JPH11101429A - Soot blower - Google Patents

Soot blower

Info

Publication number
JPH11101429A
JPH11101429A JP26444997A JP26444997A JPH11101429A JP H11101429 A JPH11101429 A JP H11101429A JP 26444997 A JP26444997 A JP 26444997A JP 26444997 A JP26444997 A JP 26444997A JP H11101429 A JPH11101429 A JP H11101429A
Authority
JP
Japan
Prior art keywords
soot blower
nozzle
jet
inner diameter
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26444997A
Other languages
Japanese (ja)
Other versions
JP3823215B2 (en
Inventor
Kazunori Satou
一教 佐藤
Yasutsune Katsuta
康常 勝田
Takeo Notani
武生 野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP26444997A priority Critical patent/JP3823215B2/en
Publication of JPH11101429A publication Critical patent/JPH11101429A/en
Application granted granted Critical
Publication of JP3823215B2 publication Critical patent/JP3823215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To retain the injection energy of air stream to the downstream of the air stream and improve the removing efficiency of ash, by a method wherein a tube having an inner diameter larger than that of the injection port of a nozzle and connected to the injection side of air stream in the injection port, and a recess, formed at the stepped part between the tube and the injection port, are provided. SOLUTION: Injection gas 2 flows into an injection port 4 in a nozzle with cavity 3 from an inlet port unit 6 having a rounded part under a condition without separation, then, is changed into the jet stream 5 of gas and is injected. The minimum inner diameter D1 of the nozzle injection port is specified as the inner diameter of the nozzle injection port 4 even though the inner diameter of the same is enlarged slightly. The outer periphery of the outlet port end of the injection port 4 is recessed to form the recessed part 7 having a radius of curvature R into the opposite direction of injection. Further, the outer rim of the recessed part 7 is extended by a tube 8 into the injecting direction to form a cavity. The jet stream of gas 5, injected out of the injection port 4, is penetrated through the inside of the tube 8 and is injected into a furnace. According to this method, circulating annular eddy current is produced around the jet stream from the injection port 4 while a speed gradient between the annular eddy current and the jet stream is slow, whereby the disturbance of pattern of the jet stream is reduced and injection energy is concentrated against ash adhered part, thereby obtaining a high removing efficiency of ash.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラの伝熱管に
付着する灰を気流により除去するスートブロアに係わ
り、特に灰の除去効率を高めるために貫通力の大きな噴
流を形成するノズルを備えたスートブロアに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soot blower for removing ash adhering to a heat transfer tube of a boiler by an air current, and more particularly to a soot blower having a nozzle for forming a jet having a large penetrating force in order to enhance ash removal efficiency. About.

【0002】[0002]

【従来の技術】ボイラにおいて燃焼で生成し溶融した粒
子状の飛散物が伝熱管に付着し、伝熱管の熱伝達率が低
下すると共に火炉の圧力損失が増加し、ボイラ効率が低
下する。付着物の組成によっては伝熱管を腐食させる原
因となる。そのため伝熱管の付着物を除去するスートブ
ロアを伝熱管群に設置し、定期的に蒸気若しくは圧縮空
気を噴射している。図12は従来のスートブロアのノズ
ルの構成を示す縦断面図である。本図に示すノズル3a
は直線形であり、噴出気体2は31aから流入し、単純
な円筒形である直線部32aを通過し、気体噴流5とな
って噴出する。図13は従来のスートブロアの他のノズ
ルの構成を示す縦断面図である。本図に示すノズル3b
は末広がり形と直線形を組み合わせたものであり、噴出
気体2は入口部31bから流入し、流路断面積が拡大す
る拡大部32bで噴流径が拡大し、直線出口部33bを
通過し気体噴流5となって噴出する。図14は従来のス
ートブロアの他のノズルの構成を示す縦断面図である。
本図に示すノズル3cは噴出口とつり鐘形空洞部31c
とを組み合わせたものであり、噴出気体2は入口部6か
ら流入し、噴出口から気体噴流5となって噴出する。図
15は従来のスートブロアの他のノズルの構成を示す縦
断面図である。本図に示すノズル3dは噴出口と円錐形
空洞部31dとを組み合わせたものであり、噴出気体2
は入口部6から流入し、噴出口から気体噴流5となって
噴出する。これらのノズル3a、3b、3c及び3dは
気体噴流5の軸方向貫通力に対して下流までこの貫通力
を維持しようとする配慮に欠けている。噴流中心におい
て運動量の大きい気体噴流5が伝熱管に衝突すると、伝
熱管の衝突面には見掛け上強い衝撃が加わるようになり
付着している灰を効率良く除去できる。
2. Description of the Related Art In a boiler, particulate scattered matter produced and melted by combustion adheres to a heat transfer tube, which reduces the heat transfer coefficient of the heat transfer tube, increases the pressure loss of a furnace, and lowers the boiler efficiency. Depending on the composition of the deposit, it may cause corrosion of the heat transfer tube. Therefore, a soot blower that removes deposits on the heat transfer tubes is installed in the heat transfer tube group, and steam or compressed air is periodically injected. FIG. 12 is a longitudinal sectional view showing a configuration of a nozzle of a conventional soot blower. Nozzle 3a shown in this figure
Is a straight line, and the jetting gas 2 flows in from 31a, passes through a simple cylindrical straight portion 32a, and jets out as a gas jet 5. FIG. 13 is a longitudinal sectional view showing the configuration of another nozzle of a conventional soot blower. Nozzle 3b shown in this figure
Is a combination of a divergent type and a linear type. The jet gas 2 flows in from the inlet 31b, the jet diameter increases at the enlarged portion 32b where the cross-sectional area of the flow path increases, and the jet gas 2 passes through the linear outlet 33b. It spouts out at 5. FIG. 14 is a longitudinal sectional view showing the configuration of another nozzle of a conventional soot blower.
The nozzle 3c shown in this figure has a spout and a bell-shaped hollow portion 31c.
The ejected gas 2 flows from the inlet 6 and is ejected from the outlet as the gas jet 5. FIG. 15 is a longitudinal sectional view showing the configuration of another nozzle of a conventional soot blower. The nozzle 3d shown in the figure is a combination of the ejection port and the conical hollow portion 31d, and the ejection gas 2
Flows from the inlet 6 and is ejected from the ejection port as the gas jet 5. These nozzles 3a, 3b, 3c and 3d lack the care to maintain this penetration force downstream of the axial penetration force of the gas jet 5 to the downstream. When the gas jet 5 having a large momentum collides with the heat transfer tube at the center of the jet, an apparently strong impact is applied to the collision surface of the heat transfer tube, so that the attached ash can be efficiently removed.

【0003】[0003]

【発明が解決しようとする課題】しかし、最近は液体燃
料の石油も減圧蒸留残渣油、超重質油のように劣質化が
一段と進み、固体燃料の石炭も溶融温度が低い灰分を含
むものが使用され、伝熱管の汚れが無視できなくなって
いる。また、タービン入口蒸気温度の上昇に伴い伝熱管
のメタル温度も上昇しているから、灰粒子が容易に溶融
し伝熱管への付着力、付着量が増加する。そのため従来
のスートブロアでは伝熱管へ強く付着した灰の除去が困
難になっている。伝熱管へ付着した灰の除去効率を高め
るために気体の噴射圧力を高くすれば、ノズル口径が同
じ場合には気体の消費量が増加し、気体に蒸気を用いれ
ばボイラ効率を低下させ不経済である。一方、ノズル口
径を小さくして噴射圧力を高くすれば、ノズルが早く摩
耗し寿命が短くなる。本発明の目的は、気流の噴出エネ
ルギを下流まで保持し、灰の除去効率が高いスートブロ
アを提供することにある。
However, in recent years, liquid fuel oil has been further degraded, such as vacuum distillation residue oil and ultra-heavy oil, and solid fuel coal which contains ash having a low melting temperature has been used. As a result, contamination of the heat transfer tubes cannot be ignored. In addition, since the metal temperature of the heat transfer tube also rises with the rise of the turbine inlet steam temperature, the ash particles are easily melted, and the adhesion and the amount of adhesion to the heat transfer tube increase. For this reason, it is difficult to remove ash strongly adhered to the heat transfer tube with the conventional soot blower. Increasing the gas injection pressure to increase the efficiency of removing ash attached to the heat transfer tube increases gas consumption when the nozzle diameter is the same, and using steam for gas lowers boiler efficiency and is uneconomical It is. On the other hand, if the injection pressure is increased by reducing the nozzle diameter, the nozzle wears quickly and the life is shortened. SUMMARY OF THE INVENTION An object of the present invention is to provide a soot blower that retains the jet energy of an air flow to the downstream and has a high ash removal efficiency.

【0004】[0004]

【課題を解決するための手段】上記目的は、長尺の管体
と、管体の外周に配置し気流を噴出口から噴出させるノ
ズルとを有するスートブロアにおいて、ノズルの噴出口
内径より大きい内径を有し噴出口の気流噴出側に連結し
た筒と、筒と噴出口との段部に形成した凹部とを設けた
ことにより達成される。噴出口内径をD1とし、筒の内
径をD2とした場合にD1とD2が次の式を満足する関係
であることが望ましい。 1.2≦D2/D1≦3.8 噴出口内径をD1とし、筒の内径をD2とした場合にD1
とD2が望ましくは次の式を満足する関係であることが
望ましい。 1.7≦D2/D1≦3.1 噴出口内径をD1とし、筒の長さをLとした場合にD1
Lが次の式を満足する関係であることが望ましい。 1.6≦L/D1≦4.0 噴出口内径をD1とし、筒の長さをLとした場合にD1
Lが望ましくは次の式を満足する関係であることが望ま
しい。 2.2≦L/D1≦2.8 筒と噴出口との段部に形成した凹部は断面が半円であ
り、曲率半径をRとし噴出口の内径をD1とした場合に
次の式を満足する関係であることが望ましい。 0.35≦R/D1<0.72 筒の気流噴出側が管体の外周から僅かに突出するように
配置することが望ましい。ノズルの気流流入側が管体の
内周から突出しないように配置することが望ましい。ス
ートブロアを火炉壁側へ退避させた場合に、スートブロ
アの管体及びノズルが収容可能な空間を火炉壁に設ける
と共に、管体へ冷却用気体を供給する手段を設けること
が望ましい。筒の長さLを0とすることが望ましい。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a soot blower having a long pipe and a nozzle arranged on the outer periphery of the pipe to discharge an air flow from an outlet. This is achieved by providing a cylinder connected to the airflow ejection side of the spout and a recess formed in a step between the cylinder and the ejection port. When the inner diameter of the jet port is D 1 and the inner diameter of the cylinder is D 2 , it is desirable that D 1 and D 2 have a relationship satisfying the following expression. 1.2 ≦ D 2 / D 1 ≦ 3.8 When the inner diameter of the jet port is D 1 and the inner diameter of the cylinder is D 2 , D 1
And D 2 desirably have a relationship satisfying the following expression. 1.7 ≦ D 2 / D 1 ≦ 3.1 When the inner diameter of the ejection port is D 1 and the length of the cylinder is L, it is desirable that D 1 and L satisfy the following expression. 1.6 ≦ L / D 1 ≦ 4.0 When the inside diameter of the jet port is D 1 and the length of the cylinder is L, D 1 and L desirably have a relationship satisfying the following expression. 2.2 ≦ L / D 1 ≦ 2.8 The recess formed in the step between the cylinder and the ejection port has a semicircular cross section, and when the radius of curvature is R and the inside diameter of the ejection port is D 1 , It is desirable that the relationship satisfy the expression. 0.35 ≦ R / D 1 <0.72 It is desirable to arrange the cylinder so that the airflow ejection side slightly projects from the outer periphery of the tube. It is desirable to arrange the nozzle so that the air flow inflow side does not protrude from the inner periphery of the tube. When the soot blower is retracted to the furnace wall side, it is desirable to provide a space in which the tube and nozzle of the soot blower can be accommodated on the furnace wall, and to provide a means for supplying a cooling gas to the tube. It is desirable that the length L of the cylinder is 0.

【0005】噴出口から噴出する噴流に随伴する渦を巻
く気流は上記構成の筒により噴出方向と反対方向に導か
れて噴流の外周を循環する環状渦流となり、この環状渦
流と噴流との速度勾配は緩慢であるから噴流の旋回、乱
れを少なくし噴流の流れパターンを下流まで保持するこ
とにより、伝熱管に噴出エネルギが集中し高い灰の除去
効率が得られる。特に筒と噴出口との段部に形成した凹
部は環状渦流を滑らかに反転させるに適した構造であ
る。
[0005] The swirling airflow accompanying the jet flow spouted from the jet outlet is guided by the cylinder having the above-described structure in the direction opposite to the jetting direction, and becomes an annular vortex circulating around the jet flow. The velocity gradient between the annular vortex flow and the jet flow Since the jet is slow, by reducing the swirling and turbulence of the jet and maintaining the flow pattern of the jet to the downstream, the jet energy is concentrated on the heat transfer tube and high ash removal efficiency can be obtained. In particular, the concave portion formed at the step between the cylinder and the jet port has a structure suitable for smoothly reversing the annular vortex.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図に
より説明する。図1は本発明の実施の形態のノズルの構
成を示す縦断面図である。本実施の形態の空洞付ノズル
3において、噴出気体2は丸みを有する入口部6から剥
離の無い状態で噴出口4へ流入し、気体噴流5となって
噴出する。この噴出口4は内径が僅かに拡大しているが
最小内径をノズル噴出口内径をD1とする。噴出口4の
出口端部の外周は凹状をなし噴出と反対方向に曲率半径
Rの凹部7を形成している。また、凹部7の外縁を筒8
により噴出方向に延長して空洞を形成している。噴出口
4から噴出する気体噴流5は筒8の内部を貫通するよう
にして火炉内へ噴出する。筒8の筒の内径をD2とし、
噴出口4の開口端から筒8の開口端までの長さをLとす
る。本実施の形態の空洞付ノズル3の緒元であるD2
L及びRはノズル噴出口内径D1を基準として以下の式
により定められる。これらの条件は実験により定めたも
のである。筒8の内径をD2に関し、 1.2≦D2/D1≦3.8………………………………………………(1) より望ましくは、 1.7≦D2/D1≦3.1………………………………………………(2) 筒8の長さをLに関し、 1.6≦L/D1≦4.0………………………………………………(3) より望ましくは、 2.2≦L/D1≦2.8………………………………………………(4) 凹部7の曲率半径Rに関し、 0.35≦R/D1<0.72…………………………………………(5) とする。具体的にはD1を20mmとすると(2)式か
らD2/D1=2.4とすれば、D2は48mmとなる。
Lに関し(4)式からL/D1=2.5とすればLは5
0mmとなる。更に、Rに関し(5)式からR/D1
0.54とすればRは11mmとなる。このようにして
最適なノズルを計画できる。これ以外の条件について筒
8の仕様を設定すれば、噴流の貫通力が減衰して付着灰
の除去効率が低下する。誤った形状を選定すれば筒8の
無い場合より付着灰の除去効率が低下する恐れも有る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a configuration of a nozzle according to an embodiment of the present invention. In the nozzle 3 with a cavity according to the present embodiment, the jetted gas 2 flows from the rounded inlet 6 into the jet outlet 4 without separation, and is jetted as the gas jet 5. Although the inner diameter of the jet port 4 is slightly enlarged, the minimum inner diameter is defined as D 1 . The outer periphery of the outlet end of the outlet 4 is concave and forms a recess 7 having a radius of curvature R in a direction opposite to the direction of the outlet. Also, the outer edge of the recess 7 is
To form a cavity extending in the ejection direction. The gas jet 5 ejected from the ejection port 4 is ejected into the furnace so as to penetrate the inside of the cylinder 8. The inside diameter of the cylinder 8 is D 2 ,
Let L be the length from the open end of the jet port 4 to the open end of the cylinder 8. D 2 , which is the specification of the hollow nozzle 3 of the present embodiment,
L and R are defined by the following equation based on the nozzle spout inside diameter D 1. These conditions are determined by experiments. The inner diameter of the cylinder 8 is related to D 2 , and 1.2 ≦ D 2 / D 1 ≦ 3.8... ...... (1) More preferably, 1.7 ≦ D 2 / D 1 ≦ 3.1 ...................................................... (2) the length of the cylinder 8 relates L, 1.6 ≦ L / D 1 ≦ 4 ......... (3) More preferably, 2.2 ≦ L / D 1 ≦ 2.8. (4) Regarding the radius of curvature R of the concave portion 7, 0.35 ≦ R / D 1 <0.72... ...... (5) and I do. If and in particular with a 20mm the D 1 from (2) and D 2 / D 1 = 2.4, D 2 becomes 48 mm.
If L / D 1 = 2.5 from equation (4), L is 5
0 mm. Further, regarding R, from the equation (5), R / D 1 =
If it is 0.54, R will be 11 mm. In this way, an optimal nozzle can be planned. If the specifications of the cylinder 8 are set under other conditions, the penetration force of the jet is attenuated, and the efficiency of removing attached ash is reduced. If the wrong shape is selected, there is a possibility that the efficiency of removing the attached ash may be lower than when the cylinder 8 is not provided.

【0007】次に本実施の形態のノズルをランス(管
体)に装着したスートブロアを説明する。図2は本発明
の実施の形態のノズルをランスに装着した例を示す縦断
面図である。本図に示すようにランス1の先端で互いに
軸方向に離して空洞付ノズル3を配置している。空洞付
ノズル3は噴出側端部が僅かにランス1の外周から突出
している。このような突出物の長さを極力短縮した構造
とすることにより、スートブロアの停止時に火炉の外へ
引き出す際に空洞付ノズル3が周囲の物体と衝突するト
ラブルを回避できる。
Next, a soot blower in which the nozzle of the present embodiment is mounted on a lance (tube) will be described. FIG. 2 is a longitudinal sectional view showing an example in which the nozzle according to the embodiment of the present invention is mounted on a lance. As shown in the figure, the hollow nozzles 3 are arranged at the tip of the lance 1 so as to be axially separated from each other. The nozzle 3 with a cavity has an ejection-side end slightly projecting from the outer periphery of the lance 1. By adopting a structure in which the length of the protruding object is shortened as much as possible, it is possible to avoid a trouble in which the hollow nozzle 3 collides with a surrounding object when the soot blower is stopped and pulled out of the furnace.

【0008】図3は本発明の実施の形態のノズルをラン
スに装着した他の例を示す縦断面図である。図2に示す
例はランス1の外側で起る問題に配慮したためランス1
の内側で起る問題に対応出来ない。即ち、空洞付ノズル
3の入口部6がランス1の内周側に突出しているので噴
出気体2の圧力損失が増大したり、それぞれの空洞付ノ
ズル3の噴出量に偏差を生じる。本図に示す例は空洞付
ノズル3の入口部6の端部がランス1の内周面とほぼ同
じ高さなので、図2に示す例でランス1の内側において
発生する噴出気体2の流動の問題は回避できる。
FIG. 3 is a longitudinal sectional view showing another example in which the nozzle according to the embodiment of the present invention is mounted on a lance. The example shown in FIG.
Can't deal with the problems that occur inside. That is, since the inlet portion 6 of the hollow nozzle 3 protrudes toward the inner peripheral side of the lance 1, the pressure loss of the jet gas 2 increases, and the jet amount of each hollow nozzle 3 varies. In the example shown in this figure, the end of the inlet portion 6 of the hollow nozzle 3 has substantially the same height as the inner peripheral surface of the lance 1, so that the flow of the jet gas 2 generated inside the lance 1 in the example shown in FIG. The problem can be avoided.

【0009】図4は本発明の実施の形態のスートブロア
の構成を示す縦断面である。図3に示す例は空洞付ノズ
ル3は噴出側端部が大きくランス1の外周から突出して
いる。そのためスートブロアの停止時に火炉の外へ引き
出すことが困難である。従って本図に示す例では火炉水
壁10にスートブロア収納空間11を設け、停止時に火
炉の外へ引き出さずにそこへ収納する。また、スートブ
ロアの停止時に火炉からの輻射熱によりランス1及び空
洞付ノズル3が焼損しないように冷却用空気12をラン
ス1へ供給し、冷却用空気の噴出流12aとして空洞付
ノズル3から噴出させる。
FIG. 4 is a longitudinal section showing the structure of a soot blower according to an embodiment of the present invention. In the example shown in FIG. 3, the hollow nozzle 3 has a large ejection side end portion and protrudes from the outer periphery of the lance 1. Therefore, it is difficult to pull out the furnace when the soot blower is stopped. Therefore, in the example shown in this figure, a soot blower storage space 11 is provided in the furnace water wall 10 and is stored therein without being pulled out of the furnace when stopped. Further, when the soot blower is stopped, cooling air 12 is supplied to the lance 1 so that the lance 1 and the hollow nozzle 3 are not burned out by the radiant heat from the furnace, and the cooling air 12 is jetted from the hollow nozzle 3 as a jet air 12a of the cooling air.

【0010】図5は本発明の他の実施の形態のノズルの
構成を示す縦断面図である。図1に示す空洞付ノズル3
は筒8が火炉側に突出する構造なので、図2に示すよう
に入口部6をランス1内に収納するようにしたり、図4
に示すように作動停止時には火炉から引き出さずに火炉
水壁10に設けたスートブロア収納空間11を収納する
工夫をしている。本図に示す空洞付ノズル3は筒8の長
さLを0とし凹部7のみで循環する環状渦流を作り出
す。本実施の形態の空洞付ノズル3はランス1の外周面
から殆ど突出していないので、スートブロアの火炉への
挿入、抜き出しが容易になる。図1に示す空洞付ノズル
3より灰の除去効率は低下するが従来のノズルよりは優
れている。
FIG. 5 is a longitudinal sectional view showing the structure of a nozzle according to another embodiment of the present invention. Nozzle 3 with cavity shown in FIG.
Since the tube 8 projects to the furnace side, the inlet 6 may be housed in the lance 1 as shown in FIG.
As shown in Fig. 7, when the operation is stopped, the soot blower storage space 11 provided in the furnace water wall 10 is stored without being pulled out of the furnace. The nozzle 3 with a cavity shown in this figure sets the length L of the cylinder 8 to 0 and creates an annular vortex circulating only in the concave portion 7. Since the hollow nozzle 3 of the present embodiment hardly protrudes from the outer peripheral surface of the lance 1, the soot blower can be easily inserted into and extracted from the furnace. Although the ash removal efficiency is lower than that of the hollow nozzle 3 shown in FIG. 1, it is superior to the conventional nozzle.

【0011】次に本実施の形態の動作を説明する。図6
は本発明の実施の形態のノズル噴射圧力と衝突受圧力と
の関係を示す図表である。本図は図1に示す空洞付ノズ
ル3と図12、図13、図14、図15に示す従来技術
のノズル3a、3b、3c、3dとの性能を比較した結
果を表したものである。横軸に噴射圧力P1を基準噴射
圧力P2で割った無次元数をとり、縦軸に噴流中心衝突
受圧力P3を従来技術においてP1=P2とした場合の噴
流中心衝突受圧力P4で割った無次元数をとっている。
従来技術では噴射圧力P1を高めていっても無次元数の
噴流中心衝突受圧力は緩慢に増加するのに対し、本実施
の形態では急激に増加する。従来技術では噴射圧力P1
を高めていくと渦、旋回等の乱により噴流パターンに異
変が生じ噴流が分散するため噴流中心衝突受圧力P3
上昇しない。本実施の形態では噴出口4から噴出する際
の不足膨張状態が下流まで維持され、噴流の貫通力が持
続する。
Next, the operation of this embodiment will be described. FIG.
4 is a table showing a relationship between a nozzle injection pressure and a collision receiving pressure according to the embodiment of the present invention. This figure shows the result of comparing the performance of the hollow nozzle 3 shown in FIG. 1 with the conventional nozzles 3a, 3b, 3c, and 3d shown in FIGS. 12, 13, 14, and 15. The horizontal axis represents the dimensionless number obtained by dividing the injection pressure P 1 by the reference injection pressure P 2 , and the vertical axis represents the jet center collision reception pressure when the jet center collision reception pressure P 3 is P 1 = P 2 in the prior art. It has taken a dimensionless number, which was divided by the P 4.
In the prior art, although the injection pressure P 1 is increased, the dimensionless number of jet center collision receiving pressures increases slowly, whereas in the present embodiment, it increases rapidly. In the prior art, the injection pressure P 1
As you increase the vortex, anomalies in the jet pattern by turbulent swirling or the like is jet around the collision pressure force P 3 for jet dispersed occur not increased. In the present embodiment, the insufficient expansion state at the time of jetting from the jet port 4 is maintained to the downstream, and the penetration force of the jet is maintained.

【0012】図7は本発明の実施の形態のノズル内の噴
流パターンを示す縦断面図である。本図に示すように筒
8の内部には気体噴流5を取り囲むような環状渦13が
安定して生じる。この環状渦13を通じて外部からの巻
き込み流入気体が安定して気体噴流5の内部に供給され
るため、気体噴流5は乱れが少なく拡散が遅れ気味にな
り、下流でも気体噴流5の径が拡大せず強い貫通力が維
持される。図14、図15に示す従来技術のノズル3
c、3dにおいて噴出口出口に空洞部を設けているが、
このような形状では環状渦13を安定して作り出すこと
は出来ない。
FIG. 7 is a longitudinal sectional view showing a jet pattern in the nozzle according to the embodiment of the present invention. As shown in the figure, an annular vortex 13 that stably surrounds the gas jet 5 is generated inside the cylinder 8. The gas entrapped inflow from the outside is stably supplied to the inside of the gas jet 5 through the annular vortex 13, so that the gas jet 5 has little turbulence and the diffusion is slightly delayed, and the diameter of the gas jet 5 is enlarged even downstream. A strong penetration force is maintained. Conventional nozzle 3 shown in FIGS. 14 and 15
In c and 3d, a cavity is provided at the jet outlet,
With such a shape, the annular vortex 13 cannot be created stably.

【0013】ここで開口部と噴流パターンの関係を説明
する。図8は一般的な開口部と噴流パターンの関係を示
す説明図である。噴出口の出口端面が平坦な開口条件の
場合、本図において矢印で示した外周から入り込む気流
が直角に折れ曲がって噴流に供給される。この際噴出口
の出口において噴流と外周から入り込む気流との間に大
きな速度勾配が生じるために噴流には渦、旋回等の乱れ
ができ易くなる。本実施の形態では気体噴流5の外周に
環状渦13を作り出すことにより噴出口の出口における
速度勾配を緩慢にして噴流パターンの改善を図るもので
ある。噴流中に渦、旋回が生じると噴流から特定の卓越
周波数を有する騒音が発生するようになる。この卓越周
波数が低ければ噴流の乱れが強く、噴流の拡散も早いこ
とになる。
Here, the relationship between the opening and the jet pattern will be described. FIG. 8 is an explanatory view showing the relationship between a general opening and a jet flow pattern. In the case where the outlet end face of the jet outlet has a flat opening condition, the airflow entering from the outer periphery indicated by the arrow in this drawing is bent at a right angle and supplied to the jet. At this time, since a large velocity gradient is generated between the jet and the airflow entering from the outer periphery at the outlet of the jet, turbulence such as vortex and swirl is easily generated in the jet. In the present embodiment, an annular vortex 13 is created on the outer periphery of the gas jet 5 so as to reduce the velocity gradient at the outlet of the jet and improve the jet pattern. When a vortex or swirl occurs in the jet, noise having a specific dominant frequency is generated from the jet. If this dominant frequency is low, the turbulence of the jet is strong and the diffusion of the jet is fast.

【0014】図9は本発明の実施の形態のノズル噴射圧
力と卓越周波数の関係を示す図表である。本図は図1に
示す空洞付ノズル3と、図12、図13、図14、図1
5に示す従来技術のノズル3a、3b、3c、3dのノ
ズル噴射圧力と卓越周波数の関係を示す。図6と同様に
横軸に噴射圧力P1を基準噴射圧力P2で割った無次元数
をとり、縦軸に噴流騒音の卓越周波数f1を従来技術に
おいてP1=P2とした場合の噴流騒音の卓越周波数f2
で割った無次元数をとっている。何れの場合も噴射圧力
を高めていくと卓越周波数は低下するが、本実施の形態
では卓越周波数は従来技術の2倍を越えている。この結
果から本実施の形態の空洞付ノズル3は高圧噴射時にも
低周波の乱れが発生せず、拡散し難い構造であることが
わかる。
FIG. 9 is a table showing the relationship between the nozzle injection pressure and the dominant frequency according to the embodiment of the present invention. This figure shows the hollow nozzle 3 shown in FIG. 1 and FIGS. 12, 13, 14, and 1.
5 shows the relationship between the nozzle injection pressure and the dominant frequency of the nozzles 3a, 3b, 3c, and 3d of the related art shown in FIG. Figure 6 and takes the dimensionless number of the injection pressure P 1 divided by the reference injection pressure P 2 on the horizontal axis in the same manner, the vertical axis in the dominant frequency f 1 of the jet noise prior art in the case of the P 1 = P 2 Dominant frequency f 2 of jet noise
It is the dimensionless number divided by. In any case, the dominant frequency decreases as the injection pressure is increased, but in the present embodiment, the dominant frequency exceeds twice that of the prior art. From this result, it can be understood that the hollow nozzle 3 of the present embodiment has a structure in which low-frequency turbulence does not occur even during high-pressure injection and diffusion is difficult.

【0015】図10は本発明の実施の形態と従来のスー
トブロアの作動回数を比較した図表である。本図は図1
に示す空洞付ノズル3と図12に示すノズル3aをそれ
ぞれ用いたスートブロアの作動回数を比較している。本
図の縦軸はスートブロアの作動回数N1を従来のスート
ブロアの作動回数N2で割ることにより無次元化したも
のである。スートブロアの作動回数は少ないほど灰の除
去効率が高い。
FIG. 10 is a table comparing the number of times of operation of the embodiment of the present invention with that of a conventional soot blower. This figure is Figure 1
12 is compared with the number of times of operation of the soot blower using the nozzle 3 with a cavity shown in FIG. 12 and the nozzle 3a shown in FIG. The vertical axis of this figure is dimensionless by dividing the number of times of operation of the soot blower N 1 by the number of times of operation of the conventional soot blower N 2 . The less the number of soot blower operations, the higher the ash removal efficiency.

【0016】図11は本発明の実施の形態と従来のスー
トブロアの蒸気消費量を比較した図表である。本実施の
形態の空洞付ノズル3を用いたスートブロアは、従来の
ノズル3aを用いたスートブロアの70%弱まで作動回
数を低減でき、従来の2/3まで蒸気消費量を節減でき
る。一般にボイラのスートブロアはボイラで発生した蒸
気を用いるので、蒸気消費量の節減はボイラ効率の向上
に貢献する。本実施の形態の空洞付ノズル3の用途は、
混合または拡散よりも噴流を遠くまで貫通させたり、噴
流の衝突エネルギを集中させるものに適している。例え
ばボイラの低NOx燃焼時における二段燃焼用空気の噴
出に際しても貫通力が弱ければ火炉内の燃焼後流部全域
までは空気が混合し難い。また、石炭ミルの停止時には
残炭があると発火の恐れがあるので除去する必要があ
る。残炭の除去に空気噴流を用いるが衝突受圧力が大き
ければ、残炭は容易に石炭ミルから火炉へ放出される。
FIG. 11 is a table comparing the steam consumption of the embodiment of the present invention and the conventional soot blower. The soot blower using the hollow nozzle 3 according to the present embodiment can reduce the number of operations to less than 70% of that of the conventional soot blower using the nozzle 3a, and can reduce the steam consumption to 2/3 of the conventional. In general, a soot blower of a boiler uses steam generated by the boiler, so that reduction in steam consumption contributes to improvement in boiler efficiency. The use of the hollow nozzle 3 of the present embodiment is as follows.
It is suitable for those that penetrate the jet farther than mixing or diffusion, or that concentrate the collision energy of the jet. For example, even when the boiler blows out the air for two-stage combustion at the time of low NOx combustion, if the penetration force is weak, it is difficult for the air to be mixed up to the entire area after the combustion in the furnace. When the coal mill is stopped, residual coal must be removed because there is a risk of ignition. Air jets are used to remove the residual coal, but if the collision pressure is high, the residual coal is easily discharged from the coal mill to the furnace.

【0017】以上述べたように本実施の形態によれば、
軸方向に貫通力を強くした噴流を生成できるので、灰付
着部へ噴流が衝突した時のエネルギが大きくノズルから
離れた部位に付着する灰も効率良く除去でき、1つのス
ートブロアがカバーする領域も拡大し設置する数が少な
くなり設備費及び保守費を節減できる。そして、灰の除
去効率が高いので蒸気消費量が節減されてボイラ効率が
向上すると共にスートブロアの作動回数も少なくなるか
ら熱応力の繰返し発生による疲労破壊に至り難くスート
ブロアの寿命が長くなる。また、灰付着部へ噴流が衝突
した時のエネルギが大きいから除去し難い灰も容易に除
去でき。
As described above, according to the present embodiment,
Since a jet with a strong penetration force in the axial direction can be generated, the energy when the jet collides with the ash attachment part is large, and the ash adhering to the part distant from the nozzle can be efficiently removed, and the area covered by one soot blower The number of installations can be reduced and the number of installations can be reduced, which can reduce equipment and maintenance costs. Since the ash removal efficiency is high, the steam consumption is reduced, the boiler efficiency is improved, and the number of times the soot blower is operated is also reduced. Therefore, fatigue breakage due to repeated generation of thermal stress hardly occurs and the life of the soot blower is extended. In addition, since the energy when the jet collides with the ash attachment portion is large, ash which is difficult to remove can be easily removed.

【0018】[0018]

【発明の効果】本発明によれば、噴出口から噴出する噴
流の外周に循環する環状渦流が生成し、この環状渦流と
噴流との速度勾配は緩慢であるから噴流のパターンの乱
れが少なくなり噴流のパターンを下流まで保持するか
ら、灰付着部に噴出エネルギが集中し高い灰の除去効率
が得られる。
According to the present invention, an annular vortex circulating around the outer periphery of the jet jetting from the jet outlet is generated, and the velocity gradient between the annular vortex and the jet is slow, so that the disturbance of the jet pattern is reduced. Since the jet pattern is held down to the downstream, the jet energy is concentrated on the ash attachment portion, and high ash removal efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のノズルの構成を示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing a configuration of a nozzle according to an embodiment of the present invention.

【図2】本発明の実施の形態のノズルをランスに装着し
た例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example in which the nozzle according to the embodiment of the present invention is mounted on a lance.

【図3】本発明の実施の形態のノズルをランスに装着し
た他の例を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing another example in which the nozzle according to the embodiment of the present invention is mounted on a lance.

【図4】本発明の実施の形態のスートブロアの構成を示
す縦断面である。
FIG. 4 is a longitudinal section showing a configuration of a soot blower according to the embodiment of the present invention.

【図5】本発明の他の実施の形態のノズルの構成を示す
縦断面図である。
FIG. 5 is a longitudinal sectional view showing a configuration of a nozzle according to another embodiment of the present invention.

【図6】本発明の実施の形態のノズル噴射圧力と衝突受
圧力との関係を示す図表である。
FIG. 6 is a table showing a relationship between a nozzle injection pressure and a collision receiving pressure according to the embodiment of the present invention.

【図7】本発明の実施の形態のノズル内の噴流パターン
を示す縦断面図である。
FIG. 7 is a longitudinal sectional view showing a jet pattern in a nozzle according to the embodiment of the present invention.

【図8】一般的な開口部と噴流パターンの関係を示す説
明図である。
FIG. 8 is an explanatory diagram showing a relationship between a general opening and a jet pattern.

【図9】本発明の実施の形態のノズル噴射圧力と卓越周
波数の関係を示す図表である。
FIG. 9 is a table showing a relationship between a nozzle ejection pressure and a dominant frequency according to the embodiment of the present invention.

【図10】本発明の実施の形態と従来のスートブロアの
作動回数を比較した図表である。
FIG. 10 is a table comparing the number of times of operation of an embodiment of the present invention and a conventional soot blower.

【図11】本発明の実施の形態と従来のスートブロアの
蒸気消費量を比較した図表である。
FIG. 11 is a table comparing the steam consumption of the embodiment of the present invention and the conventional soot blower.

【図12】従来のスートブロアのノズルの構成を示す縦
断面図である。
FIG. 12 is a longitudinal sectional view showing a configuration of a nozzle of a conventional soot blower.

【図13】従来のスートブロアの他のノズルの構成を示
す縦断面図である。
FIG. 13 is a longitudinal sectional view showing the configuration of another nozzle of a conventional soot blower.

【図14】従来のスートブロアの他のノズルの構成を示
す縦断面図である。
FIG. 14 is a longitudinal sectional view showing the configuration of another nozzle of a conventional soot blower.

【図15】従来のスートブロアの他のノズルの構成を示
す縦断面図である。
FIG. 15 is a longitudinal sectional view showing the configuration of another nozzle of a conventional soot blower.

【符号の説明】[Explanation of symbols]

1 ランス 2 噴出気体 2a 流入気体 3 空洞付ノズル 3a ノズル 31a 入口部 32a 直線部 3b ノズル 31b 入口部 32b 拡大部 33b 直線出口部 3c ノズル 31c 釣鐘形空洞部 3d ノズル 31d 円錐形空洞部 4 噴出口 5 気体噴流 6 入口部 7 凹部 8 筒 10 火炉水壁 11 スートブロア収納空間 12 冷却用空気 12a 冷却用空気の噴出 13 環状渦 REFERENCE SIGNS LIST 1 Lance 2 Ejected gas 2a Inflow gas 3 Nozzle with cavity 3a Nozzle 31a Inlet 32a Straight portion 3b Nozzle 31b Inlet 32b Enlarged portion 33b Straight outlet 3c Nozzle 31c Bell-shaped cavity 3d Nozzle 31d Conical cavity 4 Spout 5 Gas jet 6 Inlet 7 Recess 8 Cylinder 10 Furnace water wall 11 Soot blower storage space 12 Cooling air 12a Cooling air ejection 13 Annular vortex

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 長尺の管体と、該管体の外周に配置し気
流を噴出口から噴出させるノズルとを有するスートブロ
アにおいて、 前記ノズルの噴出口内径より大きい内径を有し前記噴出
口の気流噴出側に連結した筒と、該筒と前記噴出口との
段部に形成した凹部とを設けたことを特徴とするスート
ブロア。
1. A soot blower having a long tubular body and a nozzle disposed on the outer periphery of the tubular body and ejecting an airflow from an outlet, wherein the soot blower has an inner diameter larger than the inner diameter of the outlet of the nozzle. A soot blower comprising: a cylinder connected to an air flow ejection side; and a recess formed in a step between the cylinder and the ejection port.
【請求項2】 前記噴出口内径をD1とし、前記筒の内
径をD2とした場合に前記D1と前記D2が次の式を満足
する関係であることを特徴とする請求項1に記載のスー
トブロア。 1.2≦D2/D1≦3.8
2. The structure according to claim 1, wherein when the inner diameter of the jet port is D 1 and the inner diameter of the cylinder is D 2 , D 1 and D 2 satisfy the following expression. The soot blower described in the above. 1.2 ≦ D 2 / D 1 ≦ 3.8
【請求項3】 前記噴出口内径をD1とし、前記筒の内
径をD2とした場合に前記D1と前記D2が望ましくは次
の式を満足する関係であることを特徴とする請求項1に
記載のスートブロア。 1.7≦D2/D1≦3.1
3. When the inside diameter of the injection port is D 1 and the inside diameter of the cylinder is D 2 , the relations D 1 and D 2 preferably satisfy the following expression. Item 2. A soot blower according to item 1. 1.7 ≦ D 2 / D 1 ≦ 3.1
【請求項4】 前記噴出口内径をD1とし、前記筒の長
さをLとした場合に前記D1と前記Lが次の式を満足す
る関係であることを特徴とする請求項1に記載のスート
ブロア。 1.6≦L/D1≦4.0
4. The structure according to claim 1, wherein when the inner diameter of the jet port is D 1 and the length of the cylinder is L, the relation of D 1 and L satisfies the following expression. The described soot blower. 1.6 ≦ L / D 1 ≦ 4.0
【請求項5】 前記噴出口内径をD1とし、前記筒の長
さをLとした場合に前記D1と前記Lが望ましくは次の
式を満足する関係であることを特徴とする請求項1に記
載のスートブロア。 2.2≦L/D1≦2.8
5. When the inner diameter of the injection port is D 1 and the length of the cylinder is L, the relation D 1 and the L preferably satisfy the following expression. 2. The soot blower according to 1. 2.2 ≦ L / D 1 ≦ 2.8
【請求項6】 前記筒と前記噴出口との段部に形成した
凹部は断面が半円であり、曲率半径をRとし前記噴出口
の内径をD1とした場合に次の式を満足する関係である
ことを特徴とする請求項1に記載のスートブロア。 0.35≦R/D1<0.72
6. A recess formed on the stepped portion between the tube and the spout in cross section is semicircular, satisfies the following expression when the inner diameter of the spout to the radius of curvature R was D 1 The soot blower according to claim 1, wherein the soot blower is a relation. 0.35 ≦ R / D 1 <0.72
【請求項7】 前記筒の気流噴出側が前記管体の外周か
ら僅かに突出するように配置したことを特徴とする請求
項1から請求項6のうちの何れかの請求項に記載のスー
トブロア。
7. The soot blower according to claim 1, wherein an air flow ejection side of the cylinder is arranged so as to slightly protrude from an outer periphery of the tube.
【請求項8】 前記ノズルの気流流入側が前記管体の内
周から突出しないように配置したことを特徴とする請求
項1から請求項6のうちの何れかの請求項に記載のスー
トブロア。
8. The soot blower according to claim 1, wherein an air flow inflow side of the nozzle is arranged so as not to protrude from an inner periphery of the tube.
【請求項9】 請求項8に記載のスートブロアを火炉壁
側へ退避させた場合に、前記スートブロアの管体及びノ
ズルが収容可能な空間を火炉壁に設けると共に、前記管
体へ冷却用気体を供給する手段を設けたことを特徴とす
るボイラの火炉。
9. When the soot blower according to claim 8 is retracted toward the furnace wall, a space capable of accommodating a tube and a nozzle of the soot blower is provided on the furnace wall, and a cooling gas is supplied to the tube. A boiler furnace characterized by comprising a supply means.
【請求項10】 前記筒の長さLを0としたことを特徴
とする請求項1に記載のスートブロア。
10. The soot blower according to claim 1, wherein the length L of the cylinder is set to zero.
JP26444997A 1997-09-29 1997-09-29 Sootblower Expired - Lifetime JP3823215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26444997A JP3823215B2 (en) 1997-09-29 1997-09-29 Sootblower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26444997A JP3823215B2 (en) 1997-09-29 1997-09-29 Sootblower

Publications (2)

Publication Number Publication Date
JPH11101429A true JPH11101429A (en) 1999-04-13
JP3823215B2 JP3823215B2 (en) 2006-09-20

Family

ID=17403361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26444997A Expired - Lifetime JP3823215B2 (en) 1997-09-29 1997-09-29 Sootblower

Country Status (1)

Country Link
JP (1) JP3823215B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276675A (en) * 2000-03-29 2001-10-09 Tetsuo Matsubara Spray coating spray gun
KR100863227B1 (en) 2004-11-10 2008-10-15 주식회사 나래나노텍 Nozzle dispenser having flat and recess nozzle edge structure and a method for manufacturing the same
CN104040109A (en) * 2011-11-18 2014-09-10 哈利伯顿能源服务公司 Autonomous fluid control system having a fluid diode
JP2015224618A (en) * 2014-05-29 2015-12-14 トヨタ自動車株式会社 Fuel injection valve
CN109386835A (en) * 2017-08-10 2019-02-26 江苏鑫丰清灰科技有限公司 Superpower raises formula resonant cavity acoustic wave ash ejector certainly
CN111530647A (en) * 2020-05-07 2020-08-14 中节能工业节能有限公司华坪分公司 Spray nozzle for soot blower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748802B1 (en) 2016-10-18 2017-06-19 주식회사 지스코 Soot blower and method for cleaning tubular heat exchanger using thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276675A (en) * 2000-03-29 2001-10-09 Tetsuo Matsubara Spray coating spray gun
KR100863227B1 (en) 2004-11-10 2008-10-15 주식회사 나래나노텍 Nozzle dispenser having flat and recess nozzle edge structure and a method for manufacturing the same
CN104040109A (en) * 2011-11-18 2014-09-10 哈利伯顿能源服务公司 Autonomous fluid control system having a fluid diode
CN104040109B (en) * 2011-11-18 2017-01-18 哈利伯顿能源服务公司 autonomous fluid control system having a fluid diode
JP2015224618A (en) * 2014-05-29 2015-12-14 トヨタ自動車株式会社 Fuel injection valve
CN109386835A (en) * 2017-08-10 2019-02-26 江苏鑫丰清灰科技有限公司 Superpower raises formula resonant cavity acoustic wave ash ejector certainly
CN111530647A (en) * 2020-05-07 2020-08-14 中节能工业节能有限公司华坪分公司 Spray nozzle for soot blower
CN111530647B (en) * 2020-05-07 2021-04-20 中节能工业节能有限公司华坪分公司 Spray nozzle for soot blower

Also Published As

Publication number Publication date
JP3823215B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
KR100606629B1 (en) Descaling nozzle and cemented carbide nozzle tip
EP0575669B1 (en) Atomizers and nozzle inserts therefor
US4565324A (en) Nozzle structure for sootblower
US6764030B2 (en) Sootblower nozzle assembly with an improved downstream nozzle
JP4141006B2 (en) High pressure cleaning spray nozzle
US7485027B2 (en) Abrasive entrainment
JPH11101429A (en) Soot blower
US5553778A (en) Advanced sootblower nozzle design
JP2009162638A (en) Jet pump and nuclear reactor
JP3343371B2 (en) Cavitation injection device
CA2546862C (en) Sootblower nozzle assembly with nozzles having different geometries
JPH07241494A (en) Nozzle for water jet
KR20130084321A (en) Nozzle for removing scale of steel plate, scale removing device for steel plate, and method for removing scale of steel plate
JP3795240B2 (en) Water jet nozzle
JP3868655B2 (en) Sootblower
JP4296460B2 (en) Heat transfer tube cleaning method and cleaning device
JP2020146656A (en) Nozzle of dry ice cleaning machine
JP2006334585A (en) Steam cleaning auxiliary agent ejector nozzle
JP2000234720A (en) Soot blower
JPS6110771Y2 (en)
JP2000018555A (en) Soot blower
JPH11294750A (en) Soot blower nozzle
JPH11118135A (en) Soot blower
CN219943265U (en) Gas-assisted atomization nozzle, spray gun and spray device
JPH09273715A (en) Burner for wet type furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term