance in the supercooled water 58. A method has been proposed.
[0008]
As such a supercooling release device, supercooled water is introduced from the axis center of the large-diameter end of the body having a truncated conical shape, and at the same time, seed ice or gas is supplied from the tangential direction to the large-diameter end. Ice was generated by releasing supercooling by the swirling flow of the sidestream water introduced together with the running water, and then the supply of seed ice or gas was stopped, and the self-release of supercooling was performed by the generated ice. (For example, see Patent Document 1).
[0009]
A tangential supercooling water inlet is provided at the upper end of the cylindrical body, and an ice outlet is provided at the lower end. Supercooling water is introduced from the supercooling water inlet, and the swirling flow of the supercooling water flows into the main body. Further, at the axial center position of the upper end of the main body, a release start portion configured to start the release of the supercooled state by supplying and discharging the coolant inside and cooling, and the lower end protrudes into the main body. In some cases, a gas supply device for blowing air or the like is connected in the middle of a supercooling water pipe communicating with the supercooling water inlet (see, for example, Patent Document 2).
[0010]
[Patent Document 1]
JP 2002-13846 A
[Patent Document 2]
JP-A-06-74498
[0011]
[Problems to be solved by the invention]
Patent Document 1 discloses a subcooling release device 60A having a configuration as shown in FIG. The supercooling release device 60A of FIG. 5 is configured to introduce supercooling water connected to the supercooling water pipe 59 of FIG. 4 around the center of the upper end of a body 66 having a truncated conical shape whose diameter is reduced from the upper end to the lower end. A port 67 is provided, an ice discharge port 68 is provided at the lower end, and a sub-flow water inlet 69 connected tangentially is provided at the outer periphery of the upper end. A substream water pipe 72 is connected to the substream inlet port 69 so as to take out water containing ice in the heat storage tank 62 of FIG. Further, a gas supply device 73 for blowing air, for example, is connected to the sub-stream water pipe 72 connected to the sub-stream water inlet 69.
[0012]
In the ice heat storage device having the supercooling release device 60A shown in FIG. 5, the water containing the ice in the heat storage tank 62 is turned into the substream water 71 by the substream water pipe 72 by driving the substream water pump 70 shown in FIG. From the tangential direction into the main body 66 to form a swirling flow in the main body 66. In this state, the water 64 in the heat storage tank 62 is taken out of the heat storage tank 62 through the filter 63 by the pump 64, adjusted to a temperature of, for example, 0.5 ° C. by the temperature controller 65, and then introduced into the supercooler 54 to thereby obtain the supercooled The supercooled water 58 cooled to about (for example, about −2 ° C.) is supplied to the center of the main body 66 from the supercooled water inlet 67 of the subcooling release device 60 </ b> A through the supercooled water pipe 59. The supercooled water 58 supplied to the center of the axis of the main body 66 in FIG. 5 collides and mixes with the swirling sub-stream and comes into contact with the seed ice in the sub-stream, whereby the supercooled state is released starting from this. The generated ice is supplied to the heat storage tank 62 from the ice outlet 68 together with the water.
[0013]
In order to stably produce ice in the cyclone-type supercooling release device 60A as described above, it is necessary to surely release the supercooled state inside the main body 66 and to remove the ice generated inside the main body 66 from the main body 66. It is important that they do not adhere or grow on the inner surface of 66.
[0014]
However, as described above, even if the turning speed by the substream 71 is increased in order to surely cancel the supercooled state starting from the seed ice in the substream 71, the water is supplied from the substream inlet 69 to the upper end in the main body 66. The swirled sub-flow water 71 swirls and flows downward, so that a portion where the swirling flow is weakened is formed at the center of the upper end in the main body 66. At this time, the ice or gas in the substream 71 supplied into the main body 66 at the substream inlet 69 comes into contact with the supercooled water 58 immediately after exiting from the substream inlet 69 to generate ice. In addition, there is a problem that ice generated in the portion where the swirling flow is weakened adheres and grows near the outlet of the supercooled water inlet 67.
[0015]
Further, in the apparatus shown in FIG. 5, when the rotation speed is low, there is a problem that ice adheres to and grows on the inner surface of the main body 66. In order to prevent this problem, it is considered that the effect of removing the ice on the inner surface of the main body 66 by increasing the flow rate of the sub-flow water 71 blown into the main body 66 from the sub-flow water inlet 69 to increase the swirling velocity is also considered. Can be However, when the flow rate of the substream 71 is increased, the flow rate of the supercooled water 58 that can be supplied to the main body 66 is reduced, and there is a problem that the ice production capacity is reduced.
[0016]
Further, the apparatus of FIG. 5 requires a sub-stream water pump 70 for supplying the sub-stream water 71 to the subcooling release device 60A and a long sub-stream water pipe 72 for guiding the ice water of the heat storage tank 62. In addition, there is a problem that the scale becomes large and there is a problem that the operation cost of the sub-stream water pump 70 also increases.
[0017]
Further, in order to surely release the supercooled state, it is considered that a trigger substance such as air is mixed into the sub-stream water 71 through the gas supply device 73, but in FIG. In order to form a flow, an upward retraction flow X is generated inside the main body 66, and since the retraction flow X has the same direction of buoyancy acting on the air bubbles, the supplied air flows in the axial center of the main body 66. They are collected on top to form the air column 74. When bubbles are mixed in the supercooled water, the bubbles contribute to the release of the supercooled state. However, when the air column 74 is formed as described above, the effective effect of releasing the supercooled state is obtained. Can not expect. Therefore, even if air is mixed in by the gas supply device 73, it is not possible to complete the release of the supercooled state due to bubbles in the main body 66.
[0018]
On the other hand, Patent Literature 2 shows a supercooling release device 60B having a configuration shown in FIG. 6 which is different from FIG. 5 described above. The cyclone-type supercooling release device 60B of FIG. 6 has a tangential supercooling water inlet 76 disposed on the outer periphery of the upper end of a cylindrical main body 75 and is connected to the supercooling water pipe 59 (see FIG. 4). In addition, an ice outlet 77 is provided at the lower end, and a swirling flow by the supercooled water 58 is formed in the main body 75 by introducing the supercooled water 58 from the supercooled water inlet 76. I have.
[0019]
Further, a release start portion 78 configured to start and release the supercooled state by supplying and discharging the refrigerant therein to cool the inside at the axial center position of the upper end of the main body 75, and the lower end protrudes into the main body 75. It is provided as follows. A gas supply device 73 for blowing, for example, air into the supercooled water 58 is connected in the middle of the supercooled water pipe 59.
[0020]
In the ice heat storage device including the supercooling release device 60B, water 56 taken out of the heat storage tank 62 by the pump 64 in FIG. After being introduced and cooled to a supercooling temperature (for example, about −2 ° C.), the supercooled water 58 is tangentially connected to the upper end of the main body 75 from the supercooled water inlet 76 of the supercooled release device 60B by the supercooled water pipe 59. And a downward swirling flow is formed inside the main body 75. The supercooled water 58 supplied into the main body 75 is released from the supercooled state by cooling by the release start unit 78 provided at the upper end of the main body 75, and the supercooled state is released by turning the supercooled water 58. To be completed. Further, the release of the supercooled state is also completed by mixing a trigger substance by air, for example, into the substream 71 through the gas supply device 73.
[0021]
However, in the cyclone-type subcooling release device 60B shown in FIG. 6 as well, in order to stably produce ice, the supercooling state must be released inside the main body 75 without fail, and It is important to prevent the generated ice from adhering and growing on the inner surface of the main body 75. However, since the cancellation of the supercooled state is started by cooling with the refrigerant in the cancellation start part 78, The operation of the release start portion 78 is very difficult, and there is a problem that ice is attached and grows immediately from the release start portion 78 as soon as it is cooled too much.
[0022]
Further, the release start portion 78 has a very complicated structure for supplying and cooling the refrigerant of the refrigerator, and furthermore, there is a problem that the operation cost increases because the refrigerator is operated.
[0023]
Further, a gas supply device 73 is provided in the middle of the supercooling water pipe 59 to mix air. However, if air is mixed in the middle of the supercooling water pipe 59, the partial supercooling state is immediately released at the mixing portion. Once started, there is a problem that ice generated by this comes into contact with the supercooled water pipe 59, the supercooled water inlet 76 and the inner surface of the main body 75, and adheres and grows.
[0024]
Furthermore, also in the case of the cyclone-type supercooling release device 60B, since the structure is such that a downward swirling flow is formed, an upward withdrawal flow X is generated inside the main body 66, and this withdrawal flow X is generated. Since the direction of the buoyancy acting on the air bubbles is the same, the supplied air is collected at the center of the axis of the main body 66 to form an air column 74. For this reason, air is mixed in the gas supply device 73. However, it is not possible to complete the release of the supercooled state due to the bubbles in the main body 66.
[0025]
The present invention has been made by focusing on the problems existing in the conventional technology as described above, and the supercooling canceling device can surely cancel the supercooling state with a simple configuration and low operating cost, It is an object of the present invention to provide an ice heat storage device capable of preventing a problem that ice adheres and grows in a cooling release device.
[0026]
[Means for Solving the Problems]
An invention according to claim 1 is an ice heat storage device for producing ice by supplying supercooled water to a subcooling canceling device, wherein the supercooling canceling device includes a substantially cylindrical main body and one end of the main body. Frusto-conical part formed so as to gradually reduce the diameter, an ice discharge port formed on the other end side of the main body, and supercooled water tangentially connected near a joint between the main body and the frusto-conical part. The present invention relates to an ice heat storage device, comprising: an inlet; and a trigger substance mixing port configured to supply a trigger substance to a position near the supercooled water inlet.
[0027]
The invention according to claim 2 is the ice heat storage device according to claim 1, wherein the frusto-conical portion of the main body is disposed on the lower side and the ice discharge port is on the upper side. It is related.
[0028]
According to a third aspect of the present invention, the trigger substance mixing port is provided on a peripheral wall near a connecting portion between the main body and the truncated conical portion, and the wall pressure becomes negative by the swirling flow in the main body, so that the trigger is generated. 3. The ice heat storage device according to claim 1, wherein a trigger substance is sucked from a substance mixing port, and the trigger substance mixing port is provided with a trigger substance flow rate control valve. is there.
[0029]
The invention according to claim 4 relates to the ice heat storage device according to claim 1 or 2, wherein the trigger substance mixing port is provided at an end of the frusto-conical portion. is there.
[0030]
The invention according to claim 5 relates to the ice heat storage device according to any one of claims 1 to 4, wherein a trigger substance supply device is provided at the trigger substance mixing port. .
[0031]
The invention according to claim 6 relates to the ice heat storage device according to any one of claims 1 to 5, wherein the trigger substance is a gas.
[0032]
The invention according to claim 7 relates to the ice heat storage device according to any one of claims 1 to 5, wherein the trigger substance is a liquid containing ice.
[0033]
According to the above means, the following operation is performed.
[0034]
According to the first aspect of the present invention, the supercooling water is supplied to the vicinity of the connecting portion between the main body and the truncated conical portion by the supercooling water inlet which is connected from the tangential direction. And a strong swirling flow toward the closed frusto-conical part is formed, so that it is supplied at the trigger substance mixing port near the junction between the main body and the frusto-conical part. The trigger substance consisting of a gas such as air or a liquid containing ice is effectively mixed with the supercooled water by the strong swirling flow in the frusto-conical portion, and the ice is formed inside the frusto-conical portion. Generation is maximized. At this time, since a strong swirling flow is formed inside the frusto-conical portion, the effect of peeling off the ice is strong, and thus the problem that ice adheres and grows on the inner surface of the frusto-conical portion is prevented.
[0035]
Further, the supercooled water that has formed a strong swirling flow in the truncated conical portion flows in the main body toward the ice discharge port while gradually reducing the swirling force. Mix to maintain good ice formation. Further, the trigger substance supplied from the peripheral wall portion near the connecting portion between the main body and the truncated conical portion by the trigger substance mixing port is mixed with the supercooled water from the outer peripheral side. Mixing is very good and the supercooled water flows towards the ice outlet without creating a backflow, thus preventing the formation of air columns even when the trigger substance is a gas. You. In addition, since bubbles and ice having a small specific gravity are gradually collected toward the center of the shaft while moving toward the ice discharge port in the main body, the release of the supercooled state is promoted at the center of the main shaft. On the contrary, the swirling flow gradually weakens toward the downstream in the vicinity of the wall surface of the main body, but the generation of ice also weakens, so that the problem of ice sticking and growing on the inner surface of the main body is prevented.
[0036]
According to the second aspect of the present invention, since the truncated conical portion of the main body is disposed on the lower side and the ice discharge port is on the upper side, when the trigger substance is a gas, the bubbles are buoyant. As a result, the air column stably rises toward the upper ice discharge port, so that the problem of forming an air column is further prevented, and the ice generating effect is further enhanced.
[0037]
According to the third aspect of the present invention, the trigger substance mixing port is attached to a peripheral wall near a connecting portion between the main body and the truncated conical portion, and the wall pressure becomes negative due to the swirling flow in the main body, thereby releasing the trigger substance. Since the suction is performed through the trigger substance mixing port, a device and power for supplying the trigger substance are not required, so that the configuration can be simplified and the operation cost can be reduced.
[0038]
According to the fourth aspect of the present invention, since the trigger substance mixing port is provided at the end of the frusto-conical part, the trigger substance can be supplied from the end of the frusto-conical part.
[0039]
According to the fifth aspect of the present invention, since the trigger substance supply port is provided with the trigger substance supply apparatus, the trigger substance supply apparatus is provided even when the pressure drop due to the swirling flow inside the main body and the truncated cone is small. The trigger substance can be reliably supplied, and the power of the trigger substance supply device at this time can be reduced.
[0040]
According to the invention described in claim 6, since a gas such as air is used as the trigger substance, handling is easy.
[0041]
In the invention according to claim 7, since a liquid containing ice is used as the trigger substance, ice water containing ice produced by the ice heat storage device can be used as the trigger substance.
[0042]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0043]
As shown in FIG. 4, ice 56 is produced by introducing water 56 into a supercooler 54 and supplying supercooled water 58 cooled to a supercooled state to a supercooling release device 60 to release the supercooled state. The supercooling release device 60 having the configuration shown in FIG. 1 and FIG. FIG. 1 is a longitudinal sectional view showing an example of the mode of the supercooling release device, and FIG. 2 is a view taken in the direction of arrows II-II in FIG.
[0044]
The supercooling release device 1 shown in FIGS. 1 and 2 has a cylindrical main body 2 vertically, and a frusto-conical shape whose diameter is reduced downward at the lower end (one end side) of the main body 2. The main body 2 has an ice discharge port 4 at the upper end (the other end side). FIG. 1 shows a preferred example in which a frusto-conical portion 3 'is also formed at the upper end of the main body 2 and an ice discharge port 4 is formed at the center of its end axis. The ice outlet 4 may be provided without the portion 3 ′, or the ice outlet 4 may be connected to the upper end of the main body 2 in a tangential direction. Further, the main body 2 may have a cone shape as a whole instead of a complete cylindrical shape.
[0045]
In the vicinity of the connecting portion 5 between the lower end of the main body 2 and the truncated conical portion 3, a supercooling water inlet 6 connected in a tangential direction is provided. It is connected to a cooling water pipe 59. Although the supercooling water inlet 6 in FIG. 1 is provided at the lower end position of the main body 2, it may be provided in the connecting portion 5 or the truncated conical portion 3. The supercooled water inlet 6 has a tip 6a projecting into the main body 2, and the tip 6a is shaped like a nozzle.
[0046]
On the other hand, a trigger substance mixing port 7 is provided in the vicinity of a connecting portion 5 between the lower end of the main body 2 and the truncated conical section 3, in FIG. Is provided with a trigger substance flow control valve 8. As described above, since the wall pressure of the main body 2 becomes negative due to the swirling flow S1 formed in the main body 2, the trigger substance 9 is sucked by the trigger substance mixing port 7 provided on the peripheral wall and naturally spontaneously. 2 will be supplied. Therefore, the trigger substance flow control valve 8 acts to regulate the supply amount of the trigger substance 9 to be sucked. Although the trigger substance mixing port 7 is shown mounted on the main body 2 in the radial direction, it may be mounted on the main body 2 in a tangential direction.
[0047]
Although FIG. 1 shows a case where the trigger substance mixing port 7 is provided on the lower peripheral wall of the main body 2, the trigger substance mixing port 7 may be provided on the peripheral wall of the truncated conical portion 3.
[0048]
Further, a trigger substance supply device 10 for supplying a trigger substance 9 composed of a gas such as air or a liquid containing ice as shown by a two-dot chain line is connected to the trigger substance mixing port 7 and installed. Is also good.
[0049]
It is preferable that the length of the main body 2 is set to a length that allows time for the supercooled state to be released in the subcooling release device 1 to completely turn into ice water at approximately 0 ° C.
[0050]
The main body 2 and the frusto-conical portion 3 are preferably made of a non-metallic material. When the main body 2 and the frusto-conical portion 3 are made of a metal material, it is preferable to form a supercooled state releasing / icing prevention layer on the inner surfaces thereof. As the supercooled state releasing and icing prevention layer, a water-repellent polymer material such as Teflon (registered trademark), vinyl, or phenol resin, a water-repellent titanium oxide film, or the like can be used. As an example, a metal cylinder body having a polyethylene lining on the inner surface can be used.
[0051]
Next, the operation of the above embodiment will be described.
[0052]
When ice is produced in the supercooling release device 1 shown in FIGS. 1 and 2, the water 56 from the pump 64 shown in FIG. It is introduced into the subcooler 54 and cooled to a subcooling temperature (for example, around -2 ° C). The supercooled water 58 cooled by the supercooler 54 is guided to the supercooled water inlet 6 of the subcooling release device 1 by the supercooled water pipe 59, and the lower end of the main body 2 and the truncated conical portion 3 Is supplied from the tangential direction to the vicinity of the connecting portion 5.
[0053]
Since the supercooling water 58 is supplied from the tangential direction by the supercooling water inlet 6 connected near the connecting portion 5 between the main body 2 and the truncated conical section 3, the supercooling water 58 turns toward the ice discharge port 4 in the main body 2. A flow S1 and a strong swirling flow S2 towards the frusto-conical section 3 are formed. At this time, since the lower end of the truncated conical portion 3 is closed and cannot flow downward, the supercooled water that has formed the strong swirling flow S2 in the truncated conical portion 3 flows inside the main body 2. Therefore, the return flow X toward the tangential introduction portion as shown in FIGS. 5 and 6 disappears, and a stable upward flow Y is formed.
[0054]
Therefore, the trigger substance 9 made of a gas such as air supplied by the trigger substance mixing port 7 or a liquid containing ice near the connecting portion 5 between the main body 2 and the frusto-conical section 3 is used. The strong swirling flow S2 therein effectively mixes with the supercooled water 58 to maximize the generation of ice inside the frustoconical portion 3. At this time, since a strong swirling flow S2 is formed inside the truncated conical portion 3, the effect of peeling off the ice is strong, and thus the problem that ice adheres and grows on the inner surface of the truncated conical portion 3 is prevented. Is done. At this time, since the tip 6a of the supercooling water inlet 6 protrudes into the inside of the main body 2 and the tip 6a has a shape sharpened in a nozzle shape, the ice Adhesion and growth can also be prevented.
[0055]
As the trigger substance 9, a gas such as air or a liquid containing ice can be used. When a gas such as air is used, handling is easy, and when a liquid containing ice is used. Can use ice water containing ice produced by an ice heat storage device.
[0056]
The strong swirling flow S2 formed in the truncated conical portion 3 flows in the main body 2 toward the ice discharge port 4 with the swirling force gradually being weakened. Mix with water 58 to maintain good ice formation. On the other hand, the trigger substance 9 supplied from the trigger substance mixing port 7 to the peripheral wall near the connecting portion 5 between the main body 2 and the truncated cone 3 is mixed with the supercooled water 58 from the outer peripheral side. Thus, the supercooled water 58 is very well mixed with the supercooled water 58. This also prevents the problem that an air column is formed when the trigger substance 9 is a gas. In addition, since bubbles and ice having a small specific gravity gradually gather toward the center of the shaft while moving toward the ice discharge port 4 in the main body 2, the supercooled state is promoted at the center of the main body 2. In the vicinity of the wall surface of the main body 2, conversely, the swirling flow gradually weakens toward the downstream, but the generation of ice also weakens, so that the problem of ice sticking and growing on the inner surface of the main body 2 is prevented. Is done. At this time, if a frusto-conical portion 3 'is also formed at the upper end of the main body 2, a strong swirling flow is formed inside the frusto-conical portion 3', and the inner surface of the frusto-conical portion 3 'is formed. The problem of adhesion and growth of ice can also be prevented.
[0057]
It is preferable that the main body 2 and the frusto-conical portion 3 are made of a non-metallic material because ice hardly adheres thereto. When the main body 2 and the frusto-conical portion 3 are made of a metal material, a water-repellent polymer material such as Teflon (registered trademark), vinyl, or phenol resin, or a water-repellent material is formed on the inner surface. It is preferable to form a layer for releasing a supercooled state and preventing icing, such as a titanium oxide film, because ice hardly adheres thereto.
[0058]
Also, as shown in FIG. 1, the truncated cone-shaped portion 3 of the main body 2 is arranged on the lower side and the ice discharge port 4 is arranged on the upper side, so that when the trigger substance 9 is a gas, bubbles are buoyant. As a result, the air column stably rises toward the upper ice discharge port 4, so that the problem of the formation of air columns is more reliably prevented, and the ice generating effect is further enhanced.
[0059]
On the other hand, as shown in FIG. 1, since the trigger substance mixing port 7 is provided on the peripheral wall near the connecting portion 5 between the main body 2 and the truncated conical portion 3, the wall pressure becomes negative due to the swirling flow S1 in the main body 2. As a result, the atmosphere can be sucked as the trigger substance 9 from the opening 7 ′ of the trigger substance mixing port 7. Therefore, the supply amount of the trigger substance 9 can be adjusted only by adjusting the opening degree of the trigger substance flow control valve 8 of the trigger substance mixing port 7, and a device and power for supplying the trigger substance 9 are omitted. Therefore, the configuration can be simplified and the operating cost can be reduced.
[0060]
Further, as described above, the supercooled state is released by the contact between the trigger substance 9 and the supercooled water 58, and ice is generated once in the frustoconical portion 3 and the main body 2, and thereafter, the generated ice nuclei are removed. Since the supercooled state is continuously released as a starting point, the supply of the trigger substance 9 may be performed only at the initial stage, and thereafter, the supply of the trigger substance 9 may be stopped.
[0061]
On the other hand, as shown by the two-dot chain line, when the trigger substance supply device 10 is connected to the trigger substance mixing port 7 and provided, the pressure due to the swirling flows S1 and S2 inside the main body 2 and the truncated conical portion 3 is increased. The trigger substance 9 can be surely supplied by the trigger substance supply device 10 even when the decrease in the temperature is small. The power of the trigger substance supply device 10 at this time may be small.
[0062]
FIG. 3 is a longitudinal sectional view showing another example of the mode of the supercooling release device according to the present invention.
[0063]
FIG. 3 shows a case where the trigger substance mixing port 7 is provided at the lower end of the frusto-conical section 3. In the case of FIG. Although provided at the axial center position of the end, the trigger substance mixing port 7 may be provided at an eccentric position. 3 are the same as those shown in FIGS. 1 and 2, and the functions and effects of the structure shown in FIG. 3 are substantially the same as those shown in FIGS. Description is omitted.
[0064]
The present invention is not limited only to the above embodiment, and various trigger substances can be used as long as the trigger substance can release a supercooled state such as a gas other than air. It goes without saying that various shapes can be selected and various changes can be made without departing from the gist of the present invention.
[0065]
【The invention's effect】
Since the present invention is configured as described above, the following excellent effects can be obtained.
[0066]
According to the first aspect of the present invention, the supercooling water is supplied to the vicinity of the connecting portion between the main body and the truncated conical portion by the supercooling water inlet connected from the tangential direction. A swirl flow toward the discharge port and a strong swirl flow toward the closed frusto-conical part are formed, so that the supply is made at the trigger substance mixing port near the junction between the main body and the frusto-conical part. The trigger material, which can be a gas such as air or a liquid containing ice, is effectively mixed with the supercooled water by the strong swirling flow in the frusto-conical portion, and inside the frusto-conical portion. Ice production is maximized. At this time, since a strong swirling flow is formed inside the frusto-conical portion, the effect of peeling off the ice is strong, and thus the problem that ice adheres and grows on the inner surface of the frusto-conical portion is prevented.
[0067]
Further, the supercooled water that has formed a strong swirling flow in the truncated conical portion flows in the main body toward the ice discharge port while gradually reducing the swirling force. Mix to maintain good ice formation. Further, the trigger substance supplied from the peripheral wall portion near the joint between the main body and the truncated conical portion by the trigger substance mixing port is mixed with the supercooled water from the outer peripheral side. The mixing is very good and the supercooled water flows towards the ice outlet without backflow, thus preventing the formation of air columns even when the trigger substance is gaseous . In addition, since bubbles and ice having a small specific gravity are gradually collected toward the center of the shaft while moving toward the ice discharge port in the main body, the release of the supercooled state is promoted at the center of the main shaft. On the contrary, the swirling flow gradually weakens toward the downstream in the vicinity of the wall surface of the main body, but the generation of ice also weakens, so that the problem of ice sticking and growing on the inner surface of the main body is prevented.
[0068]
According to the second aspect of the present invention, since the truncated conical portion of the main body is disposed on the lower side and the ice discharge port is on the upper side, when the trigger substance is a gas, the bubbles are buoyant. As a result, the air column stably rises toward the upper ice discharge port, so that the problem of forming an air column is further prevented, and the ice generating effect is further enhanced.
[0069]
According to the third aspect of the present invention, the trigger substance mixing port is attached to a peripheral wall near a connecting portion between the main body and the truncated conical portion, and the wall pressure becomes negative due to the swirling flow in the main body, thereby releasing the trigger substance. Since the suction is performed through the trigger substance mixing port, a device and power for supplying the trigger substance are not required, so that the configuration can be simplified and the operation cost can be reduced.
[0070]
According to the fourth aspect of the present invention, since the trigger substance mixing port is provided at the end of the frusto-conical part, the trigger substance can be supplied from the end of the frusto-conical part.
[0071]
According to the fifth aspect of the present invention, since the trigger substance supply port is provided with the trigger substance supply apparatus, the trigger substance supply apparatus is provided even when the pressure drop due to the swirling flow inside the main body and the truncated cone is small. The trigger substance can be reliably supplied, and the power of the trigger substance supply device at this time can be reduced.
[0072]
According to the invention described in claim 6, since a gas such as air is used as the trigger substance, handling is easy.
[0073]
According to the seventh aspect of the present invention, since a liquid containing ice is used as the trigger substance, ice water containing ice produced by the ice heat storage device can be used as the trigger substance.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a mode of a subcooling release device provided in an ice heat storage device of the present invention.
FIG. 2 is a view in the direction of arrows II-II in FIG.
FIG. 3 is a longitudinal sectional view showing another example of the mode of the subcooling release device according to the present invention.
FIG. 4 is a block diagram showing a schematic configuration of a general ice heat storage device.
FIG. 5 is a longitudinal sectional view showing an example of a conventional supercooling release device.
FIG. 6 is a longitudinal sectional view showing another example of the conventional supercooling release device.
[Explanation of symbols]
1 Subcooling release device
2 body
3 frustoconical part
4 Ice outlet
5 Connecting part
6 Supercooling water inlet
7 Trigger substance mixing port
8 Trigger substance flow control valve
9 Trigger substance
10 Trigger substance supply device
58 Supercooled water
61 Ice

Claims (7)

過冷却解除装置に過冷却水を供給して氷を製造する氷蓄熱装置であって、前記過冷却解除装置が、略筒形の本体と、該本体の一端側において徐々に縮径するよう形成した截頭円錐形部と、本体の他端側に形成した氷排出口と、本体と截頭円錐形部との繋ぎ部近傍において接線方向に接続した過冷却水導入口と、該過冷却水導入口の近傍位置にトリガー物質を供給するようにしたトリガー物質混入口と、を備えたことを特徴とする氷蓄熱装置。An ice heat storage device for producing ice by supplying supercooling water to a supercooling canceling device, wherein the supercooling canceling device is formed to have a substantially cylindrical main body and a diameter gradually reduced at one end side of the main body. A frusto-conical section, an ice discharge port formed on the other end of the main body, a supercooling water inlet port tangentially connected near a joint between the main body and the frusto-conical section, An ice heat storage device comprising: a trigger substance mixing port configured to supply a trigger substance to a position near an inlet. 前記本体の截頭円錐形部が下側に、氷排出口が上側になるように配置されていることを特徴とする請求項1記載の氷蓄熱装置。2. The ice heat storage device according to claim 1, wherein the frusto-conical portion of the main body is disposed on a lower side, and an ice discharge port is on an upper side. 前記トリガー物質混入口が、本体と截頭円錐形部との繋ぎ部近傍の周壁に備えられ、本体内の旋回流により壁圧が負圧になることによってトリガー物質混入口からトリガー物質を吸引するようにしてあり、前記トリガー物質混入口にトリガー物質流量調節弁を備えていることを特徴とする請求項1又は2に記載の氷蓄熱装置。The trigger substance mixing port is provided on a peripheral wall near a connecting portion between the main body and the truncated conical portion, and the trigger substance is sucked from the trigger substance mixing port by the wall pressure becoming negative due to the swirling flow in the main body. 3. The ice heat storage device according to claim 1, wherein a trigger substance flow control valve is provided at the trigger substance mixing port. 前記トリガー物質混入口が、截頭円錐形部の端部に設けられていることを特徴とする請求項1又は2に記載の氷蓄熱装置。The ice heat storage device according to claim 1, wherein the trigger substance mixing port is provided at an end of the frustoconical portion. 前記トリガー物質混入口に、トリガー物質供給装置を備えたことを特徴とする請求項1〜4のいずれか1つに記載の氷蓄熱装置。The ice heat storage device according to any one of claims 1 to 4, wherein a trigger substance supply device is provided at the trigger substance mixing port. 前記トリガー物質が気体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置。The ice heat storage device according to any one of claims 1 to 5, wherein the trigger substance is a gas. 前記トリガー物質が氷を含む液体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置。The ice thermal storage device according to any one of claims 1 to 5, wherein the trigger substance is a liquid containing ice.
JP2003149088A 2002-06-25 2003-05-27 Ice heat storage device Expired - Fee Related JP4214837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149088A JP4214837B2 (en) 2002-06-25 2003-05-27 Ice heat storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002185176 2002-06-25
JP2003149088A JP4214837B2 (en) 2002-06-25 2003-05-27 Ice heat storage device

Publications (2)

Publication Number Publication Date
JP2004085181A true JP2004085181A (en) 2004-03-18
JP4214837B2 JP4214837B2 (en) 2009-01-28

Family

ID=32071631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149088A Expired - Fee Related JP4214837B2 (en) 2002-06-25 2003-05-27 Ice heat storage device

Country Status (1)

Country Link
JP (1) JP4214837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070072A (en) * 2006-09-15 2008-03-27 Taikisha Ltd Supercooling releasing device
JP2014119210A (en) * 2012-12-18 2014-06-30 Takasago Thermal Eng Co Ltd Supercooling release device and ice maker
CN106152340A (en) * 2015-04-28 2016-11-23 深圳市绿旭节能有限公司 Closed type supercooling release device
JP2017036912A (en) * 2016-10-24 2017-02-16 高砂熱学工業株式会社 Ice making device and ice making method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679654B (en) * 2012-05-16 2014-07-09 广州鑫誉蓄能科技有限公司 Supercooling disable device utilizing high-pressure water jet mode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070072A (en) * 2006-09-15 2008-03-27 Taikisha Ltd Supercooling releasing device
JP4664884B2 (en) * 2006-09-15 2011-04-06 株式会社大気社 Supercooler release
JP2014119210A (en) * 2012-12-18 2014-06-30 Takasago Thermal Eng Co Ltd Supercooling release device and ice maker
CN106152340A (en) * 2015-04-28 2016-11-23 深圳市绿旭节能有限公司 Closed type supercooling release device
JP2017036912A (en) * 2016-10-24 2017-02-16 高砂熱学工業株式会社 Ice making device and ice making method

Also Published As

Publication number Publication date
JP4214837B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US7228690B2 (en) Thermal storage apparatus
US5216890A (en) Device for and method of producing hyperfine frozen particles
JP2004085181A (en) Ice heat storage device
US6328631B1 (en) Method and apparatus for surface processing using ice slurry
KR100774604B1 (en) Method and system for making ice by underwater supercooling release and low temperature water supply system comprising it
SE503381C2 (en) Method and apparatus for making artificial snow
US5909844A (en) Water atomizing nozzle for snow making machine
JP4236232B2 (en) Ice slurry surface processing method and apparatus
JP4507224B2 (en) Ice making device and ice making method by releasing subcooling in water
JP2811271B2 (en) Ice making equipment
JP2006234275A (en) Air refrigerant type refrigerating machine
JP3338657B2 (en) Ice making equipment
US4911362A (en) Method and apparatus for making carbon dioxide snow
JP2005111575A (en) Co2 snow jetting device and co2 snow jetting method
JP2003056951A (en) Ice slurry continuous making method and continuous ice making heat storage system therefor
JP2007322073A (en) Icemaker
JP5066875B2 (en) Prevention of propagation of ice on the wall
JP2007163069A (en) Ice making method and ice making apparatus using supercooled water
JP5016857B2 (en) Dry ice snow generator
JPH04110577A (en) Ice making device
WO2022075855A1 (en) A snowmaking nozzle
JPS61295442A (en) Refrigerant supplier in heat-accumulating type room cooling device
JPH07280402A (en) Vacuum ice-making apparatus
JPH0498064A (en) Ice making method and ice heat accumulative device
JPH02309165A (en) Manufacturing device for substantially spherical particle ice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees