JPH0498064A - Ice making method and ice heat accumulative device - Google Patents

Ice making method and ice heat accumulative device

Info

Publication number
JPH0498064A
JPH0498064A JP2212749A JP21274990A JPH0498064A JP H0498064 A JPH0498064 A JP H0498064A JP 2212749 A JP2212749 A JP 2212749A JP 21274990 A JP21274990 A JP 21274990A JP H0498064 A JPH0498064 A JP H0498064A
Authority
JP
Japan
Prior art keywords
ice
storage material
cold storage
ice making
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212749A
Other languages
Japanese (ja)
Inventor
Shingo Ito
信吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2212749A priority Critical patent/JPH0498064A/en
Publication of JPH0498064A publication Critical patent/JPH0498064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To perform a positive elimination of over-cooling of a cold heat accumulative material by a method wherein a shock force of a pressure wave is acted upon the cold heat accumulative material while being over-cooled. CONSTITUTION:As aqueous liquid W is over-cooled while being circulated within a heat accumulative tank 2 and an ice making pipe 6, a manual opening or closing valve 8d of an air bubble supplying means 8 is released and at the same time an air pump 8a is driven and air bubbles BS of small diameter are continuously supplied to a large diameter part 6a of the ice making pipe 6. Subsequently, as the aqueous liquid W is fed to the small diameter part 6b of the ice making pipe 6, the aqueous liquid W shows its increased flow speed and at the same time its pressure is rapidly decreased as the flow speed is increased. With such an arrangement, air bubbles BL mixed in the aqueous liquid W are adiabatically expanded and a pressure wave may act against the aqueous liquid W around the air bubbles BL. That is, the aqueous liquid W may accept a shock force of the pressure wave. Then, the aqueous liquid W is eliminated at its over-cooled state by the shock force and then the liquid is changed into ices.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過冷却された蓄冷材の過冷却状態を解消して
氷化させる製氷方法および該製氷方法に使用されろ氷蓄
熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ice making method for removing the supercooled state of a supercooled cold storage material and turning it into ice, and an ice heat storage device used in the ice making method.

(従来の技術) 近年、工業プラントやビル等における比較的大規模な空
調システムには蓄熱空調システムが利用されている。そ
して、この蓄熱空調システムの蓄熱方式の一例として、
安全性および経済性に優れた氷蓄熱方式が知られている
(Prior Art) In recent years, thermal storage air conditioning systems have been used in relatively large-scale air conditioning systems in industrial plants, buildings, and the like. As an example of the heat storage method of this heat storage air conditioning system,
The ice heat storage method is known to be highly safe and economical.

また、この氷蓄熱方式として、例えば、特開昭63−2
17171号公報に示されるように、冷却面に生成され
た氷を冷却面に付着させることのない方式(一般にダイ
ナミック方式と呼ばれる)が注目されている。この方式
は、製氷用の蓄冷材としての水溶液を過冷却状態まで冷
却した後、水溶液同志を衝突させ、この衝突による衝撃
力によって過冷却状態を解消して氷化させることて、蓄
熱媒体としての氷を得るようにしている。
In addition, as this ice heat storage method, for example, JP-A-63-2
As shown in Japanese Patent No. 17171, a method (generally called a dynamic method) that does not allow ice generated on the cooling surface to adhere to the cooling surface is attracting attention. This method cools the aqueous solution used as a cold storage medium for ice making to a supercooled state, then causes the aqueous solutions to collide with each other, and the impact force from this collision eliminates the supercooled state and turns it into ice. Trying to get ice.

(発明が解決しようとする課題) しかしなから、上述したような方式のものにあっては、
過冷却状態の水溶液同志の衝突による衝撃力によって過
冷却状態を解消するようにしているために、その過冷却
解消に十分な衝撃力か得られるとは限らず、製氷の信頼
性か十分に確保されているとは言い難かった。
(Problem to be solved by the invention) However, in the method described above,
Since the supercooled state is resolved by the impact force caused by the collision of supercooled aqueous solutions, it is not always possible to obtain enough impact force to eliminate the supercooling, and it is necessary to ensure ice-making reliability. It was hard to say that it was done.

本発明は、この点に鑑みてなされたものであって、より
確実な過冷却解消動作を得ることができる製氷方法およ
びそれに使用される氷蓄熱装置を得ることを目的とする
ものである。
The present invention has been made in view of this point, and aims to provide an ice making method that can achieve a more reliable supercooling elimination operation, and an ice heat storage device used therein.

(課題を解決するための手段) 上記の目的を解決するために、本発明では、過冷却状態
の水溶液中に気泡を供給し、この気泡の体積変化による
圧力波によって過冷却を解消させるようにした。具体的
に、請求項(1)に係る発明は、上流側の大径部(6a
)と下流側の小径部(6b)とが形成された製氷管(6
)に製氷用の水や水溶液等からなる蓄冷材(W)を供給
する一方、少なくとも前記小径部(6b)よりも上流側
において、蓄冷材(W)を冷凍手段(7)によって過冷
却状態まで冷却すると共に蓄冷材(W)中に気泡供給手
段(8)   (9)によって気泡(B)を供給し、そ
の後、この気泡(B)か混入した蓄冷材(W)か前記製
氷管(6)の小径部(6b)を流通することにより気泡
(B)を断熱膨張させ、過冷却状態の蓄冷材(W)に、
この断熱膨張による衝撃力を作用させることにより蓄冷
材(W)の過冷却状態を解消して氷(1)を生成するよ
うにした製氷方法である。
(Means for Solving the Problems) In order to solve the above object, the present invention provides a method in which air bubbles are supplied into a supercooled aqueous solution, and the supercooling is eliminated by a pressure wave caused by a change in the volume of the air bubbles. did. Specifically, the invention according to claim (1) provides an upstream large diameter portion (6a
) and a small diameter portion (6b) on the downstream side.
) is supplied with a cold storage material (W) made of water or an aqueous solution for ice making, and at least on the upstream side of the small diameter portion (6b), the cold storage material (W) is brought to a supercooled state by a freezing means (7). While cooling, bubbles (B) are supplied into the cold storage material (W) by the bubble supply means (8) (9), and then the air bubbles (B), the mixed cold storage material (W), or the ice making tube (6) The bubbles (B) are adiabatically expanded by flowing through the small diameter part (6b) of the cool storage material (W) in a supercooled state,
This ice-making method generates ice (1) by eliminating the supercooled state of the cold storage material (W) by applying an impact force due to this adiabatic expansion.

請求項(2)に係る発明は、請求項(1)に係る製氷方
法を利用した氷蓄熱装置であって、蓄熱用の水(1)を
蓄える蓄熱槽(2)と、該蓄熱槽(2)に少なくとも一
端か連通して製氷用の水や水78液等からなる蓄冷材(
W)が流通する製氷管(6)と、該製氷管(6)を流れ
る蓄冷材(W)を過冷却状態まで冷却する冷凍手段(7
)と、前記製氷管(6)を流れる蓄冷材(W)に気泡(
B)を供給する気泡供給手段(8)とを備えている。そ
して、前記製氷管(6)は、上流側に形成され、前記冷
凍手段(7)によって冷却され且つ気泡供給手段(8)
によって気泡(B)か混入した蓄冷材1、W)か流れる
大径部(6a)と、該大径部(6a)に連続して下流側
に形成され、前記蓄冷材(W)か流通することにより気
泡(B)を断熱膨張させ、過冷却状態の蓄冷材(W)に
、この断熱膨張による衝撃力を作用させることにより蓄
冷材(W)の過冷却状態を解消して氷(1)を生成する
小径部(5b)とを備えるような構成としている。
The invention according to claim (2) is an ice heat storage device using the ice making method according to claim (1), which comprises a heat storage tank (2) for storing water (1) for heat storage, and the heat storage tank (2). ) with at least one end communicating with the cold storage material (
An ice-making tube (6) through which W) flows, and a freezing means (7) that cools the cold storage material (W) flowing through the ice-making tube (6) to a supercooled state.
), and air bubbles (
B). The ice making tube (6) is formed on the upstream side, is cooled by the freezing means (7), and is cooled by the bubble supply means (8).
A large diameter part (6a) through which the cold storage material 1, W) mixed with air bubbles (B) flows, and a large diameter part (6a) is formed continuously on the downstream side of the large diameter part (6a), and the cold storage material (W) flows through the large diameter part (6a). By doing so, the air bubbles (B) are adiabatically expanded, and by applying an impact force due to this adiabatic expansion to the supercooled cold storage material (W), the supercooled state of the cold storage material (W) is canceled and ice (1) is generated. The structure includes a small diameter portion (5b) that generates.

(作用) 上記各請求項に係る発明の構成による作用は、以下に述
べるとおりである。
(Actions) The effects of the configurations of the inventions according to each of the above claims are as described below.

請求項(1)及び(2)に係る発明においては、冷凍手
段(7)が製氷管(6)の小径部(6b)よりも上流側
の大径部(6a)を流通する製氷用の蓄冷材(W)を過
冷却状態まて冷却すると共に、気泡供給手段(8)、 
 (9)か過冷却状態の蓄冷材(W)中に、前記小径部
(6b)よりも上流側の大径部(6a)において気泡(
B)を供給する。
In the inventions according to claims (1) and (2), the freezing means (7) is a cold storage for ice making that flows through the large diameter section (6a) upstream of the small diameter section (6b) of the ice making tube (6). While cooling the material (W) to a supercooled state, a bubble supply means (8),
(9) Air bubbles (
B).

その後、この蓄冷材(W)及び気泡(B)か、大径部(
6a)よりも径の小さい小径部(6b)に流通する。こ
のとき、製氷管(6)内の圧力低下に伴って気泡(B)
が断熱膨張し、蓄冷材(W)に断熱膨張による圧力波の
衝撃力が作用する。これにより蓄冷材(W)の過冷却状
態は解消して氷(I)が生成される。この結果、過冷却
状態の蓄冷材(W)に確実に衝撃力を作用させることが
でき、過冷却解消動作が確実に得られる。その後、前記
水(1)は蓄熱槽(2)に蓄えられる。
After that, the large diameter part (
It flows through a small diameter portion (6b) having a smaller diameter than 6a). At this time, air bubbles (B) are formed as the pressure inside the ice making tube (6) decreases.
expands adiabatically, and the impact force of the pressure wave due to the adiabatic expansion acts on the cold storage material (W). As a result, the supercooled state of the cold storage material (W) is eliminated and ice (I) is generated. As a result, an impact force can be reliably applied to the cool storage material (W) in a supercooled state, and an operation to eliminate supercooling can be reliably obtained. Thereafter, the water (1) is stored in a heat storage tank (2).

(第1実施例) 次に、本発明の第1実施例を図面に基づいて説明する。(First example) Next, a first embodiment of the present invention will be described based on the drawings.

第1図に示すように、本例における氷蓄熱装置(1)は
、蓄熱槽(2)、吸水手段(3)及び製氷手段(4)を
主要部として成っている。
As shown in FIG. 1, the ice heat storage device (1) in this example mainly includes a heat storage tank (2), water absorption means (3), and ice making means (4).

蓄熱槽(2)は、生成された蓄熱用の氷(I)が蓄えら
れる所謂蓄熱部分てあって、その内部には製氷用の蓄冷
材としての水溶性液体(W)を貯留している。この水溶
性液体(W)は、水にエチレングリ−コールなどの不凍
液を混入させた所謂ブライン水溶液であって、生成され
る氷(1)がスラリー状となるようになっている。また
、この蓄熱槽(2)には冷房負荷(5)が接続されてお
り、冷房運転時には貯留された氷(1)が融解して放熱
されるようになっている。そして、この蓄熱槽(2)の
下面には吸水手段(3)が接続されている。
The heat storage tank (2) is a so-called heat storage portion in which generated ice for heat storage (I) is stored, and a water-soluble liquid (W) as a cold storage material for ice making is stored therein. This water-soluble liquid (W) is a so-called brine aqueous solution in which an antifreeze such as ethylene glycol is mixed into water, and the ice (1) produced is in the form of a slurry. Further, a cooling load (5) is connected to this heat storage tank (2), and during cooling operation, the stored ice (1) melts and heat is radiated. A water absorption means (3) is connected to the lower surface of this heat storage tank (2).

吸水手段(3)は、吸水管(3a)と該吸水管(3a)
に介設されたウォータポンプ(3b)とで成っている。
The water absorption means (3) includes a water absorption pipe (3a) and a water absorption pipe (3a).
It consists of a water pump (3b) installed in the water pump (3b).

吸水管(3a)は、その上流端が前記蓄熱槽(2)の下
面に接続されていると共に、下流端が製氷手段(4)に
接続されており、ウォータポンプ(3b)の駆動により
蓄熱槽(2)内の水溶性液体(W)を導出して製氷手段
(4)に供給するようになっている。また、吸水管(3
a)の上流端には、該吸水管(3a)に蓄熱槽(2)内
に貯留されている氷(1)が流入することを防止するフ
ィルタ(3c)が装着されている。
The water suction pipe (3a) has its upstream end connected to the lower surface of the heat storage tank (2), and its downstream end connected to the ice making means (4), and the water pump (3b) drives the heat storage tank. The water-soluble liquid (W) in (2) is drawn out and supplied to ice making means (4). In addition, water suction pipe (3
A filter (3c) is installed at the upstream end of a) to prevent the ice (1) stored in the heat storage tank (2) from flowing into the water absorption pipe (3a).

そして、本発明の特徴とする製氷手段(4)は、製氷管
(6)、冷凍手段(7)及び気泡供給手段(8)とがら
成っている。
The ice making means (4), which is a feature of the present invention, consists of an ice making tube (6), a freezing means (7), and a bubble supplying means (8).

製氷管(6)は、その上流端か前記吸水管(3a)の下
流端に接続され、一方、下流端か前記蓄熱槽(2)の上
方で開口して該蓄熱槽(2)に連通している。そして、
この製氷管(6)は、その上流端部分から流通中間部分
に亘って大径に設定された大径部(6a)が形成されて
おり、且つこの大径部(6a)よりも下流側に小径(例
えば内周径が大径部の1/3程度)に設定された小径部
(6b)が形成されている。また、この大径部(6a)
と小径部(6b)とは円盤状の連結板(6C)によって
接続されている。つまり、この製氷管(6)は、上流端
部分から流通中間部分が大径部(6a)で形成されてい
ることによって、水溶性液体(W)の流通面積が大きく
確保されており、一方、下流端の近傍が小径部(6b)
で形成されていることによって、水溶性液体(W)の流
通面積が急激に小さくなるような構成となっている。
The ice-making pipe (6) is connected to the upstream end thereof or to the downstream end of the water absorption pipe (3a), and on the other hand, the downstream end opens above the heat storage tank (2) and communicates with the heat storage tank (2). ing. and,
This ice-making tube (6) has a large-diameter portion (6a) formed from the upstream end portion to the middle portion of the flow, and further downstream from the large-diameter portion (6a). A small diameter portion (6b) is formed having a small diameter (for example, the inner circumferential diameter is about ⅓ of the large diameter portion). In addition, this large diameter part (6a)
and the small diameter portion (6b) are connected by a disc-shaped connecting plate (6C). In other words, this ice-making tube (6) has a large diameter section (6a) from the upstream end to the middle of the flow, thereby ensuring a large flow area for the water-soluble liquid (W). Near the downstream end is the small diameter part (6b)
As a result, the flow area of the water-soluble liquid (W) is rapidly reduced.

冷凍手段(7)は、図示しない圧縮機および凝縮器等か
冷媒配管(7a)により直列接続されて成る冷凍回路で
構成されており、この冷凍回路の冷媒蒸発用の冷却管(
7b)か前記製氷管(6)の大径部(6a)の外周面に
接触するように配設されて、この大径部(6a)を流通
する水溶性液体(W)を過冷却状態まで冷却するように
なっている。
The refrigeration means (7) is composed of a refrigeration circuit in which a compressor, a condenser, etc. (not shown) are connected in series through a refrigerant pipe (7a), and a cooling pipe (7a) for evaporating the refrigerant of this refrigeration circuit.
7b) is arranged so as to be in contact with the outer circumferential surface of the large diameter part (6a) of the ice making tube (6), and the water-soluble liquid (W) flowing through this large diameter part (6a) is brought to a supercooled state. It is supposed to cool down.

気泡供給手段(8)は、前記製氷管(6)の大径部(6
a)で、且つ冷凍手段(7)よりも下流側に配設されて
いる。そして、この気泡供給手段(8)は、エアポンプ
(8a)から延びる気泡供給管(8b)が前記大径部(
6a)の流通路の中心部分まで延設されて成り、この気
泡供給管(8b)の先端である供給口(8c)は大径部
(6a)の略中央に位置して下流側に向って開口し、気
泡(BS )が円滑に小径部(6b)に導かれるように
なっている。また、この気泡供給管(8b)には、製氷
運転時に開放される手動開閉弁(8d)が介設されてい
る。
The bubble supplying means (8) is connected to the large diameter portion (6) of the ice making tube (6).
a) and is disposed downstream of the freezing means (7). The bubble supply means (8) has a bubble supply pipe (8b) extending from the air pump (8a) that is connected to the large diameter portion (
6a), and the supply port (8c) at the tip of the bubble supply pipe (8b) is located approximately in the center of the large diameter portion (6a) and extends toward the downstream side. It is opened so that air bubbles (BS) are smoothly guided to the small diameter part (6b). Further, a manual on-off valve (8d) that is opened during ice-making operation is provided in the bubble supply pipe (8b).

次に、上記構成による本装置(1)の動作について請求
項(1)に係る製氷方法と共に説明する。
Next, the operation of the present device (1) having the above configuration will be explained together with the ice making method according to claim (1).

先ず、吸水手段(3)のウォータポンプ(3b)を駆動
して、蓄熱槽(2)内の水溶性液体(W)を吸水管(3
a)の上流端から導出し、製氷管(6)に向って供給す
る。一方、冷凍手段(7)を駆動させて、冷却管(7b
)内の冷媒と製氷管(6)の大径部(6a)を流通する
水溶性液体(W)との間で熱交換を行なわせる。
First, the water pump (3b) of the water suction means (3) is driven to pump the water-soluble liquid (W) in the heat storage tank (2) into the water suction pipe (3).
It is led out from the upstream end of a) and supplied toward the ice making tube (6). On the other hand, the cooling means (7) is driven and the cooling pipe (7b
) and the water-soluble liquid (W) flowing through the large-diameter portion (6a) of the ice-making tube (6).

このような駆動状態において、水溶性液体(W)を蓄熱
槽(2)と製氷管(6)とを循環させ、この循環時にお
いて、製氷管(6)の大径部(6a)を流通する水溶性
液体(W)は、冷却管(7b)内で蒸発する冷媒との間
で熱交換を行って、氷点下て液相状態を保つ過冷却状態
となる。その後、水溶性液体(W)が過冷却状態になる
と、気泡供給手段(8)の手動開閉弁(8d)を開放す
ると共に、エアポンプ(8a)を駆動して、気泡供給管
(8b)の供給口(8C)から製氷管(6)の大径部(
6a)に小径の気泡(BS )を連続的に供給する。そ
して、大径部(6a)の下流端部分においては、過冷却
状態となっている水溶性液体(W)中に複数の気泡(B
S ) 、  (BS ) 、・・・か混入された状態
となる。
In such a driving state, the water-soluble liquid (W) is circulated between the heat storage tank (2) and the ice-making tube (6), and during this circulation, the water-soluble liquid (W) is circulated through the large diameter portion (6a) of the ice-making tube (6). The water-soluble liquid (W) exchanges heat with the refrigerant that evaporates within the cooling pipe (7b), and enters a supercooled state in which it maintains a liquid phase below the freezing point. After that, when the water-soluble liquid (W) becomes supercooled, the manual on-off valve (8d) of the bubble supply means (8) is opened, and the air pump (8a) is driven to supply the bubble supply pipe (8b). From the mouth (8C) to the large diameter part (
6a) Continuously supply small diameter air bubbles (BS). At the downstream end portion of the large diameter portion (6a), a plurality of bubbles (B) exist in the supercooled water-soluble liquid (W).
S), (BS), . . . are mixed in.

続いて、この状態から更に、水溶性液体(W)が流動し
、該水溶性液体(W)は製氷管(6)の小径部(6b)
に導かれる。そして、第2図にも示すように、この小径
部(6b)では、大径部(6a)に比べて流通面積か極
端に小さくなっているために、水溶性液体(W)は、そ
の流速が増加すると共に、この流速の増加に伴なって圧
力か急激に低下する。このように、圧力が急激に低下す
ることによって、水溶性液体(W)中に混入されていた
気泡(BL )は断熱膨張し、この膨張に伴う圧力波が
気泡(BL’4周辺の水溶性液体(W)に作用する。つ
まり、水溶性液体(W)は、第2図に矢印で示すような
圧力波による衝撃力を受けることになる。そして、この
衝撃力によって水溶性液体(W)は、その過冷却状態が
解消され氷化する。尚、気泡(BL )が断熱膨張する
際、気泡(BL )の表面は急激な温度降下を起こし、
その周囲の過冷却状態の水溶性液体(W)に対し、冷却
降下を与え、過冷却の解消に寄与している。
Subsequently, the water-soluble liquid (W) further flows from this state, and the water-soluble liquid (W) flows into the small diameter portion (6b) of the ice making tube (6).
guided by. As shown in Fig. 2, the flow area of the small diameter part (6b) is extremely small compared to the large diameter part (6a), so the flow rate of the water-soluble liquid (W) is As the flow rate increases, the pressure decreases rapidly as the flow rate increases. In this way, due to the sudden decrease in pressure, the bubbles (BL) mixed in the water-soluble liquid (W) expand adiabatically, and the pressure waves accompanying this expansion cause the bubbles (BL'4 around the water-soluble It acts on the liquid (W).In other words, the water-soluble liquid (W) is subjected to an impact force due to pressure waves as shown by the arrow in Figure 2.This impact force causes the water-soluble liquid (W) to The supercooled state is removed and the bubble turns into ice.When the bubble (BL) expands adiabatically, the surface of the bubble (BL) causes a sudden temperature drop,
It gives a cooling drop to the surrounding supercooled water-soluble liquid (W), contributing to eliminating supercooling.

ここで生成される氷(1)はスラリー状となっており、
冷房負荷に対する追随性か良好なものである。そして、
このようにして生成されたスラリー状の氷(1)は、製
氷管(6)の下流端から流出して蓄熱槽(2)に回収さ
れ、該蓄熱槽(2)に蓄熱媒体として貯留される。また
、小径部(6b)では、上述したように流速が高いため
に、この小径部(6b)に氷が詰るようなことはない。
The ice (1) produced here is in the form of a slurry,
It has good ability to follow the cooling load. and,
The slurry ice (1) thus generated flows out from the downstream end of the ice making tube (6), is collected in the heat storage tank (2), and is stored as a heat storage medium in the heat storage tank (2). . Furthermore, since the flow velocity is high in the small diameter portion (6b) as described above, the small diameter portion (6b) is not clogged with ice.

このように、本装置並びに本製氷方法にあっては、過冷
却状態の水溶性液体(W)を気泡の断熱膨張による圧力
波によって解消して、氷化するようにしているために、
過冷却解消動作を確実に行うことができる。
In this way, in the present device and the present ice-making method, the water-soluble liquid (W) in a supercooled state is dissolved by the pressure waves caused by the adiabatic expansion of the bubbles, so that it becomes ice.
The supercooling elimination operation can be performed reliably.

(第2実施例) 次に、本発明の第2実施例について説明する。(Second example) Next, a second embodiment of the present invention will be described.

尚、本例のものは気泡供給手段が第1実施例のものと異
っている所に特徴かあるので、この気泡供給手段につい
て説明する。また、その動作にあっては第1実施例との
相違点を中心に述べるに止める。
The present embodiment is characterized in that the bubble supply means is different from that of the first embodiment, so this bubble supply means will be explained. Further, regarding its operation, only the differences from the first embodiment will be mainly described.

第3図に示すように、本例の気泡供給手段(9)は、電
動モータ(9a)の駆動軸に直結されたプロペラ(9b
)か製氷管(6)の大径部(6a)で且つ冷凍手段(7
)よりも下流側に配設されて構成されている。
As shown in FIG. 3, the bubble supply means (9) of this example includes a propeller (9b) directly connected to the drive shaft of an electric motor (9a).
) or the large diameter part (6a) of the ice making tube (6) and the freezing means (7
) is arranged on the downstream side.

そして、その駆動時には、冷凍ユニット(7)で過冷却
状態とされた水溶性液体(W)が、この気泡供給手段(
9)近傍まで流動すると、プロペラ(9b)の回転によ
り水溶性液体(W)中に溶は込んでいる空気がキャビテ
ーション現象よって気G(BS)となる。その後、この
ようにして水溶性液体(W)中に気泡(BS )が混入
した状態で水溶性液体(W)は、製氷管(6)の小径部
(6b)まで導かれ、第1実施例の動作と同様に気泡(
BL )の断熱膨張による圧力波によって過冷却か解消
しスラリー状の氷(1)となる。
During operation, the water-soluble liquid (W) brought into a supercooled state by the refrigeration unit (7) is supplied to the bubble supply means (
9) When the air flows close to the water-soluble liquid (W) due to the rotation of the propeller (9b), the air dissolved in the water-soluble liquid (W) becomes gas G (BS) due to the cavitation phenomenon. Thereafter, the water-soluble liquid (W) with the air bubbles (BS) mixed in the water-soluble liquid (W) is guided to the small diameter portion (6b) of the ice-making tube (6) in this manner, and the water-soluble liquid (W) is guided to the small diameter portion (6b) of the ice-making tube (6). Similar to the behavior of bubbles (
The supercooling is resolved by the pressure waves caused by the adiabatic expansion of BL), and it becomes slurry-like ice (1).

尚、本発明における気泡供給手段(8)、  (9)は
第1及び第2実施例に限られるものではなく、製氷管(
6)の上流側に個別の冷却槽を配設し、この冷却槽にお
いて水溶性液体(W)を過冷却状態まで冷却するような
構成としてもよい。また、蓄冷材として、ブライン水溶
液に限らず、水を単独で用いてもよい。
Note that the bubble supply means (8) and (9) in the present invention are not limited to those in the first and second embodiments, but can also be used in ice-making tubes (
A separate cooling tank may be provided upstream of 6), and the water-soluble liquid (W) may be cooled to a supercooled state in this cooling tank. Furthermore, the cold storage material is not limited to an aqueous brine solution, and water alone may be used.

(発明の効果) 以上の如く、本発明によれば、以下に述べるような効果
が発揮されるものである。
(Effects of the Invention) As described above, according to the present invention, the following effects are exhibited.

請求項(1)記載の発明に係る製氷方法では、製氷管内
の圧力低下に伴う気泡の断熱膨張により、過冷却状態の
蓄冷材に圧力波の衝撃力を作用することにより、蓄冷材
の過冷却解消動作を確実に得ることができるので、確実
に氷を生成することができる。
In the ice-making method according to the invention described in claim (1), the shock force of pressure waves is applied to the supercooled cold storage material by the adiabatic expansion of the bubbles accompanying the pressure drop in the ice making tube, thereby supercooling the cold storage material. Since the dissolving operation can be reliably obtained, ice can be reliably generated.

一方、請求項(2)に係る発明では、製氷管の大径部か
ら小径部に流入した気泡が断熱膨張して蓄冷材に圧力波
を作用し、この圧力波による衝撃力を受けた蓄冷材はそ
の過冷却状態が解消して氷化する。このように、本発明
では圧力波によって過冷却解消を確実に行って製氷する
ことができ、氷蓄熱装置の信頼性の向上を図ることがで
きる。
On the other hand, in the invention according to claim (2), the air bubbles flowing from the large diameter part to the small diameter part of the ice making tube expand adiabatically and act on the cold storage material, and the cold storage material receives an impact force from this pressure wave. The supercooled state disappears and it turns into ice. As described above, in the present invention, it is possible to make ice by reliably eliminating supercooling using pressure waves, and it is possible to improve the reliability of the ice heat storage device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1実施例を示し、第1
図は氷蓄熱装置の回路図、第2図はその要部拡大図であ
る。第3図は本発明の第2実施例における第1図相当図
である。 (1)・・・氷蓄熱装置 (2)・・・蓄熱槽 (6)・・・製氷管 (6a)・・・大径部 (6b)・・・小径部 (7)・・・冷凍手段 (8)、  (9)・・・気泡供給手段(W)・・・水
溶性液体(蓄冷材) (1)・・・氷 (B)・・・気泡
1 and 2 show a first embodiment of the present invention;
The figure is a circuit diagram of the ice heat storage device, and Figure 2 is an enlarged view of its main parts. FIG. 3 is a diagram corresponding to FIG. 1 in a second embodiment of the present invention. (1) Ice heat storage device (2) Heat storage tank (6) Ice making tube (6a) Large diameter section (6b) Small diameter section (7) Freezing means (8), (9)...Bubble supply means (W)...Water-soluble liquid (cold storage material) (1)...Ice (B)...Bubbles

Claims (2)

【特許請求の範囲】[Claims] (1)上流側の大径部(6a)と下流側の小径部(6b
)とが形成された製氷管(6)に製氷用の水や水溶液等
からなる蓄冷材(W)を供給する一方、少なくとも前記
小径部(6b)よりも上流側において、蓄冷材(W)を
冷凍手段(7)によって過冷却状態まで冷却すると共に
蓄冷材(W)中に気泡供給手段(8)、(9)によって
気泡(B)を供給し、その後、この気泡(B)が混入し
た蓄冷材(W)を前記製氷管(6)の小径部(6b)に
流通させることにより気泡(B)を断熱膨張させ、過冷
却状態の蓄冷材(W)に、この断熱膨張による衝撃力を
作用させることにより蓄冷材(W)の過冷却状態を解消
して氷(I)を生成することを特徴とする製氷方法。
(1) Large diameter part (6a) on the upstream side and small diameter part (6b) on the downstream side
) is supplied with a cold storage material (W) made of water, aqueous solution, etc. for ice making to the ice making tube (6) in which the cold storage material (W) is supplied at least upstream of the small diameter portion (6b). The cooling means (7) cools the cold storage material (W) to a supercooled state, and the bubble supply means (8) and (9) supply air bubbles (B) into the cold storage material (W). By flowing the material (W) through the small diameter part (6b) of the ice making tube (6), the bubbles (B) are adiabatically expanded, and an impact force due to this adiabatic expansion is applied to the supercooled cold storage material (W). An ice making method characterized in that ice (I) is produced by eliminating the supercooled state of a cold storage material (W).
(2)蓄熱用の氷(I)を蓄える蓄熱槽(2)と、該蓄
熱槽(2)に少なくとも一端が連通して製氷用の水や水
溶液等からなる蓄冷材(W)が流通する製氷管(6)と
、 該製氷管(6)を流れる蓄冷材(W)を過冷却状態まで
冷却する冷凍手段(7)と、 前記製氷管(6)を流れる蓄冷材(W)に気泡(B)を
供給する気泡供給手段(8)とを備え、 前記製氷管(6)は、上流側に形成され、前記冷凍手段
(7)によって冷却され且つ気泡供給手段(8)によっ
て気泡(B)が混入した蓄冷材(W)が流れる大径部(
6a)と、該大径部(6a)に連続して下流側に形成さ
れ、前記蓄冷材(W)が流通することにより気泡(B)
を断熱膨張させ、過冷却状態の蓄冷材(W)に、この断
熱膨張による衝撃力を作用させることにより蓄冷材(W
)の過冷却状態を解消して氷(I)を生成する小径部(
6b)とを備えていることを特徴とする氷蓄熱装置。
(2) A heat storage tank (2) that stores ice (I) for heat storage, and ice making in which at least one end communicates with the heat storage tank (2) and a cold storage material (W) made of water, aqueous solution, etc. for ice making flows. a tube (6); a refrigeration means (7) for cooling the cold storage material (W) flowing through the ice making tube (6) to a supercooled state; ), the ice-making tube (6) is formed on the upstream side, is cooled by the freezing means (7), and is supplied with bubbles (B) by the bubble supply means (8). The large diameter section (where the mixed cold storage material (W) flows)
6a), and is formed downstream of the large diameter portion (6a), and as the cold storage material (W) flows, air bubbles (B)
The cold storage material (W) is adiabatically expanded and an impact force due to this adiabatic expansion is applied to the supercooled cold storage material (W).
) that eliminates the supercooled state of the ice (I) and generates ice (I).
6b) An ice heat storage device comprising:
JP2212749A 1990-08-11 1990-08-11 Ice making method and ice heat accumulative device Pending JPH0498064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212749A JPH0498064A (en) 1990-08-11 1990-08-11 Ice making method and ice heat accumulative device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212749A JPH0498064A (en) 1990-08-11 1990-08-11 Ice making method and ice heat accumulative device

Publications (1)

Publication Number Publication Date
JPH0498064A true JPH0498064A (en) 1992-03-30

Family

ID=16627787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212749A Pending JPH0498064A (en) 1990-08-11 1990-08-11 Ice making method and ice heat accumulative device

Country Status (1)

Country Link
JP (1) JPH0498064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013846A (en) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The Ice making method by dissolution of underwater supercooling, and ice plant
JP2009024977A (en) * 2007-07-23 2009-02-05 Taikisha Ltd Ice water slurry generator and ice water slurry generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013846A (en) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The Ice making method by dissolution of underwater supercooling, and ice plant
JP2009024977A (en) * 2007-07-23 2009-02-05 Taikisha Ltd Ice water slurry generator and ice water slurry generation method

Similar Documents

Publication Publication Date Title
JP5370028B2 (en) Ejector
JP4306739B2 (en) Refrigeration cycle equipment
JP2003114063A (en) Ejector cycle
CN1176341C (en) Defrosting device for evaporator of electric refrigerator
JP4725223B2 (en) Ejector type cycle
JP5264442B2 (en) Air conditioner for vehicles
JP4930214B2 (en) Refrigeration cycle equipment
JP2003097868A (en) Ejector cycle
JP2002349977A (en) Heat pump cycle
JPH0498064A (en) Ice making method and ice heat accumulative device
JP2009138952A (en) Brine type cooling device
JP2009162116A (en) Ejector and refrigeration cycle device using the same
JP2008032244A (en) Ejector type refrigerating cycle
JP2003262413A (en) Ejector cycle
JPH0370928A (en) Ice heat accumulator
JP2008075926A (en) Ejector type refrigerating cycle
JPH1183382A (en) Shell-and tube heat exchanger and freezer using the same
KR100307359B1 (en) Device for reducing noise of working fluid in refrigerator
JP3160338B2 (en) Super cooling water production equipment
JP2551817B2 (en) Refrigeration system using ice heat storage
KR100347922B1 (en) Short tube of refrigerating cycle
JPH07146013A (en) Water cooler
JPS59130722A (en) Car air conditioner
JP2005069591A (en) Circulation bubbling system
JP2003021368A (en) Heat transfer plate and heat storage system