JP4214837B2 - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JP4214837B2
JP4214837B2 JP2003149088A JP2003149088A JP4214837B2 JP 4214837 B2 JP4214837 B2 JP 4214837B2 JP 2003149088 A JP2003149088 A JP 2003149088A JP 2003149088 A JP2003149088 A JP 2003149088A JP 4214837 B2 JP4214837 B2 JP 4214837B2
Authority
JP
Japan
Prior art keywords
ice
main body
supercooling
trigger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003149088A
Other languages
Japanese (ja)
Other versions
JP2004085181A (en
Inventor
尚一郎 馬場
勝規 伊藤
亮 秋吉
政義 堀
正人 小熊
建樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003149088A priority Critical patent/JP4214837B2/en
Publication of JP2004085181A publication Critical patent/JP2004085181A/en
Application granted granted Critical
Publication of JP4214837B2 publication Critical patent/JP4214837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Confectionery (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過冷却解除装置が簡単な構成及び低い運転コストで過冷却状態を確実に解除することができ、しかも過冷却解除装置内に氷が付着・成長する問題を防止するようにした氷蓄熱装置に関するものである。
【0002】
【従来の技術】
従来の氷蓄熱装置としては、図4に示す構成のものが知られている。この氷蓄熱装置は、圧縮機51と凝縮器52等からなる冷凍機53と、蒸発器として作用する過冷却器54とを備えている。過冷却器54は、例えば外管と内管から構成されており、水導入管55からの水56を内管に供給し、前記冷凍機53からの冷媒57を外管の内部に給排することにより、水56を例えば−2℃前後の過冷却温度に冷却するようにしている。上記冷凍機53及び過冷却器54としては上記以外にも種々の形式のものが提案されている。
【0003】
過冷却器54で過冷却状態に冷却された過冷却水58は、過冷却水配管59により過冷却解除装置60に送られて過冷却状態が解除され、過冷却状態の維持に必要な冷熱量が製氷潜熱に転換されて氷61が生成される。この氷61は粒状を有して過冷却水とともに流動可能なシャーベット状を呈しておりダイナミック氷と称されている。過冷却水58は、一般的に過冷却度が大きいほど過冷却状態が解除され易いが、一定過冷却度の範囲内で、且つ静止状態の下では、安定的に過冷却状態が維持される。しかし、衝撃、振動、流水の乱れ等の変化が作用すると容易に過冷却状態は解除される。
【0004】
従って、前記過冷却解除装置60としては、このような特性を利用して、例えば、過冷却水の流れの中に衝突板を設けて衝撃により過冷却状態を解除する衝突板方式、過冷却水の中に高速回転するプロペラを設けてキャビテーションにより過冷却状態を解除するプロペラ方式、過冷却水を箱で受けて電子冷却することにより過冷却状態を解除する局所冷却方式、超音波発信機によるキャビテーションを過冷却水に与えて過冷却状態を解除する超音波方式等が提案されている。
【0005】
過冷却解除装置60にて生成された氷61は、蓄熱タンク62に供給されて貯蔵される。そして、前記蓄熱タンク62内の水はフィルター63等を介してポンプ64により外部に取出され、更にこの水56は温度調節器65によって例えば0.5℃程度に温度が調節された後、水導入管55により再び過冷却器54に送られる。
【0006】
前記した過冷却解除装置60は、過冷却水58の過冷却状態を解除して氷を生成させるものであるため、生成した氷が過冷却解除装置60の内面や可動部等に付着・成長する問題が常にあり、このために過冷却解除装置60の運転が不能になる場合がある。
【0007】
従って、過冷却解除装置60の内面等に氷が付着・成長する問題を低減する方法として、前記したように過冷却水58に機械的或いは超音波等による衝撃を与えて過冷却状態を解除するのではなく、過冷却水58に種氷或いは気泡等の過冷却状態の解除を誘発するトリガー物質(引き金)を混合させて、過冷却水58中でこのトリガー物質を起点として過冷却状態を解除させる方法が提案されている。
【0008】
このような過冷却解除装置としては、截頭円錐形状を有する本体の大径側端部の軸中心から過冷却水を導入し、同時に大径側端部に接線方向から種氷又は気体を副流水とともに導入して副流水の旋回流によって過冷却解除を行うことにより氷を生成させ、その後は種氷又は気体の供給を停止し、生成した氷によって過冷却の自己解除を行わせるようにしたものがある(例えば、特許文献1参照)。
【0009】
又、円筒状の本体の上端に接線方向の過冷却水導入口を設け、下端には氷出口を設け、過冷却水導入口から過冷却水を導入して本体内に過冷却水による旋回流を形成させ、更に、本体の上端の軸心位置には、内部に冷媒を給排して冷却することにより過冷却状態の解除を開始させるようにした解除開始部を、下端が本体内に突出するように設け、且つ前記過冷却水導入口に連通する過冷却水配管の途中に、空気等を吹き込むための気体供給装置を接続したものがある(例えば、特許文献2参照)。
【0010】
【特許文献1】
特開2002−13846号公報
【特許文献2】
特開平06−74498号公報
【0011】
【発明が解決しようとする課題】
前記特許文献1では、図5に示す如き構成の過冷却解除装置60Aを示している。図5の過冷却解除装置60Aは、上端から下端に向けて縮径した截頭円錐形状を有する本体66の上端の軸中心に、図4の過冷却水配管59に接続された過冷却水導入口67を設け、下端には氷排出口68を設け、又、上端の外周には接線方向に接続した副流水導入口69を設けている。この副流水導入口69には、図4の蓄熱タンク62の氷を含む水を副流水ポンプ70により取出して副流水71として導くようにした副流水配管72を接続している。更に、前記副流水導入口69に接続される副流水配管72には、例えば空気を吹き込むための気体供給装置73が接続されている。
【0012】
図5の過冷却解除装置60Aを備えた氷蓄熱装置では、図4の副流水ポンプ70を駆動して蓄熱タンク62の氷を含む水を副流水配管72により副流水71として副流水導入口69から本体66内に接線方向から供給し、本体66内に旋回流を形成させる。この状態で、ポンプ64により蓄熱タンク62の水56をフィルター63を介して外部に取出し、温度調節器65により例えば0.5℃の温度に調節した後過冷却器54に導入して過冷却温度(例えば−2℃前後)に冷却し、冷却した過冷却水58を過冷却水配管59により過冷却解除装置60Aの過冷却水導入口67から本体66の軸中心に供給する。図5の本体66の軸中心に供給された過冷却水58は、旋回している副流水と衝突混合し、副流水内の種氷と接触することによりこれを起点として過冷却状態が解除されて氷を生成し、生成した氷は水と共に氷排出口68から蓄熱タンク62に供給される。
【0013】
上記したようなサイクロン式の過冷却解除装置60Aにおいて氷を安定して製造するためには、本体66内部で確実に過冷却状態を解除させること、及び本体66の内部で生成される氷を本体66の内面に付着・成長させないことが重要である。
【0014】
しかし、上記したように副流水71内の種氷を起点として過冷却状態を確実に解除させるために副流水71による旋回速度を高めても、副流水導入口69から本体66内の上端に供給された副流水71は旋回して下方に流動することになるために、本体66内の上端中心部には旋回流が弱まる部分が生じる。このとき、副流水導入口69にて本体66内に供給される副流水71中の氷或いは気体は、副流水導入口69から出た直後の過冷却水58と接触して氷を生成させるために、前記旋回流が弱まっている部分で生成した氷が過冷却水導入口67の出口近傍に付着・成長する問題がある。
【0015】
又、図5の装置においては、旋回速度が低いと本体66の内面に氷が付着・成長する問題がある。この問題を防止するためには、副流水導入口69から本体66内に吹き込む副流水71の流量を増加して旋回流速を高めることによって本体66内面の氷を剥ぎ取る効果を期待することも考えられる。しかし、このように副流水71の流量を増加した場合には、本体66に供給できる過冷却水58の流量が減少し、このために氷の製造能力が低下してしまう問題がある。
【0016】
更に、図5の装置では、副流水71を過冷却解除装置60Aに供給するための副流水ポンプ70及び蓄熱タンク62の氷水を導くための長い副流水配管72が必要となるために構成が複雑且つ大掛かりになる問題があり、更に副流水ポンプ70の運転コストも増加する問題がある。
【0017】
又、過冷却状態の解除を確実に行わせるために、副流水71に気体供給装置73を介して例えば空気によるトリガー物質を混入することが考えられているが、図5では下側に向かう旋回流を形成させるために、本体66の内部に上側に向かう引戻し流Xが発生し、この引戻し流Xが気泡に働く浮力の方向と同じであるために、供給された空気が本体66の軸中心上に集められて気柱74を形成してしまう。過冷却水中に気泡が混在している場合にはこの気泡が過冷却状態の解除に寄与することになるが、前記したような気柱74が形成されてしまうと有効な過冷却状態の解除効果が期待できない。従って、気体供給装置73によって空気を混入しても、本体66内において気泡による過冷却状態の解除を完了させることができない。
【0018】
一方、前記特許文献2では、上記図5とは異なる図6に示す如き構成の過冷却解除装置60Bを示している。図6のサイクロン式の過冷却解除装置60Bは、円筒状の本体75の上端の外周には接線方向の過冷却水導入口76を配置して前記過冷却水配管59(図4参照)に接続しており、又、下端には氷出口77を設けており、過冷却水導入口76から過冷却水58を導入することによって本体75内に過冷却水58による旋回流を形成させるようにしている。
【0019】
更に、本体75の上端の軸心位置には、内部に冷媒を給排して冷却することにより過冷却状態の解除を開始させるようにした解除開始部78を、下端が本体75内に突出するように設けている。又、前記過冷却水配管59の途中には、過冷却水58に例えば空気を吹き込むための気体供給装置73を接続している。
【0020】
上記過冷却解除装置60Bを備えた氷蓄熱装置では、図4のポンプ64により蓄熱タンク62から取出して温度調節器65により例えば0.5℃の温度に調節した水56を、過冷却器54に導入して過冷却温度(例えば−2℃前後)に冷却した後、過冷却水58を過冷却水配管59により過冷却解除装置60Bの過冷却水導入口76から本体75の上端に接線方向から供給し、これによって本体75の内部に下方に向かう旋回流を形成している。本体75内に供給された過冷却水58は、本体75の上端に設けた解除開始部78による冷却によって過冷却状態の解除が開始され、且つ過冷却水58の旋回によって過冷却状態の解除が完了されるようにしている。更に、副流水71に気体供給装置73を介し例えば空気によるトリガー物質を混入することによっても、過冷却状態の解除を完了させるようにしている。
【0021】
しかし、上記図6に示したサイクロン式の過冷却解除装置60Bにおいても、氷を安定して製造するために、本体75の内部で確実に過冷却状態を解除させること、及び本体75の内部で生成する氷が本体75の内面に付着・成長しないようにすることは重要であるが、解除開始部78において冷媒で冷却することによって過冷却状態の解除を開始させるようにしているために、この解除開始部78の運転が非常に難しく、冷却し過ぎると直ちに解除開始部78を起点として氷が付着・成長するという問題がある。
【0022】
更に、前記解除開始部78は冷凍機の冷媒を供給して冷却するために非常に複雑な構造を有しており、しかも冷凍機を運転するために運転コストも増加するという問題がある。
【0023】
又、過冷却水配管59の途中に気体供給装置73を設けて空気を混入しているが、過冷却水配管59の途中で空気を混入すると混入部で直ちに部分的な過冷却状態の解除が開始されてしまい、これによって生成した氷が、過冷却水配管59や過冷却水導入口76及び本体75の内面に接触して付着・成長する問題がある。
【0024】
更に、サイクロン式の過冷却解除装置60Bの場合においても、下側に向かう旋回流が形成される構造であるために本体66の内部に上側に向かう引戻し流Xが発生し、この引戻し流Xが気泡に働く浮力の方向と同じであるために、供給された空気が本体66の軸中心に集められて気柱74を形成してしまい、このために、気体供給装置73にて空気を混入しても、本体66内において気泡による過冷却状態の解除を完了させることができない。
【0025】
本発明は、上記したような従来の技術に存在する問題点に着目してなしたものであり、過冷却解除装置が簡単な構成及び低い運転コストで過冷却状態を確実に解除でき、しかも過冷却解除装置内に氷が付着・成長する問題を防止できる氷蓄熱装置を提供することを目的とする。
【0026】
【課題を解決するための手段】
請求項1記載の発明は、過冷却解除装置に過冷却水を供給して氷を製造する氷蓄熱装置であって、前記過冷却解除装置が、略筒形の本体と、該本体の一端側において徐々に縮径して閉塞された截頭円錐形部と、本体の他端側に形成した氷排出口と、本体と截頭円錐形部との繋ぎ部近傍において接線方向に接続し、接線方向から過冷却水を導入して本体内の氷排出口に向かう旋回流と截頭円錐形部内に向かう前記旋回流より強い旋回流とを形成するようにした過冷却水導入口と、該過冷却水導入口の近傍位置にトリガー物質を供給するようにしたトリガー物質混入口と、を備えたことを特徴とする氷蓄熱装置、に係るものである。
【0027】
請求項2に記載の発明は、前記本体の截頭円錐形部が下側に、氷排出口が上側になるように配置されていることを特徴とする請求項1記載の氷蓄熱装置、に係るものである。
【0028】
請求項3に記載の発明は、前記トリガー物質混入口が、本体と截頭円錐形部との繋ぎ部近傍の周壁に備えられ、本体内の旋回流により壁圧が負圧になることによってトリガー物質混入口からトリガー物質を吸引するようにしてあり、前記トリガー物質混入口にトリガー物質流量調節弁を備えていることを特徴とする請求項1又は2に記載の氷蓄熱装置、に係るものである。
【0029】
請求項4に記載の発明は、前記トリガー物質混入口が、截頭円錐形部の端部に設けられていることを特徴とする請求項1又は2に記載の氷蓄熱装置、に係るものである。
【0030】
請求項5に記載の発明は、前記トリガー物質混入口に、トリガー物質供給装置を備えたことを特徴とする請求項1〜4のいずれか1つに記載の氷蓄熱装置、に係るものである。
【0031】
請求項6に記載の発明は、前記トリガー物質が気体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置、に係るものである。
【0032】
請求項7に記載の発明は、前記トリガー物質が氷を含む液体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置、に係るものである。
【0033】
上記手段によれば、次の如く作用する。
【0034】
請求項1に記載の発明では、本体と截頭円錐形部との繋ぎ部近傍に接線方向から接続した過冷却水導入口によって過冷却水を供給するようにしたので、本体内に氷排出口に向かう旋回流と閉塞された截頭円錐形部内に向かう強い旋回流とが形成されるようになり、よって本体と截頭円錐形部との繋ぎ部近傍にトリガー物質混入口にて供給される空気等の気体、或いは氷を含む液体からなるトリガー物質は、截頭円錐形部内の強い旋回流によって過冷却水と効果的に混合されるようになり、截頭円錐形部の内部において氷の生成が最大限に行われる。このとき截頭円錐形部の内部には強い旋回流が形成されているので、氷を剥ぎ取る効果が強く、よって截頭円錐形部の内面に氷が付着・成長する問題は防止される。
【0035】
更に、截頭円錐形部内で強い旋回流を形成した過冷却水は本体内を氷排出口に向かって徐々に旋回力を弱めながら流動することになるが、この間にもトリガー物質と過冷却水とが混合して良好な氷の生成を維持する。更に、トリガー物質混入口によって前記本体と截頭円錐形部との繋ぎ部近傍の周壁部から供給されるトリガー物質は、過冷却水に対して外周側から混合されるので、過冷却水との混合が非常に良好に行われるようになり、更に過冷却水が引戻し流を生じさせることなく氷排出口に向かって流動するので、トリガー物質が気体の場合においても、気柱の形成が防止される。又、気泡及び比重の小さい氷は本体内を氷排出口に向かって移動する間に徐々に軸中心側に集められることになるために、本体の軸中心部では過冷却状態の解除が促進されて解除が完了し、逆に本体の壁面近傍では下流に向かって旋回流が徐々に弱まることになるが氷の生成も弱まるので、本体の内面に氷が付着・成長する問題は防止される。
【0036】
請求項2に記載の発明では、本体の截頭円錐形部が下側に、氷排出口が上側になるように配置しているので、トリガー物質が気体の場合には、気泡が浮力の作用を受けて上側の氷排出口に向けて安定して上昇するようになり、よって気柱を形成する問題が更に防止され、氷の生成効果が更に高められる。
【0037】
請求項3に記載の発明では、前記トリガー物質混入口を本体と截頭円錐形部との繋ぎ部近傍の周壁に取付け、本体内の旋回流によって壁圧が負圧になることによりトリガー物質をトリガー物質混入口から吸引させるようにしているので、トリガー物質を供給するための装置と動力を必要とせず、よって構成の簡略化と運転コストの低減が図れる。
【0038】
請求項4に記載の発明では、トリガー物質混入口を截頭円錐形部の端部に設けているので、截頭円錐形部の端部からトリガー物質を供給することができる。
【0039】
請求項5に記載の発明では、前記トリガー物質混入口にトリガー物質供給装置を備えたので、本体及び截頭円錐形部の内部の旋回流による圧力の低下が少ない場合にもトリガー物質供給装置によってトリガー物質を確実に供給することができ、又、このときのトリガー物質供給装置の動力は小さくできる。
【0040】
請求項6に記載の発明では、前記トリガー物質に空気等の気体を用いているので、取扱いが容易である。
【0041】
請求項7に記載の発明では、トリガー物質に氷を含む液体を用いているので、氷蓄熱装置で製造した氷を含む氷水をトリガー物質として用いることができる。
【0042】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0043】
図4に示した如く、過冷却器54に水56を導入して過冷却状態に冷却した過冷却水58を過冷却解除装置60に供給して過冷却状態を解除することにより氷61を製造するようにしている氷蓄熱装置において、前記過冷却解除装置60として図1、図2に示す構成の過冷却解除装置1を備える。図1は過冷却解除装置の形態の一例を示す縦断面図、図2は図1のII−II方向矢視図である。
【0044】
図1、図2に示す過冷却解除装置1は、筒形の本体2を鉛直に有しており、該本体2の下端(一端側)には下側に向かって縮径した截頭円錐形部3を形成し、又、本体2の上端(他端側)には氷排出口4を備えている。図1では本体2の上端にも截頭円錐形部3’を形成してその端部軸中心に氷排出口4を形成するようした好適な例の場合を示しているが、截頭円錐形部3’を備えることなしに氷排出口4を設けたり、或いは本体2の上端に接線方向に氷排出口4を接続するようにしてもよい。又、前記本体2は完全な筒形ではなく全体がコーン状を有していてもよい。
【0045】
前記本体2の下端と截頭円錐形部3との繋ぎ部5の近傍には、接線方向に接続した過冷却水導入口6を設けており、該過冷却水導入口6は図4の過冷却水配管59に接続している。尚、図1の過冷却水導入口6は本体2の下端位置に設けているが、繋ぎ部5或いは截頭円錐形部3に設けてもよい。前記過冷却水導入口6は、その先端6aが本体2の内部に突出しており、且つその先端6aはノズル状に尖った形状となっている。
【0046】
一方、前記本体2の下端と截頭円錐形部3との繋ぎ部5の近傍、図1では本体2の下端の周壁に、トリガー物質混入口7を設けており、該トリガー物質混入口7にはトリガー物質流量調節弁8を設けている。前記したように、本体2内に形成される旋回流S1によって本体2の壁圧が負圧になるために、周壁に設けられたトリガー物質混入口7によってトリガー物質9が吸引されて自然に本体2内に供給されるようになる。従って、トリガー物質流量調節弁8は吸引されるトリガー物質9の供給量を調節するように作用する。トリガー物質混入口7は本体2に対して半径方向に取付けた場合を示しているが、本体2に対して接線方向に取付けてもよい。
【0047】
又、図1では、トリガー物質混入口7を本体2の下端周壁に設けた場合について図示したが、トリガー物質混入口7を截頭円錐形部3の周壁に設けるようしてもよい。
【0048】
更に、前記トリガー物質混入口7には、二点鎖線で示す如く空気等の気体、或いは氷を含む液体からなるトリガー物質9を供給するようにしたトリガー物質供給装置10を接続して設置してもよい。
【0049】
前記本体2の長さは、過冷却解除装置1内で過冷却状態が解除して完全に略0℃の氷水になるまでの時間が取れる長さに設定するのが好ましい。
【0050】
前記本体2及び截頭円錐形部3は非金属材料にて構成することが好ましい。又、本体2及び截頭円錐形部3を金属材料で構成する場合にはその内面に過冷却状態解除兼着氷防止層を形成しておくことが好ましい。過冷却状態解除兼着氷防止層としては、テフロン(登録商標)、ビニール、フェノール樹脂等の撥水性を有する高分子系材料、或いは撥水性を有するチタン酸化被膜等を用いることができる。一例としては金属筒体の内面にポリエチレンライニングしたものを用いることができる。
【0051】
次に上記形態例の作用を説明する。
【0052】
図1、図2の過冷却解除装置1において氷を製造する際には、図4のポンプ64からの水56を温度調節器65により例えば0.5℃の温度に調節し、この水56を過冷却器54に導入して過冷却温度(例えば−2℃前後)に冷却する。そして、過冷却器54によって冷却された過冷却水58は、過冷却水配管59により過冷却解除装置1の過冷却水導入口6に導かれ、本体2の下端と截頭円錐形部3との繋ぎ部5の近傍に接線方向から供給される。
【0053】
過冷却水58は、本体2と截頭円錐形部3との繋ぎ部5近傍に接続された過冷却水導入口6により接線方向から供給するので、本体2内の氷排出口4に向かう旋回流S1と截頭円錐形部3内に向かう強い旋回流S2とが形成される。このとき、截頭円錐形部3の下端は閉塞されていて下方に流動することができないために、截頭円錐形部3内で強い旋回流S2を形成した過冷却水は、本体2内側に向かって流動するようになり、よって図5、図6に示したような接線方向の導入部に向かう引戻し流Xは消失し、安定した上昇流Yが形成されるようになる。
【0054】
従って、本体2と截頭円錐形部3との繋ぎ部5近傍にトリガー物質混入口7によって供給される空気等の気体、或いは氷を含む液体からなるトリガー物質9は、截頭円錐形部3内の強い旋回流S2によって過冷却水58と効果的に混合され、截頭円錐形部3の内部において氷の生成が最大限に行われるようになる。このとき、截頭円錐形部3の内部には強い旋回流S2が形成されるので、氷を剥ぎ取る効果が強く、よって截頭円錐形部3の内面に氷が付着・成長する問題は防止される。このとき、前記過冷却水導入口6の先端6aが本体2の内部に突出し、且つその先端6aがノズル状に尖らせた形状を有しているので、過冷却水導入口6への氷の付着・成長も防ぐことができる。
【0055】
前記トリガー物質9としては、空気等の気体或いは氷を含む液体等を用いることができ、空気等の気体を用いた場合には取扱いが容易であり、又、氷を含む液体を用いた場合には、氷蓄熱装置で製造した氷を含む氷水を利用することができる。
【0056】
前記截頭円錐形部3内に形成された強い旋回流S2は、本体2内を氷排出口4に向かって徐々に旋回力を弱められて流動するが、この間にもトリガー物質9と過冷却水58とは混合を行って良好な氷の生成を維持する。一方、トリガー物質混入口7から前記本体2と截頭円錐形部3との繋ぎ部5近傍の周壁部に供給されるトリガー物質9は、過冷却水58に対して外周側から混合されることになるので、過冷却水58に対して非常に良好に混合されるようになり、このことからもトリガー物質9が気体の場合に気柱が形成される問題を防止できる。又、気泡及び比重の小さい氷は本体2内を氷排出口4に向かって移動する間に徐々に軸中心側に集まることになるために本体2の軸中心部では過冷却状態の解除が促進されて解除が完了し、逆に本体2の壁面近傍では下流に向かって旋回流が徐々に弱まることになるが氷の生成も弱まるので、本体2の内面に氷が付着・成長する問題は防止される。このとき、本体2の上端部にも截頭円錐形部3’を形成すると、該截頭円錐形部3’の内部に強い旋回流を形成させて、截頭円錐形部3’の内面に氷が付着・成長する問題も防止できる。
【0057】
前記本体2及び截頭円錐形部3は非金属材料で構成すると氷が付着し難くなるので好ましい。又、本体2及び截頭円錐形部3を金属材料で構成する場合には、その内面に、テフロン(登録商標)、ビニール、フェノール樹脂等の撥水性を有する高分子系材料、或いは撥水性を有するチタン酸化被膜等の過冷却状態解除兼着氷防止層を形成しておくと、氷が付着し難くなるので好適である。
【0058】
又、図1に示す如く、本体2の截頭円錐形部3が下側に、氷排出口4が上側になるように配置したことによって、トリガー物質9が気体の場合には、気泡が浮力の作用を受けて上側の氷排出口4に向けて安定して上昇するようになるので、気柱が形成される問題が更に確実に防止され、氷の生成効果が更に高められる。
【0059】
一方、図1に示す如く、本体2と截頭円錐形部3との繋ぎ部5近傍の周壁にトリガー物質混入口7を設けたので、本体2内の旋回流S1により壁圧が負圧になることによってトリガー物質混入口7の開口7’から大気をトリガー物質9として吸引することができる。従って、トリガー物質混入口7のトリガー物質流量調節弁8の開度を調節するのみで、トリガー物質9の供給量を調節することができ、トリガー物質9を供給するための装置と動力を省略することができ、よって構成の簡略化と運転コストの低減を図ることができる。
【0060】
又、上記したようにトリガー物質9と過冷却水58とが接触して過冷却状態が解除され、截頭円錐形部3及び本体2内で一旦氷が生成すると、以後は生成した氷核を起点として連続的に過冷却状態が解除されるようになるので、トリガー物質9の供給は初期のみに行い、以後はトリガー物質9の供給を停止するようにしてもよい。
【0061】
一方、二点鎖線で示すように、トリガー物質混入口7にトリガー物質供給装置10を接続して備えた場合には、本体2及び截頭円錐形部3の内部の旋回流S1,S2による圧力の低下が少ない場合にも、トリガー物質供給装置10によってトリガー物質9を確実に供給することができる。このときのトリガー物質供給装置10の動力は小さくてよい。
【0062】
図3は、本発明における過冷却解除装置の形態の他の例を示す縦断面図である。
【0063】
図3は、トリガー物質混入口7を截頭円錐形部3の下端の端部に設けた場合を示したものであり、図3の場合ではトリガー物質混入口7を截頭円錐形部3の端部の軸中心位置に設けているが、トリガー物質混入口7を偏心した位置に設けるようにしてもよい。又、図3のその他の構成については前記図1、図2に示した構成と同一であり、図3の構成が奏する作用効果も前記図1、図2の場合と略同等であるので詳細な説明は省略する。
【0064】
尚、本発明は上記形態例にのみ限定されるものではなく、トリガー物質としては空気以外のガス等の過冷却状態を解除できるものであれば種々のものを用い得ること、トリガー物質混入口の形状は種々選定し得ること、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0065】
【発明の効果】
本発明は、以上のように構成されているため、次のような優れた効果を奏し得る。
【0066】
請求項1に記載の発明によれば、本体と截頭円錐形部との繋ぎ部近傍に接線方向から接続した過冷却水導入口によって過冷却水を供給するようにしたので、本体内に氷排出口に向かう旋回流と閉塞された截頭円錐形部内に向かう強い旋回流とが形成されるようになり、よって本体と截頭円錐形部との繋ぎ部近傍にトリガー物質混入口にて供給される空気等の気体、或いは氷を含む液体からなるトリガー物質は、截頭円錐形部内の強い旋回流によって過冷却水と効果的に混合されるようになり、截頭円錐形部の内部において氷の生成が最大限に行われる。このとき截頭円錐形部の内部には強い旋回流が形成されているので、氷を剥ぎ取る効果が強く、よって截頭円錐形部の内面に氷が付着・成長する問題は防止される。
【0067】
更に、截頭円錐形部内で強い旋回流を形成した過冷却水は本体内を氷排出口に向かって徐々に旋回力を弱めながら流動することになるが、この間にもトリガー物質と過冷却水とが混合して良好な氷の生成を維持する。更に、トリガー物質混入口によって前記本体と截頭円錐形部との繋ぎ部近傍の周壁部から供給されるトリガー物質は、過冷却水に対して外周側から混合されるので、過冷却水との混合が非常に良好に行われるようになり、更に過冷却水が引戻し流を生じることなく氷排出口に向かって流動するので、トリガー物質が気体の場合においても、気柱の形成が防止される。又、気泡及び比重の小さい氷は本体内を氷排出口に向かって移動する間に徐々に軸中心側に集められることになるために、本体の軸中心部では過冷却状態の解除が促進されて解除が完了し、逆に本体の壁面近傍では下流に向かって旋回流が徐々に弱まることになるが氷の生成も弱まるので、本体の内面に氷が付着・成長する問題は防止される。
【0068】
請求項2に記載の発明では、本体の截頭円錐形部が下側に、氷排出口が上側になるように配置しているので、トリガー物質が気体の場合には、気泡が浮力の作用を受けて上側の氷排出口に向けて安定して上昇するようになり、よって気柱を形成する問題が更に防止され、氷の生成効果が更に高められる。
【0069】
請求項3に記載の発明では、前記トリガー物質混入口を本体と截頭円錐形部との繋ぎ部近傍の周壁に取付け、本体内の旋回流によって壁圧が負圧になることによりトリガー物質をトリガー物質混入口から吸引させるようにしているので、トリガー物質を供給するための装置と動力を必要とせず、よって構成の簡略化と運転コストの低減が図れる。
【0070】
請求項4に記載の発明では、トリガー物質混入口を截頭円錐形部の端部に設けているので、截頭円錐形部の端部からトリガー物質を供給することができる。
【0071】
請求項5に記載の発明では、前記トリガー物質混入口にトリガー物質供給装置を備えたので、本体及び截頭円錐形部の内部の旋回流による圧力の低下が少ない場合にもトリガー物質供給装置によってトリガー物質を確実に供給することができ、又、このときのトリガー物質供給装置の動力は小さくできる。
【0072】
請求項6に記載の発明によれば、前記トリガー物質に空気等の気体を用いているので、取扱いが容易である。
【0073】
請求項7に記載の発明によれば、トリガー物質に氷を含む液体を用いているので、氷蓄熱装置で製造した氷を含む氷水をトリガー物質として用いることができる。
【図面の簡単な説明】
【図1】本発明の氷蓄熱装置に備える過冷却解除装置の形態の一例を示す縦断面図である。
【図2】図1のII−II方向矢視図である。
【図3】本発明における過冷却解除装置の形態の他の例を示す縦断面図である。
【図4】一般的な氷蓄熱装置の概略構成を示すブロック図である。
【図5】従来の過冷却解除装置の一例を示す縦断面図である。
【図6】従来の過冷却解除装置の他の例を示す縦断面図である。
【符号の説明】
1 過冷却解除装置
2 本体
3 截頭円錐形部
4 氷排出口
5 繋ぎ部
6 過冷却水導入口
7 トリガー物質混入口
8 トリガー物質流量調節弁
9 トリガー物質
10 トリガー物質供給装置
58 過冷却水
S1 旋回流
S2 旋回流
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an ice that can reliably release the supercooling state with a simple configuration and low operating cost, and prevents the problem of ice adhering and growing in the supercooling release device. The present invention relates to a heat storage device.
[0002]
[Prior art]
As a conventional ice heat storage device, the one shown in FIG. 4 is known. The ice heat storage device includes a refrigerator 53 including a compressor 51 and a condenser 52, and a supercooler 54 that functions as an evaporator. The supercooler 54 includes, for example, an outer tube and an inner tube, supplies water 56 from the water introduction tube 55 to the inner tube, and supplies and discharges the refrigerant 57 from the refrigerator 53 to the inside of the outer tube. Thus, the water 56 is cooled to a supercooling temperature of, for example, around −2 ° C. In addition to the above, various types of the refrigerator 53 and the subcooler 54 have been proposed.
[0003]
The supercooled water 58 cooled to the supercooled state by the supercooler 54 is sent to the supercooling release device 60 through the supercooled water pipe 59 to release the supercooled state, and the amount of cooling heat necessary for maintaining the supercooled state. Is converted into ice-making latent heat to generate ice 61. The ice 61 is granular and has a sherbet shape that can flow with supercooled water and is called dynamic ice. In general, the supercooled water 58 is more likely to be released from the supercooled state as the degree of supercooling is larger. However, the supercooled state is stably maintained within the range of the constant supercooled degree and in the stationary state. . However, the supercooled state is easily released when a change such as impact, vibration, or turbulence of the flowing water acts.
[0004]
Therefore, the supercooling release device 60 uses such a characteristic, for example, a collision plate method in which a collision plate is provided in the flow of supercooling water and the supercooling state is released by impact, and supercooling water. Propeller method that releases a supercooled state by cavitation by installing a propeller that rotates at high speed in the inside, local cooling method that releases supercooled state by receiving supercooled water in a box and electronically cooling, cavitation by ultrasonic transmitter An ultrasonic method has been proposed in which supercooled water is given to cancel the supercooled state.
[0005]
The ice 61 generated by the supercooling release device 60 is supplied to the heat storage tank 62 and stored. The water in the heat storage tank 62 is taken out by the pump 64 through the filter 63 and the water 56 is further adjusted to a temperature of about 0.5 ° C. by the temperature controller 65, and then introduced into the water. It is sent again to the subcooler 54 by the pipe 55.
[0006]
The above-described supercooling release device 60 releases ice from the supercooling state of the supercooling water 58, so that the generated ice adheres to and grows on the inner surface of the supercooling release device 60, the movable part, and the like. There is always a problem, which may make the operation of the supercooling release device 60 impossible.
[0007]
Accordingly, as described above, as a method of reducing the problem of ice adhering and growing on the inner surface of the supercooling release device 60, the supercooled water 58 is subjected to mechanical or ultrasonic shock to cancel the supercooled state. Rather than mixing the trigger material (trigger) that triggers the release of the supercooled state such as seed ice or bubbles with the supercooled water 58, the supercooled state is released from this trigger material in the supercooled water 58. There is a proposed method.
[0008]
As such a supercooling release device, supercooling water is introduced from the axial center of the large-diameter end of the main body having a frustoconical shape, and at the same time, seed ice or gas is added to the large-diameter end from the tangential direction. Introduced with running water to release supercooling by swirling flow of sidestream water, ice was generated, then the supply of seed ice or gas was stopped, and self-release of supercooling was made to occur by the generated ice There are some (see, for example, Patent Document 1).
[0009]
In addition, a tangential supercooling water inlet is provided at the upper end of the cylindrical main body, an ice outlet is provided at the lower end, and supercooling water is introduced from the supercooling water inlet and swirled by the supercooling water into the main body. Furthermore, at the axial center position of the upper end of the main body, a lower end projects into the main body, and a lower end protrudes into the main body so as to start the release of the supercooled state by supplying and cooling the refrigerant inside and cooling it. There is one in which a gas supply device for blowing air or the like is connected in the middle of the supercooling water pipe communicating with the supercooling water inlet (see, for example, Patent Document 2).
[0010]
[Patent Document 1]
JP 2002-13846 A
[Patent Document 2]
Japanese Patent Laid-Open No. 06-74498
[0011]
[Problems to be solved by the invention]
Patent Document 1 shows a supercooling release device 60A configured as shown in FIG. The supercooling release device 60A in FIG. 5 introduces supercooling water connected to the supercooling water pipe 59 in FIG. 4 at the axial center of the upper end of the main body 66 having a truncated conical shape whose diameter is reduced from the upper end toward the lower end. A port 67 is provided, an ice discharge port 68 is provided at the lower end, and a secondary water inlet 69 connected in a tangential direction is provided at the outer periphery of the upper end. Connected to the sidestream water inlet 69 is a sidestream water pipe 72 that takes out water containing ice in the heat storage tank 62 of FIG. 4 by the sidestream water pump 70 and guides it as sidestream water 71. Furthermore, a gas supply device 73 for blowing air, for example, is connected to the sidestream water pipe 72 connected to the sidestream water inlet 69.
[0012]
In the ice heat storage device provided with the supercooling release device 60A of FIG. 5, the sidestream water pump 70 of FIG. 4 is driven, and the water containing ice in the heat storage tank 62 is converted to the sidestream water 71 by the sidestream water pipe 72. From the tangential direction into the main body 66 to form a swirling flow in the main body 66. In this state, the water 56 of the heat storage tank 62 is taken out through the filter 63 by the pump 64, adjusted to a temperature of, for example, 0.5 ° C. by the temperature adjuster 65, and then introduced into the subcooler 54 and the supercooling temperature. Cooled to (for example, around −2 ° C.), the cooled supercooling water 58 is supplied from the supercooling water inlet 67 of the supercooling release device 60 </ b> A to the axial center of the main body 66 through the supercooling water pipe 59. The supercooled water 58 supplied to the shaft center of the main body 66 in FIG. 5 is collided with the swirling sidestream water and comes into contact with the seed ice in the sidestream water to release the supercooled state starting from this. Ice is generated, and the generated ice is supplied to the heat storage tank 62 from the ice outlet 68 together with water.
[0013]
In order to stably produce ice in the cyclone type supercooling release device 60A as described above, the supercooling state is surely released in the main body 66, and the ice generated in the main body 66 is removed from the main body 66. It is important not to adhere and grow on the inner surface of 66.
[0014]
However, as described above, even if the swirl speed by the sidestream water 71 is increased in order to reliably release the supercooled state starting from the seed ice in the sidestream water 71, it is supplied from the sidestream water inlet 69 to the upper end in the main body 66. Since the substream water 71 swirled and flows downward, a portion where the swirling flow is weakened occurs at the center of the upper end in the main body 66. At this time, the ice or gas in the sidestream water 71 supplied into the main body 66 at the sidestream water inlet 69 comes into contact with the supercooled water 58 immediately after coming out of the sidestream water inlet 69 to generate ice. In addition, there is a problem that ice generated in a portion where the swirl flow is weakened adheres and grows in the vicinity of the outlet of the supercooling water inlet 67.
[0015]
5 has a problem that ice adheres to the inner surface of the main body 66 and grows when the turning speed is low. In order to prevent this problem, it is considered that the effect of removing the ice on the inner surface of the main body 66 by increasing the flow velocity of the side flow water 71 blown into the main body 66 from the side flow water inlet 69 and increasing the swirling flow velocity is considered. It is done. However, when the flow rate of the sidestream water 71 is increased in this way, the flow rate of the supercooling water 58 that can be supplied to the main body 66 is decreased, and thus there is a problem that the ice production capacity is lowered.
[0016]
Further, the apparatus shown in FIG. 5 has a complicated structure because it requires a sidestream water pump 70 for supplying the sidestream water 71 to the supercooling release device 60A and a long sidestream water pipe 72 for guiding the ice water in the heat storage tank 62. In addition, there is a problem that it becomes large, and there is a problem that the operation cost of the sidestream water pump 70 also increases.
[0017]
Further, in order to reliably release the supercooled state, it is considered that a trigger substance such as air is mixed into the sidestream water 71 via the gas supply device 73. In FIG. In order to form a flow, an upward pulling flow X is generated inside the main body 66, and since this pulling flow X is in the same direction as the buoyancy acting on the bubbles, the supplied air is the axial center of the main body 66. Collected above forms an air column 74. When air bubbles are mixed in the supercooled water, the air bubbles contribute to the release of the supercooled state. However, if the air column 74 as described above is formed, an effective supercooled state release effect is achieved. I can not expect. Therefore, even if air is mixed in by the gas supply device 73, the release of the supercooled state due to the bubbles cannot be completed in the main body 66.
[0018]
On the other hand, Patent Document 2 shows a supercooling release device 60B configured as shown in FIG. 6, which is different from FIG. The cyclone type supercooling release device 60B of FIG. 6 is connected to the supercooling water pipe 59 (see FIG. 4) by arranging a tangential supercooling water inlet 76 on the outer periphery of the upper end of the cylindrical main body 75. In addition, an ice outlet 77 is provided at the lower end, and a swirling flow by the supercooling water 58 is formed in the main body 75 by introducing the supercooling water 58 from the supercooling water introduction port 76. Yes.
[0019]
Furthermore, at the axial center position of the upper end of the main body 75, a lower end protrudes into the main body 75, and a lower end protrudes into the main body 75. It is provided as follows. Further, a gas supply device 73 for blowing air into the supercooling water 58 is connected to the supercooling water pipe 59 in the middle.
[0020]
In the ice heat storage device provided with the supercooling release device 60B, the water 56 taken out from the heat storage tank 62 by the pump 64 of FIG. 4 and adjusted to a temperature of, for example, 0.5 ° C. by the temperature controller 65 is supplied to the supercooler 54. After being introduced and cooled to a supercooling temperature (for example, around −2 ° C.), the supercooling water 58 is tangentially connected from the supercooling water introduction port 76 of the supercooling release device 60B to the upper end of the main body 75 through the supercooling water pipe 59. As a result, a downward swirling flow is formed inside the main body 75. The supercooled water 58 supplied into the main body 75 starts to be released from the supercooled state by cooling by the release start portion 78 provided at the upper end of the main body 75, and the supercooled water 58 is released from the supercooled state by turning. To be completed. Furthermore, the release of the supercooled state is also completed by mixing, for example, a trigger substance by air into the sidestream water 71 via the gas supply device 73.
[0021]
However, in the cyclone type supercooling release device 60B shown in FIG. 6, in order to stably produce ice, the supercooling state is reliably released inside the main body 75, and Although it is important to prevent the generated ice from adhering to and growing on the inner surface of the main body 75, since the release start portion 78 starts cooling release with the refrigerant, the release start portion 78 starts the release of the supercooled state. The operation of the release start portion 78 is very difficult, and there is a problem that ice is attached and grows immediately starting from the release start portion 78 if it is cooled too much.
[0022]
Further, the release start section 78 has a very complicated structure for supplying and cooling the refrigerant of the refrigerator, and there is a problem that the operating cost increases for operating the refrigerator.
[0023]
Further, the gas supply device 73 is provided in the middle of the supercooling water pipe 59 to mix air. However, if air is mixed in the middle of the supercooling water pipe 59, the partial supercooling state is immediately released at the mixing section. There is a problem that the ice that has been started and adheres and grows in contact with the supercooling water pipe 59, the supercooling water inlet 76, and the inner surface of the main body 75.
[0024]
Further, even in the case of the cyclone type supercooling release device 60B, since a downward swirling flow is formed, an upward pulling flow X is generated inside the main body 66. Since the direction of the buoyancy acting on the bubbles is the same, the supplied air is collected at the axial center of the main body 66 to form the air column 74. For this reason, air is mixed in the gas supply device 73. However, the release of the supercooled state due to the bubbles in the main body 66 cannot be completed.
[0025]
The present invention has been made by paying attention to the problems existing in the prior art as described above, and the supercooling release device can reliably release the supercooling state with a simple configuration and low operating cost. An object of the present invention is to provide an ice heat storage device capable of preventing the problem of ice adhering and growing in the cooling release device.
[0026]
[Means for Solving the Problems]
  The invention according to claim 1 is an ice heat storage device for producing ice by supplying supercooling water to a supercooling release device, wherein the supercooling release device includes a substantially cylindrical main body and one end side of the main body. Gradually reduced in diameterBlockedConnected in the tangential direction in the vicinity of the joint between the main body and the frustoconical part, and the ice outlet formed on the other end of the main body.The supercooled water is introduced from the tangential direction to form a swirl flow toward the ice outlet in the main body and a swirl flow stronger than the swirl flow toward the frustoconical portion.The ice heat storage device is provided with a supercooling water inlet and a trigger substance mixing inlet configured to supply a trigger substance to a position near the supercooling water inlet.
[0027]
The invention according to claim 2 is characterized in that the frustoconical portion of the main body is disposed on the lower side and the ice discharge port is disposed on the upper side. It is concerned.
[0028]
According to a third aspect of the present invention, the trigger substance mixing port is provided in a peripheral wall in the vicinity of a connecting portion between the main body and the truncated cone portion, and the trigger is caused by the wall pressure becoming negative due to the swirling flow in the main body. The ice storage device according to claim 1 or 2, wherein a trigger substance is sucked from a substance mixing port, and a trigger substance flow rate adjusting valve is provided in the trigger substance mixing port. is there.
[0029]
The invention according to claim 4 relates to the ice heat storage device according to claim 1, wherein the trigger substance mixing port is provided at an end of the truncated cone portion. is there.
[0030]
The invention according to claim 5 relates to the ice heat storage device according to any one of claims 1 to 4, wherein a trigger substance supply device is provided at the trigger substance mixing port. .
[0031]
The invention according to claim 6 relates to the ice heat storage device according to any one of claims 1 to 5, wherein the trigger substance is a gas.
[0032]
The invention according to claim 7 relates to the ice heat storage device according to any one of claims 1 to 5, wherein the trigger substance is a liquid containing ice.
[0033]
According to the above means, it operates as follows.
[0034]
In the first aspect of the invention, since the supercooling water is supplied by the supercooling water introduction port connected from the tangential direction in the vicinity of the connecting portion between the main body and the frustoconical portion, the ice discharge port is provided in the main body. And a strong swirl flow toward the closed truncated cone-shaped portion are formed, and therefore, the trigger substance mixing port is supplied in the vicinity of the joint between the main body and the truncated cone-shaped portion. A trigger substance consisting of a gas such as air or a liquid containing ice is effectively mixed with the supercooled water by the strong swirling flow in the truncated cone part, and the ice substance in the truncated cone part Generation is maximized. At this time, since a strong swirling flow is formed inside the truncated cone-shaped portion, the effect of peeling off the ice is strong, so that the problem of ice adhering and growing on the inner surface of the truncated cone-shaped portion is prevented.
[0035]
Furthermore, the supercooling water that forms a strong swirling flow in the frustoconical portion will flow while gradually reducing the swirling force toward the ice outlet in the main body. To maintain good ice formation. Furthermore, since the trigger substance supplied from the peripheral wall portion in the vicinity of the connecting portion between the main body and the truncated cone portion by the trigger substance mixing port is mixed with the supercooling water from the outer peripheral side, Mixing is performed very well, and further, the supercooled water flows toward the ice outlet without causing a pullback flow, preventing the formation of air columns even when the trigger material is gas. The Also, since bubbles and small ice of specific gravity are gradually gathered toward the shaft center while moving toward the ice discharge port in the main body, the release of the supercooled state is promoted at the shaft central portion of the main body. On the contrary, in the vicinity of the wall surface of the main body, the swirl flow gradually weakens toward the downstream side, but the formation of ice also weakens, so that the problem of ice adhering and growing on the inner surface of the main body is prevented.
[0036]
In the invention according to claim 2, since the frustoconical part of the main body is arranged on the lower side and the ice discharge port is on the upper side, when the trigger substance is a gas, the bubbles act as buoyancy. As a result, the air is stably raised toward the upper ice discharge port, so that the problem of forming an air column is further prevented, and the ice generation effect is further enhanced.
[0037]
According to a third aspect of the present invention, the trigger substance mixing port is attached to the peripheral wall in the vicinity of the connecting portion between the main body and the truncated cone-shaped part, and the trigger substance is removed by the wall pressure becoming negative due to the swirling flow in the main body. Since it is made to attract from a trigger substance mixing port, the apparatus and power for supplying a trigger substance are not required, Therefore The structure can be simplified and the operating cost can be reduced.
[0038]
According to the fourth aspect of the present invention, the trigger substance mixing port is provided at the end of the frustoconical part, so that the trigger substance can be supplied from the end of the frustoconical part.
[0039]
In the invention according to claim 5, since the trigger substance supply port is provided at the trigger substance mixing port, the trigger substance supply apparatus also reduces the pressure drop due to the swirling flow inside the main body and the truncated cone part. The trigger substance can be reliably supplied, and the power of the trigger substance supply device at this time can be reduced.
[0040]
In invention of Claim 6, since gas, such as air, is used for the said trigger substance, handling is easy.
[0041]
In the invention according to claim 7, since the liquid containing ice is used for the trigger material, ice water containing ice produced by an ice heat storage device can be used as the trigger material.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[0043]
As shown in FIG. 4, ice 61 is manufactured by introducing water 56 into the supercooler 54 and supplying the supercooled water 58 cooled to the supercooled state to the supercooling release device 60 to release the supercooled state. In the ice heat storage device to be provided, the supercooling release device 1 having the configuration shown in FIGS. 1 and 2 is provided as the supercooling release device 60. FIG. 1 is a longitudinal sectional view showing an example of a form of a supercooling release device, and FIG. 2 is a view taken in the direction of arrows II-II in FIG.
[0044]
The supercooling release device 1 shown in FIGS. 1 and 2 has a cylindrical main body 2 vertically, and the lower end (one end side) of the main body 2 has a truncated conical shape whose diameter is reduced downward. A portion 3 is formed, and an ice discharge port 4 is provided at the upper end (the other end side) of the main body 2. FIG. 1 shows a case of a suitable example in which a frustoconical portion 3 ′ is also formed at the upper end of the main body 2 and the ice discharge port 4 is formed at the center of the end axis. The ice discharge port 4 may be provided without providing the portion 3 ′, or the ice discharge port 4 may be connected to the upper end of the main body 2 in the tangential direction. The main body 2 may have a cone shape as a whole instead of a complete cylinder.
[0045]
A supercooling water inlet 6 connected in a tangential direction is provided in the vicinity of the connecting portion 5 between the lower end of the main body 2 and the frustoconical portion 3. The cooling water pipe 59 is connected. 1 is provided at the lower end position of the main body 2, it may be provided in the connecting portion 5 or the truncated cone portion 3. The supercooling water inlet 6 has a tip 6a protruding into the main body 2, and the tip 6a has a pointed shape like a nozzle.
[0046]
On the other hand, a trigger substance mixing port 7 is provided in the vicinity of the connecting portion 5 between the lower end of the main body 2 and the frustoconical portion 3, in FIG. Is provided with a trigger material flow control valve 8. As described above, since the wall pressure of the main body 2 becomes negative due to the swirl flow S1 formed in the main body 2, the trigger substance 9 is sucked by the trigger substance mixing port 7 provided on the peripheral wall and is naturally 2 is supplied. Therefore, the trigger substance flow rate adjusting valve 8 acts to adjust the supply amount of the trigger substance 9 to be sucked. Although the trigger substance mixing port 7 is attached to the main body 2 in the radial direction, it may be attached to the main body 2 in the tangential direction.
[0047]
1 shows the case where the trigger substance mixing port 7 is provided on the lower peripheral wall of the main body 2, the trigger substance mixing port 7 may be provided on the peripheral wall of the frustoconical portion 3.
[0048]
Furthermore, a trigger substance supply device 10 is connected to the trigger substance mixing port 7 so as to supply a trigger substance 9 made of a gas such as air or a liquid containing ice as shown by a two-dot chain line. Also good.
[0049]
The length of the main body 2 is preferably set to a length that allows time for the ice-water at approximately 0 ° C. to be completely removed after the supercooling state is released in the supercooling release device 1.
[0050]
The main body 2 and the frustoconical portion 3 are preferably made of a non-metallic material. When the main body 2 and the frustoconical portion 3 are made of a metal material, it is preferable to form a supercooled state release / icing prevention layer on the inner surface thereof. As the supercooled state release / icing prevention layer, a water-repellent polymer material such as Teflon (registered trademark), vinyl, phenol resin, or a titanium oxide film having water repellency can be used. As an example, a polyethylene cylinder-lined inner surface of a metal cylinder can be used.
[0051]
Next, the operation of the above embodiment will be described.
[0052]
When producing ice in the supercooling release device 1 of FIGS. 1 and 2, the water 56 from the pump 64 of FIG. 4 is adjusted to a temperature of, for example, 0.5 ° C. by the temperature controller 65, and the water 56 is It introduces into the supercooler 54 and cools to a supercooling temperature (for example, around -2 ° C). Then, the supercooling water 58 cooled by the supercooler 54 is guided to the supercooling water inlet 6 of the supercooling release device 1 by the supercooling water pipe 59, and the lower end of the main body 2 and the truncated cone-shaped portion 3 Is supplied from the tangential direction in the vicinity of the connecting portion 5.
[0053]
Since the supercooling water 58 is supplied from the tangential direction by the supercooling water inlet 6 connected in the vicinity of the connecting portion 5 between the main body 2 and the frustoconical portion 3, the turning toward the ice outlet 4 in the main body 2 is performed. A flow S1 and a strong swirl flow S2 directed into the frustoconical part 3 are formed. At this time, since the lower end of the truncated cone-shaped portion 3 is closed and cannot flow downward, the supercooled water that forms a strong swirl flow S2 in the truncated cone-shaped portion 3 is placed inside the main body 2. Therefore, the pull-back flow X toward the introduction portion in the tangential direction as shown in FIGS. 5 and 6 disappears, and a stable upward flow Y is formed.
[0054]
Therefore, the trigger substance 9 made of a gas such as air or a liquid containing ice supplied near the connecting part 5 between the main body 2 and the truncated cone part 3 by the trigger substance mixing port 7 is connected to the truncated cone part 3. The strong swirl flow S <b> 2 is effectively mixed with the supercooled water 58, so that ice generation is maximized within the frustoconical portion 3. At this time, since the strong swirl flow S2 is formed inside the truncated cone-shaped portion 3, the effect of peeling off the ice is strong, thus preventing the problem of ice adhering and growing on the inner surface of the truncated cone-shaped portion 3. Is done. At this time, since the tip 6a of the supercooling water inlet 6 protrudes into the main body 2 and the tip 6a is sharpened like a nozzle, the ice to the supercooling water inlet 6 Adhesion and growth can also be prevented.
[0055]
As the trigger substance 9, a gas such as air or a liquid containing ice can be used. When the gas such as air is used, the handling is easy, and when the liquid containing ice is used. Can use ice water containing ice produced by an ice heat storage device.
[0056]
The strong swirl flow S2 formed in the frustoconical portion 3 flows in the main body 2 with the swirl force gradually weakened toward the ice discharge port 4, but also during this time, the trigger substance 9 and the supercooling flow. Mix with water 58 to maintain good ice formation. On the other hand, the trigger substance 9 supplied from the trigger substance mixing port 7 to the peripheral wall part in the vicinity of the connecting part 5 between the main body 2 and the truncated cone part 3 is mixed with the supercooled water 58 from the outer peripheral side. As a result, the supercooled water 58 is mixed very well. This also prevents the problem that the air column is formed when the trigger substance 9 is gas. In addition, since bubbles and small ice of specific gravity are gradually gathered toward the center of the shaft while moving in the body 2 toward the ice discharge port 4, the release of the supercooled state is promoted at the shaft center of the body 2. On the contrary, in the vicinity of the wall surface of the main body 2, the swirling flow gradually weakens toward the downstream, but the ice generation also weakens, so that the problem of ice adhering and growing on the inner surface of the main body 2 is prevented. Is done. At this time, if the frustoconical portion 3 ′ is also formed at the upper end of the main body 2, a strong swirl flow is formed inside the frustoconical portion 3 ′, and the inner surface of the frustoconical portion 3 ′ is formed. The problem of ice adhesion and growth can also be prevented.
[0057]
The main body 2 and the frustoconical portion 3 are preferably made of a non-metallic material because ice hardly adheres. Further, when the main body 2 and the frustoconical portion 3 are made of a metal material, the inner surface thereof has a water-repellent polymer material such as Teflon (registered trademark), vinyl, phenol resin, or the like. It is preferable to form a supercooled state release and anti-icing layer, such as a titanium oxide film, because it is difficult for ice to adhere.
[0058]
Further, as shown in FIG. 1, the frustoconical portion 3 of the main body 2 is arranged on the lower side and the ice discharge port 4 is on the upper side. As a result, the problem that the air column is formed is more reliably prevented, and the ice generation effect is further enhanced.
[0059]
On the other hand, as shown in FIG. 1, since the trigger substance mixing port 7 is provided on the peripheral wall in the vicinity of the connecting portion 5 between the main body 2 and the frustoconical portion 3, the wall pressure is reduced to a negative pressure by the swirl flow S <b> 1 in the main body 2. As a result, the atmosphere can be sucked as the trigger substance 9 from the opening 7 ′ of the trigger substance mixing port 7. Therefore, the supply amount of the trigger substance 9 can be adjusted only by adjusting the opening degree of the trigger substance flow rate adjusting valve 8 at the trigger substance mixing port 7, and the apparatus and power for supplying the trigger substance 9 are omitted. Therefore, the configuration can be simplified and the operating cost can be reduced.
[0060]
In addition, as described above, the trigger substance 9 and the supercooled water 58 come into contact with each other to release the supercooled state, and once ice is generated in the frustoconical portion 3 and the main body 2, the generated ice nuclei are thereafter removed. Since the supercooled state is continuously released as a starting point, the supply of the trigger substance 9 may be performed only at the initial stage, and thereafter the supply of the trigger substance 9 may be stopped.
[0061]
On the other hand, as shown by a two-dot chain line, when the trigger substance supply device 10 is connected to the trigger substance mixing port 7, the pressures caused by the swirl flows S1 and S2 inside the main body 2 and the truncated cone part 3 are provided. The trigger substance 9 can be reliably supplied by the trigger substance supply device 10 even when there is little decrease of the trigger. The power of the trigger substance supply device 10 at this time may be small.
[0062]
FIG. 3 is a longitudinal sectional view showing another example of the form of the supercooling release device according to the present invention.
[0063]
FIG. 3 shows a case where the trigger substance mixing port 7 is provided at the lower end of the frustoconical portion 3, and in the case of FIG. 3, the trigger substance mixing port 7 is arranged on the frustoconical portion 3. Although it is provided at the axial center position of the end, the trigger substance mixing port 7 may be provided at an eccentric position. 3 is the same as that shown in FIGS. 1 and 2, and the operational effects of the configuration shown in FIG. 3 are substantially the same as those shown in FIGS. Description is omitted.
[0064]
The present invention is not limited only to the above-described embodiments, and various trigger substances can be used as long as they can cancel the supercooled state of gases other than air. Of course, various shapes can be selected, and various changes can be made without departing from the scope of the present invention.
[0065]
【The invention's effect】
Since this invention is comprised as mentioned above, there can exist the following outstanding effects.
[0066]
According to the first aspect of the present invention, since the supercooling water is supplied by the supercooling water introduction port connected from the tangential direction in the vicinity of the connecting portion between the main body and the frustoconical portion, A swirl flow toward the discharge port and a strong swirl flow toward the closed frustoconical portion are formed, so that the trigger material mixing port is supplied near the junction between the main body and the frustoconical portion. The trigger substance consisting of a gas such as air or a liquid containing ice is effectively mixed with the supercooled water by the strong swirling flow in the truncated cone part, and inside the truncated cone part Ice generation is maximized. At this time, since a strong swirling flow is formed inside the truncated cone-shaped portion, the effect of peeling off the ice is strong, so that the problem of ice adhering and growing on the inner surface of the truncated cone-shaped portion is prevented.
[0067]
Furthermore, the supercooling water that forms a strong swirling flow in the frustoconical portion will flow while gradually reducing the swirling force toward the ice outlet in the main body. To maintain good ice formation. Furthermore, since the trigger substance supplied from the peripheral wall portion in the vicinity of the connecting portion between the main body and the truncated cone portion by the trigger substance mixing port is mixed with the supercooling water from the outer peripheral side, Mixing is performed very well, and further, the supercooled water flows toward the ice outlet without causing a pull-back flow, thus preventing the formation of air columns even when the trigger material is a gas. . Also, since bubbles and small ice of specific gravity are gradually gathered toward the shaft center while moving toward the ice discharge port in the main body, the release of the supercooled state is promoted at the shaft central portion of the main body. On the contrary, in the vicinity of the wall surface of the main body, the swirl flow gradually weakens toward the downstream side, but the formation of ice also weakens, so that the problem of ice adhering and growing on the inner surface of the main body is prevented.
[0068]
In the invention according to claim 2, since the frustoconical part of the main body is arranged on the lower side and the ice discharge port is on the upper side, when the trigger substance is a gas, the bubbles act as buoyancy. As a result, the air is stably raised toward the upper ice discharge port, so that the problem of forming an air column is further prevented, and the ice generation effect is further enhanced.
[0069]
According to a third aspect of the present invention, the trigger substance mixing port is attached to the peripheral wall in the vicinity of the connecting portion between the main body and the truncated cone-shaped part, and the trigger substance is removed by the wall pressure becoming negative due to the swirling flow in the main body. Since it is made to attract from a trigger substance mixing port, the apparatus and power for supplying a trigger substance are not required, Therefore The structure can be simplified and the operating cost can be reduced.
[0070]
According to the fourth aspect of the present invention, the trigger substance mixing port is provided at the end of the frustoconical part, so that the trigger substance can be supplied from the end of the frustoconical part.
[0071]
In the invention according to claim 5, since the trigger substance supply port is provided at the trigger substance mixing port, the trigger substance supply apparatus also reduces the pressure drop due to the swirling flow inside the main body and the truncated cone part. The trigger substance can be reliably supplied, and the power of the trigger substance supply device at this time can be reduced.
[0072]
According to invention of Claim 6, since gas, such as air, is used for the said trigger substance, handling is easy.
[0073]
According to the seventh aspect of the present invention, since the liquid containing ice is used as the trigger substance, ice water containing ice produced by an ice heat storage device can be used as the trigger substance.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a form of a supercooling release device provided in an ice heat storage device of the present invention.
FIG. 2 is a view taken in the direction of arrows II-II in FIG.
FIG. 3 is a longitudinal sectional view showing another example of the form of the supercooling release device according to the present invention.
FIG. 4 is a block diagram showing a schematic configuration of a general ice heat storage device.
FIG. 5 is a longitudinal sectional view showing an example of a conventional supercooling release device.
FIG. 6 is a longitudinal sectional view showing another example of a conventional supercooling release device.
[Explanation of symbols]
    1 Supercooling release device
    2 body
    3 truncated cone part
    4 Ice outlet
    5 joints
    6 Supercooling water inlet
    7 Trigger substance mixing port
    8 Trigger substance flow control valve
    9 Trigger substances
  10 Trigger substance supply device
  58 Supercooled water
  S1  Swirl flow
  S2  Swirl flow

Claims (7)

過冷却解除装置に過冷却水を供給して氷を製造する氷蓄熱装置であって、前記過冷却解除装置が、略筒形の本体と、該本体の一端側において徐々に縮径して閉塞された截頭円錐形部と、本体の他端側に形成した氷排出口と、本体と截頭円錐形部との繋ぎ部近傍において接線方向に接続し、接線方向から過冷却水を導入して本体内の氷排出口に向かう旋回流と截頭円錐形部内に向かう前記旋回流より強い旋回流とを形成するようにした過冷却水導入口と、該過冷却水導入口の近傍位置にトリガー物質を供給するようにしたトリガー物質混入口と、を備えたことを特徴とする氷蓄熱装置。An ice heat storage device for producing ice by supplying supercooling water to a supercooling release device, wherein the supercooling release device is gradually reduced in diameter and closed on a substantially cylindrical main body and one end side of the main body. a frustoconical portion which is to connect the ice discharge port formed at the other end of the body, the tangential direction in the joint portion near the body and the frusto-conical portion, introducing a supercooled water tangentially A supercooling water inlet configured to form a swirling flow toward the ice discharge port in the main body and a swirling flow stronger than the swirling flow toward the frustoconical portion, and a position near the supercooling water inlet. An ice heat storage device comprising a trigger material mixing port configured to supply a trigger material. 前記本体の截頭円錐形部が下側に、氷排出口が上側になるように配置されていることを特徴とする請求項1記載の氷蓄熱装置。2. The ice heat storage device according to claim 1, wherein the frustoconical portion of the main body is disposed on the lower side and the ice discharge port is on the upper side. 前記トリガー物質混入口が、本体と截頭円錐形部との繋ぎ部近傍の周壁に備えられ、本体内の旋回流により壁圧が負圧になることによってトリガー物質混入口からトリガー物質を吸引するようにしてあり、前記トリガー物質混入口にトリガー物質流量調節弁を備えていることを特徴とする請求項1又は2に記載の氷蓄熱装置。The trigger substance mixing port is provided in a peripheral wall in the vicinity of the connecting portion between the main body and the frustoconical portion, and the trigger substance is sucked from the trigger substance mixing port by the negative wall pressure due to the swirling flow in the main body. The ice heat storage device according to claim 1 or 2, further comprising a trigger material flow control valve at the trigger material mixing port. 前記トリガー物質混入口が、截頭円錐形部の端部に設けられていることを特徴とする請求項1又は2に記載の氷蓄熱装置。The ice heat storage device according to claim 1, wherein the trigger substance mixing port is provided at an end of the truncated cone portion. 前記トリガー物質混入口に、トリガー物質供給装置を備えたことを特徴とする請求項1〜4のいずれか1つに記載の氷蓄熱装置。The ice heat storage device according to any one of claims 1 to 4, wherein a trigger material supply device is provided at the trigger material mixing port. 前記トリガー物質が気体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置。The ice heat storage device according to any one of claims 1 to 5, wherein the trigger substance is a gas. 前記トリガー物質が氷を含む液体であることを特徴とする請求項1〜5のいずれか1つに記載の氷蓄熱装置。The ice heat storage device according to claim 1, wherein the trigger substance is a liquid containing ice.
JP2003149088A 2002-06-25 2003-05-27 Ice heat storage device Expired - Fee Related JP4214837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149088A JP4214837B2 (en) 2002-06-25 2003-05-27 Ice heat storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002185176 2002-06-25
JP2003149088A JP4214837B2 (en) 2002-06-25 2003-05-27 Ice heat storage device

Publications (2)

Publication Number Publication Date
JP2004085181A JP2004085181A (en) 2004-03-18
JP4214837B2 true JP4214837B2 (en) 2009-01-28

Family

ID=32071631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149088A Expired - Fee Related JP4214837B2 (en) 2002-06-25 2003-05-27 Ice heat storage device

Country Status (1)

Country Link
JP (1) JP4214837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679654A (en) * 2012-05-16 2012-09-19 广州鑫誉蓄能科技有限公司 Supercooling disable device utilizing high-pressure water jet mode

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664884B2 (en) * 2006-09-15 2011-04-06 株式会社大気社 Supercooler release
JP6125822B2 (en) * 2012-12-18 2017-05-10 高砂熱学工業株式会社 Supercooling release device and ice making device
CN106152340A (en) * 2015-04-28 2016-11-23 深圳市绿旭节能有限公司 A kind of enclosed type supercooling release device
JP6374933B2 (en) * 2016-10-24 2018-08-15 高砂熱学工業株式会社 Ice making apparatus and ice making method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679654A (en) * 2012-05-16 2012-09-19 广州鑫誉蓄能科技有限公司 Supercooling disable device utilizing high-pressure water jet mode
CN102679654B (en) * 2012-05-16 2014-07-09 广州鑫誉蓄能科技有限公司 Supercooling disable device utilizing high-pressure water jet mode

Also Published As

Publication number Publication date
JP2004085181A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
EP1476707B1 (en) Thermal storage apparatus
JP4214837B2 (en) Ice heat storage device
JP3949917B2 (en) Ice making method and ice making device by releasing subcooling in water
JP4580985B2 (en) Method and apparatus for generating jet of dry ice particles
KR100823813B1 (en) Ice making method and ice making apparatus
US5909844A (en) Water atomizing nozzle for snow making machine
JP4507224B2 (en) Ice making device and ice making method by releasing subcooling in water
MXPA02009006A (en) Process and device for separating impurities from a.
JP2006234275A (en) Air refrigerant type refrigerating machine
JP3338657B2 (en) Ice making equipment
JPH02271909A (en) Apparatus and method for producing carbon dioxide snow
JPH11101429A (en) Soot blower
US5961041A (en) Method and apparatus for making carbon dioxide snow
JP2004085182A (en) Method and apparatus for conveying supercooled water
JP5066875B2 (en) Prevention of propagation of ice on the wall
JPH0352633A (en) Liquid-gas contact equipment
JP2672043B2 (en) Metal powder manufacturing equipment
WO2022075855A1 (en) A snowmaking nozzle
EP1765480B1 (en) Smoke generator
JPH0719682A (en) Manufacture of ice slurry by ice cold accumulator
JP2007322073A (en) Icemaker
JPH1160226A (en) Production of dry ice and apparatus
JP2001241705A (en) Method for relieving supercooling and ice plant
JPH05237768A (en) Ice blast jet nozzle
JPH0498064A (en) Ice making method and ice heat accumulative device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees