JP4384147B2 - Static ice storage system - Google Patents

Static ice storage system Download PDF

Info

Publication number
JP4384147B2
JP4384147B2 JP2006207411A JP2006207411A JP4384147B2 JP 4384147 B2 JP4384147 B2 JP 4384147B2 JP 2006207411 A JP2006207411 A JP 2006207411A JP 2006207411 A JP2006207411 A JP 2006207411A JP 4384147 B2 JP4384147 B2 JP 4384147B2
Authority
JP
Japan
Prior art keywords
water
heat storage
cold water
pipe
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006207411A
Other languages
Japanese (ja)
Other versions
JP2008032328A (en
Inventor
眞司 牧野
泰久 藤田
嘉男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2006207411A priority Critical patent/JP4384147B2/en
Publication of JP2008032328A publication Critical patent/JP2008032328A/en
Application granted granted Critical
Publication of JP4384147B2 publication Critical patent/JP4384147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は氷蓄熱槽内の冷却コイル(ブラインチューブ)表面で製氷するスタティック式氷蓄熱システムに関し、特に昼間の大負荷時には内側から氷を融解させる内融式で運転し、夜間の小負荷時には外側から氷を融解させる外融式で冷水を負荷側に供給し小負荷を処理する複合型の氷蓄熱システムに関する。   TECHNICAL FIELD The present invention relates to a static ice heat storage system that makes ice on the surface of a cooling coil (brine tube) in an ice heat storage tank, and in particular, operates with an inner melting type that melts ice from the inside during a large daytime load, and outside during a nighttime small load. The present invention relates to a combined ice heat storage system that melts ice from the outside and supplies cold water to the load side to handle small loads.

氷蓄熱システムには、蓄熱槽の中で製氷するスタティック式と、製氷部で作られたシャーベット状の氷をポンプで貯氷部へと送るダイナミック式とがあり、スタティック式にはコイルチューブの内側から氷を融解させる内融式と、コイルチューブの外側から氷を融解させる外融式とがある。本発明はスタティック式の氷蓄熱システムで、昼間の大負荷時には内側から氷を融解させる内融式で運転し、夜間の小負荷時には外側から氷を融解させる外融式で冷水を負荷側に供給して小負荷を処理する複合型の氷蓄熱システムに関するものである。スタティック型の氷蓄熱システムとして次のような技術が知られている。   There are two types of ice heat storage systems: a static type that makes ice in a heat storage tank, and a dynamic type that pumps sherbet-like ice made in the ice making unit to the ice storage unit. There are an inner melting type that melts ice and an outer melting type that melts ice from the outside of the coil tube. The present invention is a static type ice heat storage system that operates with an inner melting type that melts ice from the inside during daytime heavy loads, and supplies cold water to the load side with an outer melting type that melts ice from the outside during small loads at night. The present invention relates to a composite ice heat storage system that handles a small load. The following technologies are known as static type ice heat storage systems.

特開平8−152162「内融式氷蓄熱槽」には、スタティック型内融式の氷蓄熱システムの代表的な構造が示され、伝熱管(冷却コイル)に金属製の支持部材を取り付け、さらに氷蓄熱槽の底部に空気を送るブロアと散気管を設けて、氷蓄熱取り出し速度の向上と氷蓄熱取り出し温度の降下を意図している。Japanese Patent Laid-Open No. 8-152162 “Inner melting ice storage tank” shows a typical structure of a static inner melting ice storage system, and a metal support member is attached to a heat transfer tube (cooling coil). A blower and an air diffuser that send air to the bottom of the ice storage tank are provided to increase the speed of ice storage and to lower the temperature of the ice storage.

特開平10−288436「氷蓄熱システムにおけるスタティック型製氷装置」では、冷却パイプに隣接して縦方向に延びる冷却板を追加し、さらに水を散布する手段を追加して製氷能力を高めるようにしている。In Japanese Patent Laid-Open No. 10-288436 “Static ice making device in ice heat storage system”, a cooling plate extending in the vertical direction is added adjacent to the cooling pipe, and means for spraying water is further added to increase ice making capacity. Yes.

本発明のように、昼間の大負荷時には内側から氷を融解させる内融式で運転し、夜間の小負荷時には外側から氷を融解させる外融式で冷水を負荷側に供給し小負荷を処理する複合型の氷蓄熱システムは、省エネルギーで熱効率の高い運転が可能となるが、夜間の小負荷運転開始時に負荷側に供給される冷水の温度が0°C未満の過冷却状態となり、冷水ポンプ吸い込み側の配管内部で凍結を起こし、冷水ポンプでキャビテーションのような現象が発生する可能性があることが判明した。図4を参照しながら説明すると、氷蓄熱水槽10の内部の冷却コイル12に冷凍機(図示せず)からのブラインが供給され、冷却コイルの周囲に着氷する。昼間の大負荷時には内側から氷を融解させる内融式で運転されるので、ブラインが大負荷側へと供給されて冷房運転を実行する。この際、ブロア14から空気を蓄熱槽内に放出することにより、水槽内が攪拌され、より低温のブラインを大負荷側に送ることができる。
As in the present invention, it operates with an inner melting type that melts ice from the inside during heavy loads in the daytime, and supplies cold water to the load side with an outer melting type that melts ice from the outside during small loads at night to handle small loads. The combined ice heat storage system enables energy-saving and high-efficiency operation, but the temperature of the chilled water supplied to the load side at the start of light load operation at night becomes supercooled below 0 ° C, and the chilled water pump It has been found that there is a possibility that chilling may occur in the cold water pump due to freezing inside the piping on the suction side. If it demonstrates referring FIG. 4 , the brine from a refrigerator (not shown) will be supplied to the cooling coil 12 inside the ice thermal storage water tank 10, and it will ice around a cooling coil. Since it is operated by an inner melting type that melts ice from the inside during a large daytime load, brine is supplied to the large load side to execute a cooling operation. At this time, by releasing the air from the blower 14 into the heat storage tank, the inside of the water tank is agitated, and a lower temperature brine can be sent to the large load side.

一方、夜間の小負荷時には、冷水ポンプ16を運転して水槽の底部付近の位置Bから冷水を取り出し、冷水配管18、開閉弁20,21,22を介して小負荷Eへと供給し、省エネルギー式の冷房運転を行う。配管内に混入したエアはエア抜き弁Cへと送られる。冷房運転を終了した還流水は冷水入口Aから蓄熱槽10内へと戻される。   On the other hand, at the time of a light load at night, the cold water pump 16 is operated to take out cold water from the position B near the bottom of the water tank and supply it to the small load E through the cold water pipe 18 and the on-off valves 20, 21, 22 to save energy. Cooling operation of the type is performed. Air mixed in the pipe is sent to the air vent valve C. The reflux water that has finished the cooling operation is returned from the cold water inlet A into the heat storage tank 10.

このような小負荷運転は、運転開始後2時間程度経過すると定常状態に達して安定した運転が可能となるが、小負荷運転を開始した時点では、蓄熱槽内の水の一部が過冷却状態(0°C未満)にあるため、冷却コイル12周辺の過冷却水が対角線方向に流れて、冷水配管18内に過冷却水が流入する。過冷却水は開閉弁20,21の位置で物理的変化を受けて過冷却状態が解消され、凍結するようになる。ここで凍結すると冷水ポンプ16の吸い込み側管路が閉塞状態となり、冷水ポンプ16はキャビテーションのような現象が発生して安定した運転ができなくなり、負荷を処理する熱交換器(図示せず)への冷水の供給が不能となるだけでなく、異音の発生や配管の損傷を生じるおそれがあることがわかった。   Such a small load operation reaches a steady state after about 2 hours from the start of operation, and a stable operation is possible. However, when the small load operation is started, a part of the water in the heat storage tank is supercooled. Since it is in a state (less than 0 ° C.), the supercooling water around the cooling coil 12 flows in the diagonal direction, and the supercooling water flows into the cold water pipe 18. The supercooled water undergoes a physical change at the position of the on-off valves 20 and 21 to cancel the supercooled state and freezes. If freezing occurs here, the suction-side pipe line of the cold water pump 16 is closed, and a phenomenon such as cavitation occurs in the cold water pump 16 so that the stable operation cannot be performed, and the heat exchanger (not shown) that handles the load becomes unusable. It was found that not only the supply of cold water could be disabled, but also abnormal noise and piping damage could occur.

本発明の主たる目的は、夜間の小負荷を処理するための外融式の冷水供給運転を行う際に、冷水供給配管に過冷却水が供給されて凍結するのを防止し、安定した冷水供給運転を可能とすることにある。
本発明の他の目的は、内融式と外融式の複合運転を可能とすることにより、省エネルギー型の氷蓄熱システムを実現することにある。
The main object of the present invention is to prevent the cooling water supply pipe from being frozen by supplying supercooling water when performing an externally melted cold water supply operation for processing a small load at night, and providing a stable cold water supply. It is to enable driving.
Another object of the present invention is to realize an energy-saving ice heat storage system by enabling a combined operation of an inner melting type and an outer melting type.

前述した課題を解決するため、本発明はその第1の態様において、夜間の小負荷を処理するための冷水管路と冷水ポンプが配置され、氷蓄熱水槽内の側部に槽内チャンバが設けられ、この槽内チャンバには一方に出口管、他方に水槽水吸い込み口、さらに前記吸い込み口に隣接した位置にバイパス管接続口が設けられており、前記出口管から水槽内の水を前記冷水管路に供給する出口管路と、小負荷処理後の冷水を前記冷水管路から前記水槽の入口開口へと導入する還流管路と、前記還流管路の途中から冷水を前記槽内チャンバの前記バイパス管路接続口へと流入させるバイパス管路とを備えたことを特徴とするスタティック式氷蓄熱システムを提供する。   In order to solve the above-described problems, in the first aspect of the present invention, a chilled water pipeline and a chilled water pump for processing a nighttime small load are arranged, and a tank chamber is provided at a side portion in the ice heat storage water tank. The tank chamber is provided with an outlet pipe on one side, a water tank water suction port on the other side, and a bypass pipe connection port at a position adjacent to the suction port. Water in the water tank is supplied from the outlet pipe to the cold water. An outlet pipe for supplying the pipe, a reflux pipe for introducing cold water after the small load treatment from the cold water pipe to the inlet opening of the water tank, and cold water from the middle of the reflux pipe in the chamber in the tank. A static ice heat storage system is provided, comprising: a bypass conduit that flows into the bypass conduit connection port.

本発明の氷蓄熱システムでは、水槽内の側部に槽内チャンバを設けてその一方に出口管を配置したことと、槽内チャンバにバイパス管路からの冷水を導入して水槽内の低温の冷水と混合するようにしたこととにより、水槽内の温度より比較的高い温度の水を冷水供給管へと供給することになり、冷水供給管路に過冷却水が供給されるおそれが解消し、夜間の小負荷運転を安定して行うことが可能となる。   In the ice heat storage system of the present invention, a tank chamber is provided on the side of the water tank and an outlet pipe is disposed on one side thereof, and cold water from the bypass pipe is introduced into the tank chamber to reduce the temperature of the water tank. By mixing with cold water, water having a temperature relatively higher than the temperature in the water tank is supplied to the cold water supply pipe, eliminating the possibility of supplying supercooled water to the cold water supply pipe. Thus, it is possible to stably carry out the small load operation at night.

本発明はさらに好適な態様として、前記出口管からの冷水温度を検知する温度センサーと、前記温度センサーからの信号に基づいて前記還流管路の流量と前記バイパス管路の流量とを制御する制御部とを設けて、前記出口管からの冷水温度が0°C以上で好ましくは1°C付近となるように前記制御部で制御することができる。これにより、水槽内の温度が1°C以上のときはバイパス量がなくなり、冷水ポンプの消費エネルギーの増加をさらに小さくすることが可能となる。
As a further preferred aspect of the present invention, a temperature sensor that detects a temperature of cold water from the outlet pipe, and a control that controls the flow rate of the reflux pipe line and the flow rate of the bypass pipe line based on a signal from the temperature sensor. And the control unit can control so that the temperature of the cold water from the outlet pipe is 0 ° C or higher, and preferably around 1 ° C. Thereby, when the temperature in a water tank is 1 degreeC or more, there is no amount of bypass, and it becomes possible to further reduce the increase in the energy consumption of a cold water pump.

本発明はさらに他の好適な態様として、前記バイパス管路の流量が前記出口管の流量の25〜40%の範囲になるように、前記パイパス管路に抵抗を設けることができ、これにより無駄なバイパス量を削減でき、冷水ポンプの容量及び消費エネルギーの増加を低減することが可能となる。
According to another preferred embodiment of the present invention, a resistor can be provided in the bypass line so that the flow rate of the bypass line is in the range of 25 to 40% of the flow rate of the outlet line. It is possible to reduce the amount of bypass, and to reduce the capacity of the chilled water pump and the increase in energy consumption.

図1及び図2は、本発明によるスタティック型氷蓄熱システムの最も好適な態様を表しており、氷蓄熱水槽10の内部の冷却コイル12に冷凍機(図示せず)からのブラインが供給され、冷却コイルの周囲に着氷する。昼間の大負荷時には内側から氷を融解させる内融式で運転され、ブラインが大負荷側へと供給されて冷房運転を実行する。図1には省略されているが、図3に示したようなブロア14から空気を蓄熱槽内に放出することにより、水槽内が攪拌され、より低温のブラインを大負荷側に送ることができる。   1 and 2 show the most preferable embodiment of the static ice heat storage system according to the present invention, and brine from a refrigerator (not shown) is supplied to the cooling coil 12 inside the ice heat storage water tank 10, Freezes around the cooling coil. When the daytime is a heavy load, it is operated by an inner melting type that melts ice from the inside, and brine is supplied to the large load side to execute a cooling operation. Although omitted in FIG. 1, by releasing air from the blower 14 as shown in FIG. 3 into the heat storage tank, the inside of the water tank is agitated, and lower temperature brine can be sent to the large load side. .

本発明の氷蓄熱システムは、夜間の小負荷時には冷却コイル12の周囲に着氷した氷を外側から融解させる外融式で冷水を負荷側に供給し小負荷を処理する複合型の氷蓄熱システムであるから、小負荷処理用の回路が設けられている。すなわち、夜間の小負荷を処理するための冷水管路30と外融冷水ポンプ32とが配置され、冷水が水/水熱交換器36へと送られ、熱交換器36を介して夜間負荷側に冷熱が供給される。夜間負荷側への供給温度を一定にするように、流量制御弁34、57および温度センサー62が設けられている。   The ice heat storage system of the present invention is a composite ice heat storage system that supplies cold water to the load side and processes the small load by an external melting type that melts the ice icing around the cooling coil 12 from the outside when the load is small at night. Therefore, a circuit for processing a small load is provided. That is, a chilled water pipe 30 and an externally melted chilled water pump 32 for processing a small load at night are arranged, and chilled water is sent to the water / water heat exchanger 36, and the night load side through the heat exchanger 36. Is supplied with cold heat. Flow control valves 34 and 57 and a temperature sensor 62 are provided so as to make the supply temperature to the night load side constant.

本発明の特徴に従い、氷蓄熱水槽10内の側部に断熱材料製の槽内チャンバ40が設けられ、この槽内チャンバ40には一方に出口管42、他方に水槽水吸い込み口44、さらに吸い込み口44の近傍の対向した位置にバイパス管接続口46が設けられており、その他の面は封鎖されている。例として、槽内チャンバ40の幅Wは3000mm、高さHは450mm、奥行きDは180mm、吸い込み口の高さSは500mmに設定することができる。図1では、槽内チャンバ40を横形として氷蓄熱水槽10の底部に内壁面に沿って設置しているが、槽内チャンバ40を立て形として内壁面に沿って立てた状態で設置することもできる。   In accordance with the characteristics of the present invention, a tank chamber 40 made of a heat insulating material is provided at a side portion in the ice heat storage water tank 10. The tank chamber 40 has an outlet pipe 42 on one side, a water tank water suction port 44 on the other side, and a further suction. A bypass pipe connection port 46 is provided at an opposed position in the vicinity of the port 44, and the other surfaces are sealed. As an example, the width W of the in-vessel chamber 40 can be set to 3000 mm, the height H to 450 mm, the depth D to 180 mm, and the suction port height S to 500 mm. In FIG. 1, the tank chamber 40 is installed horizontally along the inner wall surface at the bottom of the ice heat storage tank 10, but the tank chamber 40 may be installed standing up along the inner wall surface as a vertical shape. it can.

槽内チャンバ40の出口管42には、水槽内の水を冷水管路30に供給するための出口管路50が接続されている。さらに、小負荷処理後の冷水を冷水管路30から水槽10の入口開口11へと導入する還流管路52と流量制御弁53、還流管路52の途中から冷水を槽内チャンバ40のバイパス管路接続口46へと流入させるバイパス管路54と流量制御弁55とが設けられている。   An outlet pipe 50 for supplying the water in the water tank to the cold water pipe 30 is connected to the outlet pipe 42 of the tank chamber 40. Furthermore, the cold water after the small load treatment is introduced from the cold water pipe 30 to the inlet opening 11 of the water tank 10, the flow control valve 53, and the cold water is supplied from the middle of the reflux pipe 52 to the bypass pipe of the in-chamber chamber 40. A bypass conduit 54 and a flow rate control valve 55 are provided to flow into the passage connection port 46.

かくして、本発明の氷蓄熱システムの基本的な態様によれば、氷蓄熱水槽10内に設けられた槽内チャンバ40にバイパス管路54からの冷水が導入されて、水槽内の低温の冷水と混合される結果、水槽内の温度より比較的高い温度の水が冷水供給管路30へと供給されることになり、冷水供給管路30に過冷却水が供給されるおそれが解消し、夜間の小負荷運転を安定して行うことが可能となる。   Thus, according to the basic aspect of the ice heat storage system of the present invention, the cold water from the bypass pipe 54 is introduced into the tank chamber 40 provided in the ice heat storage water tank 10, and the cold water in the water tank is cooled. As a result of mixing, water having a temperature relatively higher than the temperature in the water tank is supplied to the cold water supply pipe 30, eliminating the possibility of supplying supercooled water to the cold water supply pipe 30 at night. It is possible to stably perform the small load operation.

図3は本発明の他の好適な態様として、バイパス管路54の途中に抵抗58(絞り、オリフィス、手動弁など)が設けられる。この抵抗はバイパス管路54を通過する流量が出口管の流量の25〜40%の範囲になるように設定することが好ましい。これにより無駄なバイパス量を削減でき、冷水ポンプの容量及び消費エネルギーの増加を低減することが可能となる。
FIG. 3 shows another preferred embodiment of the present invention in which a resistor 58 (throttle, orifice, manual valve, etc.) is provided in the middle of the bypass line 54. This resistance is preferably set so that the flow rate passing through the bypass line 54 is in the range of 25 to 40% of the flow rate of the outlet pipe. As a result, a wasteful amount of bypass can be reduced, and an increase in the capacity and energy consumption of the chilled water pump can be reduced.

前述したように、本発明の目的は冷水供給回路に過冷却状態の水が供給されるのを防止することであるから、最適な態様として、槽内チャンバ40の出口管42の冷水温度を検知するための温度センサー60を配置し、温度センサー60からの信号に基づいて還流管路52の流量とバイパス管路54の流量とを制御する制御部70を設けることができる。制御部70は、出口管42からの冷水温度が0°C以上で好ましくは1°C付近となるように制御するほか、小負荷側への冷水供給位置に設けられた温度センサー62の信号に基づいて、冷水供給回路の流量制御弁57を制御するなどして、小負荷側に最適な冷水が供給されるように調節する働きを行うことができる。   As described above, the object of the present invention is to prevent the supercooled water from being supplied to the chilled water supply circuit. Therefore, as an optimal mode, the chilled water temperature of the outlet pipe 42 of the tank chamber 40 is detected. Therefore, a control unit 70 can be provided which controls the flow rate of the reflux line 52 and the flow rate of the bypass line 54 based on a signal from the temperature sensor 60. The control unit 70 controls the temperature of the chilled water from the outlet pipe 42 to be 0 ° C. or higher, and preferably near 1 ° C. In addition, the control unit 70 outputs a signal from the temperature sensor 62 provided at the cold water supply position to the small load side. Based on this, the flow control valve 57 of the chilled water supply circuit can be controlled so that the optimum chilled water is supplied to the small load side.

以上詳細に説明したように、本発明によれば、夜間の小負荷を処理するために外融式の冷水供給運転を行う際に、冷水供給配管に過冷却水が供給されて凍結するのが防止され、安定した冷水供給運転が可能となり、省エネルギー型の氷蓄熱システムが実現される。さらに、冷水ポンプの消費エネルギーの増加を最小限に抑えることが可能となるなど、その技術的効果には極めて顕著なものがある。   As described above in detail, according to the present invention, when performing an externally melted chilled water supply operation to handle a small night load, supercooled water is supplied to the chilled water supply pipe and freezes. Thus, a stable cold water supply operation is possible, and an energy-saving ice heat storage system is realized. Furthermore, the technical effect is extremely remarkable, such as an increase in energy consumption of the cold water pump can be minimized.

本発明による氷蓄熱システムを表す概略図。Schematic showing the ice thermal storage system by this invention. 本発明における槽内チャンバを表す概略斜視図。The schematic perspective view showing the chamber in a tank in the present invention. 本発明による氷蓄熱システムを表す概略図。Schematic showing the ice thermal storage system by this invention. 従来の氷蓄熱システムを表す概略図。Schematic showing the conventional ice thermal storage system.

符号の説明Explanation of symbols

10 氷蓄熱水槽
11 入口開口
12 冷却コイル
30 冷水管路
32 冷水ポンプ
34,53,55,57 流量制御弁
40 槽内チャンバ
42 出口管
44 吸い込み口
46 バイパス管接続口
50 出口管路
52 還流管路
54 バイパス管路
58 抵抗
60 温度センサー
70 制御部
DESCRIPTION OF SYMBOLS 10 Ice thermal storage tank 11 Inlet opening 12 Cooling coil 30 Chilled water pipe 32 Chilled water pump 34,53,55,57 Flow control valve 40 In-chamber chamber 42 Outlet pipe 44 Suction port 46 Bypass pipe connection port 50 Outlet pipe 52 Reflux pipe 54 Bypass line 58 Resistance 60 Temperature sensor 70 Control unit

Claims (3)

氷蓄熱水槽内の冷却コイル表面で製氷するスタティック式氷蓄熱システムで、昼間の大負荷時には内側から氷を融解させる内融式で運転し、夜間の小負荷時には外側から氷を融解させる外融式で冷水を負荷側に供給し小負荷を処理する複合型の氷蓄熱システムであって、
夜間の小負荷を処理するための冷水管路と冷水ポンプが配置され、
氷蓄熱水槽内の側部に槽内チャンバが設けられ、
この槽内チャンバには一方に出口管、他方に水槽水吸い込み口、さらに前記吸い込み口に隣接した位置にバイパス管接続口が設けられており、
前記出口管から水槽内の水を前記冷水管路に供給する出口管路と、
小負荷処理後の冷水を前記冷水管路から前記水槽の入口開口へと導入する還流管路と、
前記還流管路の途中から冷水を前記槽内チャンバの前記バイパス管路接続口へと流入させるバイパス管路とを備えたことを特徴とするスタティック式氷蓄熱システム。
A static ice heat storage system that makes ice on the surface of the cooling coil in the ice heat storage water tank. It operates with an internal melting system that melts ice from the inside during daytime heavy loads, and an external melting system that melts ice from the outside during small nighttime loads. A combined ice heat storage system that supplies cold water to the load side to handle small loads,
Chilled water pipes and chilled water pumps are arranged to handle small loads at night,
A tank chamber is provided on the side of the ice heat storage water tank,
This tank chamber is provided with an outlet pipe on one side, a water tank water suction port on the other side, and a bypass pipe connection port at a position adjacent to the suction port,
An outlet pipe for supplying water in the water tank from the outlet pipe to the cold water pipe;
A reflux line for introducing cold water after the small load treatment from the cold water line to the inlet opening of the water tank;
A static ice heat storage system comprising: a bypass pipe for allowing cold water to flow into the bypass pipe connection port of the in-tank chamber from the middle of the reflux pipe.
前記出口管からの冷水温度を検知する温度センサーと、前記温度センサーからの信号に基づいて前記還流管路の流量と前記バイパス管路の流量とを制御する制御部とが設けられ、前記出口管からの冷水温度が0°C以上で好ましくは1°C付近となるように前記制御部で制御することを特徴とする請求項1記載のスタティック式氷蓄熱システム。   A temperature sensor that detects a temperature of the cold water from the outlet pipe, and a control unit that controls a flow rate of the reflux pipe and a flow rate of the bypass pipe based on a signal from the temperature sensor, and the outlet pipe 2. The static ice heat storage system according to claim 1, wherein the control unit controls the temperature of the cold water from the temperature to 0 ° C. or higher, preferably about 1 ° C. 3. 前記バイパス管路の流量が前記出口管の流量の25〜40%の範囲になるように、前記パイパス管路に抵抗を設けたことを特徴とする請求項1記載のスタティック式氷蓄熱システム。
The static ice heat storage system according to claim 1, wherein a resistance is provided in the bypass pipe so that a flow rate of the bypass pipe is in a range of 25 to 40% of a flow rate of the outlet pipe.
JP2006207411A 2006-07-31 2006-07-31 Static ice storage system Active JP4384147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207411A JP4384147B2 (en) 2006-07-31 2006-07-31 Static ice storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207411A JP4384147B2 (en) 2006-07-31 2006-07-31 Static ice storage system

Publications (2)

Publication Number Publication Date
JP2008032328A JP2008032328A (en) 2008-02-14
JP4384147B2 true JP4384147B2 (en) 2009-12-16

Family

ID=39121945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207411A Active JP4384147B2 (en) 2006-07-31 2006-07-31 Static ice storage system

Country Status (1)

Country Link
JP (1) JP4384147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353109A (en) * 2011-09-09 2012-02-15 广州贝龙环保热力设备股份有限公司 Large temperature difference water cold storage system adopting multi-pass evaporator refrigeration host

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414007B1 (en) 2013-07-26 2014-07-02 한국타이어 주식회사 Extrudate cooling apparatus using ice storage
CN110793187B (en) * 2019-12-09 2023-10-31 珠海格力电器股份有限公司 Gas water heating system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353109A (en) * 2011-09-09 2012-02-15 广州贝龙环保热力设备股份有限公司 Large temperature difference water cold storage system adopting multi-pass evaporator refrigeration host

Also Published As

Publication number Publication date
JP2008032328A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
US20160109186A1 (en) Apparatus for the storage, transport and distribution of refrigerated or frozen goods, in particular for thermally insulated containers of refrigerated vehicles, cold rooms and the like
KR20140064998A (en) System for adjusting temperature of molding die
JP4384147B2 (en) Static ice storage system
CN105387644A (en) Water chilling unit and control method thereof
JP4369331B2 (en) Supercooled water dynamic ice storage tank
CN105135788A (en) Refrigerator and control method thereof
TWI539127B (en) Fishing equipment for fishing vessels
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
KR20210061281A (en) Refrigeration device using ejector
KR101211482B1 (en) Mgo cooling system
JP3419366B2 (en) Ice storage device
JPH09159232A (en) Controlling method for ice storage type water chiller
JP4218026B2 (en) Circulating bubbling system
JP3947780B2 (en) Remodeling existing air conditioning system
JP7231848B2 (en) Ice supply device and ice making system
CN217483072U (en) Tail gas treatment water-cooling integrator
CN214582057U (en) Refrigerating device of ice water direct drinking machine
KR101486554B1 (en) Wine cooling device
EP4083542B1 (en) Ice supply device and ice making system
CN215177040U (en) Equipment for regulating and controlling temperature by utilizing residual cold and residual heat in production
KR102164834B1 (en) Water Cooling Heat Exchanger Of Cooling Device
RU2390124C1 (en) Combined installation for milk cooling with use of natural cold
JP2003231593A (en) Ice-storage-type beverage dispenser
JP2015140952A (en) Heat pump type heat source machine
JPH0828913A (en) Ice heat storage type refrigerating unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4384147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250