JP4306739B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4306739B2
JP4306739B2 JP2007036191A JP2007036191A JP4306739B2 JP 4306739 B2 JP4306739 B2 JP 4306739B2 JP 2007036191 A JP2007036191 A JP 2007036191A JP 2007036191 A JP2007036191 A JP 2007036191A JP 4306739 B2 JP4306739 B2 JP 4306739B2
Authority
JP
Japan
Prior art keywords
refrigerant
ejector
gas
liquid
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007036191A
Other languages
Japanese (ja)
Other versions
JP2008202812A (en
Inventor
康敬 落合
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007036191A priority Critical patent/JP4306739B2/en
Publication of JP2008202812A publication Critical patent/JP2008202812A/en
Application granted granted Critical
Publication of JP4306739B2 publication Critical patent/JP4306739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Description

本発明は、エジェクタを有する冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus having an ejector.

以下、従来のエジェクタを有する冷凍サイクル装置について説明する。冷凍サイクル装置において、エジェクタは放熱器の下流に配置されており、放熱器から導かれる冷媒を駆動流体として高速で噴出させるノズルや、このノズルから噴出した冷媒と吸引流体とを混合する混合部や、混合した冷媒を拡散させるディフューザ等で構成されている。このエジェクタの昇圧作用によって圧縮機の吸入圧力が上昇することで圧縮機の回転数を低減したり装置を小型化したりできる。また、今まで用いていた膨張弁と比べ、膨張弁で無駄にされていた有効なエネルギーの一部を回収することができ、冷凍サイクルの効率を高めることができるなどの利点がある。ところが、ノズル入口に導かれる冷媒が過冷却状態の液冷媒の場合には、ノズルから大きな液滴、もしくは液膜状に流出し、混合部で吸引流体とうまく混合できず、昇圧作用を有効に得ることができなかった。   Hereinafter, a conventional refrigeration cycle apparatus having an ejector will be described. In the refrigeration cycle apparatus, the ejector is arranged downstream of the radiator, and a nozzle that ejects the refrigerant guided from the radiator as a driving fluid at high speed, a mixing unit that mixes the refrigerant ejected from the nozzle and the suction fluid, The diffuser is configured to diffuse the mixed refrigerant. By increasing the suction pressure of the compressor due to the boosting action of the ejector, the number of rotations of the compressor can be reduced and the apparatus can be downsized. Moreover, compared with the expansion valve used until now, there exists an advantage that a part of effective energy wasted by the expansion valve can be recovered, and the efficiency of the refrigeration cycle can be increased. However, when the refrigerant introduced to the nozzle inlet is a supercooled liquid refrigerant, it flows out from the nozzle in the form of large droplets or a liquid film and cannot be mixed well with the suction fluid at the mixing section, effectively increasing the pressure increasing action. Couldn't get.

これに対し、気液二相状態でノズルに流入するように構成された冷凍サイクル装置がある(例えば、特許文献1参照)。これは、放熱器とエジェクタとの間の部位に配置される加熱手段を備え、前記加熱手段が前記過冷却液相冷媒を加熱することにより、前記過冷却液相冷媒のエンタルピーを所定量増加させる構成としている。また、放熱器から流出した高圧冷媒が気液二相状態でノズルに流入するように、ノズルの開度や送風量を制御する構成であった。   On the other hand, there is a refrigeration cycle apparatus configured to flow into a nozzle in a gas-liquid two-phase state (see, for example, Patent Document 1). This includes a heating means disposed at a portion between the radiator and the ejector, and the heating means heats the supercooled liquid phase refrigerant, thereby increasing the enthalpy of the supercooled liquid phase refrigerant by a predetermined amount. It is configured. Moreover, it was the structure which controls the opening degree and ventilation volume of a nozzle so that the high pressure refrigerant | coolant which flowed out from the heat radiator may flow into a nozzle in a gas-liquid two-phase state.

特開2006―17444号公報(第7−8頁、図1)JP 2006-17444 (page 7-8, FIG. 1)

例えばヒータ等によって過冷却液相冷媒のエンタルピーを所定量増加して得られる気液二相状態の冷媒をエジェクタに流入させてノズル喉部で沸騰しやすくする構成では、喉部通過後の液滴が微粒化されるのであるが、沸騰した冷媒の気泡の大きさは、直径が数mm程度のレベルであった。この大きさでは、まだ微細化が充分ではなく、気泡同士がくっついて大きな気泡になりやすかった。このため、ノズルから大きな液滴の駆動流体となって噴出するので吸引流体との混合性が悪く、エジェクタ性能をそれほど向上できないという課題があった。
また、気液二相状態でノズルに流入させるためにヒータ等の他熱源を備える構成では、他熱源を使用するために消費電力が増加するという課題があった。
また、放熱器での熱交換量を制御して気液二相状態でノズルに流入させる構成では、適当な気液二相状態になるように制御するのは容易ではないという課題があった。
For example, in a configuration in which a gas-liquid two-phase refrigerant obtained by increasing the enthalpy of the supercooled liquid-phase refrigerant by a predetermined amount with a heater or the like is caused to flow into the ejector and easily boil at the nozzle throat, the droplet after passing through the throat However, the bubble size of the boiled refrigerant was about several mm in diameter. At this size, miniaturization was not yet sufficient, and the bubbles were likely to stick together to form large bubbles. For this reason, since it ejected as a driving fluid of a large droplet from the nozzle, there was a problem that the mixing performance with the suction fluid was poor and the ejector performance could not be improved so much.
Moreover, in the structure provided with other heat sources, such as a heater, in order to make it flow into a nozzle in a gas-liquid two-phase state, there existed a subject that power consumption increased in order to use another heat source.
Further, in the configuration in which the heat exchange amount in the radiator is controlled to flow into the nozzle in the gas-liquid two-phase state, there is a problem that it is not easy to control the gas-liquid two-phase state.

本発明は、上記のような課題を解決するためになされたもので、エジェクタ内で駆動流体と吸引流体の混合を促進でき、エジェクタ効率を向上して効率のよい冷凍サイクル装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and has an object to promote mixing of a driving fluid and a suction fluid in an ejector, to improve ejector efficiency, and to obtain an efficient refrigeration cycle apparatus. And

本発明に係る冷凍サイクル装置は、冷媒を高圧状態にする圧縮機と、前記圧縮機からの前記高圧状態の冷媒の熱を放熱させる放熱側熱交換器と、前記放熱側熱交換器からの放熱後の冷媒を微細な気泡を含む冷媒とする気泡発生手段と、前記気泡発生手段によって発生した前記微細な気泡を含む冷媒を減圧して高速度でノズル部から流出する駆動流体により吸引部から吸引流体を吸引し、混合部で前記駆動流体と前記吸引流体とを混合した後、ディフューザ部で膨張させて低圧状態で流出するエジェクタと、前記エジェクタからの低圧状態の冷媒を蒸発させる蒸発側熱交換器と、を備え、前記気泡発生手段は、前記圧縮機または前記放熱側熱交換器から流出する冷媒のうちのガス冷媒の少なくとも一部が流入するガス冷媒流入部と前記放熱側熱交換器から流出する冷媒のうちの液を多く含む状態の冷媒が流入する液冷媒流入部とを有し、前記液冷媒流入部から流入する液冷媒に前記ガス冷媒流入部からガス冷媒を流入させて気泡を発生するように構成したことを特徴とするものである。 The refrigeration cycle apparatus according to the present invention includes a compressor that puts the refrigerant in a high-pressure state, a heat-dissipation-side heat exchanger that dissipates heat of the high-pressure refrigerant from the compressor, and heat dissipation from the heat-dissipation-side heat exchanger. Bubble generation means that uses a refrigerant containing fine bubbles as a later refrigerant, and suction from the suction portion by a driving fluid that flows out of the nozzle portion at a high speed by reducing the pressure of the refrigerant containing fine bubbles generated by the bubble generation means. An ejector that sucks a fluid, mixes the driving fluid and the suction fluid in a mixing unit, and then expands in the diffuser unit and flows out in a low pressure state, and evaporation side heat exchange that evaporates the low-pressure refrigerant from the ejector comprising a vessel, wherein the bubble generating means, the compressor or at least partially the gas refrigerant inlet flowing the outgoing heat of the gas refrigerant among the refrigerant flowing from the radiator side heat exchanger A liquid refrigerant inflow portion into which a refrigerant containing a large amount of liquid out of the refrigerant flowing out of the exchanger flows, and the gas refrigerant is caused to flow from the gas refrigerant inflow portion into the liquid refrigerant flowing in from the liquid refrigerant inflow portion. It is configured to generate bubbles .

本発明に係る冷凍サイクル装置によれば、細な気泡を有する冷媒をエジェクタの駆動流体とすることで、エジェクタのノズル部から微細な液滴を噴出して吸引流体と混合するので、気体と液体の接触面積が多くなり混合が促進される。このため、エジェクタ効率を向上でき、全体として効率のよい冷凍サイクル装置を提供することができる効果がある。 According to the refrigeration cycle apparatus according to the present invention, the refrigerant having a fine fine bubbles by the ejector of the drive fluid, since mixing with the aspiration fluid and ejecting fine droplets from the nozzle portion of the ejector, and the gas The contact area of the liquid increases and mixing is promoted. For this reason, it is possible to improve the ejector efficiency and to provide an efficient refrigeration cycle apparatus as a whole.

実施の形態1.
以下、本発明の実施の形態1による冷凍サイクル装置について説明する。図1は本発明の実施の形態1に係る冷凍サイクル装置であり、例えば室内を冷房する空気調和装置の回路構成を示す構成図である。図に示すように、本実施の形態に係る冷凍サイクル装置は、室外ユニット100、室内ユニット101、室外ユニット100と室内ユニット101を接続する二相延長配管71、ガス延長配管72から構成されている。室外ユニット100内の冷媒回路は、冷媒を高圧状態にする圧縮機1、圧縮機1からの高圧状態の冷媒の熱を放熱させる放熱側熱交換器2、放熱側熱交換器2からの放熱後の冷媒を微細な気泡を含む冷媒とする気泡発生手段、例えば数100μm程度以下の気泡を発生する微細気泡発生装置3、及びこれらを接続するための配管で構成される。また、圧縮機1と放熱側熱交換器2との間の配管と微細気泡発生装置3がバイパス配管9で接続され、バイパス配管9の一端側は圧縮機1の吐出部と放熱側熱交換器2の入口部との間の配管に接続され、他端側は微細気泡発生装置3のガス冷媒流入部に接続されている。
Embodiment 1 FIG.
Hereinafter, the refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a refrigeration cycle apparatus according to Embodiment 1 of the present invention, and is a configuration diagram showing a circuit configuration of an air conditioner that cools a room, for example. As shown in the figure, the refrigeration cycle apparatus according to the present embodiment includes an outdoor unit 100, an indoor unit 101, a two-phase extension pipe 71 connecting the outdoor unit 100 and the indoor unit 101, and a gas extension pipe 72. . The refrigerant circuit in the outdoor unit 100 includes a compressor 1 that brings the refrigerant into a high pressure state, a heat release side heat exchanger 2 that dissipates heat from the high pressure state refrigerant from the compressor 1, and a heat release from the heat release side heat exchanger 2. For example, a fine bubble generating device 3 for generating bubbles of about several hundred μm or less, and a pipe for connecting them. Further, a pipe between the compressor 1 and the heat radiation side heat exchanger 2 and the fine bubble generating device 3 are connected by a bypass pipe 9, and one end side of the bypass pipe 9 is a discharge part of the compressor 1 and a heat radiation side heat exchanger. The other end side is connected to the gas refrigerant inflow portion of the fine bubble generating device 3.

室内ユニット101内の冷媒回路は、駆動流体によって吸引部から吸引流体を吸引し混合して低圧状態で流出するエジェクタ4、気液分離器5、冷媒流量調整手段として例えば絞り装置6、低圧状態の冷媒を蒸発させる蒸発側熱交換器7、圧縮機1の吸入側に設けられ、吸入される冷媒を適当な過熱度のガス冷媒状態とする補助熱交換器13及びそれらを接続するための配管で構成されている。気液分離器5の液相部を絞り装置6と接続し、さらに蒸発側熱交換器7を介してエジェクタ4の吸引部と接続する。一方、気液分離器5の気相部を補助熱交換器13を介して圧縮機1の吸入側に接続しており、気液分離器5のガス分離効率が低くなった時でも補助熱交換器13で吸熱してガス化することで、確実に圧縮機1にガス冷媒が吸入されるように構成している。配管内部には冷媒として、例えばHFC系の混合冷媒であるR404Aを封入している。   The refrigerant circuit in the indoor unit 101 includes an ejector 4 that sucks and mixes suction fluid from a suction portion by a driving fluid and mixes it to flow out in a low-pressure state, a gas-liquid separator 5, for example, a throttle device 6 as a refrigerant flow rate adjusting means, and a low-pressure state An evaporation side heat exchanger 7 that evaporates the refrigerant, an auxiliary heat exchanger 13 that is provided on the suction side of the compressor 1 and converts the sucked refrigerant into a gas refrigerant state with an appropriate superheat degree, and a pipe for connecting them. It is configured. The liquid phase part of the gas-liquid separator 5 is connected to the expansion device 6 and further connected to the suction part of the ejector 4 via the evaporation side heat exchanger 7. On the other hand, the gas phase part of the gas-liquid separator 5 is connected to the suction side of the compressor 1 via the auxiliary heat exchanger 13, and auxiliary heat exchange is performed even when the gas separation efficiency of the gas-liquid separator 5 becomes low. The gas refrigerant is reliably sucked into the compressor 1 by absorbing heat with the compressor 13 and gasifying it. For example, R404A, which is an HFC-based mixed refrigerant, is sealed inside the pipe as a refrigerant.

放熱側熱交換器2、蒸発側熱交換器7、補助熱交換器13は、例えばプレートフィンとパイプで構成されるプレートフィンチューブ型の熱交換器であり、熱交換器の外表面へ空気を送風する室外送風機11、室内送風機12、補助熱交換器用送風機14をそれぞれ備えている。   The heat radiation side heat exchanger 2, the evaporation side heat exchanger 7, and the auxiliary heat exchanger 13 are, for example, plate fin tube type heat exchangers composed of plate fins and pipes, and air is supplied to the outer surface of the heat exchanger. An outdoor blower 11 that blows air, an indoor blower 12, and an auxiliary heat exchanger blower 14 are provided.

また、絞り装置6と蒸発側熱交換器7の間に第1温度検出手段21を設け、蒸発側熱交換器7とエジェクタ4の間に第2温度検出手段22を設け、放熱側熱交換器2と微細気泡発生装置3の間に第3温度検出手段23を設け、圧縮機1と放熱側熱交換器2の間に圧力センサー24を設けており、これらの検出値が制御手段、例えば制御装置31に取り込まれる。
図中、細点線矢印は各検出手段21、22、23、24で検出された情報を制御装置31に送る入力信号の方向を示し、太点線矢印は制御装置31が各機器1、3、6に送る制御信号の方向を示す。また、実線矢印は回路内の冷媒の流れ方向を示している。
The first temperature detection means 21 is provided between the expansion device 6 and the evaporation side heat exchanger 7, and the second temperature detection means 22 is provided between the evaporation side heat exchanger 7 and the ejector 4, so that the heat radiation side heat exchanger is provided. 3 and the fine bubble generating device 3 are provided with a third temperature detecting means 23, and a pressure sensor 24 is provided between the compressor 1 and the heat radiation side heat exchanger 2, and these detected values are control means, for example, control It is taken into the device 31.
In the figure, thin dotted arrows indicate the directions of input signals for sending information detected by the detection means 21, 22, 23, 24 to the control device 31, and thick dotted arrows indicate that the control device 31 has the respective devices 1, 3, 6 Indicates the direction of the control signal sent to. Moreover, the solid line arrow has shown the flow direction of the refrigerant | coolant in a circuit.

次に、気泡発生手段である微細気泡発生装置3とエジェクタ4の構成について詳しく説明する。   Next, the configuration of the fine bubble generating device 3 and the ejector 4 which are bubble generating means will be described in detail.

図2は微細気泡発生装置3の構造の一例を示す説明図である。本実施の形態に係る微細気泡発生装置3はベンチュリ管の構造を持ち、さらに流動抵抗を調整するための抵抗調整手段として、例えばニードル部51を有する構成である。図に示すように、微細気泡発生装置3は、ニードル部51、ガス冷媒流入部52、減圧部53、末広部54、喉部55で構成され、液冷媒流入部3aを放熱側熱交換器2の出口側と接続し、ガス冷媒流入部52をバイパス配管9と接続し、冷媒出口部3cをエジェクタ4のノズル入口部と接続している。そして、内部の液冷媒流路は、液冷媒流入口部3aから喉部55に向かって流路断面積が縮小し、喉部55から微細気泡発生装置3の出口部3cに向かって流路断面積が増加するように構成され、喉部55付近にガス冷媒流入部52を設けている。ニードル部51をモータ56によって図に向かって左右に変位させることで、微細気泡発生装置3内の流路断面積を増減させることができる。即ち、制御手段31によってモータ56に制御信号を送って流動抵抗を調整することで、冷媒状態を制御できる。例えば微細気泡発生装置3で圧縮機1の吸入部の冷媒状態を制御する場合には、圧縮機1として運転中に回転数が変更可能なインバータ圧縮機を用いたときなど、運転状況の変化に対応して最適な運転ができるので、幅広い流量範囲で使用される冷凍サイクル装置にも応用することができる。また、ニードル部51によって微細気泡発生装置3の入口部の冷媒状態を制御すれば、直径が数100μm以下の微細な気泡を均一に発生させることができる。
図中の○内に詳しく図示したように、液冷媒流路に対してガス冷媒流路が交差するように構成され、ガス冷媒の挿入方向と液冷媒の流れ方向の成す角θは、交差するように、例えば90度以上180度以下となるように設けられている。
FIG. 2 is an explanatory view showing an example of the structure of the fine bubble generator 3. The fine bubble generating device 3 according to the present embodiment has a Venturi structure, and further includes, for example, a needle portion 51 as resistance adjusting means for adjusting the flow resistance. As shown in the figure, the fine bubble generating device 3 includes a needle portion 51, a gas refrigerant inflow portion 52, a decompression portion 53, a divergent portion 54, and a throat portion 55, and the liquid refrigerant inflow portion 3a is used as the heat radiation side heat exchanger 2. The gas refrigerant inflow portion 52 is connected to the bypass pipe 9, and the refrigerant outlet portion 3 c is connected to the nozzle inlet portion of the ejector 4. The internal liquid refrigerant channel has a channel cross-sectional area that decreases from the liquid refrigerant inlet 3a toward the throat 55, and is disconnected from the throat 55 toward the outlet 3c of the microbubble generator 3. The gas refrigerant inflow part 52 is provided in the vicinity of the throat part 55. The flow path cross-sectional area in the fine bubble generating device 3 can be increased or decreased by displacing the needle portion 51 left and right as viewed in the drawing by the motor 56. That is, the control unit 31 sends a control signal to the motor 56 to adjust the flow resistance, whereby the refrigerant state can be controlled. For example, in the case where the refrigerant state of the suction portion of the compressor 1 is controlled by the microbubble generator 3, when the inverter compressor whose rotation speed can be changed during the operation is used as the compressor 1, the operating condition changes Correspondingly, optimum operation can be performed, so that it can be applied to a refrigeration cycle apparatus used in a wide flow range. Moreover, if the refrigerant | coolant state of the inlet_port | entrance part of the fine bubble generator 3 is controlled by the needle part 51, the fine bubble whose diameter is several hundred micrometers or less can be generated uniformly.
As illustrated in detail in circles in the figure, the gas refrigerant flow path intersects the liquid refrigerant flow path, and the angle θ formed by the gas refrigerant insertion direction and the liquid refrigerant flow direction intersects each other. Thus, for example, it is provided to be 90 degrees or more and 180 degrees or less.

微細気泡発生装置3では、液冷媒流入部3aから流入する液冷媒流とガス冷媒流入部52から挿入されるガス冷媒流が交差するように流れるので、液冷媒流によってガス冷媒流がせん断されて微細な気泡となり、均質な微細気泡流となって冷媒出口部3cから流出する。ここでは、θが例えば90度以上180度以下となるように設けられているので、液冷媒の流れに対してガス冷媒が衝突する方向に挿入されることになり、挿入されたガス冷媒が液冷媒によってせん断されやすくなり、気泡がさらに微細な気泡になる。   In the microbubble generator 3, since the liquid refrigerant flow flowing from the liquid refrigerant inflow portion 3a and the gas refrigerant flow inserted from the gas refrigerant inflow portion 52 flow so as to intersect, the gas refrigerant flow is sheared by the liquid refrigerant flow. It becomes a fine bubble, becomes a homogeneous fine bubble flow, and flows out from the refrigerant | coolant exit part 3c. Here, since θ is set to be, for example, 90 degrees or more and 180 degrees or less, the gas refrigerant is inserted in the direction in which the gas refrigerant collides with the flow of the liquid refrigerant. It becomes easy to be sheared by the refrigerant, and the bubbles become finer bubbles.

図3は筒状のエジェクタ4を示す説明図であり、図3(a)はエジェクタ3の軸に沿った断面構成を示し、図3(b)は図3(a)の位置X1〜X6の各位置に対応する圧力Pを示すグラフである。図3(b)の横軸はエジェクタ3の位置、縦軸は圧力Pを示す。
本実施の形態で用いるエジェクタ4は、吸引部42、ノズル部43、混合部44、ディフューザ部45から構成され、ノズル部43はさらに減圧部43aと末広部43bと喉部43cから構成されている。喉部43cはノズル部43内で最も開口面積の小さい部分である。ノズル部43の入口部を微細気泡発生装置3の冷媒出口部3cと接続し、吸引部42を蒸発側熱交換器7の出口部と接続し、ディフューザ部45の出口部を気液分離器5の入口部と接続する。
FIG. 3 is an explanatory view showing the cylindrical ejector 4, FIG. 3 (a) shows a cross-sectional configuration along the axis of the ejector 3, and FIG. 3 (b) shows positions X1 to X6 in FIG. 3 (a). It is a graph which shows the pressure P corresponding to each position. 3B, the horizontal axis indicates the position of the ejector 3, and the vertical axis indicates the pressure P. In FIG.
The ejector 4 used in the present embodiment includes a suction unit 42, a nozzle unit 43, a mixing unit 44, and a diffuser unit 45. The nozzle unit 43 further includes a decompression unit 43a, a divergent unit 43b, and a throat unit 43c. . The throat portion 43 c is a portion having the smallest opening area in the nozzle portion 43. The inlet part of the nozzle part 43 is connected to the refrigerant outlet part 3c of the fine bubble generating device 3, the suction part 42 is connected to the outlet part of the evaporation side heat exchanger 7, and the outlet part of the diffuser part 45 is connected to the gas-liquid separator 5. Connect to the entrance of the.

矢印Aから流入する駆動流体は、減圧部43aで減圧されて、喉部43c、末広部43bを通って、ノズル出口部43dに続く流路を流れる。このエジェクタ3は例えばノズルの喉部43cとノズル出口部43dの面積比(以下、膨張比という)が一定の固定絞り構成であり、矢印A方向から流入する圧力P1(位置X1)の液冷媒R3を駆動流体とし、減圧部43aで減圧させて喉部43c(位置X2)で音速程度の高速になる。更に末広部43bで膨張し超音速となって圧力P3(位置X3)まで減圧され、駆動流体としてノズル出口部43dから噴出する。このとき、矢印B方向から流入する気液二相状態またはガス状態の冷媒R9を吸引し、混合された気液二相冷媒R5は、混合部44(位置X4−位置X5)で圧力回復し、更にディフューザ部45で圧力P2(位置X6)まで圧力上昇して冷媒R6となって流出する。   The driving fluid flowing in from the arrow A is decompressed by the decompression unit 43a, flows through the throat part 43c and the divergent part 43b, and flows through the flow path following the nozzle outlet part 43d. The ejector 3 has, for example, a fixed throttle configuration in which the area ratio (hereinafter referred to as expansion ratio) of the nozzle throat portion 43c and the nozzle outlet portion 43d is constant, and the liquid refrigerant R3 having the pressure P1 (position X1) flowing in from the direction of the arrow A. , And the pressure is reduced by the pressure reducing portion 43a, and the throat portion 43c (position X2) becomes a high speed of sound speed. Furthermore, it expands in the divergent part 43b, becomes supersonic, is depressurized to the pressure P3 (position X3), and is ejected from the nozzle outlet part 43d as a driving fluid. At this time, the refrigerant R9 in the gas-liquid two-phase state or gas state flowing in from the direction of the arrow B is sucked, and the mixed gas-liquid two-phase refrigerant R5 recovers the pressure in the mixing unit 44 (position X4-position X5), Further, the pressure rises to the pressure P2 (position X6) by the diffuser portion 45 and flows out as the refrigerant R6.

次に、冷凍サイクル装置の運転動作を図1及び図4に基づいて説明する。図4は本実施の形態による冷凍サイクル装置に係る圧力−エンタルピー線図であり、横軸にエンタルピー(kJ/kg)、縦軸に圧力(パスカル)を示す。
圧縮機1から吐出された高温・高圧のガス冷媒R1は、主に放熱側熱交換器2で空気へ放熱して冷媒自身は凝縮・液化し、液冷媒R21となる。ガス冷媒R1の他の一部はバイパス配管9に流れ、配管抵抗により減圧されてR22の状態となり、微細気泡発生装置3のガス冷媒流入部52へバイパスされる。
Next, the operation of the refrigeration cycle apparatus will be described with reference to FIGS. FIG. 4 is a pressure-enthalpy diagram relating to the refrigeration cycle apparatus according to the present embodiment, where the horizontal axis indicates enthalpy (kJ / kg) and the vertical axis indicates pressure (pascal).
The high-temperature and high-pressure gas refrigerant R1 discharged from the compressor 1 dissipates heat to the air mainly by the heat-radiating side heat exchanger 2, and the refrigerant itself condenses and liquefies to become liquid refrigerant R21. The other part of the gas refrigerant R1 flows into the bypass pipe 9, is depressurized by the pipe resistance, enters the state of R22, and is bypassed to the gas refrigerant inflow portion 52 of the fine bubble generating device 3.

放熱側熱交換器2で放熱した液冷媒R21は微細気泡発生装置3の液冷媒流入部3aに流入し、圧縮機1と放熱側熱交換器2入口との間からバイパス配管9を通ってガス冷媒流入部52から挿入されるガス冷媒R22と混合して状態R3となる。このとき、挿入されたガス冷媒R22は液冷媒R21とのせん断力で直径が数100μm程度の気泡に分断されて均質微細気泡流となる。そして状態R3の冷媒となって、室外ユニット100から流出し、二相延長配管71を通って室内ユニット101内のエジェクタ4へ流入する。微細気泡発生装置3での作用については後に詳しく記載する。   The liquid refrigerant R21 radiated by the heat radiation side heat exchanger 2 flows into the liquid refrigerant inflow portion 3a of the fine bubble generating device 3, and passes through the bypass pipe 9 between the compressor 1 and the heat radiation side heat exchanger 2 inlet to gas. It mixes with gas refrigerant R22 inserted from refrigerant inflow part 52, and will be in state R3. At this time, the inserted gas refrigerant R22 is divided into bubbles having a diameter of about several hundreds μm by a shearing force with the liquid refrigerant R21 to form a homogeneous fine bubble flow. And it becomes a refrigerant | coolant of state R3, flows out of the outdoor unit 100, flows into the ejector 4 in the indoor unit 101 through the two-phase extension piping 71. The operation of the fine bubble generator 3 will be described in detail later.

エジェクタ4へ流入した状態R3の冷媒は、ノズル部43で減圧されて状態R4となり、吸引流体を吸引して混合部44で混合し(状態R5)、ディフューザ部45を通過し図3(b)、図4で示されるように圧力がP2まで昇圧した状態R6となる。   The refrigerant in the state R3 that has flowed into the ejector 4 is decompressed by the nozzle portion 43 to become the state R4, sucks the suction fluid, mixes it in the mixing portion 44 (state R5), passes through the diffuser portion 45, and passes through the diffuser portion 45 (b). As shown in FIG. 4, the pressure is increased to P2 to be in state R6.

ディフューザ部45を通過した状態R6の冷媒は、気液分離器5に流入し、状態R7の液冷媒と状態R10のガス冷媒に分離される。状態R10のガス冷媒は補助熱交換器13で吸熱し、確実にガス冷媒となって圧縮機1の吸入側に流入する。一方、状態R7の液冷媒は絞り装置6で減圧され(状態R8)、蒸発側熱交換器7で空気から吸熱し自身は蒸発・気化し状態R9のガス冷媒となり、エジェクタ3により吸引される。この蒸発側熱交換器7で室内空気から吸熱することで、室内の冷房を行っている。   The refrigerant in the state R6 that has passed through the diffuser portion 45 flows into the gas-liquid separator 5 and is separated into the liquid refrigerant in the state R7 and the gas refrigerant in the state R10. The gas refrigerant in the state R10 absorbs heat in the auxiliary heat exchanger 13 and reliably becomes a gas refrigerant and flows into the suction side of the compressor 1. On the other hand, the liquid refrigerant in the state R7 is depressurized by the expansion device 6 (state R8), absorbs heat from the air by the evaporation side heat exchanger 7, and evaporates and vaporizes itself to become a gas refrigerant in the state R9 and is sucked by the ejector 3. The evaporation side heat exchanger 7 absorbs heat from room air to cool the room.

以下、微細気泡発生装置3及びエジェクタ4付近の動作を更に詳しく記載する。一般に、エジェクタ4は、高圧冷媒を減圧膨張させ、低圧のガス冷媒を吸引すると共に膨張エネルギーを圧力エネルギーに変換する工程を有し、膨張弁で減圧する工程に比べ、圧縮機1の吸引圧力を上昇すること、及び膨張弁では高圧の冷媒を減圧する過程で無駄にされていた熱エネルギーの一部を回収できるということで、冷凍サイクル装置に有効な機器である。
図5は微細気泡発生装置3とエジェクタ4の動作を説明する説明図である。本実施の形態に係る微細気泡発生装置3は、ベンチュリ管、即ち急縮小−急拡大の形状をしたノズルで構成し、流路断面積が最小となる喉部55の周辺にガス冷媒流入部52を設けている。例えば喉部55の直径を3mm程度、冷媒出口部3cの直径を8mm程度、末広部54の傾斜角を4〜8度程度の傾斜とし、喉部55に対する冷媒出口部3cとの面積比を7〜8程度で構成した。
なお、微細気泡発生装置3の各部の寸法は一例であり、上記の数値に限定されるものではない。但し、微細気泡発生装置3の喉部55の断面積は、エジェクタ4の喉部43cの断面積よりも大きく構成し、冷凍サイクルにおける減圧作用は主にエジェクタ4によって動作させている。
Hereinafter, the operation in the vicinity of the fine bubble generating device 3 and the ejector 4 will be described in more detail. In general, the ejector 4 has a step of decompressing and expanding the high-pressure refrigerant, sucking the low-pressure gas refrigerant and converting the expansion energy into pressure energy, and the suction pressure of the compressor 1 is reduced as compared with the step of decompressing with the expansion valve. It is an effective device for the refrigeration cycle apparatus because it can be recovered and a part of the heat energy wasted in the process of depressurizing the high-pressure refrigerant in the expansion valve.
FIG. 5 is an explanatory diagram for explaining the operation of the fine bubble generating device 3 and the ejector 4. The fine bubble generating apparatus 3 according to the present embodiment is configured by a Venturi tube, that is, a nozzle having a shape of rapid reduction-rapid expansion, and a gas refrigerant inflow portion 52 around the throat portion 55 where the flow path cross-sectional area is minimized. Is provided. For example, the diameter of the throat 55 is about 3 mm, the diameter of the refrigerant outlet 3 c is about 8 mm, the inclination angle of the divergent portion 54 is about 4 to 8 degrees, and the area ratio of the refrigerant outlet 3 c to the throat 55 is 7 It consisted of about ~ 8.
In addition, the dimension of each part of the microbubble generator 3 is an example, and is not limited to said numerical value. However, the cross-sectional area of the throat 55 of the microbubble generator 3 is configured to be larger than the cross-sectional area of the throat 43c of the ejector 4, and the decompression action in the refrigeration cycle is mainly operated by the ejector 4.

微細気泡発生装置3において、液冷媒流入部3aから流入する液冷媒は、減圧部53で減圧されて加速度され、ガス冷媒流入部52から交差する方向に挿入されるガス冷媒を引きちぎるようにせん断し、数100μmの気泡を発生させる。これに加えてベンチュリ管によって流路路断面積が急縮小ー急拡大するので、発生した気泡に対し、末広部54で急激な圧力上昇が加えられ、末広部54を移動するにつれて気泡は急激に崩壊し更に微細でかつ略均一の大きさに微細化される。また、急激な崩壊によって発生した微細な気泡は、末広部54の空間にほぼ均質に存在して冷媒出口部3cから流出する。   In the microbubble generator 3, the liquid refrigerant flowing from the liquid refrigerant inflow portion 3 a is decompressed and accelerated by the decompression portion 53, and is sheared so as to tear off the gas refrigerant inserted in the direction intersecting from the gas refrigerant inflow portion 52. , Bubbles of several hundred μm are generated. In addition to this, the channel cross-sectional area is suddenly reduced-expanded by the venturi pipe, so that a sudden pressure rise is applied to the generated bubbles at the divergent portion 54, and the bubbles suddenly increase as the divergent portion 54 moves. It disintegrates and is further refined into a fine and substantially uniform size. Further, the fine bubbles generated by the rapid collapse exist almost uniformly in the space of the divergent portion 54 and flow out from the refrigerant outlet portion 3c.

図6は、冷媒出口部3cでの気泡の大きさを説明する説明図であり、均一均質微細気泡流(a)、即ち本実施の形態に係る微細気泡発生装置3で冷媒を微細に気泡化してエジェクタ4に流入させる場合の状態と、通常の気泡流(b)、例えば放熱側熱交換器2から流出する冷媒を加熱するなどして気液二相冷媒をエジェクタ4に流入させる場合の状態とで、図5の微細気泡発生装置3の冷媒出口部3cのAーA断面、及びエジェクタ4のノズル末広部43bのB−B断面における配管内を模式的に示す説明図である。なお、通常の気泡流の場合には微細気泡発生装置3を有していないので、図6(b)A−A断面は、エジェクタ4のノズル入口部における冷媒の状態である。図6(b)A−A断面に示すように、通常の気液ニ相冷媒では数mm程度の気泡流となるが、微細気泡発生装置3によって気泡化した場合には、図6(a)のA−A断面に示すように均一な数100μm以下の微細な気泡が、配管内の空間に偏ることなくほぼ均質になって流れる。即ち均一均質微細気泡流となってエジェクタ4へ流入する。   FIG. 6 is an explanatory diagram for explaining the size of bubbles at the refrigerant outlet portion 3c, and the uniform and fine bubble flow (a), that is, the fine bubble generator 3 according to the present embodiment finely bubbles the refrigerant. A state in which the gas-liquid two-phase refrigerant is caused to flow into the ejector 4 by heating a normal bubble flow (b), for example, a refrigerant that flows out of the heat radiation side heat exchanger 2. FIG. 6 is an explanatory view schematically showing the inside of the pipe in the AA cross section of the refrigerant outlet portion 3c of the fine bubble generating device 3 of FIG. 5 and the BB cross section of the nozzle divergent portion 43b of the ejector 4. In addition, in the case of a normal bubble flow, since it does not have the fine bubble generator 3, the cross section AA of FIG. 6 (b) is the state of the refrigerant | coolant in the nozzle inlet part of the ejector 4. FIG. As shown in FIG. 6 (b) AA cross section, a normal gas-liquid two-phase refrigerant has a bubble flow of about several millimeters. As shown in the A-A cross section, uniform fine bubbles of several hundred μm or less flow almost uniformly without being biased to the space in the pipe. That is, it flows into the ejector 4 as a uniform homogeneous fine bubble flow.

図5で示すように、ノズル部43に流入する冷媒は、均一均質微細気泡流であり、エジェクタ減圧部43aから喉部43cにおいて、冷媒液中に気泡が分散した状態で減圧されるので、各気泡が成長する際に液膜の生成を防止し、液滴核を生成する。その後図6(a)のB−B断面に示すように、末広部43bにおいて液滴核は微細液滴状態となり、ノズル出口部43dから噴出される。ノズル出口部43dから微細液滴が噴出されることにより、エジェクタ混合部44で冷媒は気液の速度差が低減した均質状態となること、駆動流体と吸引流体であるガス冷媒との接触面積が増加すること、から駆動流体と吸引流体とは良好に混合される。   As shown in FIG. 5, the refrigerant flowing into the nozzle portion 43 is a uniform homogeneous fine bubble flow, and is depressurized in a state where bubbles are dispersed in the refrigerant liquid from the ejector decompression portion 43a to the throat portion 43c. When bubbles grow, the formation of a liquid film is prevented and droplet nuclei are generated. Thereafter, as shown in the BB cross section of FIG. 6A, the droplet nucleus becomes a fine droplet state in the divergent portion 43b, and is ejected from the nozzle outlet portion 43d. By ejecting fine liquid droplets from the nozzle outlet portion 43d, the refrigerant in the ejector mixing portion 44 becomes a homogeneous state in which the gas-liquid speed difference is reduced, and the contact area between the driving fluid and the gas refrigerant as the suction fluid is increased. As a result, the driving fluid and the suction fluid are well mixed.

一方、比較例として図6(b)の通常の気泡流を示す。通常の気泡流では、図6(b)のA−A断面に示すような数mm程度の気泡がエジェクタ4の駆動流体として流入するため、エジェクタ減圧部43aで減圧される際に気泡が破壊されて気泡同士がくっつき、図6(b)のB−B断面に示すように配管壁面に液膜ができる。即ち、ノズル部43からほぼノズル径と同等の径で広がった冷媒液が噴出される。このため、この噴出流の周囲からガス冷媒を吸引しても、接触面積はそれほど大きくないので、良好に混合されない。   On the other hand, the normal bubble flow of FIG.6 (b) is shown as a comparative example. In a normal bubble flow, bubbles of about several millimeters as shown in the AA cross section of FIG. 6B flow as the driving fluid of the ejector 4, so that the bubbles are destroyed when the pressure is reduced by the ejector pressure reducing portion 43a. Bubbles stick to each other, and a liquid film is formed on the wall surface of the pipe as shown in the BB cross section of FIG. That is, the refrigerant liquid that spreads out from the nozzle portion 43 with a diameter substantially equal to the nozzle diameter is ejected. For this reason, even if the gas refrigerant is sucked from the periphery of the jet flow, the contact area is not so large, and therefore, it is not mixed well.

本実施の形態では、均質微細気泡流をエジェクタ4に流入させることで、冷媒が減圧部43aで減圧する際に液膜が分裂されやすくなり、ノズル部出口43dから微細液滴が噴出するので、混合部44で気液混合が促進され、エジェクタ効率が向上する。また、ヒータなどの他の熱源を必要とせず、効率の高い冷凍サイクル装置を提供することができる。
さらに、ノズル部43から微細液滴状態で噴出することで、駆動流体の液滴と吸引流体のガス冷媒とを良好に混合するので、蒸発側熱交換器7からのガス冷媒R9を吸引しやすくなり、吸引流量が増加する。吸引流体の流量の増加によって、エジェクタ昇圧量(図3におけるP3−P1)は増加する。
In the present embodiment, by flowing the homogeneous microbubble flow into the ejector 4, the liquid film is easily broken when the refrigerant is decompressed by the decompression unit 43a, and fine droplets are ejected from the nozzle unit outlet 43d. Gas-liquid mixing is promoted in the mixing unit 44, and the ejector efficiency is improved. Further, it is possible to provide a highly efficient refrigeration cycle apparatus without requiring another heat source such as a heater.
Further, since the droplets of the driving fluid and the gas refrigerant of the suction fluid are mixed well by being ejected in a fine droplet state from the nozzle portion 43, the gas refrigerant R9 from the evaporation side heat exchanger 7 can be easily sucked. Thus, the suction flow rate increases. As the flow rate of the suction fluid increases, the ejector pressure increase amount (P3-P1 in FIG. 3) increases.

ノズル部43から噴出される液滴径に対するエジェクタ混合効率の計算結果を図7に示す。図7における横軸はノズル部43から噴出される液滴径であり、縦軸はエジェクタ混合効率(%)である。エジェクタ混合効率(%)はノズルから噴出される速度エネルギ−を昇圧エネルギ−に変換する時のエネルギ−変換効率と定義しているので、エジェクタ混合効率(%)=(昇圧エネルギ−/速度エネルギ−)x100である。図に示したように、ノズル部43から噴出する液滴径を100μmから10μmに小さくすれば、同様の速度エネルギ−でも2倍の昇圧エネルギ−が得られ、エジェクタ混合効率が2倍に向上する。
ただし、この横軸に示した液滴径はノズル部43から噴出するものであり、微細気泡発生装置3で発生する気泡径とは異なる。本実施の形態による微細気泡発生装置3を備えてエジェクタ4の駆動流体として数100μm程度に気泡化された冷媒を流入させることで、減圧部43aでさらに減圧して膨張させた後、急激な圧力上昇を加えて更に激しく破壊させるので、ノズル部43から噴出する液滴径は100μm以下になると考えられる。微細気泡発生装置3で発生する気泡径が小さければ小さいほど、ノズル部43から噴出する液滴は小さくなるので、微細気泡発生装置3で極力小さな径の気泡を発生させるのが好ましい。
FIG. 7 shows the calculation result of the ejector mixing efficiency with respect to the diameter of the droplet ejected from the nozzle portion 43. The horizontal axis in FIG. 7 is the diameter of the liquid droplets ejected from the nozzle part 43, and the vertical axis is the ejector mixing efficiency (%). Since the ejector mixing efficiency (%) is defined as the energy conversion efficiency when the velocity energy ejected from the nozzle is converted into the boosted energy, the ejector mixing efficiency (%) = (pressurized energy / velocity energy). ) X100. As shown in the figure, when the diameter of the droplet ejected from the nozzle portion 43 is reduced from 100 μm to 10 μm, double boosting energy can be obtained even with the same velocity energy, and the ejector mixing efficiency is doubled. .
However, the droplet diameter shown on the horizontal axis is ejected from the nozzle portion 43 and is different from the bubble diameter generated by the fine bubble generating device 3. The microbubble generator 3 according to the present embodiment is provided, and the refrigerant that has been bubbled to about several hundreds μm as the driving fluid of the ejector 4 is allowed to flow into the decompression unit 43a to be further decompressed and expanded. It is considered that the droplet diameter ejected from the nozzle portion 43 is 100 μm or less because it is further destroyed by adding a rise. The smaller the bubble diameter generated by the fine bubble generating device 3, the smaller the droplets ejected from the nozzle portion 43. Therefore, it is preferable that the fine bubble generating device 3 generates bubbles with a small diameter as much as possible.

本実施の形態の構成の微細気泡発生装置3を備えて数100μm以下の気泡を発生させた場合のシミュレーション結果によれば、高圧Pdが2.0MPa、低圧Psが0.4MPaとする冷凍サイクル装置において、ノズル部43から噴出される液滴径を微細化することにより、昇圧量が0.03MPaから0.05MPaへ向上し、エジェクタ混合効率は従来の約2倍に向上し、冷凍サイクル装置のCOP効率が従来に比べ5%向上するという結果が得られている。ここで従来装置とは、通常の気液二相状態の気泡流とした。
例えば図1の構成の冷凍サイクル装置では、微細気泡発生装置3とエジェクタ4を用いることで、圧縮機1の吸入圧力を0.4MPa程度から0.45MPa程度に高めることができた。微細気泡発生装置3を備えていない冷凍サイクル装置の場合には、0.43MPa程度であり、微細気泡発生装置3を備えることで吸入圧力が高くなり高効率な運転が可能となる。
According to the simulation result in the case where the microbubble generator 3 having the configuration of the present embodiment is provided and bubbles of several hundred μm or less are generated, the refrigeration cycle apparatus in which the high pressure Pd is 2.0 MPa and the low pressure Ps is 0.4 MPa. , The pressure increase is increased from 0.03 MPa to 0.05 MPa by reducing the diameter of the droplets ejected from the nozzle portion 43, and the ejector mixing efficiency is improved to about twice that of the prior art. The result shows that the COP efficiency is improved by 5% compared to the prior art. Here, the conventional apparatus is a bubble flow in a normal gas-liquid two-phase state.
For example, in the refrigeration cycle apparatus having the configuration shown in FIG. 1, the suction pressure of the compressor 1 can be increased from about 0.4 MPa to about 0.45 MPa by using the fine bubble generating device 3 and the ejector 4. In the case of a refrigeration cycle apparatus that does not include the fine bubble generating device 3, the pressure is about 0.43 MPa. By providing the fine bubble generating device 3, the suction pressure becomes high and high-efficiency operation is possible.

本実施の形態に係る微細気泡発生装置3で数100μm径以下の気泡を生成するには、ボイド率α(液冷媒に対するガス冷媒の体積流量比)を、最大でも40%程度とするのが好ましい。ボイド率αを40%以下とした時のエジェクタ4の入口の乾き度は0以上且つ0.2以下となる。このため、言い換えれば、エジェクタ4の入口の乾き度が0以上且つ0.2以下となるようにバイパス配管9の配管径または配管長さを設定しておけば、ボイド率αは40%以下となり、微細気泡発生装置3で数100μm径以下の気泡を生成できる。   In order to generate bubbles having a diameter of several hundred μm or less with the fine bubble generating device 3 according to the present embodiment, the void ratio α (the volume flow ratio of the gas refrigerant to the liquid refrigerant) is preferably about 40% at the maximum. . When the void ratio α is 40% or less, the dryness of the inlet of the ejector 4 is 0 or more and 0.2 or less. Therefore, in other words, if the pipe diameter or pipe length of the bypass pipe 9 is set so that the dryness of the inlet of the ejector 4 is 0 or more and 0.2 or less, the void ratio α is 40% or less. In addition, bubbles having a diameter of several hundred μm or less can be generated by the fine bubble generator 3.

図8は、比較例として、放熱側熱交換器2から流出する冷媒をエジェクタ4の駆動流体とする構成の冷凍サイクル装置において、エジェクタ4のノズル入口の冷媒状態のみ異なるように運転し、冷媒循環量などの他の条件は同一として運転した時のサイクル効率(COP)の変化を示している。過冷却度が大きい、即ち液状態で流入した場合にサイクル効率(COP)が高く、乾き度が大きくなるにつれて徐々に効率は低下している。過冷却度及び乾き度に対して、過冷却度が高ければ高いサイクル効率(COP)が得られるという、単調な変化になっている。   FIG. 8 shows, as a comparative example, a refrigeration cycle apparatus having a configuration in which the refrigerant flowing out from the heat radiation side heat exchanger 2 is used as the driving fluid for the ejector 4, and the refrigerant circulation is operated only in the refrigerant state at the nozzle inlet of the ejector 4. Other conditions, such as quantity, show the change in cycle efficiency (COP) when operating as the same. When the degree of supercooling is large, that is, when it flows in a liquid state, the cycle efficiency (COP) is high, and the efficiency gradually decreases as the degree of dryness increases. With respect to the degree of supercooling and the degree of dryness, it is a monotonous change that a high cycle efficiency (COP) can be obtained if the degree of supercooling is high.

図9は、本実施の形態に係る冷凍サイクル装置に係るエジェクタ単体の効率(以下、エジェクタ単体効率と記す)を示すグラフであり、横軸にエジェクタ4の入口における駆動流体の乾き度、縦軸にエジェクタ単体効率を示す。エジェクタ単体効率μeは、回収動力とエジェクタ昇圧仕事との釣り合いから、以下の式1で表される。
μe=(Gex△P)/(Gnx△Hxρe) ・・・・式1
ここで、
Ge:吸入流体の流量(吸入流量)
△P:圧力の昇圧量で、図4のP2−P3
Gn:エジェクタ4から流出する冷媒流量
△H:エジェクタ4の入口と出口間のエンタルピー差で、
図4では状態R3と状態R4間のエンタルピー差
ρe:ガス密度で、エジェクタ吸引部の温度及び圧力から求められる
である。
FIG. 9 is a graph showing the efficiency of the ejector unit (hereinafter referred to as ejector unit efficiency) according to the refrigeration cycle apparatus according to the present embodiment, the horizontal axis represents the dryness of the driving fluid at the inlet of the ejector 4, and the vertical axis Shows the efficiency of the ejector alone. The ejector single unit efficiency μe is expressed by the following formula 1 from the balance between the recovery power and the ejector pressurization work.
μe = (GexΔP) / (GnxΔHxρe) Equation 1
here,
Ge: Flow rate of suction fluid (suction flow rate)
ΔP: pressure increase, P2-P3 in FIG.
Gn: Flow rate of refrigerant flowing out from the ejector 4
△ H: Difference in enthalpy between the inlet and outlet of ejector 4,
In FIG. 4, the enthalpy difference between state R3 and state R4
ρe: Gas density, which is obtained from the temperature and pressure of the ejector suction part.

図9は図1に示した構成で、微細気泡発生装置3に接続するバイパス配管9の配管径を適当に変化させてエジェクタ4のノズル入口の冷媒状態が異なるように運転し、冷媒循環量などの他の条件は同一として運転した時のエジェクタ単体効率の変化を示している。横軸に乾き度、縦軸にエジェクタ単体効率を示す。
図1に示すように、微細気泡発生装置3を備え、微細気泡をエジェクタ4の駆動流体とした構成では、過冷却度が0から大きくなるにつれてエジェクタ単体効率は低下する。一方、乾き度が0.1程度でエジェクタ単体効率が最も高くなり、0.1よりも大きくなると若干低減しているが、それほど変化はない。
図9から、エジェクタ4に流入する駆動流体の乾き度は0以上であることが好ましいということがわかる。乾き度が0よりも小さい(過冷却度がよりも大きい)場合には、冷媒はノズル部43で液膜流となって混合部44に流出すると考えられる。このため、混合部44で吸引流体とうまく混合されることなく昇圧量が小さく、さらに吸引流体の吸引量も少ないので、式1のGe、△Pが小さくなってエジェクタ単体効率μeは低減する。
FIG. 9 shows the configuration shown in FIG. 1. The bypass pipe 9 connected to the microbubble generator 3 is appropriately changed in diameter so that the refrigerant state at the nozzle inlet of the ejector 4 is different, and the refrigerant circulation amount is changed. The other conditions show the change in the ejector unit efficiency when operating under the same conditions. The horizontal axis shows the dryness, and the vertical axis shows the ejector efficiency.
As shown in FIG. 1, in the configuration provided with the fine bubble generating device 3 and using the fine bubbles as the driving fluid of the ejector 4, the ejector single unit efficiency decreases as the degree of supercooling increases from zero. On the other hand, when the dryness is about 0.1, the ejector single unit efficiency is the highest, and when it is larger than 0.1, the efficiency is slightly reduced, but there is not much change.
From FIG. 9, it can be seen that the dryness of the driving fluid flowing into the ejector 4 is preferably 0 or more. When the degree of dryness is smaller than 0 (the degree of supercooling is greater), the refrigerant is considered to flow out into the mixing unit 44 as a liquid film flow at the nozzle unit 43. For this reason, the pressure increase amount is small without being well mixed with the suction fluid in the mixing unit 44, and the suction amount of the suction fluid is also small. Therefore, Ge and ΔP in Formula 1 are reduced, and the ejector unit efficiency μe is reduced.

図10は図1に示した構成で、微細気泡発生装置3に接続するバイパス配管9の配管径を適当に変化させ、エジェクタ4のノズル入口の冷媒状態が異なるように運転し、冷媒循環量などの他の条件は同一として運転した時のサイクル効率(COP)の変化を示している。横軸に乾き度、縦軸にサイクル効率を示す。
微細気泡発生装置3を備え、微細気泡をエジェクタ4の駆動流体とした構成では、図に示すように、過冷却度が0から大きくなるにつれてサイクル効率は低下する。一方、乾き度は0.1程度で最もサイクル効率が最も高くなり、0.2よりも大きくなると低減している。即ち、エジェクタ4の駆動流体の乾き度は、0以上で、且つ0.2以下であることが好ましい。乾き度が0よりも小さい場合即ち過冷却度が0よりも大きい場合には、図9に示したようにエジェクタ単体効率が低下することで、システム効率も低下すると考えられる。また、乾き度が0.2よりも大きい場合には、図4に示した圧力ーエンタルピー線図で、状態R3がもっとエンタルピーが大きい状態に移動することになり、システム効率は低下する。
FIG. 10 shows the configuration shown in FIG. 1, by appropriately changing the pipe diameter of the bypass pipe 9 connected to the fine bubble generating device 3, and operating so that the refrigerant state at the nozzle inlet of the ejector 4 is different. The other conditions indicate the change in cycle efficiency (COP) when operating under the same conditions. The horizontal axis shows dryness, and the vertical axis shows cycle efficiency.
In the configuration in which the fine bubble generating device 3 is provided and the fine bubbles are used as the driving fluid of the ejector 4, the cycle efficiency decreases as the degree of supercooling increases from 0 as shown in the figure. On the other hand, when the dryness is about 0.1, the cycle efficiency is the highest, and when it is greater than 0.2, the cycle efficiency is reduced. That is, the dryness of the drive fluid of the ejector 4 is preferably 0 or more and 0.2 or less. When the degree of dryness is smaller than 0, that is, when the degree of supercooling is larger than 0, it is considered that the efficiency of the ejector itself is lowered as shown in FIG. Further, when the dryness is larger than 0.2, the state R3 moves to a state where the enthalpy is larger in the pressure-enthalpy diagram shown in FIG. 4, and the system efficiency is lowered.

このように、エジェクタ4に駆動流体として流入する冷媒の乾き度が0以上で且つ0.2以下になるようにバイパス配管9の配管径の大きさや配管長さを設定することで、冷凍サイクル装置のシステム効率(COP)が良好になる。ここで、エジェクタ4に駆動流体として流入する冷媒の乾き度が0以上で且つ0.2以下になるように構成するのであるが、これは予備運転をすることで予め確認される。エジェクタ4に駆動流体として流入する冷媒の乾き度は、冷凍サイクルの高圧側の圧力値(圧力センサ24の検出値)、及び圧縮機1から流出した冷媒のバイパス配管9と放熱側熱交換器2との流量比を求めて計算すれば求められる。   Thus, the refrigeration cycle apparatus is configured by setting the pipe diameter size and pipe length of the bypass pipe 9 so that the dryness of the refrigerant flowing into the ejector 4 as the driving fluid is 0 or more and 0.2 or less. The system efficiency (COP) is improved. Here, the dryness of the refrigerant flowing into the ejector 4 as the driving fluid is configured to be not less than 0 and not more than 0.2. This is confirmed in advance by performing a preliminary operation. The dryness of the refrigerant flowing into the ejector 4 as the driving fluid is determined by the pressure value on the high pressure side of the refrigeration cycle (the detected value of the pressure sensor 24), the bypass pipe 9 of the refrigerant flowing out from the compressor 1, and the heat radiation side heat exchanger 2. It can be obtained by calculating the flow rate ratio.

ところで、微細気泡発生装置3を設けない場合には、配管内を流れる気液二相状態の冷媒は大きさが大きい気泡となっている。このため、エジェクタ上流側の二相延長配管71で圧力損失と騒音が発生するが、本発明では微細気泡発生装置3によって微細気泡発生装置3よりも下流の流動状態が微小気泡流となるため、圧力損失が少なく、騒音が低減できるという効果がある。
上記では、微細気泡発生装置3の液冷媒流入部3aから液冷媒を流入させるとしたが、運転状況によってはある程度ガス冷媒を含む液冷媒が液冷媒流入部3aから流入することもある。放熱側熱交換器2から流出する冷媒のうちの液を多く含む状態の冷媒を液冷媒流入部3aから流入させることで、ガス冷媒流入部52から流入するガス冷媒に交差して微細な気泡を発生させることができるので、上記と同様の効果を奏する。
By the way, when the fine bubble generator 3 is not provided, the gas-liquid two-phase refrigerant flowing in the pipe is a large bubble. For this reason, pressure loss and noise are generated in the two-phase extension pipe 71 on the upstream side of the ejector. However, in the present invention, the flow state downstream of the fine bubble generator 3 is changed to a microbubble flow by the fine bubble generator 3. There is little pressure loss, and there is an effect that noise can be reduced.
In the above description, the liquid refrigerant is caused to flow from the liquid refrigerant inflow portion 3a of the microbubble generator 3. However, depending on the operating condition, the liquid refrigerant containing the gas refrigerant to some extent may flow from the liquid refrigerant inflow portion 3a. By letting a refrigerant containing a large amount of liquid out of the refrigerant flowing out from the heat radiation side heat exchanger 2 from the liquid refrigerant inflow portion 3a, the gas refrigerant flowing in from the gas refrigerant inflow portion 52 intersects with the fine gas bubbles. Since it can generate | occur | produce, there exists an effect similar to the above.

図11は、本実施の形態に係る制御手段31による制御過程の一例を示すフローチャートである。以下、このフローチャートに基づいて制御手段31の動作について説明する。制御手段31は具体的にはマイクロコンピュータで構成され、各検出手段21、22、23、24で計測した各部分の検出値に基づいて、圧縮機1の回転数、微細気泡発生装置3のニードル部51の絞り開度、減圧手段6例えば電子式膨張弁の絞り開度を決定して、各アクチュエータに制御信号を送信する。   FIG. 11 is a flowchart showing an example of a control process by the control means 31 according to the present embodiment. The operation of the control means 31 will be described below based on this flowchart. The control means 31 is specifically composed of a microcomputer, and based on the detection values of the respective parts measured by the detection means 21, 22, 23, 24, the rotational speed of the compressor 1 and the needle of the fine bubble generating device 3 The throttle opening of the part 51 and the decompression means 6, for example, the throttle opening of the electronic expansion valve are determined, and a control signal is transmitted to each actuator.

第1温度検出手段21の温度をTH1とすると、TH1が目標蒸発温度ETmとなるように圧縮機1の回転数を制御する。また、第2温度検出手段22の温度をTH2、TH2とTH1の差TH2−TH1を蒸発側熱交換器7の出口過熱度SHとすると、SHが目標過熱度SHmとなるように絞り装置6の絞り開度を制御する。また、第3温度検出手段23の温度をTH3、圧力センサー24の圧力をP24とし、P24から求められる飽和液温度Ts、TsとTH3の差Ts−TH3を放熱側熱交換器2の出口過冷却度SCとして演算する。そして、過冷却度SCが目標過冷却度SCmとなるように微細気泡発生装置3のニードル部51の絞り開度を制御する。   When the temperature of the first temperature detecting means 21 is TH1, the rotational speed of the compressor 1 is controlled so that TH1 becomes the target evaporation temperature ETm. Further, when the temperature of the second temperature detecting means 22 is TH2, and the difference TH2-TH1 between TH2 and TH1 is the outlet superheat degree SH of the evaporation side heat exchanger 7, the expansion device 6 is adjusted so that SH becomes the target superheat degree SHm. Control the throttle opening. Further, the temperature of the third temperature detecting means 23 is TH3, the pressure of the pressure sensor 24 is P24, and the saturated liquid temperature Ts obtained from P24, the difference Ts−TH3 between Ts and TH3, is the subcooling at the outlet side of the heat radiating side heat exchanger 2. Calculated as degree SC. Then, the throttle opening degree of the needle portion 51 of the fine bubble generating device 3 is controlled so that the supercooling degree SC becomes the target supercooling degree SCm.

具体的には、まず最初に、STEP1で微細気泡発生装置3のニードル部51の絞り開度、STEP2で絞り装置6の絞り開度、STEP3で圧縮機1の回転数を初期設定する。STEP4では|TH1ーETm|>ε3であればSTEP3へ戻り、圧縮機1の回転数を変更する。即ち、TH1>ETmの時は圧縮機1の回転数を増加させ、TH1<ETmの時は圧縮機1の回転数を減少させる。圧縮機1の回転数を変更した結果、蒸発温度TH1を計測してSTEP4で判断し、|TH1−ETm|<ε3であればSTEP5へ進み、圧縮機1の回転数が決定される。   Specifically, first, in STEP 1, the throttle opening of the needle 51 of the microbubble generator 3 is initialized, in STEP 2 the throttle opening of the expansion device 6 and in STEP 3 the rotation speed of the compressor 1 is initialized. In STEP4, if | TH1-ETm |> ε3, the process returns to STEP3 to change the rotational speed of the compressor 1. That is, when TH1> ETm, the rotational speed of the compressor 1 is increased, and when TH1 <ETm, the rotational speed of the compressor 1 is decreased. As a result of changing the rotational speed of the compressor 1, the evaporation temperature TH1 is measured and judged in STEP4. If | TH1-ETm | <ε3, the process proceeds to STEP5, and the rotational speed of the compressor 1 is determined.

STEP6では|SH−SHm|>ε2であればSTEP2へ戻り、絞り装置6の開度を変更する。即ち、SH>SHmの時は絞り装置6を開き、SH<SHmの時は絞り装置6を閉める。絞り装置6の開度を変更した結果、過熱度SHを計測してSTEP6で判断し、|SH−SHm|<ε2であればSTEP7で絞り装置6の絞り開度が決定される。   In STEP6, if | SH-SHm |> ε2, the process returns to STEP2, and the opening degree of the expansion device 6 is changed. That is, when SH> SHm, the aperture device 6 is opened, and when SH <SHm, the aperture device 6 is closed. As a result of changing the opening degree of the expansion device 6, the degree of superheat SH is measured and determined in STEP6. If | SH-SHm | <ε2, the expansion opening amount of the expansion device 6 is determined in STEP7.

STEP8では|SC−SCm|>ε1であればSTEP1へ戻り、微細気泡発生装置3のニードル部51の絞り開度を変更する。即ち、SC>SCmでは微細気泡発生装置3のニードル部51を開き、SC<SCmでは微細気泡発生装置3のニードル部51を閉める。ニードル部51の絞り開度を変更した結果、過冷却度SCを計測してSTEP8で判断し、|SC−SCm|<ε1であればSTEP9で微細気泡発生装置3のニードル部51の絞り開度が決定し制御は終了する。各目標値の一例として、例えば冷凍サイクル装置が室内の冷房を行う場合には、目標蒸発度ETmは−30℃〜10℃、目標過熱度SHmは5℃〜15℃、目標過冷却度SCmは5〜20℃の範囲で設定される。   In STEP 8, if | SC-SCm |> ε1, the process returns to STEP 1 to change the throttle opening of the needle portion 51 of the fine bubble generating device 3. That is, when SC> SCm, the needle portion 51 of the fine bubble generating device 3 is opened, and when SC <SCm, the needle portion 51 of the fine bubble generating device 3 is closed. As a result of changing the throttle opening of the needle portion 51, the degree of supercooling SC is measured and judged in STEP8. If | SC-SCm | <ε1, the throttle opening of the needle portion 51 of the microbubble generator 3 is determined in STEP9. Is determined and the control ends. As an example of each target value, for example, when the refrigeration cycle apparatus performs indoor cooling, the target evaporation ETm is −30 ° C. to 10 ° C., the target superheat degree SHm is 5 ° C. to 15 ° C., and the target subcool degree SCm is It is set in the range of 5 to 20 ° C.

圧縮機1の回転数は、冷凍サイクル装置を循環する冷媒流量、即ち冷凍能力を決定するものであるから冷凍サイクル装置の機能を確保する目的から最優先で制御される。減圧手段6の絞り開度は、蒸発側熱交換器7の出口過熱度を制御することで蒸発側熱交換器7の効率、即ち冷凍サイクル装置の効率を決定するものであるから次に優先される。微細気泡発生装置3の絞り開度は、放熱側熱交換器2の出口過冷却度を制御し、運転効率を最大化するものであるから最も優先順位を低くしている。ここで、ε1、ε2、ε3は、運転制御における許容誤差である。   The number of revolutions of the compressor 1 is controlled with the highest priority for the purpose of ensuring the function of the refrigeration cycle apparatus because it determines the flow rate of refrigerant circulating through the refrigeration cycle apparatus, that is, the refrigeration capacity. The throttle opening of the decompression means 6 is prioritized because it determines the efficiency of the evaporation side heat exchanger 7, that is, the efficiency of the refrigeration cycle apparatus by controlling the degree of outlet superheat of the evaporation side heat exchanger 7. The The throttle opening of the microbubble generator 3 is the lowest priority because it controls the degree of outlet supercooling of the heat-radiating heat exchanger 2 and maximizes the operating efficiency. Here, ε1, ε2, and ε3 are allowable errors in operation control.

図11で記載したように制御手段31によって蒸発温度、蒸発側熱交換器7の出口過熱度、放熱側熱交換器2の出口過冷却度を最適な目標値になるように運転することで、冷凍サイクル装置を使用状況に合わせて効率良く運転することができる。即ち、蒸発側熱交換器7の蒸発温度を制御することで、被冷却体の負荷にあわせて無駄のない運転ができる。また、蒸発側熱交換器7の出口過熱度を制御することで、圧縮機1に液バックするのを防止でき、圧縮機1の信頼性を高めることができる。また、微細気泡発生装置3の液冷媒入口部3aの過冷却度を制御することで、微細気泡発生装置3内で微細な気泡を均一に発生することができ、冷凍サイクル装置のサイクル効率(COP)を上げることかできる。
ただし、図11に示した制御過程に限るものではない。例えば、微細気泡発生装置3またはエジェクタ4に備えた抵抗調整手段、例えばニードル部によって圧縮機1の吸入側過熱度を制御してもよい。この場合には、微細気泡発生装置3の流入側の過冷却度を制御しなくてもよいし、放熱側熱交換器2の送風機の回転数によって熱交換量を制御することで、この部分の過冷却度を制御するように構成してもよい。
As shown in FIG. 11, the control means 31 is operated so that the evaporation temperature, the outlet superheat degree of the evaporation side heat exchanger 7, and the outlet subcooling degree of the heat radiation side heat exchanger 2 become optimum target values, The refrigeration cycle apparatus can be efficiently operated according to the usage situation. That is, by controlling the evaporation temperature of the evaporation side heat exchanger 7, it is possible to operate without waste according to the load of the object to be cooled. Further, by controlling the degree of superheat at the outlet of the evaporation side heat exchanger 7, it is possible to prevent the liquid from returning to the compressor 1 and to improve the reliability of the compressor 1. Further, by controlling the degree of supercooling of the liquid refrigerant inlet 3a of the fine bubble generating device 3, fine bubbles can be uniformly generated in the fine bubble generating device 3, and the cycle efficiency (COP) of the refrigeration cycle device can be improved. ) Can be raised.
However, the present invention is not limited to the control process shown in FIG. For example, the suction side superheat degree of the compressor 1 may be controlled by resistance adjusting means provided in the fine bubble generating device 3 or the ejector 4, for example, a needle portion. In this case, it is not necessary to control the degree of supercooling on the inflow side of the fine bubble generating device 3, or the amount of heat exchange is controlled by the rotational speed of the blower of the heat radiation side heat exchanger 2, so that You may comprise so that a supercooling degree may be controlled.

ここで、微細気泡発生装置3で、ガス冷媒を微細気泡にせん断して気泡化するため、θを例えば90度以上180度以下となるように設けたことにより、ガス冷媒が液冷媒にせん断されやすい構成になるが、これに限るものではない。発生する気泡の大きさは、ガス冷媒を挿入する配管、ここではバイパス配管9の径や液冷媒の流速、ガス冷媒の体積流量比などによっても影響される。これらの条件が適当に設定されている場合、角度θとしては、液冷媒の流れ方向に対してガス冷媒が交差するように挿入されれば、挿入されたガス冷媒が液冷媒によって切断されやすいので、ある程度微細な気泡が発生する。   Here, in order to make the gas refrigerant into bubbles by shearing the gas refrigerant into fine bubbles in the fine bubble generating device 3, the gas refrigerant is sheared into the liquid refrigerant by providing θ to be, for example, 90 degrees or more and 180 degrees or less. Although it becomes an easy structure, it is not restricted to this. The size of the generated bubbles is also affected by the diameter of the pipe into which the gas refrigerant is inserted, here the diameter of the bypass pipe 9, the flow rate of the liquid refrigerant, the volume flow rate ratio of the gas refrigerant, and the like. If these conditions are set appropriately, if the angle θ is inserted so that the gas refrigerant intersects the flow direction of the liquid refrigerant, the inserted gas refrigerant is easily cut by the liquid refrigerant. , Some fine bubbles are generated.

また、微細気泡発生装置3のガス冷媒流入部52の位置を図12に示す。微細気泡発生装置3は主流路の構成を、減圧部53、喉部55、末広部54を有するベンチュリ管とし、最も断面積の小さい喉部55にガス冷媒が挿入される構成(図12(a))、喉部55よりも上流側にガス冷媒が挿入される構成(図12(b))、喉部55よりも下流側にガス冷媒が挿入される構成(図12(c))である。いずれの場合にも、液冷媒がガス冷媒を数100μmの微細な気泡にせん断する。さらに、喉部55から出口部3cまでの間の末広部54において、急激な圧力上昇が加えられて気泡がさらに微細に崩壊される。ガス冷媒流入部52を設ける位置は、少なくとも喉部55付近にガス冷媒流入部52を設けてガス冷媒を流入させれば、微細な気泡を発生できる。   Moreover, the position of the gas refrigerant inflow part 52 of the microbubble generator 3 is shown in FIG. The microbubble generator 3 uses a Venturi tube having a decompression section 53, a throat section 55, and a divergent section 54 as the main flow path, and a configuration in which a gas refrigerant is inserted into the throat section 55 having the smallest cross-sectional area (FIG. )), A configuration in which the gas refrigerant is inserted upstream of the throat 55 (FIG. 12B), and a configuration in which the gas refrigerant is inserted downstream of the throat 55 (FIG. 12C). . In either case, the liquid refrigerant shears the gas refrigerant into fine bubbles of several hundred μm. Further, in the divergent portion 54 between the throat portion 55 and the outlet portion 3c, a sudden pressure increase is applied, and the bubbles are further finely collapsed. If the gas refrigerant inflow portion 52 is provided at least in the vicinity of the throat 55 and the gas refrigerant is allowed to flow in, the position where the gas refrigerant inflow portion 52 is provided can generate fine bubbles.

また、図2では微細気泡発生装置3のガス冷媒流入部52は1箇所としているが、これに限るものではない。2箇所以上設けてもよい。ガス冷媒流入部52の径を小さくして複数設ければ、より効率よくガス冷媒をせん断でき、微細な気泡を発生できる。複数のガス冷媒流入部52を設ける場合には、微細気泡発生装置3の断面における円周上にバランスよく設けるとよい。   Moreover, although the gas refrigerant inflow part 52 of the fine bubble generator 3 is made into one place in FIG. 2, it is not restricted to this. Two or more locations may be provided. If a plurality of gas refrigerant inflow portions 52 having a reduced diameter are provided, the gas refrigerant can be sheared more efficiently and fine bubbles can be generated. When providing the several gas refrigerant inflow part 52, it is good to provide with good balance on the periphery in the cross section of the microbubble generator 3. FIG.

本実施の形態に係る微細気泡発生装置3は、せん断流を利用して気泡を発生させることと、気泡の崩壊現象を利用して微細化することの両方の機構を兼ね備える構成として、マイクロレベルの微細な気泡を発生させるものを示した。
これに対し、どちらか一方の機構を備えた構成でもよい。例えば、せん断流を利用するものとしては、液冷媒を加速する部分と加速された液冷媒にガス冷媒を交差する方向から流入するような構成であればよい。ガス冷媒を液冷媒でせん断して発生する気泡の大きさは、ガス冷媒の配管径やガス冷媒の流入速度や液冷媒の速度などに影響される。ガス冷媒の配管径を、例えば数100μmとすると発生する気泡は数100μm以下となることが期待できる。せん断によって微細な気泡を発生させるには、液冷媒の速度は速いほうが好ましい。また、ガス冷媒の速度は遅いほうが好ましく、ガス冷媒の配管径は小さいほうが好ましい。また、単に断面積が一律な筒状の構成でも、液冷媒流路とガス冷媒流路の断面積を適当に構成することによって、液冷媒のせん断力でガス冷媒を気泡化できる。
The microbubble generator 3 according to the present embodiment has a micro-level configuration that combines both the mechanism of generating bubbles using shear flow and the mechanism of micronization using the collapse phenomenon of bubbles. Those that generate fine bubbles are shown.
On the other hand, the structure provided with either one mechanism may be sufficient. For example, what uses a shear flow may be a configuration in which the gas refrigerant flows into the portion that accelerates the liquid refrigerant and the accelerated liquid refrigerant from the crossing direction. The size of bubbles generated by shearing the gas refrigerant with the liquid refrigerant is affected by the pipe diameter of the gas refrigerant, the inflow speed of the gas refrigerant, the speed of the liquid refrigerant, and the like. If the pipe diameter of the gas refrigerant is, for example, several hundred μm, the generated bubbles can be expected to be several hundred μm or less. In order to generate fine bubbles by shearing, it is preferable that the liquid refrigerant has a high speed. Further, it is preferable that the speed of the gas refrigerant is low, and it is preferable that the pipe diameter of the gas refrigerant is small. Further, even in a cylindrical configuration with a uniform cross-sectional area, the gas refrigerant can be bubbled by the shearing force of the liquid refrigerant by appropriately configuring the cross-sectional areas of the liquid refrigerant channel and the gas refrigerant channel.

また、逆にベンチュリ管の構成、即ち、急縮小−急拡大によって液冷媒中に含まれるガス冷媒の気泡の崩壊現象で微細気泡を発生させる構成とし、せん断によって気泡を発生させる機構がなくてもよい。例えば、液冷媒の流れ方向に対してガス冷媒を挿入させる場合、交差する方向でなくても、同様の方向に挿入するものでもよい。即ち、微細気泡発生装置3がニードル部51を有しない構成の場合には、液冷媒の流路に沿ってガス冷媒流入部を設けてもよい。実際にはガス冷媒流入部の流入口が、喉部55の上流側で、且つ液冷媒の流路の中心付近に開口するように構成してもよい。このガス冷媒流入部の流入口から挿入されるガス冷媒と、その周囲を流れる液冷媒とである程度せん断力が働き、数10mm程度の微細な気泡を含む冷媒となる。そして、気泡を含む冷媒を減圧部53で減圧膨張させた後、末広部54で急激に加圧して気泡を崩壊させることで、数100μm程度の微細な気泡を発生させることができる。   On the contrary, the configuration of the venturi tube, that is, the configuration in which fine bubbles are generated by the collapse phenomenon of the bubbles of the gas refrigerant contained in the liquid refrigerant by rapid contraction and rapid expansion, without the mechanism for generating the bubbles by shearing. Good. For example, when the gas refrigerant is inserted in the flow direction of the liquid refrigerant, the gas refrigerant may be inserted in the same direction, not in the intersecting direction. That is, in the case where the microbubble generator 3 does not have the needle portion 51, a gas refrigerant inflow portion may be provided along the flow path of the liquid refrigerant. In practice, the inlet of the gas refrigerant inlet may be configured to open upstream of the throat 55 and near the center of the liquid refrigerant flow path. A shearing force acts to some extent between the gas refrigerant inserted from the inlet of the gas refrigerant inflow portion and the liquid refrigerant flowing therearound, and the refrigerant contains fine bubbles of about several tens of millimeters. Then, after the refrigerant containing bubbles is decompressed and expanded by the decompression unit 53, the bubbles are collapsed by suddenly pressurizing by the divergent part 54, whereby fine bubbles of about several hundred μm can be generated.

また、本実施の形態では、膨張比が一定の固定エジェクタを使用しているので、ニードル部などを用いて喉部の断面積を可変する膨張比変化型の可変絞りエジェクタに比べ、運転状態によって過膨張や不足膨張が生じることがない。例えば過膨張になると衝撃波の発生によって損失が生じたりするが、これを防止できるので、ノズルから噴射される液滴をできるだけ微細化することができ、混合を促進してエジェクタ効率を高く維持することができる。   Further, in the present embodiment, since a fixed ejector having a constant expansion ratio is used, compared to an expansion ratio change type variable throttle ejector that varies the cross-sectional area of the throat using a needle portion or the like, it depends on the operating state. No overexpansion or underexpansion occurs. For example, loss due to shock waves can occur when overexpanded, but this can be prevented, so that the droplets ejected from the nozzle can be made as fine as possible, and mixing can be promoted to maintain high ejector efficiency. Can do.

また、エジェクタ3として可変絞りエジェクタを用いる場合には、微細気泡発生装置3としてはニ−ドル部51を有しないものを用いてもよい。この場合には図11に示した制御過程において、エジェクタ3の絞り手段によって、放熱側熱交換器2の出口過冷却度を制御すればよい。
また、ニードル部51は流路断面積を増減して流路抵抗を調整しうる抵抗調整手段の一例として設けているが、ニードル部に限るものではない。例えば冷媒流路を開閉し得る扉のようなものを冷媒流路に設け、例えばその扉を垂直に立てた時に流路抵抗が最大になり、扉を冷媒流路に平行になるように寝かせた時に流路抵抗が最小になるようにするなどの抵抗調整手段でもよい。
When a variable aperture ejector is used as the ejector 3, a fine bubble generator 3 that does not have the needle portion 51 may be used. In this case, in the control process shown in FIG. 11, the degree of subcooling at the outlet of the heat radiation side heat exchanger 2 may be controlled by the throttle means of the ejector 3.
Moreover, although the needle part 51 is provided as an example of the resistance adjustment means which can adjust flow path resistance by increasing / decreasing a flow-path cross-sectional area, it is not restricted to a needle part. For example, a door that can open and close the refrigerant flow path is provided in the refrigerant flow path. For example, when the door is set up vertically, the flow resistance becomes maximum, and the door is laid to be parallel to the refrigerant flow path. Resistance adjusting means such as sometimes making the flow path resistance minimum may be used.

また、室内ユニット101の構成は図1に限定されるものではなく、どのような構成になっていてもよい。例えば、エジェクタ4の出口側に蒸発側熱交換器、その下流側に気液分離器を設け、気液分離器の液相部をエジェクタ4の吸引部に接続し、気液分離器の気相部を圧縮機の吸入側に接続するような構成でもよい。また、蒸発側熱交換器を複数備えていてもよい。   Further, the configuration of the indoor unit 101 is not limited to that shown in FIG. 1 and may be any configuration. For example, an evaporation side heat exchanger is provided on the outlet side of the ejector 4, and a gas-liquid separator is provided on the downstream side thereof, and the liquid phase part of the gas / liquid separator is connected to the suction part of the ejector 4. The configuration may be such that the portion is connected to the suction side of the compressor. A plurality of evaporation side heat exchangers may be provided.

以上のように、本実施の形態によれば、冷媒を高圧状態にする圧縮機1と、圧縮機1からの高圧状態の冷媒の熱を放熱させる放熱側熱交換器2と、放熱側熱交換器2からの放熱後の冷媒を微細な気泡を含む冷媒とする気泡発生手段3と、気泡発生手段3によって発生した微細な気泡を含む冷媒を減圧して高速度でノズル部43から流出する駆動流体により吸引部42から吸引流体を吸引し、混合部44で駆動流体と吸引流体とを混合した後、ディフューザ部45で膨張させて低圧状態で流出するエジェクタ4と、エジェクタ4からの低圧状態の冷媒を蒸発させる蒸発側熱交換器7と、を備えたことにより、気泡発生手段3で発生した数μm〜数100μmの微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   As described above, according to the present embodiment, the compressor 1 that brings the refrigerant into a high-pressure state, the heat-dissipation-side heat exchanger 2 that dissipates the heat of the high-pressure refrigerant from the compressor 1, and the heat-dissipation-side heat exchange. The bubble generating means 3 which uses the refrigerant after heat dissipation from the vessel 2 as a refrigerant containing fine bubbles, and the drive which depressurizes the refrigerant containing fine bubbles generated by the bubble generating means 3 and flows out from the nozzle portion 43 at a high speed. The suction fluid is sucked from the suction portion 42 by the fluid, the drive fluid and the suction fluid are mixed by the mixing portion 44, then expanded by the diffuser portion 45 and discharged in a low pressure state, and the low pressure state from the ejector 4 By providing the evaporation side heat exchanger 7 that evaporates the refrigerant, the refrigerant containing fine bubbles of several μm to several 100 μm generated by the bubble generating means 3 is used as the driving fluid for the ejector 4. Gas-liquid at Mixing can be promoted to improve the ejector efficiency, and a more efficient refrigeration cycle apparatus can be obtained.

また、気泡発生手段3は、圧縮機1または放熱側熱交換器2から流出する冷媒のうちのガス冷媒の少なくとも一部を流入するガス冷媒流入部52と放熱側熱交換器2から流出する冷媒のうちの液を多く含む状態の冷媒を流入する液冷媒流入部3aとを有し、液冷媒流入部3aから流入する液冷媒にガス冷媒流入部52からガス冷媒を流入させて気泡を発生するように構成したことにより、高圧側の液冷媒とガス冷媒を用いて気泡発生手段3で微細な気泡を発生させることができ、この微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   In addition, the bubble generating means 3 includes a refrigerant flowing out from the gas refrigerant inflow portion 52 and the heat radiating side heat exchanger 2 into which at least a part of the gas refrigerant out of the refrigerant flowing out from the compressor 1 or the heat radiating side heat exchanger 2 flows. Liquid refrigerant inflow portion 3a for injecting a refrigerant containing a large amount of the liquid, and by causing the gas refrigerant to flow from the gas refrigerant inflow portion 52 into the liquid refrigerant flowing in from the liquid refrigerant inflow portion 3a, bubbles are generated. With this configuration, it is possible to generate fine bubbles by the bubble generating means 3 using the liquid refrigerant and the gas refrigerant on the high pressure side, and to use the refrigerant containing these fine bubbles as a driving fluid for the ejector 4. Thus, gas-liquid mixing in the ejector 4 can be promoted to improve the ejector efficiency, and a more efficient refrigeration cycle apparatus can be obtained.

また、一端側を圧縮機1の吐出部と放熱側熱交換器2の入口部との間の配管に接続し、他端側を気泡発生手段3のガス冷媒流入部52に接続するバイパス配管9を備え、圧縮機1から吐出するガス冷媒の一部をバイパス配管9を通ってガス冷媒流入部52に流入させ、放熱側熱交換器2から流出する冷媒を液冷媒流入部3aに流入させることにより、バイパス配管9を設けるという比較的簡単な構成で高圧側の液冷媒とガス冷媒を用いて気泡発生手段3で微細な気泡を発生させることができ、この微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   Further, a bypass pipe 9 having one end connected to a pipe between the discharge part of the compressor 1 and the inlet part of the heat radiation side heat exchanger 2 and the other end connected to the gas refrigerant inflow part 52 of the bubble generating means 3. A part of the gas refrigerant discharged from the compressor 1 passes through the bypass pipe 9 and flows into the gas refrigerant inflow portion 52, and causes the refrigerant flowing out from the heat radiation side heat exchanger 2 to flow into the liquid refrigerant inflow portion 3a. Thus, it is possible to generate fine bubbles by the bubble generating means 3 using a liquid refrigerant and a gas refrigerant on the high pressure side with a relatively simple configuration in which the bypass pipe 9 is provided, and the refrigerant containing these fine bubbles is ejected. By using the driving fluid 4, gas-liquid mixing in the ejector 4 can be promoted, the ejector efficiency can be improved, and a more efficient refrigeration cycle apparatus can be obtained.

また、気泡発生手段3は、液冷媒流入部52から流入する液冷媒流路に対してガス冷媒流入部3aから流入するガス冷媒流路が交差するように構成され、液冷媒流入部3aから流入する液冷媒流をガス冷媒流入部52から流入するガス冷媒流に交差させて気泡を発生させることにより、高圧側の液冷媒とガス冷媒を用いて気泡発生手段3で微細な気泡を発生させ、この微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   Further, the bubble generating means 3 is configured such that the gas refrigerant flow channel flowing in from the gas refrigerant flow inlet portion 3a intersects the liquid refrigerant flow channel flowing in from the liquid refrigerant flow inlet portion 52, and flows in from the liquid refrigerant flow inlet portion 3a. The liquid refrigerant flow to be generated intersects the gas refrigerant flow flowing in from the gas refrigerant inflow portion 52 to generate bubbles, thereby generating fine bubbles in the bubble generating means 3 using the liquid refrigerant and gas refrigerant on the high-pressure side, By using the refrigerant containing fine bubbles as a driving fluid of the ejector 4, gas-liquid mixing in the ejector 4 can be promoted to improve the ejector efficiency, and a more efficient refrigeration cycle apparatus can be obtained. .

また、気泡発生手段3の液冷媒流路は、液冷媒流入口部3aから喉部55に向かって流路断面積が縮小し、喉部55から気泡発生手段3の出口3cに向かって流路断面積が増加するように構成され、喉部55付近にガス冷媒流入部52を設けたことにより、高圧側の液冷媒とガス冷媒を用いて気泡発生手段3で微細な気泡を発生させ、この微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   Further, the liquid refrigerant flow path of the bubble generating means 3 has a flow path cross-sectional area that decreases from the liquid refrigerant inlet part 3 a toward the throat part 55, and flows from the throat part 55 toward the outlet 3 c of the bubble generating means 3. The cross-sectional area is configured to increase, and the gas refrigerant inflow portion 52 is provided in the vicinity of the throat 55, so that fine bubbles are generated by the bubble generating means 3 using the liquid refrigerant and the gas refrigerant on the high pressure side. By using a refrigerant containing fine bubbles as the driving fluid of the ejector 4, gas-liquid mixing in the ejector 4 can be promoted to improve the ejector efficiency, and a more efficient refrigeration cycle apparatus can be obtained.

また、気泡発生手段3またはエジェクタ4は、冷媒の流動抵抗を調整し得る抵抗調整手段51を有することにより、気泡発生手段3に流入する液冷媒の状態や、圧縮機1に吸入する冷媒状態を調整でき、冷凍サイクル装置の効率を向上できる効果がある。   Further, the bubble generating means 3 or the ejector 4 has a resistance adjusting means 51 that can adjust the flow resistance of the refrigerant, so that the state of the liquid refrigerant flowing into the bubble generating means 3 and the state of the refrigerant sucked into the compressor 1 can be controlled. There is an effect that the efficiency of the refrigeration cycle apparatus can be improved.

また、抵抗調整手段51によって、気泡発生手段3の液冷媒入口部3aの冷媒の過冷却度が、予め設定した目標過冷却度になるように制御することにより、安定して微細な気泡を発生させることができ、冷凍サイクル装置の効率を向上できる効果がある。   Further, by controlling the supercooling degree of the refrigerant at the liquid refrigerant inlet portion 3a of the bubble generating means 3 to be a preset target supercooling degree by the resistance adjusting means 51, stable fine bubbles are generated. It is possible to improve the efficiency of the refrigeration cycle apparatus.

また、エジェクタ4に駆動流体として流入する冷媒の乾き度が0以上且つ0.2以下になるように構成したことにより、エジェクタ4のノズル部43から微細な液滴を噴出させることができ、エジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。
特に、本実施の形態では、エジェクタ4に駆動流体として流入する冷媒の乾き度が0以上且つ0.2以下になるように、予めガス冷媒流入部52に接続する配管の長さまたは直径を構成することで、エジェクタ効率及び冷凍サイクル効率を向上できる効果がある。
In addition, since the dryness of the refrigerant flowing into the ejector 4 as the driving fluid is 0 or more and 0.2 or less, fine droplets can be ejected from the nozzle portion 43 of the ejector 4. The gas-liquid mixing in 4 can be promoted, the ejector efficiency can be improved, and a more efficient refrigeration cycle apparatus can be obtained.
In particular, in the present embodiment, the length or diameter of the pipe connected in advance to the gas refrigerant inflow portion 52 is configured so that the dryness of the refrigerant flowing into the ejector 4 as the driving fluid becomes 0 or more and 0.2 or less. As a result, the ejector efficiency and the refrigeration cycle efficiency can be improved.

また、圧縮機1の吸入側に接続する補助熱交換器13を備えたことにより、圧縮機1に吸入される冷媒状態を確実にガス冷媒とすることができ、圧縮機1に液冷媒が吸入されるのを防止して信頼性の高い冷凍サイクル装置を得ることができる効果がある。   Further, the auxiliary heat exchanger 13 connected to the suction side of the compressor 1 is provided, so that the refrigerant state sucked into the compressor 1 can be reliably changed to a gas refrigerant, and the liquid refrigerant is sucked into the compressor 1. There is an effect that it is possible to obtain a highly reliable refrigeration cycle apparatus by preventing it from being performed.

冷凍サイクル装置として高性能化が進み、さらなる高性能化の余地はほとんど残されていない。特に、蒸発側熱交換器における冷媒と空気の温度差が小さい機器、例えばルームエアコンや冷蔵庫等々において、さらなる性能向上は困難である。このような状況で、エジェクタ4は、蒸発側熱交換器7の温度差の制約を受けずに圧縮機1の吸引圧力をあげることができ、高性能な冷凍サイクル装置を実現できる有用な機器である。本実施の形態では、このエジェクタ4を用い、更に数μm〜数100μmの微細な気泡を含む冷媒をエジェクタ4の駆動流体としてエジェクタ4単体の効率を向上することで、冷凍サイクル装置の効率を向上できる。   As the refrigeration cycle device has been improved in performance, there is little room for further improvement in performance. In particular, it is difficult to further improve the performance of devices having a small temperature difference between the refrigerant and air in the evaporation side heat exchanger, such as room air conditioners and refrigerators. Under such circumstances, the ejector 4 is a useful device that can increase the suction pressure of the compressor 1 without being restricted by the temperature difference of the evaporation side heat exchanger 7 and can realize a high-performance refrigeration cycle apparatus. is there. In the present embodiment, the efficiency of the refrigeration cycle apparatus is improved by using the ejector 4 and further improving the efficiency of the ejector 4 as a driving fluid for the ejector 4 using a refrigerant containing fine bubbles of several μm to several 100 μm. it can.

実施の形態2.
以下、本発明の実施の形態2による冷凍サイクル装置について説明する。図13は、本発明の実施の形態2に係る冷凍サイクル装置であり、例えば室内を冷房する空気調和装置の回路構成を示す構成図である。図1の各部と同一符号は同様又は相当部分を示し、ここでは説明を省略する。また、微細気泡発生装置3の構成は図2と同様であり、エジェクタ4の構成は図3と同様である。
Embodiment 2. FIG.
Hereinafter, a refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described. FIG. 13 is a refrigeration cycle apparatus according to Embodiment 2 of the present invention, for example, a configuration diagram showing a circuit configuration of an air conditioner that cools a room. The same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description thereof is omitted here. The configuration of the fine bubble generating device 3 is the same as that in FIG. 2, and the configuration of the ejector 4 is the same as that in FIG.

エジェクタ本実施の形態に係る冷凍サイクル装置における室外ユニット100内の冷媒回路は、圧縮機1、放熱側熱交換器2、気液分離器8、流動抵抗を調整する機能を持った微細気泡発生装置3、およびそれらを接続するための配管で構成され、気液分離器8の液相部を微細気泡発生装置3の液冷媒流入部3aに接続し、気相部を配管10によって微細気泡発生装置3のガス冷媒流入部52に接続する。
実施の形態1では放熱側熱交換器2の上流側のガス冷媒をガス冷媒流入部52に流入させているが、本実施の形態では放熱側熱交換器2の出口部と微細気泡発生装置3の入口部との間に接続される気液分離器を備える。そして、放熱側熱交換器2から気液二相状態で冷媒を流出させて気液分離器8でガス冷媒と液冷媒に分離し、その気相部のガス冷媒をガス冷媒流入部52に流入させている。
Ejector The refrigerant circuit in the outdoor unit 100 in the refrigeration cycle apparatus according to the present embodiment includes a compressor 1, a heat radiation side heat exchanger 2, a gas-liquid separator 8, and a fine bubble generator having a function of adjusting flow resistance. 3 and a pipe for connecting them, the liquid phase part of the gas-liquid separator 8 is connected to the liquid refrigerant inflow part 3a of the fine bubble generator 3, and the gas phase part is connected to the fine bubble generator by the pipe 10 3 is connected to the gas refrigerant inflow portion 52.
In the first embodiment, the gas refrigerant on the upstream side of the heat radiation side heat exchanger 2 is caused to flow into the gas refrigerant inflow portion 52. However, in this embodiment, the outlet portion of the heat radiation side heat exchanger 2 and the fine bubble generating device 3 are used. The gas-liquid separator connected between the inlet part of this is provided. Then, the refrigerant flows out from the heat-dissipation side heat exchanger 2 in a gas-liquid two-phase state and is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 8, and the gas refrigerant in the gas phase portion flows into the gas refrigerant inflow portion 52. I am letting.

以下、冷凍サイクル装置の運転動作を図13及び図14に基づいて説明する。図14は本実施の形態による冷凍サイクル装置に係る圧力−エンタルピー線図であり、横軸にエンタルピー(kJ/kg)、縦軸に圧力(パスカル)を示す。
圧縮機1から吐出された高温・高圧のガス冷媒R1は放熱側熱交換器2で空気へ放熱して自身は凝縮・液化し、気液二相冷媒R2となり気液分離器8へ流入する。気液分離器8では気液二相冷媒が、ガス冷媒R2Gと液冷媒R2Lに分離され、ガス冷媒R2Gは配管抵抗により減圧してガス冷媒R3Gとなり、液冷媒R2Lは微細気泡発生装置3の減圧部53で減圧され液冷媒R3Lとなる。微細気泡発生装置3の液冷媒流入部3aから液冷媒を流入し、減圧部53で流路断面積を縮小することで液冷媒の速度が増加する。そして喉部55付近でガス冷媒流入部52から液冷媒の冷媒流に交差するようにガス冷媒R3Gを流入すると、液冷媒によってガス冷媒がせん断される。即ち、微細気泡発生装置3においてガス冷媒R3Gと液冷媒R3Lが再び混合する際に、挿入されたガス冷媒R2Gは液冷媒R2Lとのせん断力で微細な気泡になる。さらに末広部54で圧力が上昇する際に気泡が崩壊し、数100μm程度の大きさがほぼ均一で、流路内に偏ることなくほぼ均質に存在する微細気泡流となる。このほぼ均一な微細気泡をほぼ均質に含む冷媒R3がエジェクタ4に流入する。エジェクタ4に流入した後の運転動作は、実施の形態1と同様であるため、詳細な説明は省略する。
Hereinafter, the operation of the refrigeration cycle apparatus will be described with reference to FIGS. 13 and 14. FIG. 14 is a pressure-enthalpy diagram relating to the refrigeration cycle apparatus according to the present embodiment, in which the horizontal axis indicates enthalpy (kJ / kg) and the vertical axis indicates pressure (pascal).
The high-temperature and high-pressure gas refrigerant R1 discharged from the compressor 1 dissipates heat to the air in the heat radiation side heat exchanger 2 and condenses and liquefies itself, and becomes a gas-liquid two-phase refrigerant R2 and flows into the gas-liquid separator 8. In the gas-liquid separator 8, the gas-liquid two-phase refrigerant is separated into the gas refrigerant R2G and the liquid refrigerant R2L, the gas refrigerant R2G is depressurized by the pipe resistance to become the gas refrigerant R3G, and the liquid refrigerant R2L is depressurized by the microbubble generator 3 The pressure is reduced at the portion 53 to become the liquid refrigerant R3L. The liquid refrigerant is introduced from the liquid refrigerant inflow portion 3a of the microbubble generator 3 and the flow passage cross-sectional area is reduced by the decompression portion 53, thereby increasing the speed of the liquid refrigerant. When the gas refrigerant R3G flows from the gas refrigerant inflow part 52 so as to intersect the refrigerant flow of the liquid refrigerant in the vicinity of the throat 55, the gas refrigerant is sheared by the liquid refrigerant. That is, when the gas refrigerant R3G and the liquid refrigerant R3L are mixed again in the fine bubble generating device 3, the inserted gas refrigerant R2G becomes fine bubbles by the shearing force with the liquid refrigerant R2L. Furthermore, when the pressure rises at the divergent portion 54, the bubbles collapse, and a microbubble flow having a size of about several hundred μm is almost uniform and is present almost uniformly without being biased in the flow path. The refrigerant R3 containing the substantially uniform fine bubbles almost uniformly flows into the ejector 4. Since the driving operation after flowing into the ejector 4 is the same as that of the first embodiment, detailed description thereof is omitted.

微細気泡発生装置3とエジェクタ4の構成及び動作は、実施の形態1と同様であるため、詳細な説明はここでは省略する。本実施の形態でも、エジェクタ4の上流側に微細気泡発生装置3を備え、冷凍サイクル装置を循環する冷媒で、高圧側を流れる冷媒のガス冷媒と液冷媒を微細気泡発生装置3に流入させ、液冷媒流とガス冷媒流とを交差させた時のせん断力や、減圧膨張後に急激な圧力上昇を加えた時の気泡の崩壊現象によって、数100μm以下の微細な気泡を含んだ冷媒とする。エジェクタ4の駆動流体の液滴が微細になるので、ガス状態の吸引流体と接触する面積が増大し、混合部で駆動流体と吸引流体との混合が促進されて昇圧量が増加できる。また、蒸発側熱交換器7からのガス冷媒R4を吸引しやすく、吸引流体の流量が増加する。このため、エジェクタ効率及び冷凍サイクル効率を向上できる。   Since the configuration and operation of the microbubble generator 3 and the ejector 4 are the same as those in the first embodiment, detailed description thereof is omitted here. Also in the present embodiment, the fine bubble generating device 3 is provided upstream of the ejector 4, and the refrigerant circulating in the refrigeration cycle device is caused to flow into the fine bubble generating device 3 with the gas refrigerant and the liquid refrigerant flowing on the high pressure side, A refrigerant containing fine bubbles of several hundreds of μm or less is obtained by a shearing force when the liquid refrigerant flow and the gas refrigerant flow are crossed, or by a bubble collapse phenomenon when a sudden pressure increase is applied after expansion under reduced pressure. Since the droplets of the driving fluid in the ejector 4 become fine, the area in contact with the suction fluid in the gas state increases, and the mixing of the driving fluid and the suction fluid is promoted in the mixing portion, so that the amount of pressure increase can be increased. Further, it is easy to suck the gas refrigerant R4 from the evaporation side heat exchanger 7, and the flow rate of the suction fluid increases. For this reason, ejector efficiency and refrigeration cycle efficiency can be improved.

また、本実施の形態でも液冷媒流とガス冷媒流とを交差させた時のせん断力と、減圧膨張後に急激な圧力上昇を加えた時の気泡の崩壊現象の両方を利用して微細な気泡を発生させているが、少なくともどちらか一方の機構によって微細な気泡を発生させてもよい。   Also, in this embodiment, fine bubbles are generated by utilizing both the shearing force when the liquid refrigerant flow and the gas refrigerant flow are crossed and the bubble collapse phenomenon when a sudden pressure increase is applied after decompression expansion. However, fine bubbles may be generated by at least one of the mechanisms.

制御手段31による制御過程は、実施の形態1と同様であるため、詳細な説明はここでは省略する。但し、実施の形態1では放熱側熱交換器2の出口側過冷却度の目標値SCmを5〜20℃に設定していたが、本実施の形態では気液分離器8内で二相状態の冷媒とするために、過冷却度目標値SCmは0〜5℃に設定する。ここで、SCm=5℃とするのは、5℃の過冷却度でも二相状態となる非平衡が生じるためである。   Since the control process by the control means 31 is the same as that of Embodiment 1, detailed description is abbreviate | omitted here. However, in the first embodiment, the target value SCm of the outlet side subcooling degree of the heat radiation side heat exchanger 2 is set to 5 to 20 ° C. However, in this embodiment, the two-phase state is set in the gas-liquid separator 8. Therefore, the supercooling degree target value SCm is set to 0 to 5 ° C. Here, SCm = 5 ° C. is because a non-equilibrium that becomes a two-phase state occurs even when the degree of supercooling is 5 ° C.

ここで、気液分離器8の気相部と微細気泡発生装置3のガス冷媒流入部52を接続する配管10の配管径や配管長さは、エジェクタ4に駆動流体として流入する冷媒の乾き度が0以上且つ0.2以下になるように設定している。このため、実施の形態1と同様、エジェクタ4のノズル部43から微細な液滴を噴出させることができ、エジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらにサイクル効率(COP)のよい冷凍サイクル装置を得ることができる効果がある。実際には適当な配管10を用い、エジェクタ4に駆動流体として流入する冷媒の乾き度が0以上で且つ0.2以下になることを、予め予備運転で確認すればよい。   Here, the pipe diameter and the pipe length of the pipe 10 connecting the gas phase part of the gas-liquid separator 8 and the gas refrigerant inflow part 52 of the fine bubble generating device 3 are the dryness of the refrigerant flowing into the ejector 4 as the driving fluid. Is set to be 0 or more and 0.2 or less. Therefore, as in the first embodiment, fine droplets can be ejected from the nozzle portion 43 of the ejector 4, gas-liquid mixing in the ejector 4 can be promoted, the ejector efficiency can be improved, and the cycle efficiency (COP) ) Can be obtained. In practice, an appropriate pipe 10 is used, and it may be confirmed in advance by a preliminary operation that the dryness of the refrigerant flowing into the ejector 4 as the driving fluid is 0 or more and 0.2 or less.

また、図15は本実施の形態の他の冷凍サイクル装置の回路構成を示す構成図である。図に示すように気液分離器8の上流側に加熱手段15を設け、放熱側熱交換器2と気液分離器8の間を流れる冷媒を加熱する構成としている。例えば冷媒が放熱側熱交換器2の出口部で液単相状態となっていても、ヒータ等の加熱手段15によって加熱してエンタルピーが増加し、気液分離器8の入口部で確実に冷媒を気液二相状態とすることができる。その後気液分離器8で気液を分離し、微細気泡発生装置3で均質な微細気泡流を生成してエジェクタの駆動流体とすることは図13の構成と同様である。   FIG. 15 is a configuration diagram showing a circuit configuration of another refrigeration cycle apparatus of the present embodiment. As shown in the figure, heating means 15 is provided upstream of the gas-liquid separator 8 to heat the refrigerant flowing between the heat-radiation side heat exchanger 2 and the gas-liquid separator 8. For example, even if the refrigerant is in a liquid single-phase state at the outlet of the heat radiation side heat exchanger 2, the enthalpy is increased by heating by the heating means 15 such as a heater, and the refrigerant is reliably supplied at the inlet of the gas-liquid separator 8. Can be in a gas-liquid two-phase state. After that, the gas-liquid separator 8 separates the gas and liquid, and the micro-bubble generator 3 generates a homogeneous micro-bubble flow as the drive fluid for the ejector as in the configuration of FIG.

このように、放熱側熱交換器2と気液分離器8との間の冷媒を加熱する加熱手段15を設けることで、気液分離器8に流入する冷媒を確実に二相冷媒とすることができる。これにより、微細気泡発生装置3で微細気泡を確実に発生させることができ、エジェクタ効率を向上でき、サイクル効率も向上できる冷凍サイクル装置が得られる。   In this way, by providing the heating means 15 for heating the refrigerant between the heat-radiating side heat exchanger 2 and the gas-liquid separator 8, the refrigerant flowing into the gas-liquid separator 8 is surely made into a two-phase refrigerant. Can do. As a result, a fine bubble can be reliably generated by the fine bubble generator 3, and the refrigeration cycle apparatus that can improve ejector efficiency and cycle efficiency can be obtained.

また、本実施の形態における気液分離器8は、通常、余分な冷媒を一時的に貯留する液だめとして冷凍サイクル装置に備えられているものを利用することができる。
本実施の形態において、実施の形態1と同様、室内ユニット101の構成などは、図13、図15に限定させるものではなく、どのように構成されていてもよい。
Moreover, the gas-liquid separator 8 in this Embodiment can utilize what is equipped with the refrigerating-cycle apparatus normally as a liquid reservoir which temporarily stores an excess refrigerant | coolant.
In the present embodiment, as in the first embodiment, the configuration of the indoor unit 101 is not limited to FIGS. 13 and 15, and may be configured in any manner.

以上のように、本実施の形態によれば、放熱側熱交換器2の出口部と気泡発生手段3の入口部との間に接続される気液分離器8を備え、気液分離器8の気相部と気泡発生手段3のガス冷媒流入部52を接続し、気液分離器8の液相部と気泡発生手段3の液冷媒流入部3aを接続することにより、高圧側の液冷媒とガス冷媒を用いて気泡発生手段3で微細な気泡を発生させることができ、この微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   As described above, according to the present embodiment, the gas-liquid separator 8 is provided which is connected between the outlet portion of the heat radiation side heat exchanger 2 and the inlet portion of the bubble generating means 3. Is connected to the gas refrigerant inflow portion 52 of the bubble generating means 3, and the liquid phase portion of the gas-liquid separator 8 is connected to the liquid refrigerant inflow portion 3 a of the bubble generating means 3. And the gas refrigerant can be used to generate fine bubbles in the bubble generating means 3, and the refrigerant containing the fine bubbles is used as a driving fluid for the ejector 4 to promote gas-liquid mixing in the ejector 4. Ejector efficiency can be improved, and a more efficient refrigeration cycle apparatus can be obtained.

実施の形態3.
実施の形態1、2では、室内ユニット101における蒸発側熱交換器7を1台備えた構成としたが、これに限らなくてもよい。本発明の実施の形態3では、複数、例えば2台の蒸発側熱交換器7a、7bを設けた冷凍サイクル装置について説明する。なお、室内ユニット100に関しては、実施の形態1または実施の形態2と構成及び効果において同様であり、ここでは説明を省略する。
図16は本発明の実施の形態3に係る冷凍サイクル装置の室内ユニット101の回路構成を示す構成図である。図において、2台の蒸発側熱交換器7a、7bはそれぞれ室内送風機12a、12bで送風される室内空気と熱交換する。蒸発側熱交換器7a、7bの上流側にはそれぞれ冷媒流量調整手段、例えば絞り装置6a、6bを設け、蒸発側熱交換器7a、7bに流入する液冷媒の流量を調整する。蒸発側熱交換器7a、7bは例えば別の室内に設置され、それぞれの室内を冷房する。絞り装置6a、6bの一例としては電子式膨張弁であり、例えば一方の蒸発側熱交換器7a又は7bを動作させなくてもよい場合には、絞り装置6a又は6bを閉じればよい。図中、制御手段からの絞り装置6a、6bへの制御信号線や、各蒸発側熱交換器7a、7b周辺に設置している温度検出手段、及び検出手段からの入力信号線は省いて示した。
Embodiment 3 FIG.
In Embodiments 1 and 2, a configuration is provided in which one evaporation side heat exchanger 7 in the indoor unit 101 is provided, but the present invention is not limited to this. In Embodiment 3 of the present invention, a refrigeration cycle apparatus provided with a plurality of, for example, two evaporation side heat exchangers 7a and 7b will be described. The indoor unit 100 is similar in configuration and effect to the first embodiment or the second embodiment, and the description thereof is omitted here.
FIG. 16 is a configuration diagram illustrating a circuit configuration of the indoor unit 101 of the refrigeration cycle apparatus according to Embodiment 3 of the present invention. In the figure, two evaporation side heat exchangers 7a and 7b exchange heat with indoor air blown by indoor fans 12a and 12b, respectively. Refrigerant flow rate adjusting means, for example, expansion devices 6a and 6b are provided upstream of the evaporation side heat exchangers 7a and 7b, respectively, to adjust the flow rate of the liquid refrigerant flowing into the evaporation side heat exchangers 7a and 7b. The evaporation side heat exchangers 7a and 7b are installed, for example, in separate rooms and cool the respective rooms. An example of the expansion devices 6a and 6b is an electronic expansion valve. For example, when it is not necessary to operate one of the evaporation side heat exchangers 7a or 7b, the expansion device 6a or 6b may be closed. In the figure, control signal lines from the control means to the expansion devices 6a and 6b, temperature detection means installed around the respective evaporation side heat exchangers 7a and 7b, and input signal lines from the detection means are omitted. It was.

冷凍サイクル装置がショーケースや冷凍冷蔵庫である場合など、蒸発温度を複数の異なる温度に設定して動作させたい場合がある。例えば、−20℃程度の蒸発温度の低い冷凍用蒸発側熱交換器7a、5℃程度の蒸発温度の高い冷蔵用蒸発側熱交換器7bというように、複数の異なる温度に冷却する場合、複数の蒸発温度の異なる蒸発側熱交換器7a、7bを並列に接続する。減圧手段として、例えばキャピラリチューブ16を、エジェクタ4の吸引部と蒸発側熱交換器7bの間に接続する。   In some cases, such as when the refrigeration cycle apparatus is a showcase or a refrigerator, the evaporation temperature may be set to a plurality of different temperatures. For example, when cooling to a plurality of different temperatures, such as a refrigeration evaporation side heat exchanger 7a having a low evaporation temperature of about −20 ° C. and a refrigeration evaporation side heat exchanger 7b having a high evaporation temperature of about 5 ° C. The evaporation side heat exchangers 7a and 7b having different evaporation temperatures are connected in parallel. As decompression means, for example, a capillary tube 16 is connected between the suction part of the ejector 4 and the evaporation side heat exchanger 7b.

即ち、室内ユニット101内の冷媒回路は、エジェクタ4、気液分離器5、絞り装置6a、絞り装置6b、蒸発側熱交換器7a、蒸発側熱交換器7b、キャピラリチューブ16、補助熱交換器13およびそれらを接続するための配管で構成され、気液分離器5の液相部に接続される配管を2つに分岐し、一方は絞り装置6a、蒸発側熱交換器7aを介してエジェクタ4の吸引部42と接続し、他方は絞り装置6b、蒸発側熱交換器7b、キャピラリチューブ16を介してエジェクタ4の吸引部42と接続し、気液分離器5の気相部は補助熱交換器13を介し圧縮機1の吸入側に接続する。   That is, the refrigerant circuit in the indoor unit 101 includes the ejector 4, the gas-liquid separator 5, the expansion device 6a, the expansion device 6b, the evaporation side heat exchanger 7a, the evaporation side heat exchanger 7b, the capillary tube 16, and the auxiliary heat exchanger. 13 and a pipe for connecting them, and the pipe connected to the liquid phase part of the gas-liquid separator 5 is branched into two, one of which is an ejector through the expansion device 6a and the evaporation side heat exchanger 7a 4 is connected to the suction part 42 of the ejector 4 through the expansion device 6b, the evaporation side heat exchanger 7b and the capillary tube 16, and the gas phase part of the gas-liquid separator 5 is connected to the auxiliary heat. It connects to the suction side of the compressor 1 via the exchanger 13.

エジェクタ4を通過した冷媒は、気液分離器5に流入し、液冷媒とガス冷媒に分離される。ガス冷媒は補助熱交換器13によって確実にガス冷媒となって圧縮機1の吸入側に流入する。気液分離器5の液冷媒のうちの一部は、絞り装置6aで減圧され、蒸発側熱交換器7aで空気から吸熱し自身は蒸発・気化してガス冷媒となり、エジェクタ4により吸引される。また、気液分離器5の液冷媒のうちの他部も同様に、絞り装置6bで減圧され、蒸発側熱交換器7bで空気から吸熱し自身は蒸発・気化してガス冷媒となり、キャピラリチューブ16で減圧されてエジェクタ4により吸引される。この蒸発側熱交換器7a、7bで室内空気から吸熱することで、室内の冷房を行っており、蒸発側熱交換器7a、7bで2つの異なる温度を設定することができる。   The refrigerant that has passed through the ejector 4 flows into the gas-liquid separator 5 and is separated into liquid refrigerant and gas refrigerant. The gas refrigerant is reliably converted into gas refrigerant by the auxiliary heat exchanger 13 and flows into the suction side of the compressor 1. A part of the liquid refrigerant of the gas-liquid separator 5 is decompressed by the expansion device 6 a, absorbs heat from the air by the evaporation side heat exchanger 7 a, evaporates and vaporizes itself, becomes a gas refrigerant, and is sucked by the ejector 4. . Similarly, the other part of the liquid refrigerant of the gas-liquid separator 5 is decompressed by the expansion device 6b, absorbs heat from the air by the evaporation side heat exchanger 7b, and evaporates and vaporizes itself to become a gas refrigerant. The pressure is reduced at 16 and sucked by the ejector 4. The evaporation side heat exchangers 7a and 7b absorb heat from the room air to cool the room, and the evaporation side heat exchangers 7a and 7b can set two different temperatures.

ここで、キャピラリチューブ16は、エジェクタ4の吸引部42にガス冷媒を流入させる際、複数の蒸発側熱交換器7a、7bから流出する冷媒の圧力を均等化してエジェクタ4に吸引させるものである。蒸発温度が高く設定される側の冷媒圧力が蒸発温度が低く設定される側の冷媒圧力よりも高くなるので、蒸発温度が高く設定される蒸発側熱交換器7bの出口部にキャピラリチューブ16を備え、蒸発側熱交換器7a、7bの出口部における冷媒圧力が均等になるように減圧する。このキャピラリチューブ16は他の減圧手段、例えば開閉式膨張弁や電子式膨張弁などでもよい。   Here, the capillary tube 16 is configured to equalize the pressure of the refrigerant flowing out from the plurality of evaporation side heat exchangers 7a and 7b and cause the ejector 4 to suck the gas refrigerant when the gas refrigerant flows into the suction portion 42 of the ejector 4. . Since the refrigerant pressure on the side where the evaporating temperature is set higher is higher than the refrigerant pressure on the side where the evaporating temperature is set low, the capillary tube 16 is connected to the outlet of the evaporation side heat exchanger 7b where the evaporating temperature is set high. And reducing the pressure so that the refrigerant pressure at the outlets of the evaporation side heat exchangers 7a and 7b becomes equal. The capillary tube 16 may be other decompression means such as an open / close expansion valve or an electronic expansion valve.

エジェクタ4に吸引される冷媒の配管が複数ある場合、各配管の冷媒の圧力が均等でない場合には、圧力差によっては冷媒の逆流が起こる可能性がある。これに対しこの実施の形態では、エジェクタ4に吸引される複数の冷媒の圧力を均等化するように減圧手段16を有するので、エジェクタ4内で逆流が起こったり1つの吸引部から他の吸引部へ流れたりするのを防止でき、信頼性の高い冷凍サイクル装置が得られる。   When there are a plurality of refrigerant pipes sucked into the ejector 4 and the refrigerant pressure in each pipe is not uniform, the refrigerant may flow backward depending on the pressure difference. On the other hand, in this embodiment, since the pressure reducing means 16 is provided so as to equalize the pressures of the plurality of refrigerants sucked by the ejector 4, a reverse flow occurs in the ejector 4, or one suction part to another suction part. And a highly reliable refrigeration cycle apparatus can be obtained.

また、複数台の蒸発側熱交換器7a、7bを有する構成の室内ユニット101の他の構成例を図17に示す。図17は本実施の形態に係る冷凍サイクル装置の室内ユニット101の回路構成を示す構成図である。図において、2台の蒸発側熱交換器7a、7bに対応してそれぞれエジェクタ4a、4bが接続されている。   Moreover, the other structural example of the indoor unit 101 of the structure which has the several evaporation side heat exchangers 7a and 7b is shown in FIG. FIG. 17 is a configuration diagram showing a circuit configuration of the indoor unit 101 of the refrigeration cycle apparatus according to the present embodiment. In the figure, ejectors 4a and 4b are connected to the two evaporation side heat exchangers 7a and 7b, respectively.

即ち、室内ユニット101内の冷媒回路は、エジェクタ4a、 エジェクタ4b、気液分離器5、絞り装置6a、絞り装置6b、蒸発側熱交換器7a、蒸発側熱交換器7b、キャピラリチューブ16、補助熱交換器13及びそれらを接続するための配管で構成される。そして、室外ユニット100からの接続配管は分岐部18で2つに分岐され、一方はエジェクタ4a、気液分離器5、絞り装置6a、蒸発側熱交換器7aを介してエジェクタ4aの吸引部42に接続される。また、他方はエジェクタ4b、気液分離器5、絞り装置6b、蒸発側熱交換器7b、キャピラリチューブ16を介してエジェクタ4bの吸引部42に接続され、気液分離器5の気相部は補助熱交換器13を介し圧縮機1の吸入側に接続する。   That is, the refrigerant circuit in the indoor unit 101 includes the ejector 4a, the ejector 4b, the gas-liquid separator 5, the expansion device 6a, the expansion device 6b, the evaporation side heat exchanger 7a, the evaporation side heat exchanger 7b, the capillary tube 16, and the auxiliary unit. It is comprised with the heat exchanger 13 and piping for connecting them. Then, the connecting pipe from the outdoor unit 100 is branched into two at the branching section 18, one of which is the suction section 42 of the ejector 4a via the ejector 4a, the gas-liquid separator 5, the expansion device 6a, and the evaporation side heat exchanger 7a. Connected to. The other is connected to the suction part 42 of the ejector 4b via the ejector 4b, the gas-liquid separator 5, the expansion device 6b, the evaporation side heat exchanger 7b, and the capillary tube 16, and the gas-phase part of the gas-liquid separator 5 is The auxiliary heat exchanger 13 is connected to the suction side of the compressor 1.

室外ユニット100内の微細気泡発生装置3で均一で均質な微細気泡冷媒とし、二相延長配管71で室内ユニット101に循環する。そして、室内ユニット101で冷媒を分岐部18で2つに分岐してエジェクタ4a、4bの駆動流体としてノズル部43に流入させる。エジェクタ4a、4bを通過した冷媒は気液分離器5に流入し、液冷媒とガス冷媒に分離される。ガス冷媒は補助熱交換器13によって確実にガス冷媒となって圧縮機1の吸入側に流入する。気液分離器5の液冷媒のうちの一部は、絞り装置6aで減圧され、蒸発側熱交換器7aで空気から吸熱し自身は蒸発・気化してガス冷媒となり、エジェクタ3により吸引される。また、気液分離器5の液冷媒のうちの他部も同様に、絞り装置6bで減圧され、蒸発側熱交換器7bで空気から吸熱し自身は蒸発・気化してガス冷媒となり、エジェクタ3により吸引される。この蒸発側熱交換器7a、7bで室内空気から吸熱することで、室内の冷房を行っており、蒸発側熱交換器7a、7bで2つの異なる温度を設定することができる。   The fine bubble generator 3 in the outdoor unit 100 generates a uniform and homogeneous fine bubble refrigerant and circulates to the indoor unit 101 through a two-phase extension pipe 71. And the refrigerant | coolant is branched into two by the branch part 18 in the indoor unit 101, and is made to flow in into the nozzle part 43 as a drive fluid of ejectors 4a and 4b. The refrigerant that has passed through the ejectors 4a and 4b flows into the gas-liquid separator 5 and is separated into liquid refrigerant and gas refrigerant. The gas refrigerant is reliably converted into gas refrigerant by the auxiliary heat exchanger 13 and flows into the suction side of the compressor 1. A part of the liquid refrigerant of the gas-liquid separator 5 is decompressed by the expansion device 6 a, absorbs heat from the air by the evaporation side heat exchanger 7 a, evaporates and vaporizes itself to become a gas refrigerant, and is sucked by the ejector 3. . Similarly, the other part of the liquid refrigerant of the gas-liquid separator 5 is decompressed by the expansion device 6b, absorbs heat from the air by the evaporation side heat exchanger 7b, and evaporates and vaporizes itself to become a gas refrigerant. Is aspirated. The evaporation side heat exchangers 7a and 7b absorb heat from the room air to cool the room, and the evaporation side heat exchangers 7a and 7b can set two different temperatures.

図16の構成では、1つのエジェクタ4に2台の蒸発側熱交換器7a、7bからガス冷媒が吸引される構成である。この場合にはエジェクタ4が1台であり、装置全体を小型にできるといういう効果はあるが、2つの吸引流体の冷媒状態、例えば圧力値や流量などのバランスによって、うまく吸引されない可能性がある。これに対し、図17の構成では、一方のエジェクタ4aに1台の蒸発側熱交換器7a、他方のエジェクタ4bに1台の蒸発側熱交換器7bを流出したガス冷媒が吸引される構成である。この場合にはエジェクタ4が2台であり、装置全体が若干大きくなるが、2つの吸引流体の冷媒状態、例えば圧力値や流量などのバランスに変化があっても、うまく吸引され、安定した運転が可能であるという効果がある。   In the configuration of FIG. 16, the gas refrigerant is sucked into the single ejector 4 from the two evaporation side heat exchangers 7a and 7b. In this case, there is an effect that the number of ejectors 4 is one and the entire apparatus can be reduced in size, but there is a possibility that the two suction fluids may not be sucked well depending on the refrigerant state, for example, the balance of pressure value and flow rate. . On the other hand, in the configuration of FIG. 17, the gas refrigerant that has flowed out of one evaporation side heat exchanger 7b is sucked into one ejector 4a and the other ejector 4b is sucked into one ejector 4a. is there. In this case, the number of ejectors 4 is two, and the entire apparatus becomes slightly larger. However, even if there is a change in the balance of the refrigerant states of the two suction fluids, for example, the pressure value and the flow rate, the suction is successful and stable operation is achieved. There is an effect that is possible.

図16、図17では2台の蒸発側熱交換器7a、7bを有する構成としたが、2台でなくてもよい。3台以上の複数でもよく、複数の異なる温度に冷却する場合に有効である。また、異なる蒸発温度に設定しなくてもよく、複数の蒸発側熱交換器で同一の蒸発温度で運転してもよい。複数の部屋または場所を冷却する場合に有効である。同一の蒸発温度で運転する場合には冷媒圧力は同様になり、エジェクタ4の吸引部42と蒸発側熱交換器7の間に減圧手段としてキャピラリー16を設ける必要はなくなる。   In FIGS. 16 and 17, the two evaporation side heat exchangers 7 a and 7 b are provided, but the number is not limited to two. A plurality of three or more may be used, which is effective when cooling to a plurality of different temperatures. Further, it is not necessary to set different evaporation temperatures, and a plurality of evaporation side heat exchangers may be operated at the same evaporation temperature. It is effective when cooling multiple rooms or places. When operating at the same evaporation temperature, the refrigerant pressure is the same, and it is not necessary to provide the capillary 16 as a decompression means between the suction part 42 of the ejector 4 and the evaporation side heat exchanger 7.

以上のように、本実施の形態によれば、実施の形態1と同様、冷媒を高圧状態にする圧縮機1と、圧縮機1からの高圧状態の冷媒の熱を放熱させる放熱側熱交換器2と、放熱側熱交換器2からの放熱後の冷媒を微細な気泡を含む冷媒とする気泡発生手段3と、気泡発生手段3によって発生した微細な気泡を含む冷媒を減圧して高速度でノズル部43から流出する駆動流体により吸引部42から吸引流体を吸引し、混合部44で駆動流体と吸引流体とを混合した後、ディフューザ部45で膨張させて低圧状態で流出するエジェクタ4と、エジェクタ4からの低圧状態の冷媒を蒸発させる蒸発側熱交換器7と、を備えたことにより、気泡発生手段3で発生した数μm〜数100μmの微細な気泡を含んだ冷媒をエジェクタ4の駆動流体とすることでエジェクタ4での気液混合を促進してエジェクタ効率を向上でき、さらに効率のよい冷凍サイクル装置を得ることができる効果がある。   As described above, according to the present embodiment, as in the first embodiment, the compressor 1 that brings the refrigerant into a high-pressure state, and the heat-dissipation side heat exchanger that radiates the heat of the high-pressure refrigerant from the compressor 1. 2, the bubble generating means 3 that uses the refrigerant after heat dissipation from the heat radiation side heat exchanger 2 as a refrigerant containing fine bubbles, and the refrigerant containing fine bubbles generated by the bubble generating means 3 is decompressed at a high speed. The ejector 4 that sucks the suction fluid from the suction portion 42 by the driving fluid flowing out from the nozzle portion 43, mixes the driving fluid and the suction fluid in the mixing portion 44, expands in the diffuser portion 45, and flows out in a low pressure state; By providing the evaporation side heat exchanger 7 for evaporating the low-pressure refrigerant from the ejector 4, the refrigerant containing fine bubbles of several μm to several hundred μm generated by the bubble generating means 3 is driven by the ejector 4. By using fluid The gas-liquid mixing in the ejector 4 can be promoted, the ejector efficiency can be improved, and a more efficient refrigeration cycle apparatus can be obtained.

また、少なくとも2台の蒸発側熱交換器7a、7bと、蒸発側熱交換器7a、7bのそれぞれから流出する冷媒を吸引部42で吸引するエジェクタ4と、蒸発側熱交換器7a、7bに流入する冷媒流量をそれぞれ調整する複数の冷媒流量調整手段6a、6bと、蒸発側熱交換器7a、7bとエジェクタ4との間の配管の少なくとも1つの配管に設けられ、複数の蒸発側熱交換器7a、7bからエジェクタ4に吸引される冷媒の圧力を均等化する減圧手段16と、を備えたことにより、効率のよいエジェクタを用い、複数の異なる蒸発温度で運転できる蒸発側熱交換器7a、7bを備え、サイクル効率のよい冷凍サイクル装置が得られる効果がある。   Further, at least two evaporation side heat exchangers 7a and 7b, an ejector 4 for sucking refrigerant flowing out from each of the evaporation side heat exchangers 7a and 7b by the suction part 42, and evaporation side heat exchangers 7a and 7b Provided in at least one of the plurality of refrigerant flow rate adjusting means 6a, 6b for adjusting the flow rate of the refrigerant flowing in and between the evaporation side heat exchangers 7a, 7b and the ejector 4, and a plurality of evaporation side heat exchanges And the decompression means 16 for equalizing the pressure of the refrigerant sucked into the ejector 4 from the chambers 7a and 7b, thereby providing an evaporation side heat exchanger 7a that can be operated at a plurality of different evaporation temperatures using an efficient ejector. 7b, which is advantageous in that a refrigeration cycle apparatus with good cycle efficiency can be obtained.

また、少なくとも2台の蒸発側熱交換器7a、7bから流出する冷媒をそれぞれ吸引する少なくとも2台のエジェクタ4a、4bを備え、気泡発生手段3で発生した微細な気泡を含む冷媒を分岐して複数のエジェクタ4a、4bに流入させる分岐部を設けたことにより、効率のよいエジェクタを用い、安定して運転でき信頼性が高く、複数の異なる蒸発温度で運転できる蒸発側熱交換器7a、7bを備えたサイクル効率のよい冷凍サイクル装置が得られる効果がある。   In addition, it includes at least two ejectors 4a and 4b for sucking the refrigerant flowing out from at least two evaporation side heat exchangers 7a and 7b, respectively, and branches the refrigerant containing fine bubbles generated by the bubble generating means 3. By providing the branch portions that flow into the plurality of ejectors 4a and 4b, the evaporation side heat exchangers 7a and 7b that use an efficient ejector, can be stably operated, have high reliability, and can be operated at a plurality of different evaporation temperatures. There is an effect that a refrigeration cycle apparatus having a high cycle efficiency is provided.

実施の形態1〜実施の形態3の図1、図13、図15、図16、図17において、いずれも補助熱交換器13を圧縮機1の吸入側に設け、圧縮機1に確実にガス冷媒を吸入する構成とし、液バックを防止して冷凍サイクル装置の信頼性を高めている。この補助熱交換器13は、例えば気液分離器5に必ず気相部が存在する状態で運転する場合には、必ずしも設けなくてもよい。気液分離器5の気相部を圧縮機1の吸入側に接続する構成でもよい。   In FIGS. 1, 13, 15, 16, and 17 of the first to third embodiments, the auxiliary heat exchanger 13 is provided on the suction side of the compressor 1 so that the compressor 1 can The refrigerant is sucked in to prevent liquid back and improve the reliability of the refrigeration cycle apparatus. For example, the auxiliary heat exchanger 13 is not necessarily provided when the gas-liquid separator 5 is operated in a state where the gas phase portion is always present. A configuration in which the gas phase portion of the gas-liquid separator 5 is connected to the suction side of the compressor 1 may be employed.

実施の形態4.
本発明の実施の形態4では、微細気泡発生装置3の他の実施の形態について説明する。図18は、本発明の実施の形態4に係る微細気泡発生装置3の構成を示す説明図であり、図18(a)は液冷媒の流路に垂直な断面における液冷媒流入部3aの位置を示す説明図、図18(b)は微細気泡発生装置3の断面構成を示す説明図である。図中、実線矢印は液冷媒の流れ、白抜き矢印は微細気泡を含む冷媒の流れ方向を示している。
微細気泡発生装置3の減圧部53の内壁面の形状は円錐形状の一部をなす。この円錐形状の軸に対して、偏った位置に液冷媒流入部3aを設け、円錐形状の軸から外れた位置に液冷媒を流入させる。ここでは、液冷媒流入部3aを偏心した位置に設けたことで、微細気泡発生装置3に流入する液冷媒を旋回流とする旋回手段を構成している。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, another embodiment of the fine bubble generating device 3 will be described. FIG. 18 is an explanatory diagram showing the configuration of the microbubble generator 3 according to Embodiment 4 of the present invention, and FIG. 18 (a) shows the position of the liquid refrigerant inflow portion 3a in the cross section perpendicular to the liquid refrigerant flow path. FIG. 18B is an explanatory view showing a cross-sectional configuration of the fine bubble generating device 3. In the figure, solid arrows indicate the flow of the liquid refrigerant, and white arrows indicate the flow direction of the refrigerant containing fine bubbles.
The shape of the inner wall surface of the decompression unit 53 of the microbubble generator 3 forms a part of a conical shape. The liquid refrigerant inflow portion 3a is provided at a position deviated from the conical shaft, and the liquid refrigerant flows into a position off the conical shaft. Here, the liquid refrigerant inflow portion 3a is provided at an eccentric position, thereby constituting a swirling means for swirling the liquid refrigerant flowing into the fine bubble generating device 3.

液冷媒流入部3aから流入する液冷媒は、減圧部53に流入するのであるが、円錐形状の内壁面に沿って減圧されながら旋回流となり、速度が増加して流れる。この速度の速い液冷媒の旋回流にガス冷媒流入部52からガス冷媒を流入させることによって、気液の速度差によるせん断力で、ガス冷媒は引きちぎられる。ガス冷媒流入部52の入口の径を例えば数mmとし、これに対して高速の旋回流となっている液冷媒でせん断することで、直径が数100μ以下の大きさの均一な微細気泡を発生させることができる。ガス冷媒流入部52は、喉部55付近の例えば管側壁に設けており、液冷媒流路とは交差する方向からガス冷媒が流入する。   The liquid refrigerant flowing in from the liquid refrigerant inflow part 3a flows into the decompression part 53, but turns into a swirl flow while being decompressed along the conical inner wall surface, and flows at an increased speed. By causing the gas refrigerant to flow into the swirling flow of the liquid refrigerant at a high speed from the gas refrigerant inflow portion 52, the gas refrigerant is torn off by the shearing force due to the gas-liquid speed difference. The diameter of the inlet of the gas refrigerant inflow portion 52 is set to several mm, for example, and sheared with a liquid refrigerant which is a high-speed swirling flow, thereby generating uniform fine bubbles having a diameter of several hundreds of microns or less. Can be made. The gas refrigerant inflow portion 52 is provided, for example, on the side wall of the tube near the throat 55, and the gas refrigerant flows in from the direction intersecting the liquid refrigerant flow path.

液冷媒を旋回流とすることで、減圧部53の内壁面でスムーズに加速され、ガス冷媒流入部52から流入するガス冷媒に対してせん断力が効果的に作用する。また、喉部55を通過して末広部54を流れる際には、急激な圧力上昇が加えられ流路壁面と接触したりすることで気泡が崩壊して更に微細化させる。図18に示した構成では、喉部55及び末広部54でもある程度旋回流となり、流路壁面と衝突しやすくなって微細化が促進されると共に、発生した微細な気泡が撹乱されるので、空間内に均質に微細な気泡を存在させることができる。ほぼ均一な大きさの微細な気泡を、空間内に平均して均質に発生させ、これをエジェクタ4の駆動流体とすることで、エジェクタ4で駆動流体と吸引流体の混合効率を高め、エジェクタ効率及び冷凍サイクル装置のサイクル効率を向上できる。   By making the liquid refrigerant a swirl flow, it is smoothly accelerated by the inner wall surface of the decompression section 53, and a shearing force effectively acts on the gas refrigerant flowing from the gas refrigerant inflow section 52. Further, when flowing through the divergent portion 54 through the throat portion 55, a sudden pressure increase is applied and the air bubbles collide with the flow passage wall surface, thereby further miniaturizing the bubbles. In the configuration shown in FIG. 18, the throat 55 and the divergent part 54 are also swirled to some extent, easily collide with the wall surface of the flow path, promote miniaturization, and disturb the generated fine bubbles. There can be uniformly fine bubbles in the inside. Fine bubbles of almost uniform size are generated uniformly on average in the space, and this is used as the drive fluid of the ejector 4, thereby improving the mixing efficiency of the drive fluid and the suction fluid in the ejector 4, and the ejector efficiency. In addition, the cycle efficiency of the refrigeration cycle apparatus can be improved.

図19は本実施の形態に係る微細気泡発生装置3の他の構成例を示す説明図であり、減圧部53の一部を切り欠いて示す。この構成は、ガス冷媒流入部52を管側壁ではなく、減圧部53の内壁面を構成する円錐形状の中心軸方向に流入するように設けている。液冷媒流入部3aは中心軸に対して偏った位置で、複数、例えば2箇所に設けている。ここでは、液冷媒流入部3aを偏心した位置に設けると共に、ガス冷媒流入部52の配管外壁と減圧部53の内壁との間で流路が旋回流に導くガイドとなって、微細気泡発生装置3に流入する液冷媒を旋回流とする旋回手段を構成している。   FIG. 19 is an explanatory view showing another configuration example of the fine bubble generating device 3 according to the present embodiment, in which a part of the decompression unit 53 is cut away. In this configuration, the gas refrigerant inflow portion 52 is provided so as to flow in the direction of the central axis of the conical shape constituting the inner wall surface of the decompression portion 53 instead of the pipe side wall. The liquid refrigerant inflow portions 3a are provided at a plurality of, for example, two locations at positions deviated from the central axis. Here, the liquid refrigerant inflow portion 3a is provided at an eccentric position, and the flow path between the pipe outer wall of the gas refrigerant inflow portion 52 and the inner wall of the decompression portion 53 serves as a guide that guides the swirling flow. The swirling means is configured to swirl the liquid refrigerant flowing into the swirling flow.

図18と同様、液冷媒を旋回流とすることで、減圧部53の内壁面でスムーズに加速され、ガス冷媒流入部52から流入するガス冷媒に対してせん断力が効果的に作用する。このため、安定して微細な気泡を発生させ、旋回流によって微細気泡を撹乱する。このほぼ均一な大きさで、空間内に平均して均質に存在する微細な気泡を安定して発生させ、エジェクタ4の駆動流体とすることで、エジェクタ4で駆動流体と吸引流体との混合効率を高め、エジェクタ効率及び冷凍サイクル装置のサイクル効率を向上できる。   As in FIG. 18, by making the liquid refrigerant swirl, it is smoothly accelerated on the inner wall surface of the decompression unit 53, and a shearing force effectively acts on the gas refrigerant flowing from the gas refrigerant inflow part 52. For this reason, fine bubbles are stably generated, and the fine bubbles are disturbed by the swirling flow. With this almost uniform size, fine bubbles that are present homogeneously in the space on average are stably generated and used as the driving fluid of the ejector 4, so that the mixing efficiency of the driving fluid and the suction fluid is ejected by the ejector 4. And the cycle efficiency of the ejector efficiency and the refrigeration cycle apparatus can be improved.

図19の構成では、液冷媒流入部3aから流入する液冷媒の旋回流を引き起こす構成であり、軸の中央部は液冷媒がそれほど流れない部分となる。この部分を利用してガス冷媒流入部52を設け、さらにガス冷媒流入部52を構成する配管外壁によって、液冷媒流入部3aから流入する液冷媒をスムーズに旋回流とすることができる。
なおこのような構成では、微細気泡発生装置3内にニードル部51を設けることができない。この場合にはエジェクタ4にニードル部などの流動抵抗を調整することのできる抵抗調整手段を設けた構成とすれば、冷媒の循環量や圧縮機1の吸引側冷媒の過熱度を制御することができる。
The configuration of FIG. 19 is a configuration that causes a swirling flow of the liquid refrigerant flowing from the liquid refrigerant inflow portion 3a, and the central portion of the shaft is a portion where the liquid refrigerant does not flow so much. By using this portion, the gas refrigerant inflow portion 52 is provided, and the liquid refrigerant flowing from the liquid refrigerant inflow portion 3a can be smoothly swirled by the pipe outer wall constituting the gas refrigerant inflow portion 52.
In addition, in such a structure, the needle part 51 cannot be provided in the fine bubble generator 3. In this case, if the ejector 4 is provided with a resistance adjusting means capable of adjusting the flow resistance of the needle portion or the like, the circulation amount of the refrigerant and the superheat degree of the suction side refrigerant of the compressor 1 can be controlled. it can.

図18、図19では液冷媒を旋回させ、ガス冷媒は旋回させずに流入させる構成であるが、これに限らずガス冷媒と液冷媒の両方を旋回させる構成でもよい。ガス冷媒と液冷媒の両方を旋回させる場合は、ガス冷媒と液冷媒との旋回方向が逆になるような対向流とすれば、ガス冷媒がせん断されやすく、確実に微細な気泡を生成できる。   18 and 19, the liquid refrigerant is swirled and the gas refrigerant is allowed to flow without swirling. However, the present invention is not limited to this, and both the gas refrigerant and the liquid refrigerant may be swirled. When both the gas refrigerant and the liquid refrigerant are swirled, if the counterflow is such that the swirling directions of the gas refrigerant and the liquid refrigerant are reversed, the gas refrigerant is easily sheared, and fine bubbles can be generated reliably.

以上のように、本実施の形態における気泡発生手段3は、液冷媒流路とガス冷媒流路の冷媒流のうちの少なくとも一方の冷媒流を旋回流とする旋回手段を有するので、微細な気泡を発生しやすく、且つ、より微細な気泡を発生させることができる。ここで、旋回手段とは、例えば、液冷媒流入部3aを冷媒流路に対して偏心した位置としている。上記では気泡発生手段3をベンチュリ管で構成しているで、液冷媒の流路内壁面は円錐形であるが、これを円筒形として液冷媒流入部3aを円筒形状の中央から偏心した位置に設けても旋回流を形成できる。また、液冷媒が旋回して流れるように例えばガイドなどで流路を形成してもよい。   As described above, the bubble generating means 3 in the present embodiment has the swirling means that turns at least one of the refrigerant flow in the liquid refrigerant flow path and the gas refrigerant flow path into a swirl flow. And more fine bubbles can be generated. Here, the swiveling means is, for example, a position where the liquid refrigerant inflow portion 3a is eccentric with respect to the refrigerant flow path. In the above, since the bubble generating means 3 is constituted by a Venturi tube, the inner wall surface of the liquid refrigerant channel has a conical shape. However, the liquid refrigerant inflow portion 3a is eccentric from the center of the cylindrical shape. Even if provided, a swirl flow can be formed. Further, the flow path may be formed by, for example, a guide so that the liquid refrigerant swirls and flows.

実施の形態1〜実施の形態4において、微細気泡発生装置3に流動抵抗を調整する抵抗調整手段としてニードル部51を設け、エジェクタ4を固定絞りとする構成を示したが、これに限らず微細気泡発生装置3またはエジェクタ4の少なくとも一方に抵抗調整手段を設けた構成や微細気泡発生装置3とエジェクタ4がともに固定絞りであり更に膨張弁などの抵抗調整手段を冷媒回路に追加した構成でもよい。
ただし、実施の形態1で示したように、微細気泡発生装置3に抵抗調整手段としてニードル部を設ければ、図11のSTEP8、9のように微細気泡発生装置3の入口側の過冷却度を予め設定した目標過熱度に制御でき、微細な気泡を良好に発生させることができる。
また、前述のように、エジェクタ4を固定絞りとすることで、エジェクタ4内での膨張比を一定とすることができ、安定して良好なエジェクタ効率が得られるという効果がある。
In the first to fourth embodiments, the configuration in which the needle portion 51 is provided as the resistance adjusting means for adjusting the flow resistance in the fine bubble generating device 3 and the ejector 4 is used as the fixed throttle is shown. A configuration in which resistance adjusting means is provided in at least one of the bubble generating device 3 or the ejector 4 or a configuration in which both the fine bubble generating device 3 and the ejector 4 are fixed throttles, and resistance adjusting means such as an expansion valve is added to the refrigerant circuit may be used. .
However, as shown in the first embodiment, if the fine bubble generating device 3 is provided with a needle portion as resistance adjusting means, the degree of supercooling on the inlet side of the fine bubble generating device 3 as in STEPs 8 and 9 of FIG. Can be controlled to a preset target degree of superheat, and fine bubbles can be generated satisfactorily.
Further, as described above, by using the ejector 4 as a fixed throttle, the expansion ratio in the ejector 4 can be made constant, and there is an effect that a good ejector efficiency can be obtained stably.

実施の形態1〜実施の形態4において、気泡発生手段として液冷媒とガス冷媒のせん断力を利用して気泡を発生させる構成のものや、ベンチュリ管の構成で急縮小−急拡大の形状を利用して気泡の崩壊現象により気泡を微細化する構成のものについて、詳しく記述した。微細気泡発生装置3の他の構成例として、せん断力や気泡崩壊現象を利用する以外の構成でも可能である。
例えば、放熱側熱交換器2から流出する高圧二相状態の冷媒を、多孔質体、例えば多孔を有する金属焼結体に通過させ、多孔質体を構成する孔を通過する際に数100μm程度の径の気泡を発生させる構成でもよい。
また、放熱側熱交換器2から流出する高圧二相状態の冷媒を、所定の容器に一度貯留し、この貯留部に超音波振動を付与して、振動によって直径が数100μm程度のいわゆるマイクロバブルを発生させてもよい。このときの振動の周波数は、数10khz程度よりも大きい周波数で、充分に微細な気泡を発生することができる。
また、せん断力や、気泡崩壊現象や、多孔質体や、振動などで気泡を発生させることができるが、これらのいずれか複数を組み合わせた構成としてもよい。例えば多孔質体を備えた構成に振動を加えたりしてもよい。
In the first to fourth embodiments, the bubble generating means is configured to generate bubbles using the shearing force of the liquid refrigerant and the gas refrigerant, or the shape of the rapid reduction / expansion is used in the configuration of the Venturi tube. Then, the structure in which the bubbles are refined by the bubble collapse phenomenon has been described in detail. As another configuration example of the fine bubble generating device 3, a configuration other than using a shearing force or a bubble collapse phenomenon is possible.
For example, when a refrigerant in a high-pressure two-phase state flowing out from the heat-dissipation side heat exchanger 2 is passed through a porous body, for example, a sintered metal body having porosity, about several hundred μm when passing through the holes constituting the porous body. The structure which generates the bubble of the diameter of may be sufficient.
In addition, a high-pressure two-phase refrigerant flowing out of the heat radiation side heat exchanger 2 is once stored in a predetermined container, and ultrasonic vibration is applied to the storage part, so-called microbubbles having a diameter of about several hundreds μm due to the vibration. May be generated. The vibration frequency at this time is a frequency higher than about several tens of khz, and sufficiently fine bubbles can be generated.
Moreover, although a bubble can be generated by shearing force, bubble collapse phenomenon, a porous body, vibration, etc., it is good also as a structure which combined these two or more. For example, vibration may be applied to a configuration including a porous body.

実施の形態5.
図20は本発明の実施の形態5に係るエジェクタ及び気泡発生手段の断面を示す説明図であり、図21はこのエジェクタを冷凍サイクル装置に組み込んだときの回路構成の一例を示す構成図である。図中、図1または図13と同一符号は同一、または相当部分を示し、ここでは説明を省略する。この実施の形態では、微細気泡発生装置とエジェクタとを一体化し、エジェクタ17が気泡発生手段を備えていることを特徴としている。このエジェクタ17も図3と同様、吸引部62、ノズル部63、混合部64、ディフューザ部(図示せず)で構成されている。即ち、エジェクタ17では、微細な気泡を含む冷媒を減圧し高速度でノズル部63から流出する駆動流体によって吸引部62から吸引流体を吸引し、混合部64で駆動流体と吸引流体とを混合した後、ディフューザ部で膨張させて若干昇圧し低圧状態で流出する。吸引部62は蒸発側熱交換器7の出口に接続され、ノズル部63から流出する駆動流体によって蒸発側熱交換器7から流出される乾き度の高い低圧の冷媒を吸引する。このエジェクタ17は、ノズル部63で微細気泡を発生させる構成である。
Embodiment 5 FIG.
FIG. 20 is an explanatory view showing a cross section of the ejector and the bubble generating means according to Embodiment 5 of the present invention, and FIG. 21 is a block diagram showing an example of a circuit configuration when this ejector is incorporated in a refrigeration cycle apparatus. . In the figure, the same reference numerals as those in FIG. 1 or FIG. 13 denote the same or corresponding parts, and the description thereof is omitted here. This embodiment is characterized in that the fine bubble generating device and the ejector are integrated, and the ejector 17 includes a bubble generating means. Similarly to FIG. 3, the ejector 17 includes a suction part 62, a nozzle part 63, a mixing part 64, and a diffuser part (not shown). That is, in the ejector 17, the refrigerant containing fine bubbles is decompressed, the suction fluid is sucked from the suction portion 62 by the driving fluid flowing out from the nozzle portion 63 at a high speed, and the driving fluid and the suction fluid are mixed by the mixing portion 64. After that, it is expanded in the diffuser section, slightly boosted and discharged in a low pressure state. The suction part 62 is connected to the outlet of the evaporation side heat exchanger 7 and sucks the low-pressure refrigerant having high dryness flowing out from the evaporation side heat exchanger 7 by the driving fluid flowing out from the nozzle part 63. The ejector 17 is configured to generate fine bubbles at the nozzle portion 63.

ノズル入口部63dは気液分離器8の液相部に接続され高圧の液冷媒が流入する。また、ノズル部63は減圧部63a、末広部63b、喉部63cを有し、減圧部63aに気液分離器8の気相部に接続されるガス冷媒流入部52を備え、高圧のガス冷媒が流入する。ノズル入口部63dから流入する液冷媒は減圧部63aで流速が増加し、ガス冷媒流入部52から流入するガス冷媒は高速の液冷媒とのせん断力で径が数100μm程度の微細な気泡になる。そして喉部63c近傍では減圧によって気泡が膨張し、末広部63b内を移動するにつれて急激に気泡が崩壊し、一挙に気泡の微細化が起こってノズル部63から微細な液滴となって流出する。これがエジェクタ17の駆動流体となるため、混合部64で吸引流体との接触面積が多くなり、均質に混合される。混合部64で駆動流体と吸引流体とが効率よく均質に混合されることで、吸引流体の吸引量が増加すると共に、エジェクタ17の昇圧量が増加する。また、エジェクタ4の減圧部63aでの圧力エネルギーから速度エネルギーへの変化がさらに等温変化に近づき、熱エネルギーを回収できる。このため、冷凍サイクル装置のサイクル効率を向上できる。   The nozzle inlet portion 63d is connected to the liquid phase portion of the gas-liquid separator 8, and a high-pressure liquid refrigerant flows in. The nozzle part 63 has a decompression part 63a, a divergent part 63b, and a throat part 63c. The decompression part 63a includes a gas refrigerant inflow part 52 connected to the gas phase part of the gas-liquid separator 8, and a high-pressure gas refrigerant. Flows in. The liquid refrigerant flowing from the nozzle inlet portion 63d has a flow velocity increased at the decompression portion 63a, and the gas refrigerant flowing from the gas refrigerant inflow portion 52 becomes a fine bubble having a diameter of about several hundreds μm due to the shearing force with the high-speed liquid refrigerant. . In the vicinity of the throat 63c, the bubble expands due to the decompression, and the bubble rapidly collapses as it moves in the divergent portion 63b, and the bubble becomes finer at once and flows out from the nozzle portion 63 as a fine droplet. . Since this becomes the driving fluid of the ejector 17, the contact area with the suction fluid is increased in the mixing unit 64, and the mixture is homogeneously mixed. As the driving fluid and the suction fluid are efficiently and uniformly mixed in the mixing unit 64, the suction amount of the suction fluid increases and the pressure increase amount of the ejector 17 increases. Further, the change from the pressure energy to the velocity energy at the decompression unit 63a of the ejector 4 further approaches the isothermal change, and the heat energy can be recovered. For this reason, the cycle efficiency of the refrigeration cycle apparatus can be improved.

本実施の形態の構成では、実施の形態1、2における微細気泡発生装置3の減圧部53と喉部55を、エジェクタ4における減圧部43aと喉部43cに一体化した構成となっている。例えば、この構成では図2と図3で示した微細気泡発生装置3とエジェクタ4とを一体化することで、小型にでき、冷凍サイクル装置全体を小型化できる。   In the configuration of the present embodiment, the decompression unit 53 and the throat portion 55 of the fine bubble generating device 3 in the first and second embodiments are integrated with the decompression unit 43a and the throat portion 43c of the ejector 4. For example, in this configuration, by integrating the fine bubble generating device 3 and the ejector 4 shown in FIGS. 2 and 3, the size can be reduced, and the entire refrigeration cycle device can be reduced in size.

このエジェクタ17を搭載した冷凍サイクル装置の構成は、図21に限るものではなく、例えばエジェクタ17及び気液分離器8を室外ユニット100内に配置してもよい。この場合には、室内ユニット100と室外ユニット101間の接続配管は増えるが、室内ユニット101を小型化できる。また、図1に示すように、圧縮機1の出口側のガス冷媒の一部をガス冷媒流入部52に流入させ、放熱側熱交換器2の出口の冷媒をノズル入口部63dに流入するような構成にしてもよい。   The configuration of the refrigeration cycle apparatus equipped with the ejector 17 is not limited to that shown in FIG. 21. For example, the ejector 17 and the gas-liquid separator 8 may be disposed in the outdoor unit 100. In this case, the number of connecting pipes between the indoor unit 100 and the outdoor unit 101 increases, but the indoor unit 101 can be downsized. Further, as shown in FIG. 1, a part of the gas refrigerant on the outlet side of the compressor 1 is allowed to flow into the gas refrigerant inflow portion 52, and the refrigerant at the outlet of the heat radiation side heat exchanger 2 is allowed to flow into the nozzle inlet portion 63d. Any configuration may be used.

図20ではニードル部を備えていないものとしたが、ノズル部63に断面積を増減できる手段として例えば図2に示したニードル部を抵抗調整手段として備え、この抵抗調整手段によって液冷媒の流動抵抗を調整するように構成してもよい。なお、図21の冷凍サイクル装置の構成では、エジェクタ17としてニードル部を有するものとし、制御手段31でニードル部の位置を前後に移動することで、流路断面積を制御するものを示している。   In FIG. 20, the needle portion is not provided, but the nozzle portion 63 is provided with, for example, the needle portion shown in FIG. 2 as resistance adjusting means that can increase or decrease the cross-sectional area. You may comprise so that it may adjust. In the configuration of the refrigeration cycle apparatus in FIG. 21, the ejector 17 has a needle portion, and the control means 31 moves the position of the needle portion back and forth to control the flow path cross-sectional area. .

また、実施の形態4に示したように、ノズル入口部63dから流入する液冷媒を旋回流としたり、ガス冷媒流入部52から流入するガス冷媒を旋回流として、液冷媒のガス冷媒に対するせん断力が作用しやすくしてもよい。   Further, as shown in the fourth embodiment, the liquid refrigerant flowing from the nozzle inlet portion 63d is swirled, or the gas refrigerant flowing from the gas refrigerant inflow portion 52 is swirled, and the shearing force of the liquid refrigerant on the gas refrigerant. May be easy to act.

また、微細気泡発生装置として、冷媒に超音波などで振動を与える構成のものや、多孔質の焼結金属を通過させる構成のものを、エジェクタと一体に構成してもよい。エジェクタ17のノズル部63の喉部63cよりも上流側で微細な気泡が発生していればよい。具体的には、例えば微細気泡発生装置として超音波振動を与える構成とした場合、エジェクタの構成部分であるニードル部やノズル部に超音波振動を与えるように構成すると、一体にでき小型化できる。また、多孔質体によって微細気泡発生させるものでは、エジェクタのノズル入口部63dに例えば多孔を有する焼結金属を設け、ノズル入口部63dから流入する高圧の二相冷媒が焼結金属を通過してノズルの減圧部63aを流れるように構成すると、一体にでき小型化できる。
また、せん断力や、気泡崩壊現象や、多孔質体や、振動などで気泡を発生させることができるが、これらのいずれか複数を組み合わせた構成としてもよい。例えば多孔質体を備えた構成に振動を加えたりしてもよい。
In addition, as the fine bubble generating device, a configuration in which vibration is applied to the refrigerant with ultrasonic waves or a configuration in which a porous sintered metal is allowed to pass may be configured integrally with the ejector. It is only necessary that fine bubbles are generated on the upstream side of the throat portion 63c of the nozzle portion 63 of the ejector 17. More specifically, for example, when the ultrasonic bubble vibration is configured as the fine bubble generating device, if the ultrasonic vibration is applied to the needle portion or the nozzle portion, which is a component of the ejector, it can be integrated and miniaturized. In the case of generating fine bubbles by a porous body, for example, a sintered metal having porosity is provided at the nozzle inlet portion 63d of the ejector, and the high-pressure two-phase refrigerant flowing from the nozzle inlet portion 63d passes through the sintered metal. If it is configured to flow through the pressure reducing portion 63a of the nozzle, it can be integrated and miniaturized.
Moreover, although a bubble can be generated by shearing force, bubble collapse phenomenon, a porous body, vibration, etc., it is good also as a structure which combined these two or more. For example, vibration may be applied to a configuration including a porous body.

以上のように、本実施の形態では、エジェクタ17のノズル部63内に気泡発生手段を設け、ノズル部63で微細な気泡を含む冷媒を発生させ、エジェクタ17の混合部64に微細な液滴を噴出させるので、混合部64での混合を促進でき、効率のよいエジェクタが得られ、さらに冷凍サイクル装置全体を小型化できる。
特に、気泡発生手段の液冷媒流入部63dとガス冷媒流入部52をエジェクタ17のノズル部63に設け、気泡発生手段とエジェクタとを一体としてノズル部63でガス冷媒の気泡を発生させて混合部64に噴出させるという簡単な構造で実現できる。
As described above, in the present embodiment, bubble generating means is provided in the nozzle portion 63 of the ejector 17, the refrigerant containing fine bubbles is generated in the nozzle portion 63, and fine droplets are generated in the mixing portion 64 of the ejector 17. Therefore, mixing in the mixing unit 64 can be promoted, an efficient ejector can be obtained, and the entire refrigeration cycle apparatus can be downsized.
In particular, the liquid refrigerant inflow portion 63d and the gas refrigerant inflow portion 52 of the bubble generating means are provided in the nozzle portion 63 of the ejector 17, and the bubble generating means and the ejector are integrated to generate gas refrigerant bubbles in the nozzle portion 63, thereby mixing the mixing portion. It can be realized with a simple structure of ejecting to 64.

実施の形態1〜実施の形態5において、放熱側熱交換器2や蒸発側熱交換器7は上記に限るのもではなく、二重管やプレート熱交換器などの水やブラインを加熱源あるいは冷却源とする液−液熱交換器でもよい。   In the first to fifth embodiments, the heat radiation side heat exchanger 2 and the evaporation side heat exchanger 7 are not limited to the above, but water or brine such as a double pipe or a plate heat exchanger is used as a heating source or A liquid-liquid heat exchanger as a cooling source may be used.

また、実施の形態1〜実施の形態5において、冷凍サイクル装置の一例として回路構成を図1、図13などとして説明したが、これに限るものではない。冷凍サイクル装置の減圧手段としてエジェクタ4を用いたものであれば、上記実施の形態と同様の効果を奏する。エジェクタ4の上流側やノズル部に気泡発生手段3を設け気泡発生手段3で発生させた微細な気泡をエジェクタ4の駆動流体として流入させるように構成すればどのような冷凍サイクル装置にでも適用でき、冷凍サイクル装置のシステム効率を向上できる。   In the first to fifth embodiments, the circuit configuration has been described as an example of the refrigeration cycle apparatus as FIGS. 1 and 13, but is not limited thereto. If the ejector 4 is used as the decompression means of the refrigeration cycle apparatus, the same effects as those of the above-described embodiment can be obtained. The present invention can be applied to any refrigeration cycle apparatus as long as the bubble generating means 3 is provided on the upstream side of the ejector 4 or in the nozzle portion so that the fine bubbles generated by the bubble generating means 3 are allowed to flow as the driving fluid of the ejector 4. The system efficiency of the refrigeration cycle apparatus can be improved.

また、実施の形態1〜実施の形態5において、冷媒はR404Aに限るものではない。高圧が高い冷凍サイクル装置や低圧が低い冷凍サイクル装置においては回収できるエンタルピーが大きいため、実施の形態1〜実施の形態5で記載したエジェクタを用いる効果が大きい。よって冷媒は上記に限るものではなく、例えばチラーや冷凍機、ユニットクーラ等の低温に用いられているフロン系(HFC系及びHCFC系)のR410A、R407C、R134a、R32や、低圧が低いR600aやR290などのHC冷媒にも適用可能である。また、二酸化炭素(CO2)冷媒でもよいが、この場合には高圧側で臨界点を超えない運転をする場合に本発明の各実施の形態の効果が得られることになる。   In Embodiments 1 to 5, the refrigerant is not limited to R404A. In a refrigeration cycle apparatus with a high pressure and a refrigeration cycle apparatus with a low low pressure, the enthalpy that can be recovered is large, so the effect of using the ejector described in the first to fifth embodiments is great. Therefore, the refrigerant is not limited to the above. For example, R410A, R407C, R134a, R32 of CFCs (HFC system and HCFC system) that are used at low temperatures such as chillers, refrigerators, and unit coolers, It can also be applied to HC refrigerants such as R290. Carbon dioxide (CO2) refrigerant may be used, but in this case, the effect of each embodiment of the present invention can be obtained when the operation is performed not to exceed the critical point on the high pressure side.

実施の形態1に係る冷凍サイクル装置の回路構成を示す構成図である。1 is a configuration diagram illustrating a circuit configuration of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る微細気泡発生装置の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the fine bubble generator which concerns on Embodiment 1. FIG. 実施の形態1に係るエジェクタを示す説明図であり、図3(a)はエジェクタの軸に沿った断面構成を示し、図3(b)は図3(a)の位置X1〜X6の各位置に対応する圧力Pを示すグラフである。It is explanatory drawing which shows the ejector which concerns on Embodiment 1, FIG. 3 (a) shows the cross-sectional structure along the axis | shaft of an ejector, FIG.3 (b) shows each position of the position X1-X6 of Fig.3 (a). It is a graph which shows the pressure P corresponding to. 実施の形態1による冷凍サイクル装置に係る圧力−エンタルピー線図であり、横軸にエンタルピー、縦軸に圧力を示す。It is a pressure-enthalpy diagram which concerns on the refrigerating-cycle apparatus by Embodiment 1, an enthalpy is shown on a horizontal axis and a pressure is shown on a vertical axis | shaft. 実施の形態1に係る微細気泡発生装置とエジェクタの動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the microbubble generator which concerns on Embodiment 1, and an ejector. 実施の形態1に係り、気泡の大きさを説明する説明図である。FIG. 4 is an explanatory diagram for explaining the size of bubbles in the first embodiment. 実施の形態1に係り、ノズル部から噴出される液滴径とエジェクタ混合効率の関係を示すグラフである。6 is a graph illustrating a relationship between a droplet diameter ejected from a nozzle portion and ejector mixing efficiency according to the first embodiment. 実施の形態1に係る比較例として、乾き度に対するサイクル効率を示すグラフである。It is a graph which shows the cycle efficiency with respect to a dryness as a comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係り、乾き度に対するエジェクタ単体効率を示すグラフである。4 is a graph illustrating the efficiency of a single ejector with respect to the dryness according to the first embodiment. 実施の形態1に係り、乾き度に対するエジェクタサイクル効率を示すグラフである。4 is a graph showing ejector cycle efficiency with respect to dryness according to the first embodiment. 実施の形態1に係る制御手段による制御過程の一例を示すフローチャートである。3 is a flowchart illustrating an example of a control process by a control unit according to the first embodiment. 実施の形態1に係り、微細気泡発生装置のガス冷媒流入部の変形例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a modification of the gas refrigerant inflow portion of the fine bubble generating device according to the first embodiment. 実施の形態2に係る冷凍サイクル装置の回路構成を示す構成図である。6 is a configuration diagram illustrating a circuit configuration of a refrigeration cycle apparatus according to Embodiment 2. FIG. 実施の形態2による冷凍サイクル装置に係る圧力−エンタルピー線図であり、横軸にエンタルピー、縦軸に圧力を示す。It is a pressure-enthalpy diagram which concerns on the refrigerating-cycle apparatus by Embodiment 2, a horizontal axis shows enthalpy and a vertical axis | shaft shows a pressure. 実施の形態2に係る他の冷凍サイクル装置の回路構成を示す構成図である。It is a block diagram which shows the circuit structure of the other refrigeration cycle apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る冷凍サイクル装置の室内ユニットの回路構成を示す構成図である。6 is a configuration diagram illustrating a circuit configuration of an indoor unit of a refrigeration cycle apparatus according to Embodiment 3. FIG. 実施の形態3に係る他の冷凍サイクル装置の室内ユニット101の回路構成を示す構成図である。It is a block diagram which shows the circuit structure of the indoor unit 101 of the other refrigeration cycle apparatus which concerns on Embodiment 3. FIG. 実施の形態4に係る微細気泡発生装置の構成を示す説明図であり、図18(a)は液冷媒流入部の位置を示す説明図、図18(b)は微細気泡発生装置の断面構成を示す説明図である。It is explanatory drawing which shows the structure of the fine bubble generator which concerns on Embodiment 4, FIG. 18 (a) is explanatory drawing which shows the position of a liquid refrigerant inflow part, FIG.18 (b) shows the cross-sectional structure of a fine bubble generator. It is explanatory drawing shown. 実施の形態4に係る微細気泡発生装置の他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example of the fine bubble generator which concerns on Embodiment 4. FIG. 実施の形態5に係るエジェクタの断面を示す説明図である。It is explanatory drawing which shows the cross section of the ejector which concerns on Embodiment 5. FIG. 実施の形態5に係るエジェクタを冷凍サイクル装置に組み込んだときの回路構成の一例を示す構成図である。It is a block diagram which shows an example of a circuit structure when the ejector which concerns on Embodiment 5 is integrated in the refrigerating-cycle apparatus.

符号の説明Explanation of symbols

1 圧縮機
2 放熱側熱交換器
3 気泡発生手段
3a 液冷媒流入部
4、4a、4b エジェクタ
5 気液分離器
6、6a、6b 冷媒流量調整手段
7、7a、7b 蒸発側熱交換器
8 気液分離器
9 バイパス配管
13 補助熱交換器
15 ヒータ
17 エジェクタ
21、22、23 温度検出手段
24 圧力検出手段
31 制御手段
42 吸引部
43 ノズル部
43a 減圧部
43b 末広部
43c 喉部
44 混合部
45 ディフューザ部
51 抵抗調整手段
52 ガス冷媒流入部
53 減圧部
54 末広部
55 喉部
62 吸引部
63 ノズル部
63a 減圧部
63b 末広部
63c 喉部
63d ノズル入口部
64 混合部
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat radiation side heat exchanger 3 Bubble generating means 3a Liquid refrigerant inflow portion 4, 4a, 4b Ejector 5 Gas-liquid separator 6, 6a, 6b Refrigerant flow rate adjusting means 7, 7a, 7b Evaporation side heat exchanger 8 Air Liquid separator 9 Bypass pipe 13 Auxiliary heat exchanger 15 Heater 17 Ejector 21, 22, 23 Temperature detecting means 24 Pressure detecting means 31 Control means 42 Suction part 43 Nozzle part 43a Depressurizing part 43b Wide part 43c Throat part 44 Mixing part 45 Diffuser Unit 51 resistance adjusting means 52 gas refrigerant inflow part 53 pressure reducing part 54 divergent part 55 throat part 62 suction part 63 nozzle part 63a pressure reducing part 63b divergent part 63c throat part 63d nozzle inlet part 64 mixing part

Claims (14)

冷媒を高圧状態にする圧縮機と、前記圧縮機からの前記高圧状態の冷媒の熱を放熱させる放熱側熱交換器と、前記放熱側熱交換器からの放熱後の冷媒を微細な気泡を含む冷媒とする気泡発生手段と、前記気泡発生手段によって発生した前記微細な気泡を含む冷媒を減圧して高速度でノズル部から流出する駆動流体により吸引部から吸引流体を吸引し、混合部で前記駆動流体と前記吸引流体とを混合した後、ディフューザ部で膨張させて低圧状態で流出するエジェクタと、前記エジェクタからの低圧状態の冷媒を蒸発させる蒸発側熱交換器と、を備え、前記気泡発生手段は、前記圧縮機または前記放熱側熱交換器から流出する冷媒のうちのガス冷媒の少なくとも一部が流入するガス冷媒流入部と前記放熱側熱交換器から流出する冷媒のうちの液を多く含む状態の冷媒が流入する液冷媒流入部とを有し、前記液冷媒流入部から流入する液冷媒に前記ガス冷媒流入部からガス冷媒を流入させて気泡を発生するように構成したことを特徴とする冷凍サイクル装置。 A compressor that brings the refrigerant into a high-pressure state, a heat-dissipation side heat exchanger that dissipates the heat of the high-pressure state refrigerant from the compressor, and the heat-radiated refrigerant from the heat-dissipation side heat exchanger contains fine bubbles The bubble generating means as a refrigerant, and the suction fluid is sucked from the suction portion by the driving fluid flowing out from the nozzle portion at a high speed by decompressing the refrigerant containing the fine bubbles generated by the bubble generating means, and the mixing portion An air discharger that mixes the driving fluid and the suction fluid and then expands in the diffuser section and flows out in a low-pressure state; and an evaporation side heat exchanger that evaporates the low-pressure refrigerant from the ejector. The means includes a gas refrigerant inflow portion into which at least a part of the gas refrigerant out of the refrigerant flowing out of the compressor or the heat dissipation side heat exchanger flows, and a liquid of the refrigerant flowing out of the heat dissipation side heat exchanger. And a liquid refrigerant inlet portion in which the refrigerant state flowing rich, that said by introducing the gas refrigerant from the gas refrigerant inlet portion to the liquid refrigerant flowing from the liquid refrigerant inlet portion adapted to generate a bubble A characteristic refrigeration cycle apparatus. 一端側を前記圧縮機の吐出部と前記放熱側熱交換器の入口部との間の配管に接続し、他端側を前記気泡発生手段の前記ガス冷媒流入部に接続するバイパス配管を備え、前記圧縮機から吐出するガス冷媒の一部を前記バイパス配管を通って前記ガス冷媒流入部に流入させ、前記放熱側熱交換器から流出する冷媒を前記液冷媒流入部に流入させることを特徴とする請求項記載の冷凍サイクル装置。 One end side is connected to a pipe between the discharge part of the compressor and the inlet part of the heat radiation side heat exchanger, and the other end side is provided with a bypass pipe connecting to the gas refrigerant inflow part of the bubble generating means, A part of the gas refrigerant discharged from the compressor flows into the gas refrigerant inflow portion through the bypass pipe, and the refrigerant that flows out of the heat radiation side heat exchanger flows into the liquid refrigerant inflow portion. The refrigeration cycle apparatus according to claim 1 . 前記放熱側熱交換器の出口部と前記気泡発生手段の入口部との間に接続される気液分離器を備え、前記気液分離器の気相部と前記気泡発生手段の前記ガス冷媒流入部を接続し、前記気液分離器の液相部と前記気泡発生手段の前記液冷媒流入部を接続することを特徴とする請求項記載の冷凍サイクル装置。 A gas-liquid separator connected between an outlet portion of the heat radiation side heat exchanger and an inlet portion of the bubble generating means, and the gas refrigerant inflow of the gas phase portion of the gas-liquid separator and the bubble generating means part connect, refrigeration cycle apparatus according to claim 1, wherein the connecting the liquid refrigerant inlet portion of the air bubble generating means with a liquid phase portion of the gas-liquid separator. 前記気泡発生手段は、前記液冷媒流入部から流入する液冷媒流路に対して前記ガス冷媒流入部から流入するガス冷媒流路が交差するように構成され、前記液冷媒流入部から流入する液冷媒流を前記ガス冷媒流入部から流入するガス冷媒流に交差させて気泡を発生させることを特徴とする請求項乃至請求項のいずれか1項に記載の冷凍サイクル装置。 The bubble generating means is configured such that a gas refrigerant channel flowing from the gas refrigerant inflow portion intersects a liquid refrigerant channel flowing from the liquid refrigerant inflow portion, and a liquid flowing from the liquid refrigerant inflow portion. refrigeration cycle apparatus according to any one of claims 1 to 3 refrigerant flow by intersecting the gas refrigerant flow flowing from the gas refrigerant inlet portion, characterized in that generating bubbles. 前記ガス冷媒流路と前記液冷媒流路とのなす角度を90度以上180度以下となるようにして液冷媒の流れに対してガス冷媒が衝突する方向に流れるようにしたことを特徴とする請求項4に記載の冷凍サイクル装置。The angle formed between the gas refrigerant flow path and the liquid refrigerant flow path is 90 degrees or more and 180 degrees or less so that the gas refrigerant flows in a direction in which the liquid refrigerant collides with the liquid refrigerant flow. The refrigeration cycle apparatus according to claim 4. 前記気泡発生手段の液冷媒流路は、前記液冷媒流入口部から喉部に向かって流路断面積が縮小し、前記喉部から前記気泡発生手段の出口に向かって流路断面積が増加するように構成され、前記喉部付近に前記ガス冷媒流入部を設けたことを特徴とする請求項乃至請求項5のいずれか1項に記載の冷凍サイクル装置。 The liquid refrigerant flow path of the bubble generating means has a reduced cross-sectional area from the liquid refrigerant inlet portion toward the throat and an increased cross-sectional area from the throat portion toward the outlet of the bubble generating means. configured to, refrigeration cycle apparatus according to any one of claims 1 to 5, characterized in that a said gas coolant inlet in the vicinity of the throat. 前記気泡発生手段は、前記液冷媒流路と前記ガス冷媒流路の冷媒流のうちの少なくとも一方の冷媒流を旋回流とする旋回手段を有することを特徴とする請求項2乃至請求項6のいずれか1項に記載の冷凍サイクル装置。 The said bubble generation means has a turning means which makes a swirl flow the at least one refrigerant flow of the liquid refrigerant flow path and the refrigerant flow of the gas refrigerant flow path. The refrigeration cycle apparatus according to any one of the above. 前記気泡発生手段または前記エジェクタは、冷媒の流動抵抗を調整し得る抵抗調整手段を有することを特徴とする請求項2乃至請求項7のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 2 to 7, wherein the bubble generating means or the ejector includes a resistance adjusting means capable of adjusting a flow resistance of the refrigerant. 前記抵抗調整手段によって、前記気泡発生手段の液冷媒入口部の冷媒の過冷却度が、予め設定した目標過冷却度になるように制御することを特徴とする請求項8に記載の冷凍サイクル装置。 9. The refrigeration cycle apparatus according to claim 8, wherein the resistance adjustment unit controls the supercooling degree of the refrigerant at the liquid refrigerant inlet portion of the bubble generating unit to be a preset target supercooling degree. . 前記エジェクタの前記ノズル部内に前記気泡発生手段を設け、前記ノズル部で微細な気泡を含む冷媒を発生させ、前記エジェクタの前記混合部に微細な液滴を噴出させることを特徴とする請求項1乃至請求項9のいずれか1項に記載の冷凍サイクル装置。 2. The bubble generating means is provided in the nozzle portion of the ejector, a refrigerant containing fine bubbles is generated at the nozzle portion, and fine droplets are ejected to the mixing portion of the ejector. The refrigeration cycle apparatus according to any one of claims 9 to 9. 前記エジェクタに駆動流体として流入する冷媒の乾き度が0以上且つ0.2以下になるように構成したことを特徴とする請求項1乃至請求項9のいずれか1項に記載の冷凍サイクル装置。 10. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant flowing into the ejector as a driving fluid has a dryness of 0 or more and 0.2 or less. 少なくとも2台の前記蒸発側熱交換器と、前記蒸発側熱交換器のそれぞれから流出する冷媒を前記吸引部で吸引する前記エジェクタと、前記蒸発側熱交換器に流入する冷媒流量をそれぞれ調整する複数の冷媒流量調整手段と、前記蒸発側熱交換器と前記エジェクタとの間の配管の少なくとも1つの配管に設けられ、複数の前記蒸発側熱交換器から前記エジェクタに吸引される前記冷媒の圧力を均等化する減圧手段と、を備えたことを特徴とする請求項1乃至請求項11のいずれか1項に記載の冷凍サイクル装置。 At least two of the evaporation side heat exchangers, the ejector that sucks the refrigerant flowing out from each of the evaporation side heat exchangers by the suction part, and the flow rate of the refrigerant flowing into the evaporation side heat exchanger are adjusted respectively. Pressure of the refrigerant that is provided in at least one of a plurality of refrigerant flow rate adjusting means and a pipe between the evaporation side heat exchanger and the ejector, and is sucked into the ejector from the plurality of evaporation side heat exchangers The refrigeration cycle apparatus according to any one of claims 1 to 11, further comprising a decompression unit that equalizes the pressure. 少なくとも2台の前記蒸発側熱交換器から流出する冷媒をそれぞれ吸引する少なくとも2台のエジェクタを備え、前記気泡発生手段で発生した微細な気泡を含む冷媒を分岐して複数の前記エジェクタに流入させる分岐部を設けたことを特徴とする請求項12記載の冷凍サイクル装置。 At least two ejectors for sucking the refrigerant flowing out from at least two of the evaporation side heat exchangers are provided, and the refrigerant containing fine bubbles generated by the bubble generating means is branched to flow into the plurality of ejectors. 13. A refrigeration cycle apparatus according to claim 12, further comprising a branch portion. 前記圧縮機の吸入側に接続する補助熱交換器を備えたことを特徴とする請求項1乃至請求項13のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 13, further comprising an auxiliary heat exchanger connected to the suction side of the compressor.
JP2007036191A 2007-02-16 2007-02-16 Refrigeration cycle equipment Active JP4306739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036191A JP4306739B2 (en) 2007-02-16 2007-02-16 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036191A JP4306739B2 (en) 2007-02-16 2007-02-16 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008202812A JP2008202812A (en) 2008-09-04
JP4306739B2 true JP4306739B2 (en) 2009-08-05

Family

ID=39780516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036191A Active JP4306739B2 (en) 2007-02-16 2007-02-16 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4306739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784487B2 (en) 2011-03-28 2017-10-10 Denso Corporation Decompression device having flow control valves and refrigeration cycle with said decompression device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151424A (en) * 2008-12-26 2010-07-08 Daikin Ind Ltd Refrigerating device
US9551511B2 (en) 2011-02-09 2017-01-24 Carrier Corporation Ejector having nozzles and diffusers imparting tangential velocities on fluid flow
CN103380336B (en) * 2011-02-23 2016-09-07 开利公司 Injector
JP5413393B2 (en) 2011-03-28 2014-02-12 株式会社デンソー Refrigerant distributor and refrigeration cycle
JP2012242020A (en) * 2011-05-20 2012-12-10 Denso Corp Heat pump apparatus
EP2718644B1 (en) 2011-06-10 2020-09-09 Carrier Corporation Ejector with motive flow swirl
JP5920110B2 (en) * 2012-02-02 2016-05-18 株式会社デンソー Ejector
JP5821709B2 (en) 2012-03-07 2015-11-24 株式会社デンソー Ejector
JP6079552B2 (en) 2012-11-20 2017-02-15 株式会社デンソー Ejector
JP6090104B2 (en) 2012-12-13 2017-03-08 株式会社デンソー Ejector
JP5999071B2 (en) 2012-12-27 2016-09-28 株式会社デンソー Ejector
JP6119566B2 (en) 2012-12-27 2017-04-26 株式会社デンソー Ejector
JP6119489B2 (en) 2013-07-30 2017-04-26 株式会社デンソー Ejector
JP6048339B2 (en) 2013-08-01 2016-12-21 株式会社デンソー Ejector
JP6003844B2 (en) 2013-08-09 2016-10-05 株式会社デンソー Ejector
JP6176127B2 (en) 2014-01-21 2017-08-09 株式会社デンソー Ejector
JP6541109B2 (en) * 2015-01-22 2019-07-10 パナソニックIpマネジメント株式会社 Ejector and heat pump device
US10816273B2 (en) * 2016-01-08 2020-10-27 Mitsubishi Electric Corporation Boiling cooling device and boiling cooling system
KR20210088081A (en) * 2020-01-06 2021-07-14 삼성전자주식회사 Refrigerator
KR102682895B1 (en) * 2023-02-15 2024-07-08 고등기술연구원연구조합 Carbon dioxide separation and recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784487B2 (en) 2011-03-28 2017-10-10 Denso Corporation Decompression device having flow control valves and refrigeration cycle with said decompression device
DE112012001472B4 (en) 2011-03-28 2019-03-14 Denso Corporation Decompression device and refrigeration circuit device

Also Published As

Publication number Publication date
JP2008202812A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4306739B2 (en) Refrigeration cycle equipment
JP5413393B2 (en) Refrigerant distributor and refrigeration cycle
JP5640857B2 (en) Pressure reducing device and refrigeration cycle
JP4506877B2 (en) Ejector
JP6115344B2 (en) Ejector
WO2015029394A1 (en) Ejector-type refrigeration cycle, and ejector
JP6083330B2 (en) Ejector
JP4812665B2 (en) Ejector and refrigeration cycle apparatus
JP4661449B2 (en) Ejector refrigeration cycle
WO2015015752A1 (en) Ejector
JP2011058422A (en) Ejector
JP6115345B2 (en) Ejector
JP5338481B2 (en) Ejector
JP5962596B2 (en) Ejector refrigeration cycle
JP2009162116A (en) Ejector and refrigeration cycle device using the same
WO2016063441A1 (en) Ejector refrigeration cycle device
WO2016143291A1 (en) Ejector and ejector-type refrigeration cycle
JP2008107054A (en) Pressure reducing device and refrigerating cycle device
WO2017135092A1 (en) Ejector
JP4529954B2 (en) Vapor compression refrigeration cycle
JP2008032244A (en) Ejector type refrigerating cycle
WO2016031156A1 (en) Ejector-type refrigeration cycle
JP2010002169A (en) Ejector
JP6481679B2 (en) Ejector
WO2016181639A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R151 Written notification of patent or utility model registration

Ref document number: 4306739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250