JP2003262413A - Ejector cycle - Google Patents

Ejector cycle

Info

Publication number
JP2003262413A
JP2003262413A JP2002060732A JP2002060732A JP2003262413A JP 2003262413 A JP2003262413 A JP 2003262413A JP 2002060732 A JP2002060732 A JP 2002060732A JP 2002060732 A JP2002060732 A JP 2002060732A JP 2003262413 A JP2003262413 A JP 2003262413A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
ejector
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002060732A
Other languages
Japanese (ja)
Inventor
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002060732A priority Critical patent/JP2003262413A/en
Publication of JP2003262413A publication Critical patent/JP2003262413A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cause a sufficient amount of refrigerant to flow in an evaporator in an ejector cycle. <P>SOLUTION: The pressure loss of a refrigerant passage through which suction flow flows is set to be as small as possible so that, when the flow rate of refrigerant in the evaporator 30 is equal to a predetermined flow rate, the total pressure loss Δpall of the suction flow is less than an increase Δpej of pressure in an ejector 40. More specifically, 1) a restrictor 60 is installed in a position that is as close to the evaporator 30 as possible in the flow of refrigerant; 2) the ejector 40 is integrated with a gas-liquid separator 50; 3) the gas-liquid separator 50 is integrated with the evaporator 30; 4) the ejector 40, the gas-liquid separator 50, and the evaporator 30 are integrated together; and 5) the diameter of the refrigerant piping is made as large as possible. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温側の熱を高温
側に移動させる蒸気圧縮式冷凍サイクルのうち、冷媒を
減圧膨張させながら膨張エネルギーを圧力エネルギーに
変換して圧縮機の吸入圧を上昇させるエジェクタを有す
るエジェクタサイクルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigeration cycle for transferring heat on a low temperature side to a high temperature side, converting expansion energy into pressure energy while decompressing and expanding a refrigerant to reduce suction pressure of a compressor. The present invention relates to an ejector cycle having an ejector for raising.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】エジェ
クタサイクルとは、周知のごとく、エジェクタにて冷媒
を減圧膨張させて蒸発器にて蒸発した気相冷媒を吸引す
るとともに、膨張エネルギーを圧力エネルギーに変換し
て圧縮機の吸入圧を上昇させる冷凍サイクルである。
As is well known, the ejector cycle is a well-known ejector cycle in which a refrigerant is decompressed and expanded by an ejector to suck a vapor phase refrigerant evaporated in an evaporator and expansion energy is converted into pressure energy. It is a refrigerating cycle in which the suction pressure of the compressor is increased by converting into.

【0003】ところで、膨張弁等の減圧手段により等エ
ンタルピ的に冷媒を減圧する冷凍サイクル(以下、膨張
弁サイクルと呼ぶ。)では、膨張弁を流出した冷媒が蒸
発器に流れ込むのに対して、エジェクタサイクルでは、
エジェクタを流出した冷媒は気液分離器に流入し、気液
分離器にて分離された液相冷媒が蒸発器に供給され、気
液分離器にて分離された気相冷媒が圧縮機に吸入され
る。
By the way, in a refrigerating cycle (hereinafter referred to as an expansion valve cycle) in which a refrigerant is isenthalpically decompressed by a decompression means such as an expansion valve, the refrigerant flowing out of the expansion valve flows into an evaporator. In the ejector cycle,
The refrigerant flowing out of the ejector flows into the gas-liquid separator, the liquid-phase refrigerant separated by the gas-liquid separator is supplied to the evaporator, and the gas-phase refrigerant separated by the gas-liquid separator is sucked into the compressor. To be done.

【0004】つまり、膨張弁サイクルでは、冷媒が圧縮
機→放熱器→膨張弁→蒸発器→圧縮機の順に循環する1
つの冷媒流れとなるのに対して、エジェクタサイクルで
は、図1に示すように、圧縮機10→放熱器20→エジ
ェクタ40→気液分離器50→圧縮機10の順に循環す
る冷媒流れ(以下、この流れを駆動流と呼ぶ。)と、気
液分離器50→蒸発器30→エジェクタ40→気液分離
器50の順に循環する冷媒流れ(以下、この流れを吸引
流と呼ぶ。)とが存在する。
That is, in the expansion valve cycle, the refrigerant circulates in the order of compressor → radiator → expansion valve → evaporator → compressor 1.
On the other hand, in the ejector cycle, as shown in FIG. 1, the refrigerant flow circulates in the order of compressor 10 → radiator 20 → ejector 40 → gas-liquid separator 50 → compressor 10 (hereinafter, This flow is referred to as a drive flow), and a refrigerant flow that circulates in the order of gas-liquid separator 50 → evaporator 30 → ejector 40 → gas-liquid separator 50 (hereinafter, this flow is referred to as a suction flow) exists. To do.

【0005】このとき、駆動流は圧縮機10により循環
させられるのに対して、吸引流10はエジェクタ40で
発生する昇圧量、すなわちエジェクタ40の冷媒出口と
気相冷媒吸入口との圧力差をポンプ駆動源として循環さ
せられるので、エジェクタ40の冷媒出口から気液分離
器50及び蒸発器30を経てエジェクタ40の気相冷媒
吸入口までの冷媒通路で発生する圧力損失がエジェクタ
40での昇圧量より大きいと、吸引流が循環することが
できず、エジェクタサイクルが成立しなくなる、又は吸
引流の流量が少なくなり、蒸発器30にて十分な冷凍能
力(吸熱能力)を発揮させることができない。
At this time, the drive flow is circulated by the compressor 10, whereas the suction flow 10 is the pressure increase amount generated in the ejector 40, that is, the pressure difference between the refrigerant outlet of the ejector 40 and the vapor-phase refrigerant inlet. Since it is circulated as a pump drive source, the pressure loss generated in the refrigerant passage from the refrigerant outlet of the ejector 40 to the gas-phase refrigerant inlet of the ejector 40 via the gas-liquid separator 50 and the evaporator 30 is equal to the amount of pressure increase in the ejector 40. If it is larger than this, the suction flow cannot circulate, the ejector cycle is not established, or the flow rate of the suction flow becomes small, and the evaporator 30 cannot exhibit sufficient refrigerating capacity (heat absorbing capacity).

【0006】本発明は、上記点に鑑み、エジェクタサイ
クルが成立しなくなる、又は蒸発器30にて十分な冷凍
能力を発揮させることができないといった不具合が発生
することを未然に防止することを目的とする。
In view of the above points, an object of the present invention is to prevent the occurrence of problems such as the ejector cycle not being established or the evaporator 30 not being able to exert a sufficient refrigerating capacity. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、冷媒を吸入
圧縮する圧縮機(10)と、圧縮機(10)から吐出し
た冷媒を冷却する放熱器(20)と、冷媒を蒸発させて
吸熱する蒸発器(30)と、放熱器(20)から流出し
た高圧冷媒の圧力エネルギーを速度エネルギーに変換し
て冷媒を減圧膨張させるノズル(41)、ノズル(4
1)から噴射する高い速度の冷媒流により蒸発器(3
0)にて蒸発した気相冷媒を吸引し、ノズル(41)か
ら噴射する冷媒と蒸発器(30)から吸引した冷媒とを
混合させながら速度エネルギーを圧力エネルギーに変換
して冷媒の圧力を昇圧させる昇圧部(42、43)を有
するエジェクタ(40)と、冷媒を気相冷媒と液相冷媒
とに分離するとともに、液相冷媒を蒸発器(30)に供
給し、気相冷媒を圧縮機(10)に供給する気液分離器
(50)とを備え、蒸発器(30)内を流れる冷媒流量
が所定流量となる場合における、エジェクタ(40)の
冷媒出口から気液分離器(50)及び蒸発器(30)を
経てエジェクタ(40)の気相冷媒吸入口(40a)ま
での冷媒通路で発生する圧力損失(Δpall)が、エジェ
クタ(40)での昇圧量(Δpej)未満となるように設
定されていることを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a compressor (10) for sucking and compressing a refrigerant and a compressor (10) for discharging the refrigerant. The radiator (20) for cooling the refrigerant, the evaporator (30) for evaporating the refrigerant and absorbing heat, and the pressure energy of the high-pressure refrigerant flowing out from the radiator (20) are converted into velocity energy to expand the refrigerant under reduced pressure. Nozzle (41), nozzle (4
1) The high velocity refrigerant flow injected from the evaporator (3
0) sucks the vapor phase refrigerant and mixes the refrigerant injected from the nozzle (41) with the refrigerant sucked from the evaporator (30) to convert velocity energy into pressure energy to increase the pressure of the refrigerant. An ejector (40) having a pressurizing section (42, 43) for causing the refrigerant to be separated into a gas-phase refrigerant and a liquid-phase refrigerant and supplying the liquid-phase refrigerant to the evaporator (30) to compress the gas-phase refrigerant. A gas-liquid separator (50) supplied to (10), and a gas-liquid separator (50) from the refrigerant outlet of the ejector (40) when the flow rate of the refrigerant flowing in the evaporator (30) becomes a predetermined flow rate. And the pressure loss (Δpall) generated in the refrigerant passage from the evaporator (30) to the vapor-phase refrigerant suction port (40a) of the ejector (40) is less than the pressure increase amount (Δpej) at the ejector (40). Is set to To.

【0008】これにより、エジェクタサイクルが成立し
なくなる、又は蒸発器(30)にて十分な冷凍能力を発
揮させることができないといった不具合が発生すること
を未然に防止することが可能となる。
As a result, it is possible to prevent the occurrence of a problem such that the ejector cycle is not established or the evaporator (30) cannot exhibit a sufficient refrigerating capacity.

【0009】請求項2に記載の発明では、気液分離器
(50)と蒸発器(30)とを結ぶ冷媒通路に設けられ
た絞り手段(60)は、冷媒流れにおいて蒸発器(3
0)近傍に設置されていることを特徴とする。
According to the second aspect of the invention, the throttle means (60) provided in the refrigerant passage connecting the gas-liquid separator (50) and the evaporator (30) has the evaporator (3) in the refrigerant flow.
0) It is characterized by being installed in the vicinity.

【0010】これにより、吸引流の全圧力損失を低減す
ることができるので、上記不具合を確実に防止できる。
As a result, the total pressure loss of the suction flow can be reduced, so that the above problems can be reliably prevented.

【0011】請求項3に記載の発明では、エジェクタ
(40)と気液分離器(50)とが一体化されているこ
とを特徴とする。
The invention according to claim 3 is characterized in that the ejector (40) and the gas-liquid separator (50) are integrated.

【0012】これにより、吸引流の全圧力損失を低減す
ることができるので、上記不具合を確実に防止できる。
As a result, the total pressure loss of the suction flow can be reduced, so that the above problems can be reliably prevented.

【0013】請求項4に記載の発明では、気液分離器
(50)と蒸発器(30)とが一体化されていることを
特徴とする。
The invention according to claim 4 is characterized in that the gas-liquid separator (50) and the evaporator (30) are integrated.

【0014】これにより、吸引流の全圧力損失を低減す
ることができるので、上記不具合を確実に防止できる。
As a result, the total pressure loss of the suction flow can be reduced, so that the above problems can be reliably prevented.

【0015】請求項5に記載の発明では、エジェクタ
(40)、気液分離器(50)及び蒸発器(30)が一
体化されていることを特徴とする。
The invention as set forth in claim 5 is characterized in that the ejector (40), the gas-liquid separator (50) and the evaporator (30) are integrated.

【0016】これにより、吸引流の全圧力損失を低減す
ることができるので、上記不具合を確実に防止できる。
As a result, the total pressure loss of the suction flow can be reduced, so that the above problems can be reliably prevented.

【0017】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in the parentheses of the above-mentioned means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0018】[0018]

【発明の実施の形態】本実施形態は、本発明に係るエジ
ェクタサイクルを車両用空調装置に適用したものであっ
て、図1はエジェクタサイクルの模式図であり、図2は
車両への搭載状態を示す模式図である。なお、図2は模
式的な図であるので、本実施形態の特徴を完全に図示し
ているものではない。
BEST MODE FOR CARRYING OUT THE INVENTION In this embodiment, an ejector cycle according to the present invention is applied to an air conditioning system for a vehicle, FIG. 1 is a schematic view of the ejector cycle, and FIG. 2 is a mounting state on a vehicle. It is a schematic diagram which shows. Since FIG. 2 is a schematic diagram, the features of this embodiment are not completely illustrated.

【0019】図1中、圧縮機10は走行用エンジンから
動力を得て冷媒を吸入圧縮する周知の可変容量型の圧縮
機であり、放熱器20は圧縮機10から吐出した冷媒と
室外空気とを熱交換して冷媒を冷却する高圧側熱交換器
である。
In FIG. 1, a compressor 10 is a well-known variable capacity type compressor that receives power from a running engine to suck and compress a refrigerant, and a radiator 20 discharges the refrigerant and outdoor air from the compressor 10. Is a high-pressure side heat exchanger for exchanging heat to cool the refrigerant.

【0020】因みに、本実施形態では、冷媒としてフロ
ンを採用しているので、放熱器20内の冷媒圧力は冷媒
の臨界圧力以下であり、冷媒は放熱器20にて凝縮す
る。
By the way, in this embodiment, since Freon is used as the refrigerant, the refrigerant pressure in the radiator 20 is below the critical pressure of the refrigerant, and the refrigerant is condensed in the radiator 20.

【0021】また、蒸発器30は室内に吹き出す空気と
液相冷媒とを熱交換させて液相冷媒を蒸発させることに
より冷媒を蒸発させて室内に吹き出す空気を冷却する低
圧側熱交換器であり、エジェクタ40は冷媒を減圧膨張
させて蒸発器30にて蒸発した気相冷媒を吸引するとと
もに、膨張エネルギーを圧力エネルギーに変換して圧縮
機10の吸入圧を上昇させるものである。
The evaporator 30 is a low-pressure side heat exchanger that cools the air blown into the room by evaporating the refrigerant by evaporating the liquid phase refrigerant by exchanging heat between the air blowing into the room and the liquid phase refrigerant. The ejector 40 expands the refrigerant under reduced pressure to suck the vapor-phase refrigerant evaporated in the evaporator 30, and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10.

【0022】なお、エジェクタ40は、図3に示すよう
に、流入する高圧冷媒の圧力エネルギーを速度エネルギ
ーに変換して冷媒を減圧膨張させるノズル41、ノズル
41から噴射する高い速度の冷媒流により蒸発器30に
て蒸発した気相冷媒を吸引しながら、ノズル41から噴
射する冷媒流とを混合する混合部42、及びノズル41
から噴射する冷媒と蒸発器30から吸引した冷媒とを混
合させながら速度エネルギーを圧力エネルギーに変換し
て冷媒の圧力を昇圧させるディフューザ43等からなる
ものである。
As shown in FIG. 3, the ejector 40 converts the pressure energy of the inflowing high-pressure refrigerant into velocity energy and expands the refrigerant under reduced pressure by a nozzle 41 and a high-velocity refrigerant flow ejected from the nozzle 41 to evaporate the same. A mixing section 42 for mixing the vapor phase refrigerant evaporated in the vessel 30 with the refrigerant flow ejected from the nozzle 41, and the nozzle 41
The diffuser 43 or the like is configured to convert the velocity energy into pressure energy while increasing the pressure of the refrigerant while mixing the refrigerant injected from the and the refrigerant sucked from the evaporator 30.

【0023】因みに、本実施形態では、ノズル41から
噴出する冷媒の速度を音速以上まで加速するために、通
路途中に通路面積が最も縮小した喉部を有するラバール
ノズル(流体工学(東京大学出版会)参照)を採用して
いる。
Incidentally, in the present embodiment, in order to accelerate the velocity of the refrigerant ejected from the nozzle 41 to a speed higher than the sonic velocity, a Laval nozzle having a throat portion with the smallest passage area in the middle of the passage (Fluid Engineering (The University of Tokyo Press) (See) is adopted.

【0024】なお、混合部42においては、ノズル41
から噴射する冷媒流の運動量と、蒸発器30からエジェ
クタ40に吸引される冷媒流の運動量との和が保存され
るように混合するので、混合部42においても冷媒の静
圧が上昇する。一方、ディフューザ43においては、通
路断面積を徐々に拡大することにより、冷媒の動圧を静
圧に変換するので、エジェクタ40においては、混合部
42及びディフューザ43の両者にて冷媒圧力を昇圧す
る。そこで、混合部42とディフューザ43とを総称し
て昇圧部と呼ぶ。
In the mixing section 42, the nozzle 41
Since the sum of the momentum of the refrigerant flow injected from the and the momentum of the refrigerant flow sucked from the evaporator 30 to the ejector 40 is stored, the static pressure of the refrigerant also rises in the mixing section 42. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into the static pressure by gradually increasing the passage cross-sectional area, so in the ejector 40, the refrigerant pressure is increased by both the mixing section 42 and the diffuser 43. . Therefore, the mixing section 42 and the diffuser 43 are generically called a boosting section.

【0025】また、図1中、気液分離器50はエジェク
タ40から流出した冷媒が流入するとともに、その流入
した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄え
る気液分離手段であり、気液分離器50の気相冷媒流出
口は圧縮機10の吸引側に接続され、液相冷媒流出口は
蒸発器30側の流入側に接続される。
In FIG. 1, the gas-liquid separator 50 receives the refrigerant flowing out of the ejector 40 and separates the inflowing refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant to store the refrigerant. The gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the suction side of the compressor 10, and the liquid-phase refrigerant outlet is connected to the inflow side of the evaporator 30.

【0026】絞り60は気液分離器50と蒸発器30と
を結ぶ冷媒通路に設けられて蒸発器30に流入する冷媒
を蒸発圧力まで減圧する絞り手段であり、本実施形態で
は、絞り60として開度が固定された固定絞りを採用し
ている。
The throttle 60 is a throttle means provided in a refrigerant passage connecting the gas-liquid separator 50 and the evaporator 30 to reduce the refrigerant flowing into the evaporator 30 to the evaporation pressure. In the present embodiment, the throttle 60 is used. It uses a fixed throttle with a fixed opening.

【0027】なお、図4はエジェクタサイクルの全体の
マクロ的作動を示すp−h線図であり、そのマクロ的作
動は周知のエジェクタサイクルと同じであるので、本実
施形態では、エジェクタサイクル全体のマクロ的作動の
説明は省略する。因みに、図4の●で示される符号は、
図1に示す●で示される符号位置における冷媒の状態を
示すものである。
FIG. 4 is a ph diagram showing the macro operation of the ejector cycle as a whole. Since the macro operation is the same as that of a known ejector cycle, in this embodiment, the ejector cycle as a whole is operated. The description of the macro operation is omitted. By the way, the symbol shown by ● in FIG.
It shows the state of the refrigerant at the symbol position shown by ● shown in FIG.

【0028】次に、本実施形態の特徴を述べる。Next, the features of this embodiment will be described.

【0029】吸引流(「従来の技術及び発明が解決しよ
うとする課題」参照)の全圧力損失Δpallは以下の式で
決定され、その特性は、図5の実線で示すように、吸引
流、すなわち蒸発器30内を流れる冷媒の流量の増加に
応じて二次関数的に増加する。
The total pressure loss Δpall of the suction flow (see “Prior Art and Problems to be Solved by the Invention”) is determined by the following equation, and its characteristic is as shown by the solid line in FIG. That is, it increases quadratically with an increase in the flow rate of the refrigerant flowing through the evaporator 30.

【0030】[0030]

【数1】Δpall=Δpe+Δpeej+Δpeja+Δpa+Δpav
+Δpv+Δpve 但し、Δpeは蒸発器30内における圧力損失を示し、Δ
peejはエジェクタ40の気相冷媒吸入口40a(図3参
照)と蒸発器30の冷媒流出口とを結ぶ冷媒通路におけ
る圧力損失を示し、Δpejaはエジェクタ40の冷媒流出
口40b(図3参照)と気液分離器50とを結ぶ冷媒通
路における圧力損失を示し、Δpaは気液分離器50内に
おける圧力損失を示し、Δpavは気液分離器50と絞り
60とを結ぶ冷媒通路における圧力損失を示し、Δpvは
絞り60における圧力損失を示し、Δpveは絞り60と
蒸発器30の冷媒流入口とを結ぶ冷媒通路における圧力
損失を示す。
[Equation 1] Δpall = Δpe + Δpeej + Δpeja + Δpa + Δpav
+ Δpv + Δpve where Δpe represents the pressure loss in the evaporator 30,
peej is the pressure loss in the refrigerant passage connecting the vapor-phase refrigerant inlet 40a of the ejector 40 (see FIG. 3) and the refrigerant outlet of the evaporator 30, and Δpeja is the refrigerant outlet 40b of the ejector 40 (see FIG. 3). Shows the pressure loss in the refrigerant passage connecting the gas-liquid separator 50, Δpa shows the pressure loss in the gas-liquid separator 50, and Δpav shows the pressure loss in the refrigerant passage connecting the gas-liquid separator 50 and the throttle 60. , Δpv represents the pressure loss in the throttle 60, and Δpve represents the pressure loss in the refrigerant passage connecting the throttle 60 and the refrigerant inlet of the evaporator 30.

【0031】一方、エジェクタ40における昇圧量Δpe
jは、図5の一点鎖線で示すように、蒸発器30内を流
れる冷媒の流量の増加に応じて線形的に減少していき、
蒸発器30内を流れる冷媒の流量は、エジェクタ40の
昇圧特性を示すグラフ(一点鎖線)と吸引流の全圧力損
失特性を示すグラフ(実線)との交点となる。
On the other hand, the boost amount Δpe in the ejector 40
As shown by the alternate long and short dash line in FIG. 5, j decreases linearly as the flow rate of the refrigerant flowing in the evaporator 30 increases,
The flow rate of the refrigerant flowing in the evaporator 30 is the intersection of the graph showing the pressurizing characteristic of the ejector 40 (dashed line) and the graph showing the total pressure loss characteristic of the suction flow (solid line).

【0032】なお、エジェクタ40の昇圧特性を示すグ
ラフは、圧縮機10の回転数、すなわち駆動流の流量や
放熱器20の放熱能力等によって変化するものの、「蒸
発器30内を流れる冷媒の流量の増加に応じて線形的に
減少する」という傾向は変わらない。
The graph showing the boosting characteristic of the ejector 40 varies depending on the rotation speed of the compressor 10, that is, the flow rate of the driving flow, the heat radiation capacity of the radiator 20, and the like. The tendency of “decreasing linearly with the increase of” does not change.

【0033】このため、吸引流の全圧力損失Δpallの特
性が、実線の状態から波線状態に変化する、つまり、蒸
発器30内を流れる冷媒流量が所定流量となる場合にお
ける吸引流の全圧力損失Δpallが増大すると、蒸発器3
0内を流れる冷媒量が減少するので、蒸発器30にて十
分な冷凍能力(吸熱能力)を発揮させることができな
い。
For this reason, the characteristic of the total pressure loss Δpall of the suction flow changes from the solid line state to the wavy line state, that is, the total pressure loss of the suction flow when the flow rate of the refrigerant flowing in the evaporator 30 becomes a predetermined flow rate. As Δpall increases, evaporator 3
Since the amount of the refrigerant flowing in 0 decreases, the evaporator 30 cannot exhibit a sufficient refrigerating capacity (heat absorbing capacity).

【0034】そこで、本実施形態では、蒸発器30内を
流れる冷媒流量が所定流量となる場合における、吸引流
の全圧力損失Δpallが、エジェクタ40での昇圧量Δpe
j未満となるように、吸引流が流れる冷媒通路の圧力損
失をできるだけ小さく設定している。具体的には、以下
に示す5つの手段である。
Therefore, in this embodiment, the total pressure loss Δpall of the suction flow when the flow rate of the refrigerant flowing in the evaporator 30 is a predetermined flow rate is the pressure increase amount Δpe in the ejector 40.
The pressure loss in the refrigerant passage through which the suction flow flows is set to be as small as possible so as to be less than j. Specifically, there are the following five means.

【0035】絞り60を冷媒流れにおいて、できるだ
け蒸発器30近傍に設置することにより、冷媒通路長さ
を短縮して圧力損失Δpveを小さくする。
By installing the throttle 60 in the refrigerant flow as close to the evaporator 30 as possible, the refrigerant passage length is shortened and the pressure loss Δpve is reduced.

【0036】エジェクタ40と気液分離器50とを一
体化することにより、冷媒通路長さを短縮して圧力損失
Δpejaを小さくする。
By integrating the ejector 40 and the gas-liquid separator 50, the refrigerant passage length is shortened and the pressure loss Δpeja is reduced.

【0037】気液分離器50と蒸発器30とを一体化
することにより、冷媒通路長さを短縮して圧力損失Δpa
v、Δpv及びΔpveを小さくする。
By integrating the gas-liquid separator 50 and the evaporator 30, the length of the refrigerant passage is shortened to reduce the pressure loss Δpa.
Reduce v, Δpv and Δpve.

【0038】エジェクタ40、気液分離器50及び蒸
発器30を一体化することにより、冷媒通路長さを短縮
して全圧力損失Δpallを小さくする。
By integrating the ejector 40, the gas-liquid separator 50 and the evaporator 30, the refrigerant passage length is shortened and the total pressure loss Δpall is reduced.

【0039】冷媒配管の配管径をできるだけ大きくす
ることにより、冷媒通路長さを短縮して全圧力損失Δpa
llを小さくする。
By increasing the diameter of the refrigerant pipe as much as possible, the length of the refrigerant passage is shortened and the total pressure loss Δpa.
Make ll smaller.

【0040】(その他の実施形態)上述の実施形態では
冷媒としてフロンを採用したが、冷媒として二酸化炭素
を用してもよい。なお、冷媒として二酸化炭素を採用し
た場合には、放熱器20内の冷媒圧力は冷媒の臨界圧力
以上となり、かつ、放熱器20内で冷媒が凝縮すること
なく、冷媒入口側から冷媒出口側に向かうほど冷媒温度
が低下するような温度分布を有する場合がある。
(Other Embodiments) Although chlorofluorocarbon was used as the refrigerant in the above embodiments, carbon dioxide may be used as the refrigerant. When carbon dioxide is used as the refrigerant, the refrigerant pressure in the radiator 20 becomes equal to or higher than the critical pressure of the refrigerant, and the refrigerant does not condense in the radiator 20 and the refrigerant inlet side is changed to the refrigerant outlet side. There may be a temperature distribution in which the temperature of the refrigerant decreases as it goes.

【0041】また、全圧力損失Δpallを小さくするめの
手段は、上述の実施形態に示された手段に限定されるも
のではなく、その手段は問わない。
The means for reducing the total pressure loss Δpall is not limited to the means shown in the above-mentioned embodiment, and any means can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係るエジェクタサイクルの
模式図である。
FIG. 1 is a schematic diagram of an ejector cycle according to an embodiment of the present invention.

【図2】本発明の実施形態に係るエジェクタサイクルの
車両への搭載状態を示す模式図である。
FIG. 2 is a schematic diagram showing how an ejector cycle according to an embodiment of the present invention is mounted on a vehicle.

【図3】本発明の実施形態に係るエジェクの模式図であ
る。
FIG. 3 is a schematic diagram of an eject according to an embodiment of the present invention.

【図4】p−h線図である。FIG. 4 is a p-h diagram.

【図5】冷媒流量と圧力との関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between refrigerant flow rate and pressure.

【符号の説明】[Explanation of symbols]

10…圧縮機、20…放熱器、30…蒸発器、40…エ
ジェクタ、50…気液分離器、60…絞り。
10 ... Compressor, 20 ... Radiator, 30 ... Evaporator, 40 ... Ejector, 50 ... Gas-liquid separator, 60 ... Throttle.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を吸入圧縮する圧縮機(10)と、 前記圧縮機(10)から吐出した冷媒を冷却する放熱器
(20)と、 冷媒を蒸発させて吸熱する蒸発器(30)と、 前記放熱器(20)から流出した高圧冷媒の圧力エネル
ギーを速度エネルギーに変換して冷媒を減圧膨張させる
ノズル(41)、前記ノズル(41)から噴射する高い
速度の冷媒流により前記蒸発器(30)にて蒸発した気
相冷媒を吸引し、前記ノズル(41)から噴射する冷媒
と前記蒸発器(30)から吸引した冷媒とを混合させな
がら速度エネルギーを圧力エネルギーに変換して冷媒の
圧力を昇圧させる昇圧部(42、43)を有するエジェ
クタ(40)と、 冷媒を気相冷媒と液相冷媒とに分離するとともに、液相
冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧
縮機(10)に供給する気液分離器(50)とを備え、 前記蒸発器(30)内を流れる冷媒流量が所定流量とな
る場合における、前記エジェクタ(40)の冷媒出口か
ら前記気液分離器(50)及び前記蒸発器(30)を経
て前記エジェクタ(40)の気相冷媒吸入口(40a)
までの冷媒通路で発生する圧力損失(Δpall)が、前記
エジェクタ(40)での昇圧量(Δpej)未満となるよ
うに設定されていることを特徴とするエジェクタサイク
ル。
1. A compressor (10) for sucking and compressing a refrigerant, a radiator (20) for cooling the refrigerant discharged from the compressor (10), and an evaporator (30) for evaporating the refrigerant to absorb heat. A nozzle (41) for converting pressure energy of the high-pressure refrigerant flowing out from the radiator (20) into velocity energy to expand the refrigerant under reduced pressure; and a high-velocity refrigerant flow injected from the nozzle (41) to cause the evaporator ( 30) sucking the vapor-phase refrigerant, mixing the refrigerant injected from the nozzle (41) with the refrigerant sucked from the evaporator (30), and converting the velocity energy into the pressure energy to reduce the pressure of the refrigerant. And an ejector (40) having a booster section (42, 43) for boosting the pressure of the refrigerant, and separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, and supplying the liquid-phase refrigerant to the evaporator (30). To A gas-liquid separator (50) for supplying to the compressor (10), and when the flow rate of the refrigerant flowing in the evaporator (30) reaches a predetermined flow rate, the gas is discharged from the refrigerant outlet of the ejector (40). The gas-phase refrigerant suction port (40a) of the ejector (40) is passed through the liquid separator (50) and the evaporator (30).
The ejector cycle is characterized in that the pressure loss (Δpall) generated in the refrigerant passage up to is less than the pressure increase amount (Δpej) in the ejector (40).
【請求項2】 前記気液分離器(50)と前記蒸発器
(30)とを結ぶ冷媒通路に設けられた絞り手段(6
0)は、冷媒流れにおいて前記蒸発器(30)近傍に設
置されていることを特徴とする請求項1に記載のエジェ
クタサイクル。
2. A throttle means (6) provided in a refrigerant passage connecting the gas-liquid separator (50) and the evaporator (30).
The ejector cycle according to claim 1, wherein 0) is installed in the vicinity of the evaporator (30) in the refrigerant flow.
【請求項3】 前記エジェクタ(40)と前記気液分離
器(50)とが一体化されていることを特徴とする請求
項1に記載のエジェクタサイクル。
3. The ejector cycle according to claim 1, wherein the ejector (40) and the gas-liquid separator (50) are integrated.
【請求項4】 前記気液分離器(50)と前記蒸発器
(30)とが一体化されていることを特徴とする請求項
1に記載のエジェクタサイクル。
4. The ejector cycle according to claim 1, wherein the gas-liquid separator (50) and the evaporator (30) are integrated.
【請求項5】 前記エジェクタ(40)、前記気液分離
器(50)及び前記蒸発器(30)が一体化されている
ことを特徴とする請求項1に記載のエジェクタサイク
ル。
5. The ejector cycle according to claim 1, wherein the ejector (40), the gas-liquid separator (50) and the evaporator (30) are integrated.
JP2002060732A 2002-03-06 2002-03-06 Ejector cycle Pending JP2003262413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060732A JP2003262413A (en) 2002-03-06 2002-03-06 Ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060732A JP2003262413A (en) 2002-03-06 2002-03-06 Ejector cycle

Publications (1)

Publication Number Publication Date
JP2003262413A true JP2003262413A (en) 2003-09-19

Family

ID=29195609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060732A Pending JP2003262413A (en) 2002-03-06 2002-03-06 Ejector cycle

Country Status (1)

Country Link
JP (1) JP2003262413A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004779A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Refrigeration system
JP2009030954A (en) * 2007-06-29 2009-02-12 Daikin Ind Ltd Refrigeration system
US7707849B2 (en) 2005-04-05 2010-05-04 Denso Corporation Unit for ejector type refrigeration cycle
CN103423812A (en) * 2013-09-03 2013-12-04 王桂林 Air conditioner not discharging heat outwards
CN104633881A (en) * 2015-02-11 2015-05-20 徐路统 Heat energy recycling injection type air conditioner
CN105423399A (en) * 2014-11-01 2016-03-23 熵零股份有限公司 Heat supply method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707849B2 (en) 2005-04-05 2010-05-04 Denso Corporation Unit for ejector type refrigeration cycle
WO2009004779A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Refrigeration system
JP2009030954A (en) * 2007-06-29 2009-02-12 Daikin Ind Ltd Refrigeration system
CN103423812A (en) * 2013-09-03 2013-12-04 王桂林 Air conditioner not discharging heat outwards
CN103423812B (en) * 2013-09-03 2016-03-02 王桂林 A kind of air-conditioner
CN105423399A (en) * 2014-11-01 2016-03-23 熵零股份有限公司 Heat supply method and device
CN104633881A (en) * 2015-02-11 2015-05-20 徐路统 Heat energy recycling injection type air conditioner
CN104633881B (en) * 2015-02-11 2017-11-14 山西方洁路路通净化技术有限公司 A kind of injecting type air-conditioning of heat energy recycling

Similar Documents

Publication Publication Date Title
JP4254217B2 (en) Ejector cycle
JP4032875B2 (en) Ejector cycle
US20040007013A1 (en) Ejector with throttle controllable nozzle and ejector cycle using the same
US20040123624A1 (en) Vapor-compression refrigerant cycle system
US20030145613A1 (en) Ejector decompression device with throttle controllable nozzle
JP2004044906A (en) Ejector cycle
JP2003329313A (en) Vapor compression type refrigerating machine
JP2005055113A (en) Steam compression type refrigerating machine
JP2009222256A (en) Vapor compression refrigerating cycle
JP3903766B2 (en) Ejector
US6925835B2 (en) Ejector cycle
JP4000966B2 (en) Vapor compression refrigerator
JP5338481B2 (en) Ejector
JP4577365B2 (en) Cycle using ejector
JP2004239493A (en) Heat pump cycle
JP2002349977A (en) Heat pump cycle
JP2005037056A (en) Ejector cycle
JP2003097868A (en) Ejector cycle
US6918266B2 (en) Ejector for vapor-compression refrigerant cycle
JP2003262413A (en) Ejector cycle
JP4725449B2 (en) Ejector refrigeration cycle
JP4120610B2 (en) Ejector
JP2003336915A (en) Ejector type decompression device
JP2003343932A (en) Ejector cycle
US6862897B2 (en) Vapor-compression refrigerant cycle with ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619