JP2015140952A - Heat pump type heat source machine - Google Patents

Heat pump type heat source machine Download PDF

Info

Publication number
JP2015140952A
JP2015140952A JP2014012978A JP2014012978A JP2015140952A JP 2015140952 A JP2015140952 A JP 2015140952A JP 2014012978 A JP2014012978 A JP 2014012978A JP 2014012978 A JP2014012978 A JP 2014012978A JP 2015140952 A JP2015140952 A JP 2015140952A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
bypass passage
heat pump
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014012978A
Other languages
Japanese (ja)
Other versions
JP6440006B2 (en
Inventor
秋人 江田
Akito Eda
秋人 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2014012978A priority Critical patent/JP6440006B2/en
Publication of JP2015140952A publication Critical patent/JP2015140952A/en
Application granted granted Critical
Publication of JP6440006B2 publication Critical patent/JP6440006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type heat source machine capable of preventing a liquefied refrigerant from staying in a bypass passage in which a defrosting valve is installed, and capable of reducing a filling amount of the refrigerant as much as possible.SOLUTION: A heat pump type heat source machine 3 includes a heat pump circuit 20 configured by connecting a compressor 21, a condensation heat exchanger 22, an expansion valve 23 and an evaporation heat exchanger 24 by refrigerant piping 25. The heat pump circuit 20 has a bypass passage 31 which at least bypasses the condensation heat exchanger 22, and a defrosting valve 32 installed in the bypass passage 31. When frost formation in the evaporation heat exchanger 24 is detected, the defrosting valve 32 is opened and a defrosting operation is performed. The defrosting valve 32 is installed at a position close to a branch part in which the bypass passage 31 branches from the refrigerant piping 25 between the compressor 21 and the condensation heat exchanger 22.

Description

本発明はヒートポンプ式熱源機に関し、特に凝縮熱交換器と膨張弁とをバイパスするバイパス通路に設置された除霜弁を使用して除霜運転を行うものに関する。   The present invention relates to a heat pump heat source device, and more particularly to a device that performs a defrosting operation using a defrosting valve installed in a bypass passage that bypasses a condensation heat exchanger and an expansion valve.

従来から、冷媒を利用した熱交換式のヒートポンプ給湯装置が一般に広く普及している。この種のヒートポンプ給湯装置は、冷媒により湯水を加熱するヒートポンプ式熱源機、加熱された湯水を貯留する貯湯タンク、ヒートポンプ式熱源機と貯湯タンクとの間に湯水を循環する加熱循環回路等を備え、貯湯タンク内の湯水を加熱循環回路に循環させてヒートポンプ式熱源機で加熱して、加熱された湯水を貯湯タンク内に戻して貯留し、貯湯タンクから蛇口や風呂等の所望の給湯先に給湯するものである。   2. Description of the Related Art Conventionally, heat exchange type heat pump water heaters using a refrigerant have been widely used. This type of heat pump water heater includes a heat pump heat source device that heats hot and cold water with a refrigerant, a hot water storage tank that stores heated hot water, a heating circulation circuit that circulates hot water between the heat pump heat source device and the hot water storage tank, and the like. The hot water in the hot water storage tank is circulated through a heating circuit and heated by a heat pump heat source device, and the heated hot water is returned to the hot water storage tank for storage, and then supplied from the hot water storage tank to a desired hot water supply destination such as a faucet or bath. Hot water is to be supplied.

上記のヒートポンプ式熱源機は、圧縮機、凝縮熱交換器、膨張弁、蒸発熱交換器を冷媒配管を介して接続することでヒートポンプ回路を構成し、冷媒配管に封入された冷媒を利用して貯湯運転が行われる。この貯湯運転では、圧縮機と蒸発熱交換器用の送風ファンとが夫々駆動され、凝縮熱交換器によってヒートポンプ回路を流れる冷媒と加熱循環回路を流れる湯水との間で熱交換が行われて湯水が加熱される。   The above heat pump heat source machine is configured by connecting a compressor, a condensation heat exchanger, an expansion valve, and an evaporating heat exchanger via a refrigerant pipe, and uses a refrigerant enclosed in the refrigerant pipe. Hot water storage operation is performed. In this hot water storage operation, the compressor and the blower fan for the evaporative heat exchanger are respectively driven, and heat is exchanged between the refrigerant flowing through the heat pump circuit and the hot water flowing through the heating circulation circuit by the condensation heat exchanger, so that the hot water is Heated.

ところで、上記のヒートポンプ式熱源機において、蒸発熱交換器で冷媒が外気から吸熱する構造上、寒冷地や冬場等では、蒸発熱交換器の表面に大気中の水蒸気が付着して凍結することで霜が発生する場合がある。蒸発熱交換器に霜が付着すると、蒸発熱交換器における吸熱効率が著しく低下してしまい、結果的にヒートポンプ式熱源機の運転効率が低下してしまうという問題がある。   By the way, in the heat pump type heat source device described above, due to the structure in which the refrigerant absorbs heat from the outside air in the evaporative heat exchanger, in the cold region and winter, the water vapor in the atmosphere adheres to the surface of the evaporative heat exchanger and freezes. Frost may occur. If frost adheres to the evaporative heat exchanger, the endothermic efficiency in the evaporative heat exchanger is significantly reduced, and as a result, the operation efficiency of the heat pump heat source apparatus is lowered.

このため、ヒートポンプ式熱源機には、一般的に、貯湯運転を停止して蒸発熱交換器に付着した霜を取り除く為の除霜運転の機能が設けられている。このような除霜運転の機能としては、以下に説明するような種々の技術が実用化されている。   For this reason, the heat pump heat source machine is generally provided with a function of a defrosting operation for stopping the hot water storage operation and removing frost adhering to the evaporation heat exchanger. As a function of such a defrosting operation, various techniques described below have been put into practical use.

例えば、圧縮機に四方弁を設け、除霜運転時には、この四方弁を介して冷媒を通常運転時とは逆方向に流し、圧縮機で高温高圧にされた冷媒(ホットガス)を蒸発熱交換器に直接流し込み、蒸発熱交換器に付着した霜を融解することで除霜を行う。   For example, a four-way valve is provided in the compressor, and during defrosting operation, the refrigerant flows through the four-way valve in the opposite direction to that during normal operation, and the refrigerant (hot gas) that has been heated to high temperature and high pressure by the compressor is evaporated and exchanged. Defrosting is performed by pouring directly into the vessel and melting the frost adhering to the evaporative heat exchanger.

また、特許文献1に記載されているヒートポンプ給湯機では、凝縮熱交換器をバイパスするバイパス通路を設け、このバイパス通路に除霜弁を設置し、除霜運転時には、除霜弁を開放し、圧縮機で加熱された冷媒を、バイパス通路を介して蒸発熱交換器に直接流して蒸発熱交換器の霜を取り除く。   Moreover, in the heat pump water heater described in Patent Document 1, a bypass passage that bypasses the condensation heat exchanger is provided, a defrost valve is installed in the bypass passage, and the defrost valve is opened during the defrosting operation. The refrigerant heated by the compressor is directly flowed to the evaporative heat exchanger through the bypass passage to remove frost on the evaporative heat exchanger.

特開2006−220357号公報JP 2006-220357 A

ところで、通常の貯湯運転時、特許文献1のヒートポンプ給湯機の構造では、バイパス通路は除霜弁によって常時閉止されているので、バイパス通路に冷媒配管から流入した冷媒が滞留してしまう。特に、除霜弁よりも上流側のバイパス通路には、圧縮機と凝縮熱交換器との間の冷媒配管から高温高圧の気体状の冷媒が流入する。   By the way, during the normal hot water storage operation, in the structure of the heat pump water heater of Patent Document 1, since the bypass passage is always closed by the defrost valve, the refrigerant flowing from the refrigerant pipes is retained in the bypass passage. In particular, a high-temperature and high-pressure gaseous refrigerant flows into the bypass passage upstream of the defrost valve from the refrigerant pipe between the compressor and the condensation heat exchanger.

しかし、バイパス通路の長さや除霜弁の設置個所は、ヒートポンプ式熱源機の機器類の配置に応じて決定されるので、冷媒配管からバイパス通路が分岐する分岐部から除霜弁が離れて設置されると、除霜弁よりも上流側のバイパス通路に流入した冷媒は、外気温度等の影響により温度が徐々に低下して液化してしまう。バイパス通路に滞留した液状の冷媒は、ヒートポンプサイクルの運転に寄与しない上、気体状の冷媒と比較して液化した冷媒が滞留すると、冷媒の充填量を多くする必要があるので、結果的にヒートポンプ式熱源機の運転効率が低下するという問題がある。   However, the length of the bypass passage and the installation location of the defrost valve are determined according to the arrangement of the heat pump heat source equipment, so the defrost valve is installed away from the branch where the bypass passage branches from the refrigerant pipe. Then, the refrigerant that has flowed into the bypass passage on the upstream side from the defrost valve is gradually liquefied due to the temperature gradually decreasing due to the influence of the outside air temperature or the like. The liquid refrigerant staying in the bypass passage does not contribute to the operation of the heat pump cycle, and if the liquefied refrigerant stays in comparison with the gaseous refrigerant, it is necessary to increase the filling amount of the refrigerant. As a result, the heat pump There is a problem that the operating efficiency of the heat source machine decreases.

本発明の目的は、除霜弁が設置されたバイパス通路に液化した冷媒が滞留するのを防止可能なヒートポンプ式熱源機を提供すること、冷媒の充填量を極力節減可能なヒートポンプ式熱源機を提供すること、等である。   An object of the present invention is to provide a heat pump heat source device capable of preventing liquefied refrigerant from staying in a bypass passage where a defrost valve is installed, and to provide a heat pump heat source device capable of reducing the amount of refrigerant charged as much as possible. Providing, etc.

請求項1のヒートポンプ式熱源機は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒配管で接続して構成されたヒートポンプ回路を備えたヒートポンプ式熱源機であって、前記ヒートポンプ回路は、少なくとも前記凝縮熱交換器をバイパスするバイパス通路と、このバイパス通路に設置された除霜弁とを有し、前記蒸発熱交換器の着霜を検知した場合には、前記除霜弁を開放して除霜運転を行うヒートポンプ式熱源機において、前記除霜弁は、前記圧縮機と前記凝縮熱交換器との間の前記冷媒配管から前記バイパス通路が分岐する分岐部に近接した位置に設置されたことを特徴としている。   The heat pump heat source apparatus according to claim 1 is a heat pump heat source apparatus including a heat pump circuit configured by connecting a compressor, a condensing heat exchanger, an expansion means, and an evaporating heat exchanger with a refrigerant pipe, The heat pump circuit has at least a bypass passage that bypasses the condensing heat exchanger and a defrost valve installed in the bypass passage, and when the frost formation of the evaporative heat exchanger is detected, the defrosting In a heat pump heat source apparatus that performs a defrosting operation by opening a valve, the defrosting valve is close to a branch portion where the bypass passage branches from the refrigerant pipe between the compressor and the condensing heat exchanger. It is characterized by being installed in a position.

請求項2のヒートポンプ式熱源機は、請求項1の発明において、前記バイパス通路は、前記分岐部と前記除霜弁の入口側とを接続する上流側バイパス通路部を有し、前記上流側バイパス通路部は、前記除霜弁に一体的に装備されている接続管で構成されたことを特徴としている。   The heat pump heat source apparatus according to claim 2 is the invention according to claim 1, wherein the bypass passage includes an upstream bypass passage portion connecting the branch portion and an inlet side of the defrost valve, and the upstream bypass passage. The passage portion is characterized in that it is constituted by a connecting pipe that is integrally provided in the defrost valve.

請求項3のヒートポンプ式熱源機は、請求項2の発明において、前記分岐部はT字形の接続継手部材で構成され、前記接続管が前記接続継手部材に直接接続されたことを特徴としている。   According to a third aspect of the present invention, in the heat pump type heat source apparatus according to the second aspect of the present invention, the branch portion is formed of a T-shaped connecting joint member, and the connecting pipe is directly connected to the connecting joint member.

請求項1の発明によれば、除霜弁は、圧縮機と凝縮熱交換器との間の冷媒配管からバイパス通路が分岐する分岐部に近接した位置に設置されたので、分岐部と除霜弁との間のバイパス通路の長さを短く構成することができる。   According to the first aspect of the present invention, the defrost valve is installed at a position close to the branch portion where the bypass passage branches from the refrigerant pipe between the compressor and the condensation heat exchanger. The length of the bypass passage between the valves can be shortened.

従って、除霜弁を冷媒配管の近くに適切に配置することで、除霜弁よりも上流側のバイパス通路に滞留する冷媒量を少量にすることができる。冷媒配管を流れる高温高圧の冷媒の温度を利用して、冷媒配管からバイパス通路に流入した冷媒の液化を防止することができるので、冷媒配管への冷媒の充填量を極力節減して、ヒートポンプ式熱源機の運転効率の低下を防止することができる。   Therefore, by appropriately disposing the defrost valve near the refrigerant pipe, the amount of refrigerant staying in the bypass passage upstream of the defrost valve can be reduced. The temperature of the high-temperature and high-pressure refrigerant flowing through the refrigerant pipe can be used to prevent the liquefaction of the refrigerant flowing into the bypass passage from the refrigerant pipe. A decrease in operating efficiency of the heat source machine can be prevented.

請求項2の発明によれば、バイパス通路は、分岐部と除霜弁の入口側とを接続する上流側バイパス通路部を有し、上流側バイパス通路部は、除霜弁に一体的に装備されている接続管で構成されたので、上流側バイパス通路部をコンパクトに構成することができる。除霜弁と上流側バイパス通路とを一体品としてヒートポンプ式熱源機に組み付けることができるので、作業性が向上する。   According to the invention of claim 2, the bypass passage has an upstream bypass passage portion that connects the branch portion and the inlet side of the defrost valve, and the upstream bypass passage portion is provided integrally with the defrost valve. Therefore, the upstream bypass passage can be made compact. Since the defrost valve and the upstream bypass passage can be assembled as an integrated product in the heat pump heat source machine, workability is improved.

請求項3の発明によれば、分岐部はT字形の接続継手部材で構成され、接続管が接続継手部材に直接接続されたので、冷媒配管と除霜弁とを接続する配管部材が不要になり、部品点数が低減し、ロウ付け箇所が低減することで作業工数が減り、上流側バイパス通路部の冷媒配管へ取り付ける際の作業が簡単になる。   According to the invention of claim 3, the branch portion is formed of a T-shaped connecting joint member, and the connecting pipe is directly connected to the connecting joint member, so that a piping member for connecting the refrigerant pipe and the defrost valve is not required. Thus, the number of parts is reduced, and the number of work points is reduced by reducing the number of brazing points, and the work for attaching to the refrigerant pipe in the upstream bypass passage is simplified.

本発明の実施例に係るヒートポンプ給湯装置の概略構成図である。It is a schematic block diagram of the heat pump hot-water supply apparatus which concerns on the Example of this invention. 冷媒配管とバイパス通路と除霜弁の概略構成図である。It is a schematic block diagram of refrigerant | coolant piping, a bypass channel | path, and a defrost valve.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

先ず、ヒートポンプ給湯装置1の全体構成について説明する。
図1に示すように、ヒートポンプ給湯装置1は、湯水を貯留する貯湯タンク5を備えた貯湯給湯装置2、貯湯タンク5の湯水の加熱を行うヒートポンプ式熱源機3、ヒートポンプ給湯装置1を制御する制御ユニット4、貯湯給湯装置2とヒートポンプ式熱源機3との間に湯水を循環させる循環用配管8a,8b等から構成されている。
First, the whole structure of the heat pump hot water supply apparatus 1 is demonstrated.
As shown in FIG. 1, a heat pump hot water supply apparatus 1 controls a hot water storage hot water supply apparatus 2 having a hot water storage tank 5 for storing hot water, a heat pump heat source apparatus 3 for heating hot water in the hot water storage tank 5, and a heat pump hot water supply apparatus 1. It comprises circulation pipes 8a and 8b for circulating hot water between the control unit 4, the hot water storage hot water supply device 2 and the heat pump heat source unit 3.

図1に示すように、貯湯給湯装置2は、縦長筒状の外周面を有する貯湯タンク5、各種の配管6,7,8a,8b、湯水循環ポンプ11、開閉弁12、混合弁13、主制御ユニット16、外装ケース17等を備えている。貯湯タンク5は、ヒートポンプ式熱源機3で加熱された高温の湯水(例えば、65〜90℃)を貯留するものである。   As shown in FIG. 1, a hot water storage and hot water supply apparatus 2 includes a hot water storage tank 5 having a vertically long cylindrical outer peripheral surface, various pipes 6, 7, 8 a and 8 b, a hot water circulation pump 11, an on-off valve 12, a mixing valve 13, A control unit 16, an outer case 17, and the like are provided. The hot water storage tank 5 stores high-temperature hot water (for example, 65 to 90 ° C.) heated by the heat pump heat source unit 3.

貯湯タンク5の下端部には、給水配管6と循環用配管8aとが接続されている。給水配管6には、貯湯タンク5へ低温の上水を供給する為の開閉弁12が設けられている。貯湯タンク5の上端部には、循環用配管8bと出湯配管7とが接続され、循環用配管8bから戻された高温の湯水を貯湯タンク5内に貯留し、給湯時には貯湯タンク5内の高温の湯水を出湯配管7に供給することができる。   A water supply pipe 6 and a circulation pipe 8 a are connected to the lower end of the hot water storage tank 5. The water supply pipe 6 is provided with an on-off valve 12 for supplying low temperature clean water to the hot water storage tank 5. A circulation pipe 8b and a hot water discharge pipe 7 are connected to the upper end of the hot water storage tank 5, and hot hot water returned from the circulation pipe 8b is stored in the hot water storage tank 5. When hot water is supplied, the high temperature in the hot water storage tank 5 is stored. Hot water can be supplied to the hot water supply pipe 7.

貯湯タンク5には、複数の温度センサ5a〜5dが高さ方向所定間隔おきの位置に配置され、温度センサ5a〜5dの温度検出信号が主制御ユニット16に供給される。外装ケース17は、薄鋼板製の箱状に形成され、貯湯タンク5、各種の配管類6,7、循環用配管8a,8bの一部、湯水循環ポンプ11、開閉弁12、混合弁13、各種の温度センサ15a〜15d、主制御ユニット16等を収容している。   In the hot water storage tank 5, a plurality of temperature sensors 5 a to 5 d are arranged at predetermined intervals in the height direction, and temperature detection signals from the temperature sensors 5 a to 5 d are supplied to the main control unit 16. The outer case 17 is formed in a thin steel plate box shape, and includes a hot water storage tank 5, various pipes 6 and 7, a part of the circulation pipes 8 a and 8 b, a hot water circulation pump 11, an on-off valve 12, a mixing valve 13, Various temperature sensors 15a to 15d, a main control unit 16 and the like are accommodated.

次に、本発明に係るヒートポンプ式熱源機3について説明する。
図1に示すように、ヒートポンプ式熱源機3は、冷媒により湯水を加熱するヒートポンプ回路20、主制御ユニット16に接続され且つヒートポンプ回路20を制御する補助制御ユニット43、これらを収納する外装ケース45等を備えている。
Next, the heat pump type heat source device 3 according to the present invention will be described.
As shown in FIG. 1, the heat pump heat source unit 3 includes a heat pump circuit 20 that heats hot and cold water with a refrigerant, an auxiliary control unit 43 that is connected to the main control unit 16 and controls the heat pump circuit 20, and an outer case 45 that houses them. Etc.

ヒートポンプ回路20は、圧縮機21、湯水加熱用の凝縮熱交換器22、高圧の冷媒を急膨張させて温度と圧力を下げる膨張弁23、外気熱吸収用の蒸発熱交換器24を有し、これら機器21〜24が冷媒配管25を介して接続されて構成され、冷媒配管25に収容された冷媒を利用して貯湯運転を行う。ヒートポンプ回路20は、さらに、送風モータ27aで駆動される蒸発熱交換器用の送風ファン27と、除霜運転の為のバイパス通路31及び除霜弁32を有している。   The heat pump circuit 20 includes a compressor 21, a condensing heat exchanger 22 for heating hot water, an expansion valve 23 for rapidly expanding a high-pressure refrigerant to lower the temperature and pressure, and an evaporation heat exchanger 24 for absorbing outside air heat, These devices 21 to 24 are configured to be connected via a refrigerant pipe 25 and perform a hot water storage operation using the refrigerant accommodated in the refrigerant pipe 25. The heat pump circuit 20 further includes a blower fan 27 for an evaporation heat exchanger driven by a blower motor 27a, a bypass passage 31 and a defrost valve 32 for a defrosting operation.

圧縮機21は、気相状態の冷媒を断熱圧縮して温度上昇させる公知の密閉型圧縮機である。   The compressor 21 is a known hermetic compressor that adiabatically compresses a refrigerant in a gas phase state to increase the temperature.

凝縮熱交換器22は、循環用配管8a,8b間に設置された熱交換器通路部22aと、冷媒配管25の一部となる内部通路22bとを有する二重管で構成されている。この凝縮熱交換器22において、内部通路22bを流れる冷媒と循環用配管8aから熱交換器通路部22aに供給される湯水との間で熱交換され、湯水は加熱され冷媒は冷却され液化する。   The condensing heat exchanger 22 is configured by a double pipe having a heat exchanger passage portion 22 a installed between the circulation pipes 8 a and 8 b and an internal passage 22 b that is a part of the refrigerant pipe 25. In the condensation heat exchanger 22, heat is exchanged between the refrigerant flowing in the internal passage 22b and hot water supplied from the circulation pipe 8a to the heat exchanger passage portion 22a, and the hot water is heated and the refrigerant is cooled and liquefied.

膨張弁23(膨張手段に相当する)は、液相状態の冷媒を断熱膨張させ温度低下させる。この膨張弁23は、絞り量が可変な制御弁からなる。尚、絞り量が可変な膨張弁23の代わりに絞り量が一定の膨張弁を採用しても良い。   The expansion valve 23 (corresponding to the expansion means) adiabatically expands the liquid phase refrigerant and lowers the temperature. The expansion valve 23 is a control valve having a variable throttle amount. An expansion valve with a constant throttle amount may be used instead of the expansion valve 23 with a variable throttle amount.

蒸発熱交換器24は、冷媒配管25に含まれる蒸発器通路部24aを有し、この蒸発器通路部24aは伝熱管と複数のフィンとを有している。この蒸発熱交換器24において、蒸発器通路部24aを流れる冷媒と外気との間で熱交換され、冷媒は外気から吸熱して気化する。   The evaporative heat exchanger 24 has an evaporator passage portion 24a included in the refrigerant pipe 25, and the evaporator passage portion 24a has a heat transfer tube and a plurality of fins. In the evaporative heat exchanger 24, heat is exchanged between the refrigerant flowing through the evaporator passage portion 24a and the outside air, and the refrigerant absorbs heat from the outside air and vaporizes.

冷媒配管25は、圧縮機21の吐出側と凝縮熱交換器22の入口側とを接続する冷媒通路25a,凝縮熱交換器22の出口側と膨張弁23の入口側とを接続する冷媒通路25b,膨張弁23の出口側と蒸発熱交換器24の入口側とを接続する冷媒通路25c,蒸発熱交換器24の出口側と圧縮機21の導入側とを接続する冷媒通路25dを備えている。   The refrigerant pipe 25 includes a refrigerant passage 25 a that connects the discharge side of the compressor 21 and the inlet side of the condensation heat exchanger 22, and a refrigerant passage 25 b that connects the outlet side of the condensation heat exchanger 22 and the inlet side of the expansion valve 23. , A refrigerant passage 25c that connects the outlet side of the expansion valve 23 and the inlet side of the evaporation heat exchanger 24, and a refrigerant passage 25d that connects the outlet side of the evaporation heat exchanger 24 and the introduction side of the compressor 21 are provided. .

冷媒配管25には、圧縮機21の吐出側に設けられ且つ圧縮機21から吐出する冷媒温度を検知する圧縮機吐出側温度センサ29a、膨張弁23の入口側に設けられ且つ膨張弁23に流入する冷媒温度を検知する膨張弁入口側温度センサ29b、膨張弁23の出口側に設けられ且つ膨張弁23から流出する冷媒温度を検知する膨張弁出口側温度センサ29c、蒸発熱交換器24の出口側に設けられ且つ蒸発熱交換器24から流出する冷媒温度を検知する蒸発熱交換器出口側温度センサ29d等が設けられている。   The refrigerant pipe 25 is provided on the discharge side of the compressor 21 and detects the temperature of the refrigerant discharged from the compressor 21. The refrigerant discharge side temperature sensor 29 a is provided on the inlet side of the expansion valve 23 and flows into the expansion valve 23. An expansion valve inlet side temperature sensor 29b for detecting the refrigerant temperature to be detected, an expansion valve outlet side temperature sensor 29c provided on the outlet side of the expansion valve 23 and detecting the refrigerant temperature flowing out of the expansion valve 23, and an outlet of the evaporative heat exchanger 24 An evaporative heat exchanger outlet side temperature sensor 29d that detects the temperature of the refrigerant flowing out from the evaporative heat exchanger 24 is provided.

冷媒配管25には、凝縮熱交換器22と膨張弁23とをバイパスするように、冷媒通路25aと冷媒通路25cとに接続されたバイパス通路31が設けられている。   The refrigerant pipe 25 is provided with a bypass passage 31 connected to the refrigerant passage 25a and the refrigerant passage 25c so as to bypass the condensation heat exchanger 22 and the expansion valve 23.

バイパス通路31には、凝縮熱交換器22と膨張弁23とに並列接続されるように且つ除霜運転時に補助制御ユニット43によって開閉制御される除霜弁32が設けられている。蒸発熱交換器24の着霜を検知した場合には、除霜弁32を開放して除霜運転を行う。尚、本願発明に関連するバイパス通路31及び除霜弁32の具体的な構造については後述する。   The bypass passage 31 is provided with a defrost valve 32 that is connected in parallel to the condensation heat exchanger 22 and the expansion valve 23 and that is controlled to open and close by the auxiliary control unit 43 during the defrost operation. When the frost formation of the evaporative heat exchanger 24 is detected, the defrost valve 32 is opened and the defrost operation is performed. In addition, the specific structure of the bypass passage 31 and the defrost valve 32 relevant to this invention is mentioned later.

ヒートポンプ式熱源機3の貯湯運転時において、圧縮機21により高圧に圧縮された加熱状態の冷媒は、凝縮熱交換器22に送られ、湯水循環ポンプ11の駆動により貯湯タンク5の下端部から循環用配管8aを経て熱交換器通路部22aに流入した水と熱交換してその水を暖め、温度低下して液化した冷媒は膨張弁23に送られ、加熱された湯水が循環用配管8bを通って貯湯給湯装置2の貯湯タンク5に貯留され、ヒートポンプ式熱源機3を経由する加熱動作を繰り返すことで貯湯タンク5に高温の湯水が貯留される。   During the hot water storage operation of the heat pump heat source device 3, the heated refrigerant compressed to a high pressure by the compressor 21 is sent to the condensation heat exchanger 22 and circulated from the lower end of the hot water storage tank 5 by driving the hot water circulation pump 11. Heat is exchanged with the water flowing into the heat exchanger passage 22a through the piping 8a for heating and warming the water, and the liquefied refrigerant is cooled to the expansion valve 23. The heated hot water passes through the circulation piping 8b. The hot water is stored in the hot water storage tank 5 of the hot water storage hot water supply device 2 and the hot water is stored in the hot water storage tank 5 by repeating the heating operation via the heat pump heat source unit 3.

ヒートポンプ給湯装置1は、主制御ユニット16と補助制御ユニット43からなる制御ユニット4によって制御される。各種の温度センサ等の検出信号が制御ユニット4に送信され、この制御ユニット4により、貯湯給湯装置2とヒートポンプ式熱源機3の動作、各種のポンプの作動・停止、各種の弁の開閉状態の切り換え及び開度調整等を制御し、各種運転(貯湯運転、給湯運転、除霜運転等)を実行する。   The heat pump hot water supply apparatus 1 is controlled by a control unit 4 including a main control unit 16 and an auxiliary control unit 43. Detection signals from various temperature sensors and the like are transmitted to the control unit 4, and the control unit 4 controls the operation of the hot water storage hot water supply device 2 and the heat pump heat source unit 3, the operation / stop of various pumps, and the open / close states of various valves. Various operations (hot water storage operation, hot water supply operation, defrosting operation, etc.) are executed by controlling switching and opening degree adjustment.

主制御ユニット16は、ユーザーが操作可能な操作リモコン46との間でデータ通信可能であり、操作リモコン46のスイッチ操作により目標給湯温度が設定されると、その目標給湯温度データが操作リモコン46から主制御ユニット16に送信される。補助制御ユニット43は、主制御ユニット16との間でデータ通信可能であり、主制御ユニット16からの指令に従ってヒートポンプ式熱源機3の各種機器(圧縮機21、膨張弁23、送風モータ27a、除霜弁32等)の駆動制御を行う。   The main control unit 16 can communicate data with the operation remote controller 46 that can be operated by the user. When the target hot water temperature is set by operating the switch of the operation remote controller 46, the target hot water temperature data is transferred from the operation remote controller 46. It is transmitted to the main control unit 16. The auxiliary control unit 43 is capable of data communication with the main control unit 16, and in accordance with instructions from the main control unit 16, various devices (the compressor 21, the expansion valve 23, the blower motor 27 a, the removal device) of the heat pump heat source unit 3. Drive control of the frost valve 32 and the like is performed.

ここで、本願発明に関連するバイパス通路31及び除霜弁32の具体的な構造について説明する。
図1,図2に示すように、バイパス通路31は、冷媒通路25aから分岐して冷媒通路25cに接続することで、凝縮熱交換器22と膨張弁23とをバイパスする除霜回路を構成するものであり、冷媒通路25aと除霜弁32の入口側35aとを接続する上流側バイパス通路部31aと、除霜弁32の出口側35bと冷媒通路25cとを接続する下流側バイパス通路部31bとを有している。
Here, the specific structures of the bypass passage 31 and the defrost valve 32 related to the present invention will be described.
As shown in FIGS. 1 and 2, the bypass passage 31 is branched from the refrigerant passage 25 a and connected to the refrigerant passage 25 c to constitute a defrost circuit that bypasses the condensation heat exchanger 22 and the expansion valve 23. An upstream bypass passage portion 31a connecting the refrigerant passage 25a and the inlet side 35a of the defrost valve 32, and a downstream bypass passage portion 31b connecting the outlet side 35b of the defrost valve 32 and the refrigerant passage 25c. And have.

図2に示すように、除霜弁32は、高温高圧の気体状の冷媒が流れる冷媒通路25aに近い位置に設置されている。即ち、除霜弁32は、圧縮機21と凝縮熱交換器22との間の冷媒通路25aからバイパス通路31が分岐する分岐部30に近接した位置に設置されている。除霜弁32は、プランジャ33a(可動鉄心)、プラグナット33b(固定鉄心)、コイル33c、ヨーク33d等からなるソレノイド部33と、弁体34a、弁座34b、流路孔34c等からなる弁部34とを備えた公知の電磁開閉弁で構成されている。   As shown in FIG. 2, the defrost valve 32 is installed at a position close to the refrigerant passage 25a through which a high-temperature and high-pressure gaseous refrigerant flows. That is, the defrost valve 32 is installed at a position close to the branch portion 30 where the bypass passage 31 branches from the refrigerant passage 25 a between the compressor 21 and the condensation heat exchanger 22. The defrost valve 32 includes a solenoid 33 including a plunger 33a (movable iron core), a plug nut 33b (fixed iron core), a coil 33c, a yoke 33d, and a valve body 34a, a valve seat 34b, a flow path hole 34c, and the like. It is comprised with the well-known electromagnetic on-off valve provided with the part 34. FIG.

さらに、除霜弁32は、真鍮製のブロック状の弁ケース部材35を備え、この弁ケース部材35に弁部34が設けられている。この弁ケース部材35に、除霜弁32の軸心と直行する方向に延びる上流側直管36(接続管に相当する)と、除霜弁32の軸心と並行する方向に延びる下流側直管37とが一体的に装備されている。即ち、上流側直管36の下流端が、弁ケース部材35の側面部に開口する入口側35aにロウ付けで接続され、下流側直管37の上流端が、弁ケース部材35の底部に開口する出口側35bにロウ付けで接続されている。   Further, the defrost valve 32 includes a block-shaped valve case member 35 made of brass, and the valve case 34 is provided on the valve case member 35. The valve case member 35 includes an upstream straight pipe 36 (corresponding to a connecting pipe) extending in a direction perpendicular to the axis of the defrost valve 32 and a downstream straight pipe extending in a direction parallel to the axis of the defrost valve 32. A tube 37 is integrally provided. That is, the downstream end of the upstream straight pipe 36 is connected by brazing to an inlet side 35 a that opens to the side surface of the valve case member 35, and the upstream end of the downstream straight pipe 37 opens to the bottom of the valve case member 35. Connected to the outlet side 35b.

バイパス通路31において、上流側バイパス通路部31aは、上流側直管36で構成されている。冷媒通路25aの分岐部30はT字形の接続継手部材38(所謂チーズ)で構成され、上流側直管36の上流端が接続継手部材38にロウ付けによって直接接続されている。下流側バイパス通路部31bの上流側端部は、下流側直管37で構成されている。下流側直管37の下流端は、下流側バイパス通路部31bを構成する大部分の配管部材39に接続継手部材39aを介して接続されている。   In the bypass passage 31, the upstream bypass passage portion 31 a is configured by an upstream straight pipe 36. The branch portion 30 of the refrigerant passage 25a is constituted by a T-shaped connecting joint member 38 (so-called cheese), and the upstream end of the upstream straight pipe 36 is directly connected to the connecting joint member 38 by brazing. The upstream end of the downstream bypass passage portion 31 b is configured by a downstream straight pipe 37. The downstream end of the downstream straight pipe 37 is connected to most piping members 39 constituting the downstream bypass passage portion 31b via a connection joint member 39a.

尚、上流側直管36は、貯湯運転時に、この上流側直管36に滞留する冷媒が冷媒通路25aを流れる冷媒温度と略同じ温度を保持可能な長さ(例えば、30〜40mm程度)に設定されるのが望ましい。   The upstream straight pipe 36 has such a length (for example, about 30 to 40 mm) that the refrigerant staying in the upstream straight pipe 36 can maintain substantially the same temperature as the refrigerant flowing through the refrigerant passage 25a during hot water storage operation. It is desirable to set.

尚、除霜弁32は、全開状態でもバイパス通路31の断面積より小さい断面積の流路孔34cを有する。つまり、除霜弁32は、全開状態でも絞り機能を奏するので、除霜弁32の入口側35aと出口側35bの冷媒には温度差や圧力差が存在する。このため、除霜運転時には、通常の貯湯運転時における圧縮機21の吐出冷媒温度より低いが、高温の冷媒を蒸発熱交換器24に送ることができる。   The defrost valve 32 has a flow passage hole 34c having a cross-sectional area smaller than that of the bypass passage 31 even in the fully opened state. That is, since the defrost valve 32 has a throttling function even in the fully opened state, a temperature difference or a pressure difference exists between the refrigerant on the inlet side 35a and the outlet side 35b of the defrost valve 32. For this reason, at the time of defrosting operation, although it is lower than the refrigerant discharge temperature of the compressor 21 at the time of normal hot water storage operation, a high-temperature refrigerant can be sent to the evaporation heat exchanger 24.

次に、本発明のヒートポンプ式熱源機3の作用及び効果について説明する。
ヒートポンプ式熱源機3の貯湯運転中、蒸発熱交換器出口側温度センサ29dで検出した蒸発熱交換器24から流出する冷媒の温度が設定温度以下(例えば0℃〜−7℃)になると、蒸発熱交換器24に付着した霜を除去する為に除霜運転を開始する。
Next, the operation and effect of the heat pump heat source apparatus 3 of the present invention will be described.
During the hot water storage operation of the heat pump heat source device 3, if the temperature of the refrigerant flowing out from the evaporating heat exchanger 24 detected by the evaporating heat exchanger outlet side temperature sensor 29d becomes equal to or lower than a set temperature (for example, 0 ° C. to −7 ° C.) A defrosting operation is started in order to remove frost adhering to the heat exchanger 24.

除霜運転では、制御ユニット4は、送風ファン27を停止し、除霜弁32を開弁状態に切り換えると共に膨張弁23を全閉状態に切り換える。すると、圧縮機21から吐出される高温高圧の冷媒は、凝縮熱交換器22には流れずバイパス通路31を通って蒸発熱交換器24に流れ、蒸発熱交換器24に付着した霜を融解することで除霜が行われる。   In the defrosting operation, the control unit 4 stops the blower fan 27, switches the defrost valve 32 to the open state, and switches the expansion valve 23 to the fully closed state. Then, the high-temperature and high-pressure refrigerant discharged from the compressor 21 does not flow to the condensation heat exchanger 22 but flows to the evaporation heat exchanger 24 through the bypass passage 31 and melts frost attached to the evaporation heat exchanger 24. Defrosting is performed.

ところで、ヒートポンプ式熱源機3の貯湯運転中、除霜弁32は閉弁状態を維持するので、バイパス通路31の上流側バイパス通路部31aと下流側バイパス通路部31bには、冷媒が滞留してしまう。下流側バイパス通路部31bは、外気温度と蒸発温度の関係から冷媒の温度低下は起き難くいので、膨張弁23から蒸発熱交換器24へ流れる冷媒と同じ気体状の冷媒が滞留する。   By the way, during the hot water storage operation of the heat pump heat source unit 3, the defrost valve 32 maintains the closed state, so that the refrigerant stays in the upstream bypass passage portion 31a and the downstream bypass passage portion 31b of the bypass passage 31. End up. In the downstream bypass passage 31b, the temperature of the refrigerant is unlikely to decrease due to the relationship between the outside air temperature and the evaporation temperature, and therefore, the same gaseous refrigerant as the refrigerant flowing from the expansion valve 23 to the evaporation heat exchanger 24 stays.

上流側バイパス通路部31aには、圧縮機21から凝縮熱交換器22へ流れる高温高圧の気体状の冷媒が流入するが、除霜弁32が冷媒通路25aの近くに設置された構造上、上流側バイパス通路部31aが短くなって、冷媒通路25aを流れる冷媒の熱が上流側バイパス通路部31aに滞留した冷媒に効率良く伝熱されるので、冷媒温度の低下を抑制し、冷媒の液化が防止される。   A high-temperature and high-pressure gaseous refrigerant flowing from the compressor 21 to the condensation heat exchanger 22 flows into the upstream bypass passage portion 31a. However, the upstream side of the defrost valve 32 is located upstream of the refrigerant passage 25a. The side bypass passage portion 31a is shortened, and the heat of the refrigerant flowing through the refrigerant passage 25a is efficiently transferred to the refrigerant staying in the upstream side bypass passage portion 31a, so that a decrease in the refrigerant temperature is suppressed and liquefaction of the refrigerant is prevented. Is done.

従って、除霜弁32を冷媒配管25の近くに適切に配置することで、除霜弁32よりも上流側のバイパス通路31に滞留する冷媒量を少量にすることができる。冷媒通路25aを流れる高温高圧の冷媒の温度を利用して、冷媒配管25からバイパス通路31に流入した冷媒の液化を防止することができるので、冷媒配管25への冷媒の充填量を極力節減して、ヒートポンプ式熱源機3の運転効率の低下を防止することができる。   Therefore, by appropriately disposing the defrost valve 32 near the refrigerant pipe 25, the amount of refrigerant staying in the bypass passage 31 upstream of the defrost valve 32 can be reduced. Since the temperature of the high-temperature and high-pressure refrigerant flowing through the refrigerant passage 25a can be used to prevent liquefaction of the refrigerant flowing into the bypass passage 31 from the refrigerant pipe 25, the amount of refrigerant filled in the refrigerant pipe 25 can be reduced as much as possible. Thus, it is possible to prevent the operating efficiency of the heat pump heat source unit 3 from being lowered.

また、上流側バイパス通路部31aは、除霜弁32に一体的に装備されている上流側直管36で構成され、この上流側直管36が接続継手部材38に直接接続されたので、冷媒配管25と除霜弁32とを接続する配管部材が不要になり、部品点数が低減し、ロウ付け箇所が低減することで作業工数が減り、上流側バイパス通路部31aの冷媒配管25へ取り付ける際の作業が簡単になる。   In addition, the upstream bypass passage portion 31a is configured by an upstream straight pipe 36 that is integrally provided in the defrost valve 32, and the upstream straight pipe 36 is directly connected to the connection joint member 38. When the pipe member for connecting the pipe 25 and the defrost valve 32 is not required, the number of parts is reduced, the number of work is reduced by reducing the brazing points, and the upstream side bypass passage 31a is attached to the refrigerant pipe 25 Will be easier.

次に、前記実施例を部分的に変更した形態について説明する。
[1]前記実施例において、バイパス通路31は、凝縮熱交換器22と膨張弁23とをバイパスするように設けられているが、除霜運転時に膨張弁23を全開状態に設定可能であれば、凝縮熱交換器22のみをバイパスするように設けられても良い。
Next, a mode in which the above embodiment is partially changed will be described.
[1] In the above embodiment, the bypass passage 31 is provided so as to bypass the condensing heat exchanger 22 and the expansion valve 23, but if the expansion valve 23 can be set to a fully open state during the defrosting operation. Alternatively, it may be provided so as to bypass only the condensation heat exchanger 22.

[2]前記実施例において、接続管として上流側直管36が適用されているが、特にこの形状に限定する必要はなく、接続管としてL字形状に構成された配管を適用しても良く、接続管の形状は適宜変更可能である。 [2] In the above-described embodiment, the upstream straight pipe 36 is applied as the connection pipe, but it is not particularly limited to this shape, and an L-shaped pipe may be applied as the connection pipe. The shape of the connecting pipe can be changed as appropriate.

[3]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [3] In addition, those skilled in the art can implement the present invention in various forms with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.

3 ヒートポンプ式熱源機
20 ヒートポンプ回路
21 圧縮機
22 凝縮熱交換器
23 膨張弁
24 蒸発熱交換器
25 冷媒配管
30 分岐部
31 バイパス通路
31a 上流側バイパス通路部
32 除霜弁
36 上流側直管
38 接続継手部材


3 Heat Pump Heat Source Machine 20 Heat Pump Circuit 21 Compressor 22 Condensation Heat Exchanger 23 Expansion Valve 24 Evaporation Heat Exchanger 25 Refrigerant Pipe 30 Branch Port 31 Bypass Path 31a Upstream Bypass Path Section 32 Defrost Valve 36 Upstream Straight Pipe 38 Connection Joint member


Claims (3)

圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒配管で接続して構成されたヒートポンプ回路を備えたヒートポンプ式熱源機であって、前記ヒートポンプ回路は、少なくとも前記凝縮熱交換器をバイパスするバイパス通路と、このバイパス通路に設置された除霜弁とを有し、前記蒸発熱交換器の着霜を検知した場合には、前記除霜弁を開放して除霜運転を行うヒートポンプ式熱源機において、
前記除霜弁は、前記圧縮機と前記凝縮熱交換器との間の前記冷媒配管から前記バイパス通路が分岐する分岐部に近接した位置に設置されたことを特徴とするヒートポンプ式熱源機。
A heat pump heat source apparatus including a heat pump circuit configured by connecting a compressor, a condensation heat exchanger, an expansion means, and an evaporative heat exchanger with refrigerant piping, wherein the heat pump circuit includes at least the condensation heat exchanger. When the frost formation of the evaporative heat exchanger is detected, the defrost valve is opened to perform the defrosting operation. In heat pump type heat source machine,
The heat pump heat source apparatus, wherein the defrost valve is installed at a position close to a branch portion where the bypass passage branches from the refrigerant pipe between the compressor and the condensation heat exchanger.
前記バイパス通路は、前記分岐部と前記除霜弁の入口側とを接続する上流側バイパス通路部を有し、
前記上流側バイパス通路部は、前記除霜弁に一体的に装備されている接続管で構成されたことを特徴とする請求項1に記載のヒートポンプ式熱源機。
The bypass passage has an upstream bypass passage portion that connects the branch portion and the inlet side of the defrost valve,
The heat pump heat source apparatus according to claim 1, wherein the upstream bypass passage is configured by a connection pipe that is integrally provided in the defrost valve.
前記分岐部はT字形の接続継手部材で構成され、前記接続管が前記接続継手部材に直接接続されたことを特徴とする請求項2に記載のヒートポンプ式熱源機。
The heat pump heat source apparatus according to claim 2, wherein the branch portion is formed of a T-shaped connection joint member, and the connection pipe is directly connected to the connection joint member.
JP2014012978A 2014-01-28 2014-01-28 Heat pump heat source machine Active JP6440006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012978A JP6440006B2 (en) 2014-01-28 2014-01-28 Heat pump heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012978A JP6440006B2 (en) 2014-01-28 2014-01-28 Heat pump heat source machine

Publications (2)

Publication Number Publication Date
JP2015140952A true JP2015140952A (en) 2015-08-03
JP6440006B2 JP6440006B2 (en) 2018-12-19

Family

ID=53771421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012978A Active JP6440006B2 (en) 2014-01-28 2014-01-28 Heat pump heat source machine

Country Status (1)

Country Link
JP (1) JP6440006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375135A (en) * 2021-06-25 2021-09-10 贵州大学 Electromagnetic induction type steam generator based on air source heat pump

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718150U (en) * 1971-03-31 1972-10-31
JPH01239356A (en) * 1988-03-22 1989-09-25 Daikin Ind Ltd Refrigerator
JPH02565U (en) * 1988-06-13 1990-01-05
JP2001263883A (en) * 2000-03-21 2001-09-26 Fukushima Industries Corp Hot gas defrosting type refrigerating/cold storage unit
JP2005249254A (en) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc Refrigerator-freezer
JP2006112781A (en) * 2005-11-14 2006-04-27 Daikin Ind Ltd Heat pump type water heater
JP2006220357A (en) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008128570A (en) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd Refrigerating apparatus
JP2008241175A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010532462A (en) * 2007-06-29 2010-10-07 エレクトロラックス ホーム プロダクツ インコーポレイテッド High temperature gas defrosting method and apparatus
US20110271703A1 (en) * 2007-08-24 2011-11-10 Yong-Joo Park Refrigerator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718150U (en) * 1971-03-31 1972-10-31
JPH01239356A (en) * 1988-03-22 1989-09-25 Daikin Ind Ltd Refrigerator
JPH02565U (en) * 1988-06-13 1990-01-05
JP2001263883A (en) * 2000-03-21 2001-09-26 Fukushima Industries Corp Hot gas defrosting type refrigerating/cold storage unit
JP2005249254A (en) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc Refrigerator-freezer
JP2006220357A (en) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006112781A (en) * 2005-11-14 2006-04-27 Daikin Ind Ltd Heat pump type water heater
JP2008128570A (en) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd Refrigerating apparatus
JP2008241175A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010532462A (en) * 2007-06-29 2010-10-07 エレクトロラックス ホーム プロダクツ インコーポレイテッド High temperature gas defrosting method and apparatus
US20110271703A1 (en) * 2007-08-24 2011-11-10 Yong-Joo Park Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375135A (en) * 2021-06-25 2021-09-10 贵州大学 Electromagnetic induction type steam generator based on air source heat pump

Also Published As

Publication number Publication date
JP6440006B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6402661B2 (en) Refrigeration equipment
WO2013046720A1 (en) Hot-water-supplying, air-conditioning system
JP6398324B2 (en) Heat pump water heater
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
WO2012032680A1 (en) Refrigeration cycle apparatus
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
JP5592427B2 (en) Heating system
JP7135493B2 (en) heat pump water heater
WO2012032681A1 (en) Air conditioner
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JPWO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
EP2771627B1 (en) Regenerative air-conditioning apparatus
KR20130116360A (en) Binary refrigeration cycle device
JP5769684B2 (en) Heat pump equipment
JP2007155259A (en) Refrigerant heating apparatus
JP2010084975A (en) Heating device
JP6065606B2 (en) Heat pump water heater
JP5596587B2 (en) Hot water heater
JPWO2018051409A1 (en) Refrigeration cycle device
JP6440006B2 (en) Heat pump heat source machine
JP2016065701A (en) Heat pump type heater and method of operating the same
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2007333340A (en) Heat pump type hot water supply apparatus
JP2016023921A (en) Heat pump hot water supply system
EP3043118B1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181108

R150 Certificate of patent or registration of utility model

Ref document number: 6440006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150