JP2005069591A - Circulation bubbling system - Google Patents

Circulation bubbling system Download PDF

Info

Publication number
JP2005069591A
JP2005069591A JP2003301050A JP2003301050A JP2005069591A JP 2005069591 A JP2005069591 A JP 2005069591A JP 2003301050 A JP2003301050 A JP 2003301050A JP 2003301050 A JP2003301050 A JP 2003301050A JP 2005069591 A JP2005069591 A JP 2005069591A
Authority
JP
Japan
Prior art keywords
ice
storage tank
heat storage
bubbling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003301050A
Other languages
Japanese (ja)
Other versions
JP4218026B2 (en
Inventor
Teruhiko Kikuchi
輝彦 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003301050A priority Critical patent/JP4218026B2/en
Publication of JP2005069591A publication Critical patent/JP2005069591A/en
Application granted granted Critical
Publication of JP4218026B2 publication Critical patent/JP4218026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulation bubbling system capable of effectively breaking ice adhered on a piping surface of an ice making coil at the time of making ice of an ice heat storage tank. <P>SOLUTION: An ice-out water circulation path for circulating the water of melted ice of the ice heat storage tank 10 is arranged to exchange heat with conditioned air, so as to cool the conditioned air in a room. In this case, a intake port 40 with a filter is provided to the ice-out water circulation path. An ejector type intake mechanism for taking the air bubbling the inside of the ice heat storage tank 10 is arranged, so as to mix air inside the ice-out water circulation path, and bubble the inside of the ice heat storage tank 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は氷蓄熱システムに設置する循環バブリングシステムに関し、特に氷蓄熱槽内の配管の着氷を効率的に解氷する循環バブリングシステムに関する。   The present invention relates to a circulating bubbling system installed in an ice heat storage system, and more particularly to a circulating bubbling system that efficiently defrosts piping in an ice heat storage tank.

空調設備に利用される氷蓄熱システムは、昼間の冷暖房用の電力を夜間へシフトして省電力化を図ることができることから多用されている。すなわち、空調用冷熱源となる氷を電力料金の安価な夜間に製氷し、電力需要が多く高価な昼間に氷が解けた解氷水を空調用冷熱源として利用している。   Ice heat storage systems used for air conditioning facilities are widely used because they can shift power for daytime cooling and heating to nighttime to save power. That is, ice that is a cold heat source for air conditioning is made at night when the electricity rate is low, and deiced water that melts ice during the day when there is a lot of power demand is used as a cold heat source for air conditioning.

氷蓄熱システムにおいて一般に用いられている外融式氷蓄熱システムの概略を図4に示す。図4において、氷蓄熱槽1は内部に水を満たし、製氷コイル2が水没するように設置されてある。製氷コイル2の出口はポンプ3を介して冷凍機4の入口に配管aにより接続し、また、製氷コイル2の入口は配管bにより冷凍機4の出口に接続してある。配管a,bは内部にブライン(不凍液)を充填し、ブラインが循環する循環経路を形成している。一方、氷蓄熱槽1には解氷水を内部に流入する流入口5が側面に設置してある。また、解氷水を流出する流出口6が対面の側壁に設置されてある。流入口5は空調機7の出口に配管cにより接続している。また、流出口6は循環ポンプ8を介して空調機7の入口に配管dにより接続している。   FIG. 4 shows an outline of an external melting type ice storage system generally used in the ice storage system. In FIG. 4, the ice heat storage tank 1 is installed so that the inside is filled with water and the ice making coil 2 is submerged. The outlet of the ice making coil 2 is connected to the inlet of the refrigerator 4 via the pump 3 via a pipe a, and the inlet of the ice making coil 2 is connected to the outlet of the refrigerator 4 via a pipe b. The pipes a and b are filled with brine (antifreeze) and form a circulation path through which the brine circulates. On the other hand, the ice heat storage tank 1 is provided with an inflow port 5 through which deiced water flows into the side. Moreover, the outflow port 6 which flows out deicing water is installed in the side wall of facing. The inflow port 5 is connected to the outlet of the air conditioner 7 by a pipe c. Further, the outlet 6 is connected to the inlet of the air conditioner 7 through a circulation pump 8 by a pipe d.

以上の構成により、氷蓄熱システムは次のように作動する。製氷は電力料金が安価な夜間に行われる。製氷コイル2から出たブラインは、冷凍機4に接続する配管a内をポンプ3により冷凍機4に送られて冷却される。冷凍機4で冷却されたブラインは、製氷コイル2の入口に配管bで送られ製氷コイル2を流通して製氷コイル2を冷却し、製氷コイル2の出口に戻る。ブラインの循環により製氷コイル2の周りの水が冷却され、次第に氷蓄熱槽1内の水が製氷される。一方、解氷は日中の空調機7の稼動に伴って行われる。氷蓄熱槽1内の氷を解氷した解氷水は、解氷水ポンプ8により解氷水流出口6から取水され空調機7に配管で送られ、空調機7で図示しない空調空気と熱交換して、室内の空調空気を冷却する。空調空気と熱交換して昇温した解氷水は氷蓄熱槽1側面に設置した流入口5に配管cで送られる。流入口5に送られた解氷水は氷蓄熱槽1内に流入し、氷蓄熱槽1内部の氷を解氷した後、再び流出口6から取水される。また、氷蓄熱槽内部に設置した製氷コイル2の下方には、端部をコンプレッサに接続したエア吹き出し口を備えた配管9を設置してある。配管9はエア吹き出し口からエアを吹き出し蓄熱槽内部をバブリングする。氷蓄熱槽内部の着氷を解氷する場合、解氷水の流入だけでは氷蓄熱槽の流入口または流出口付近の解氷が進み、それ以外の場所では製氷コイル配管の着氷の解氷が進まず残氷してしまう。そこで、配管9により氷蓄熱槽内部にエアを供給してバブリングを行い、これにより解氷水を氷蓄熱槽の上下方向に流動させて槽内部を攪拌する。したがって氷と解氷水の熱伝導率が上がり解氷が促進されることになる。   With the above configuration, the ice heat storage system operates as follows. Ice making is done at night when electricity charges are cheap. The brine from the ice making coil 2 is sent to the refrigerator 4 by the pump 3 through the pipe a connected to the refrigerator 4 and cooled. The brine cooled by the refrigerator 4 is sent to the inlet of the ice making coil 2 through the pipe b, flows through the ice making coil 2, cools the ice making coil 2, and returns to the outlet of the ice making coil 2. The water around the ice making coil 2 is cooled by the circulation of the brine, and the water in the ice heat storage tank 1 is gradually made. On the other hand, the ice melting is performed with the operation of the air conditioner 7 during the daytime. The deiced water obtained by melting the ice in the ice heat storage tank 1 is taken from the deicing water outlet 6 by the deicing water pump 8 and sent to the air conditioner 7 through a pipe. The air conditioner 7 exchanges heat with conditioned air (not shown). Cool the indoor conditioned air. The deiced water heated by exchanging heat with the conditioned air is sent to the inlet 5 installed on the side of the ice heat storage tank 1 through the pipe c. The deicing water sent to the inflow port 5 flows into the ice heat storage tank 1, defrosts the ice inside the ice heat storage tank 1, and then is taken from the outflow port 6 again. Further, below the ice making coil 2 installed in the ice heat storage tank, a pipe 9 provided with an air outlet having an end connected to a compressor is installed. The pipe 9 blows out air from the air outlet and bubbles inside the heat storage tank. When icing the ice inside the ice storage tank, the icing at the inlet or outlet of the ice storage tank proceeds only by the inflow of the icing water, and the icing of the ice making coil piping is not performed at other locations. It doesn't go on and the ice is left. Therefore, air is supplied to the inside of the ice heat storage tank through the pipe 9 to perform bubbling, thereby causing the ice-melt water to flow in the vertical direction of the ice heat storage tank to stir the inside of the ice heat storage tank. Therefore, the thermal conductivity of ice and de-icing water is increased and de-icing is promoted.

特許文献1および特許文献2には、氷蓄熱槽の製氷コイル配管の着氷を解氷する際、コンプレッサ等を付設し、循環水にエアを混合した状態で攪拌し、温度のムラをなくし均一に解氷を行っている装置が開示されている。   In Patent Documents 1 and 2, when icing the ice making coil piping of the ice heat storage tank, a compressor or the like is attached, and stirring is performed in a state where air is mixed with the circulating water, so that temperature unevenness is eliminated and uniform. Discloses an apparatus for performing ice melting.

特開平10−185250号公報JP-A-10-185250 特開平10−238828号公報JP-A-10-238828

製氷コイルの配管表面に着氷した氷を解氷する場合、特許文献1によれば、製氷コイルの下方にポンプによる水噴き出し手段を付設することにより解氷を行っていた。また、特許文献2によれば、製氷コイルの下方にコンプレッサによるエア吹き出し配管を付設することにより、製氷コイル表面の解氷を行っていた。   When ice icing on the piping surface of the ice making coil is defrosted, according to Patent Document 1, deicing is performed by attaching a water spray means by a pump below the ice making coil. According to Patent Document 2, the surface of the ice making coil is defrosted by attaching an air blowing pipe by a compressor below the ice making coil.

しかしながら、このようなポンプあるいはコンプレッサは、本体、電源工事、配管等の付帯設備が必要であり、さらにポンプ等の運転機動力が必要となる問題が生じていた。
そこで、本発明の目的は上記従来技術の問題点を改善し、氷蓄熱槽の製氷時において製氷コイルの配管表面に着氷した氷を効果的に解氷することが可能な循環バブリングシステムを提供することにある。
However, such a pump or compressor requires ancillary equipment such as a main body, power supply work, piping, and the like, and there has been a problem that driving power for a pump or the like is required.
Accordingly, an object of the present invention is to provide a circulating bubbling system capable of improving the above-mentioned problems of the prior art and effectively de-icing the ice icing on the piping surface of the ice making coil during ice making of the ice heat storage tank. There is to do.

前記目的を達成するために、本発明にかかる循環バブリングシステムは、氷蓄熱槽に配設する解氷水循環経路にエジェクタ式の吸気機構を備え、前記氷蓄熱槽内部の下方からバブリングすることを特徴としている。この場合において、前記氷蓄熱槽で排出されたバブリングガスを回収する回収部と、回収した前記バブリングガスを前記吸気機構に吸引させるバブリングガス循環経路を備え、前記バブリングガスを循環させることが望ましい。また、本発明にかかる循環バブリングシステムは、氷蓄熱槽の解氷水が流動し、前記氷蓄熱槽内部をバブリングする解氷水循環経路と、前記解氷水循環経路内部の解氷水を循環させるポンプと、前記解氷水循環経路に接続した吸込口を備え、前記氷蓄熱槽内部をバブリングするエアを吸い込むエジェクタ式の吸気機構とを備えたことを特徴としている。   In order to achieve the above object, a circulation bubbling system according to the present invention comprises an ejector-type intake mechanism in an ice-melt water circulation path disposed in an ice heat storage tank, and is bubbled from below the ice heat storage tank. It is said. In this case, it is desirable to provide a recovery unit for recovering the bubbling gas discharged from the ice heat storage tank and a bubbling gas circulation path for sucking the recovered bubbling gas to the intake mechanism, and to circulate the bubbling gas. Further, the circulating bubbling system according to the present invention is a deicing water circulation path for bubbling the inside of the ice heat storage tank through which the deicing water in the ice heat storage tank flows, a pump for circulating the deicing water inside the ice melting water circulation path, It has a suction port connected to the ice-melt water circulation path, and an ejector-type intake mechanism that sucks air for bubbling the inside of the ice heat storage tank.

本発明に係る循環バブリングシステムは、氷蓄熱システムの氷蓄熱槽内部を循環する解氷水の循環経路にエジェクタ式の吸気機構を備え、氷蓄熱槽内下方からバブリングするようにした。このため、従来用いていたエアバブリング用のコンプレッサ等の付帯設備及び、コンプレッサ等の運転時のエネルギーが不要になり、システム稼動のコストを抑えることが可能となる。また、既存の氷蓄熱システムに容易に設置することが可能である。   The circulation bubbling system according to the present invention is provided with an ejector-type intake mechanism in the circulation path of the deicing water that circulates inside the ice heat storage tank of the ice heat storage system so as to perform bubbling from below in the ice heat storage tank. For this reason, incidental equipment such as an air bubbling compressor that has been used conventionally and energy during operation of the compressor become unnecessary, and the cost of system operation can be suppressed. Moreover, it can be easily installed in an existing ice heat storage system.

さらに、氷蓄熱槽で排出されたバブリングガスを回収する回収部と、回収したバブリングガスを吸気機構に吸引させるバブリングガス循環経路を配置し、バブリングガスを循環させるようにした。これにより、バブリングガスを再利用することが可能となる。   Further, a recovery unit for recovering the bubbling gas discharged from the ice heat storage tank and a bubbling gas circulation path for sucking the recovered bubbling gas to the intake mechanism are arranged to circulate the bubbling gas. Thereby, it is possible to reuse the bubbling gas.

図1は本発明に係る循環バブリングシステムの第1実施形態を示す概略図である。図2は本発明に係るエア吸引部の吸気機構の構造を示す図である。図1に示すように、氷蓄熱槽10の内部に製氷するための水11を満たす。製氷コイル12は氷蓄熱槽10内部に水没するように設置されてある。製氷コイル12は、1本の冷媒管であり蛇行して形成されている。製氷コイル12の水面側の端部は配管16aにより冷凍機14出口に接続してある。また、製氷コイル12の槽底面側の端部はポンプ18を介して、配管16bにより冷凍機14入口に接続してある。配管16a,b内部は冷却媒体であるブライン(不凍液)を充填し、ポンプ18によって図1の矢印g方向に循環している。   FIG. 1 is a schematic view showing a first embodiment of a circulating bubbling system according to the present invention. FIG. 2 is a view showing the structure of the intake mechanism of the air suction portion according to the present invention. As shown in FIG. 1, water 11 for making ice is filled in an ice heat storage tank 10. The ice making coil 12 is installed so as to be submerged in the ice heat storage tank 10. The ice making coil 12 is a single refrigerant pipe that is meandered. The water surface end of the ice making coil 12 is connected to the outlet of the refrigerator 14 by a pipe 16a. The end of the ice making coil 12 on the tank bottom side is connected to the inlet of the refrigerator 14 through a pump 18 through a pipe 16b. The pipes 16a and 16b are filled with brine (antifreeze) as a cooling medium and circulated by the pump 18 in the direction of arrow g in FIG.

また、氷蓄熱槽10の解氷水が循環する配管の流入口20は、氷蓄熱槽10底部の側面に設置されてある。また、氷蓄熱槽10の解氷水が流出する流出口22は、前記流入口20と対面する側面に設置されてある。流出口22は空調機24および循環ポンプ26を介して、配管16cによりエア吸引部28の入口に接続している。また、流入口20は配管16dによりエア吸引部28の出口と接続している。さらに、流入口20から氷蓄熱槽10内部に配設した配管16eは、水面側に吹出しノズル30を形成してある。   Moreover, the inlet 20 of the piping through which the deicing water in the ice heat storage tank 10 circulates is installed on the side surface of the bottom of the ice heat storage tank 10. Further, the outlet 22 through which the deicing water of the ice heat storage tank 10 flows out is installed on the side surface facing the inlet 20. The outlet 22 is connected to the inlet of the air suction unit 28 by a pipe 16c through an air conditioner 24 and a circulation pump 26. The inflow port 20 is connected to the outlet of the air suction unit 28 by a pipe 16d. Furthermore, the piping 16e arrange | positioned from the inflow port 20 inside the ice thermal storage tank 10 forms the blowing nozzle 30 in the water surface side.

図2は、エア吸引部の吸気機構の説明図である。エア吸引部28は、エア供給管32と圧力管34が配設してある。図2に示すように、圧力管34はL字上に折り返しエア供給管32に接続してある。圧力管34はエア吸引部に接続する手前で循環ポンプ26に接続してあり、循環ポンプ26により圧力水が供給される。エア供給管32は端部を配管16dにより氷蓄熱槽10の流入口20に接続してある。また、エア供給管32は圧力管34よりも管径を太く設定してある。エア供給管32に接続する圧力管34の端部はノズル36を有する。ノズル36はコーン状で先端の開口径を細く形成してある。エア吸引部28にはエジェクタ式の吸気機構が設けてある。吸気機構はノズル36の吐出口と対応した位置に接続した吸引管38を有する。吸引管38は端部にフィルタ付吸込口40が設置されてある。フィルタ付吸込口40はエアに含まれる塵埃を端部に設置したフィルタによって取り除いたエアの吸込口である。また、吸引管38とフィルタ付吸込口40との間には、フィルタ付吸込口40側から二方弁42と、チャッキ弁44を設置してある。二方弁42はエア供給時に開状態となりエアをエア吸引部に流し、エア停止時には閉状態となりエアの供給を停止する。また、チャッキ弁44は水の逆流防止の役割を果たす。ノズル36は圧力管34に供給された圧力水をエア供給管32内部に向けて噴射する。これにより、エジェクタ効果が生じて吸引管38の接続部における圧力が周囲よりも低くなり、吸引管38内のエアがエア供給管32に混入する。   FIG. 2 is an explanatory diagram of an intake mechanism of the air suction unit. The air suction part 28 is provided with an air supply pipe 32 and a pressure pipe 34. As shown in FIG. 2, the pressure pipe 34 is folded over an L shape and connected to the air supply pipe 32. The pressure pipe 34 is connected to the circulation pump 26 before being connected to the air suction unit, and pressure water is supplied by the circulation pump 26. The end of the air supply pipe 32 is connected to the inlet 20 of the ice heat storage tank 10 by a pipe 16d. Further, the air supply pipe 32 is set to have a diameter larger than that of the pressure pipe 34. The end of the pressure pipe 34 connected to the air supply pipe 32 has a nozzle 36. The nozzle 36 is formed in a cone shape with a narrow opening diameter at the tip. The air suction unit 28 is provided with an ejector-type intake mechanism. The intake mechanism has a suction pipe 38 connected to a position corresponding to the discharge port of the nozzle 36. The suction pipe 38 is provided with a suction port 40 with a filter at the end. The filter inlet 40 is an air inlet from which dust contained in the air is removed by a filter installed at the end. In addition, a two-way valve 42 and a check valve 44 are installed between the suction pipe 38 and the filter-equipped suction port 40 from the filter-equipped suction port 40 side. The two-way valve 42 is in an open state when air is supplied, and flows air to the air suction unit. When the air is stopped, the two-way valve 42 is in a closed state and stops supplying air. Further, the check valve 44 plays a role of preventing back flow of water. The nozzle 36 injects the pressure water supplied to the pressure pipe 34 toward the inside of the air supply pipe 32. As a result, the ejector effect occurs, the pressure at the connection portion of the suction pipe 38 becomes lower than the surroundings, and the air in the suction pipe 38 enters the air supply pipe 32.

上記構成により、循環バブリングシステムは次のように作動する。製氷は電力の安価な夜間に行うことが望ましい。冷凍機14は0度よりも低い温度に設定しブラインを冷却する。冷凍機14で冷却されたブラインは配管16aを介してポンプ18により、氷蓄熱槽10内部に設置した製氷コイル12に供給される。製氷コイル12に供給されたブラインは、製氷コイル12の上部から蛇行しながら製氷コイル12内部を流れ、氷蓄熱槽10底部の端部に接続した配管16bを介して冷凍機14に回収される。このとき、ブラインが製氷コイル12内部を流れることにより、冷却したブラインと氷蓄熱槽10内部の製氷コイル12表面に接する水との間で熱交換が起こる。その結果、水が凍結して製氷コイル12外周から氷が生成する。   With the above configuration, the circulating bubbling system operates as follows. It is desirable to make ice at night when electricity is cheap. The refrigerator 14 is set to a temperature lower than 0 degrees to cool the brine. The brine cooled by the refrigerator 14 is supplied to the ice making coil 12 installed in the ice heat storage tank 10 by the pump 18 through the pipe 16a. The brine supplied to the ice making coil 12 flows through the ice making coil 12 while meandering from the top of the ice making coil 12, and is recovered by the refrigerator 14 through the pipe 16b connected to the end of the ice heat storage tank 10 at the bottom. At this time, when the brine flows through the ice making coil 12, heat exchange occurs between the cooled brine and the water in contact with the surface of the ice making coil 12 inside the ice heat storage tank 10. As a result, water freezes and ice is generated from the outer periphery of the ice making coil 12.

次に、解氷は日中の空調機24の稼動に伴って行われる。氷蓄熱槽10内部に設置した流入口20から水を流入し、氷蓄熱槽10内部で製氷した氷を溶解させて解氷水を得る。解氷水は氷蓄熱槽10底部に設置した流出口22から流出して配管16cを介して接続した空調機24に供給される。空調機24は、図示しない空調空気と熱交換して、室内の空調空気を冷却する。熱交換した後の水は空調機24から排出してエア吸引部28に供給される。エア吸引部28の吸気機構によるエア吸引は次のように行う。圧力水が循環ポンプ26から圧力管34に供給される。圧力水は圧力管34内部を流動して吸気機構を形成するノズル36から噴射される。噴射された圧力水はエア供給管32の内部にエジェクタ効果を発生させる。エジェクタ効果はエア供給管32に接続した吸引管38内部に吸引力を生じ、吸引管38の端部のフィルタ付吸込口40からエアを吸い込む。吸い込まれたエアは吸引管38に接続したエア供給管32内部に流入する。エア供給管32に流入したエアはノズル36から噴射した圧力水とともに氷蓄熱槽10内部の配管16eに供給される。エアは配管16eに形成した吹出しノズル30から吹き出し氷蓄熱槽内部をバブリングする。   Next, the ice melting is performed with the operation of the air conditioner 24 during the daytime. Water flows in from the inlet 20 installed inside the ice heat storage tank 10, and the ice made in the ice heat storage tank 10 is melted to obtain deiced water. The ice-melt water flows out from the outlet 22 installed at the bottom of the ice heat storage tank 10 and is supplied to the air conditioner 24 connected via the pipe 16c. The air conditioner 24 exchanges heat with conditioned air (not shown) to cool indoor conditioned air. The water after heat exchange is discharged from the air conditioner 24 and supplied to the air suction unit 28. Air suction by the suction mechanism of the air suction unit 28 is performed as follows. Pressure water is supplied from the circulation pump 26 to the pressure pipe 34. The pressure water flows through the pressure pipe 34 and is jetted from a nozzle 36 that forms an intake mechanism. The ejected pressure water generates an ejector effect inside the air supply pipe 32. The ejector effect generates a suction force inside the suction pipe 38 connected to the air supply pipe 32 and sucks air from the suction port 40 with a filter at the end of the suction pipe 38. The sucked air flows into the air supply pipe 32 connected to the suction pipe 38. The air that has flowed into the air supply pipe 32 is supplied to the pipe 16e inside the ice heat storage tank 10 together with the pressure water sprayed from the nozzle 36. The air is bubbled from the blowout nozzle 30 formed in the pipe 16e and the inside of the ice storage tank.

このような実施形態の循環バブリングシステムは、圧力水をノズル36から噴出してエジェクタ効果を発生させているため、解氷水循環経路にバブリングするエアを混入することができ、氷蓄熱槽10内の配管に着氷する氷の均一な解氷が可能となる。よって、コンプレッサ等の付帯設備を用いなくてもバブリングすることができる。   Since the circulating bubbling system according to such an embodiment generates the ejector effect by ejecting the pressure water from the nozzle 36, the bubbling air can be mixed into the deicing water circulation path, and the inside of the ice heat storage tank 10 can be mixed. Uniform defrosting of ice icing on the piping is possible. Therefore, bubbling can be performed without using incidental equipment such as a compressor.

図3は本発明に係る循環バブリングシステムの第2実施形態を示す概略図である。第1の実施形態と同一の構成は同一番号を付して説明を省略する。本実施形態では氷蓄熱槽から排出されたバブリングガスを回収し、回収したバブリングガスを吸引機構に吸い込ませるバブリングガスの循環経路を配設する。本実施形態ではバブリングガスに窒素ガスを用いて説明する。   FIG. 3 is a schematic view showing a second embodiment of the circulating bubbling system according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, a bubbling gas circulation path for collecting the bubbling gas discharged from the ice heat storage tank and sucking the collected bubbling gas into the suction mechanism is provided. In the present embodiment, description will be made using nitrogen gas as the bubbling gas.

氷蓄熱槽10の水面上を覆うようにコーン状の密閉蓋50を形成する。密閉蓋50の上部中心の開口部52とフィルタ付吸込口40を配管16fにより接続する。ここで、窒素ガスの供給方法は、図3に示すように、窒素ボンベ58をフィルタ付吸込口40に配管54により接続し、窒素ガスを供給する。なお、本実施形態では窒素ボンベ58をフィルタ付吸込口40に接続して説明するが、窒素ボンベ58を密閉蓋50に配管56により接続し、氷蓄熱槽内部に窒素ガスを封入する方式としてもよい。   A cone-shaped sealing lid 50 is formed so as to cover the water surface of the ice heat storage tank 10. The opening 52 at the center of the top of the sealing lid 50 and the suction port with filter 40 are connected by a pipe 16f. Here, as shown in FIG. 3, the nitrogen gas is supplied by connecting a nitrogen cylinder 58 to the suction port 40 with a filter via a pipe 54 and supplying nitrogen gas. In this embodiment, the nitrogen cylinder 58 is connected to the suction port 40 with a filter. However, the nitrogen cylinder 58 may be connected to the sealing lid 50 by a pipe 56 so that nitrogen gas is sealed inside the ice heat storage tank. Good.

このような構成により、第2実施形態に係る循環バブリングシステムの窒素ガス吸引は次のように作用する。窒素ボンベ58をフィルタ付吸込口40に配管54により接続する。吸気機構のエジェクタ効果によって吸引力が生じ、窒素ガスが吸引管38に接続したエア供給管32内部に流入する。エア供給管32に流入した窒素ガスはノズル36から噴出した圧力水とともに氷蓄熱槽10内部の配管16eに供給される。窒素ガスは配管16eに形成した吹出しノズル30から吹き出し、氷蓄熱槽10内部をバブリングする。氷蓄熱槽10の水面上に浮上した窒素ガスは密閉蓋50により回収され開口部52から配管16fを経由してフィルタ付吸込口40に供給される。回収された窒素ガスはフィルタ付吸込口40の下方からの吸引力によって解氷水循環経路に供給される。   With such a configuration, nitrogen gas suction of the circulating bubbling system according to the second embodiment operates as follows. A nitrogen cylinder 58 is connected to the suction port 40 with a filter by a pipe 54. Suction force is generated by the ejector effect of the intake mechanism, and nitrogen gas flows into the air supply pipe 32 connected to the suction pipe 38. The nitrogen gas that has flowed into the air supply pipe 32 is supplied to the pipe 16e inside the ice heat storage tank 10 together with the pressure water ejected from the nozzle 36. Nitrogen gas is blown out from the blowing nozzle 30 formed in the pipe 16e, and the inside of the ice heat storage tank 10 is bubbled. Nitrogen gas floating on the water surface of the ice heat storage tank 10 is collected by the sealing lid 50 and supplied from the opening 52 to the suction port with filter 40 via the pipe 16f. The recovered nitrogen gas is supplied to the deicing water circulation path by the suction force from below the suction port with filter 40.

このような第2の実施形態の循環バブリングシステムは、氷蓄熱槽10に蓋を設置してフィルタ付吸込口40と接続することにより、バブリングガスを循環させることができバブリングガスの再利用を図ることができる。また、バブリングガスに窒素ガスを用いることで製氷コイルの配管の腐食を防止し、耐久性がよくなり長寿命とすることができる。なお、本実施形態ではバブリングガスに窒素ガスを用いて説明したが、配管の腐食を防止することができるガスであればこれに限定されず、例えばアルゴンやヘリウムなどの不活性ガスを用いてもよい。
なお、上記循環バブリングシステムは負荷側に空調機24に適用した例について説明したが、これは熱負荷であればよく、例えば生産冷却水のための熱交換設備など、一般的な熱交換器に適用することができる。
In such a circulating bubbling system according to the second embodiment, by installing a lid on the ice heat storage tank 10 and connecting it to the suction port 40 with a filter, the bubbling gas can be circulated and the bubbling gas can be reused. be able to. Further, by using nitrogen gas as the bubbling gas, corrosion of the piping of the ice making coil can be prevented, durability can be improved, and a long life can be achieved. In the present embodiment, the nitrogen gas is used as the bubbling gas. However, the present invention is not limited to this as long as the gas can prevent corrosion of the pipe. For example, an inert gas such as argon or helium may be used. Good.
In addition, although the said circulation bubbling system demonstrated the example applied to the air conditioner 24 on the load side, this should just be a heat load, for example, it is a general heat exchanger, such as a heat exchange facility for production cooling water. Can be applied.

本実施形態に係る循環バブリングシステムの概略を示す図である。It is a figure showing the outline of the circulation bubbling system concerning this embodiment. 本実施形態に係るエア吸引部の吸気機構の構造を示す図である。It is a figure which shows the structure of the intake mechanism of the air suction part which concerns on this embodiment. 本実施形態に係る第2実施形態の概略を示す図である。It is a figure which shows the outline of 2nd Embodiment which concerns on this embodiment. 従来の氷蓄熱システムの概略を示す図である。It is a figure which shows the outline of the conventional ice thermal storage system.

符号の説明Explanation of symbols

1………氷蓄熱槽、2………製氷コイル、3………ポンプ、4………冷凍機、5………流入口、6………流出口、7………空調機、8………循環ポンプ、9………エア配管、10………氷蓄熱槽、12………製氷コイル、14………冷凍機、16a,b,c,d,e,………配管、18………ポンプ、20………流入口、22………流出口、24………空調機、26………循環ポンプ、28………エア吸引部、30………吹出しノズル、32………エア供給管、34………圧力管、36………ノズル、38………吸引管、40………フィルタ付吸込口、42………二方弁、44………チャッキ弁、50………密閉蓋、52………開口部、54、56………配管、58………窒素ボンベ。 1 ......... Ice storage tank, 2 ......... Ice-making coil, 3 ......... Pump, 4 ......... Refrigerator, 5 ...... Inlet, 6 ......... Outlet, 7 ......... Air conditioner, 8 ......... Circulating pump, 9 ......... Air piping, 10 ......... Ice heat storage tank, 12 ......... Ice-making coil, 14 ......... Refrigerator, 16a, b, c, d, e, .... piping, 18 ......... Pump, 20 ......... Inlet, 22 ......... Outlet, 24 ......... Air conditioner, 26 ......... Circulating pump, 28 ......... Air suction section, 30 ......... Blowout nozzle, 32 ......... Air supply pipe, 34 ......... Pressure pipe, 36 ......... Nozzle, 38 ......... Suction pipe, 40 ......... Suction port with filter, 42 ......... Two-way valve, 44 ......... Check valve 50 ......... Sealing lid, 52 ......... Opening, 54, 56 ......... Piping, 58 ...... Nitrogen cylinder.

Claims (3)

氷蓄熱槽に配設する解氷水循環経路にエジェクタ式の吸気機構を備え、前記氷蓄熱槽内部の下方からバブリングすることを特徴とする循環バブリングシステム。 A circulating bubbling system comprising an ejector-type intake mechanism in a deicing water circulation path disposed in an ice heat storage tank, and bubbling from below in the ice heat storage tank. 前記氷蓄熱槽で排出されたバブリングガスを回収する回収部と、回収した前記バブリングガスを前記吸気機構に吸引させるバブリングガス循環経路を備え、前記バブリングガスを循環させたことを特徴とする請求項1記載の循環バブリングシステム。 The bubbling gas is circulated by including a collection unit for collecting the bubbling gas discharged from the ice heat storage tank and a bubbling gas circulation path for sucking the collected bubbling gas to the intake mechanism. The circulating bubbling system according to claim 1. 氷蓄熱槽の解氷水が流動し、前記氷蓄熱槽内部をバブリングする解氷水循環経路と、
前記解氷水循環経路内部の解氷水を循環させるポンプと、
前記解氷水循環経路に接続した吸込口を備え、前記氷蓄熱槽内部をバブリングするエアを吸い込むエジェクタ式の吸気機構と、
を備えたことを特徴とする循環式バブリングシステム。
The deicing water circulation path in which the deicing water in the ice heat storage tank flows and bubbles inside the ice heat storage tank,
A pump for circulating the deicing water inside the deicing water circulation path;
Ejector type intake mechanism comprising a suction port connected to the deicing water circulation path, and sucking air for bubbling inside the ice heat storage tank;
A circulating bubbling system characterized by comprising:
JP2003301050A 2003-08-26 2003-08-26 Circulating bubbling system Expired - Fee Related JP4218026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301050A JP4218026B2 (en) 2003-08-26 2003-08-26 Circulating bubbling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301050A JP4218026B2 (en) 2003-08-26 2003-08-26 Circulating bubbling system

Publications (2)

Publication Number Publication Date
JP2005069591A true JP2005069591A (en) 2005-03-17
JP4218026B2 JP4218026B2 (en) 2009-02-04

Family

ID=34405787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301050A Expired - Fee Related JP4218026B2 (en) 2003-08-26 2003-08-26 Circulating bubbling system

Country Status (1)

Country Link
JP (1) JP4218026B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237933A (en) * 2020-02-24 2020-06-05 上海绿筑住宅系统科技有限公司 Hybrid cooling system between unmanned on duty equipment of no external electricity
JP2020176750A (en) * 2019-04-16 2020-10-29 ダイキン工業株式会社 Air conditioning device
CN115200109A (en) * 2022-07-29 2022-10-18 郑州轻工业大学 Air conditioning system for rapidly maintaining constant temperature and humidity of clean room

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176750A (en) * 2019-04-16 2020-10-29 ダイキン工業株式会社 Air conditioning device
JP7364851B2 (en) 2019-04-16 2023-10-19 ダイキン工業株式会社 air conditioner
CN111237933A (en) * 2020-02-24 2020-06-05 上海绿筑住宅系统科技有限公司 Hybrid cooling system between unmanned on duty equipment of no external electricity
CN115200109A (en) * 2022-07-29 2022-10-18 郑州轻工业大学 Air conditioning system for rapidly maintaining constant temperature and humidity of clean room
CN115200109B (en) * 2022-07-29 2023-07-25 郑州轻工业大学 Air conditioning system for rapidly maintaining constant humidity of clean room temperature

Also Published As

Publication number Publication date
JP4218026B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR101189417B1 (en) Temperature Control Apparatus for Vehicle
JP4218026B2 (en) Circulating bubbling system
CN102914176A (en) Surface evaporation type cooling device adopting single-row finned pipes
CN108332321A (en) A kind of phase-change energy storage device
CN212482179U (en) Water-saving anti-freezing closed cooling tower
CN212885863U (en) Dual-cooling heat dissipation box for welding equipment
CN213901575U (en) Water chilling unit and energy storage system
JP4384147B2 (en) Static ice storage system
JP4803673B2 (en) Air refrigerant refrigeration equipment
JPH0320708Y2 (en)
CN208154870U (en) A kind of freezing recovery device based on double heat exchanger
JPH0370928A (en) Ice heat accumulator
JP2008309413A (en) Closed type cooling tower and draining method therefor
KR200270659Y1 (en) Heat-Exchanger using waste water of heat system
JPS61282739A (en) Ice slurry thermal accumulation device
JP2003028465A (en) Cooling device for small-sized fishing boat
CN220363192U (en) Cooling device arrangement structure, vehicle-mounted air conditioning system and new energy automobile
CN110006119A (en) Refrigeration unit
CN108981414A (en) A kind of water-circulating energy-saving cooling tower
JP2002250547A (en) Ice storage device
CN108917273A (en) It is a kind of to remove defrosting system for fishery cold-stroage boat
JP2696046B2 (en) Latent heat storage device
CN2859393Y (en) Physical circulating heat-accumulation defroster of refrigeration device
JP3445077B2 (en) Ice storage device
JP3478252B2 (en) Ice storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees