JP2005111575A - Co2 snow jetting device and co2 snow jetting method - Google Patents

Co2 snow jetting device and co2 snow jetting method Download PDF

Info

Publication number
JP2005111575A
JP2005111575A JP2003345290A JP2003345290A JP2005111575A JP 2005111575 A JP2005111575 A JP 2005111575A JP 2003345290 A JP2003345290 A JP 2003345290A JP 2003345290 A JP2003345290 A JP 2003345290A JP 2005111575 A JP2005111575 A JP 2005111575A
Authority
JP
Japan
Prior art keywords
snow
assist gas
liquid
expansion chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003345290A
Other languages
Japanese (ja)
Inventor
Yumito Kondo
弓人 近藤
Takuji Kudo
卓史 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2003345290A priority Critical patent/JP2005111575A/en
Publication of JP2005111575A publication Critical patent/JP2005111575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CO<SB>2</SB>snow jetting device and method reducing the influence of a system loss change caused by a temperature change. <P>SOLUTION: In this CO<SB>2</SB>snow jetting device for expanding liquid CO<SB>2</SB>to produce CO<SB>2</SB>snow and allowing assist gas to join the CO<SB>2</SB>snow to jet the CO<SB>2</SB>snow, a swirling means is provided for swirling assist gas to form the swirling flow of assist gas around the CO<SB>2</SB>snow in an expansion chamber at a confluence part, and a pressure measuring means is provided for measuring pressure near the wall part of the expansion chamber to control the supply pressure of the assist gas based on measured pressure signals. Further, liquid CO<SB>2</SB>constant flow control is performed to control the supply pressure of the assist gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

液体COを膨張させてCOスノーを生成しワークに向けて噴射することによって精密洗浄等に用いるCOスノー噴射装置および方法に関する。 The present invention relates to an apparatus and method for injecting CO 2 snow used for precision cleaning and the like by inflating liquid CO 2 to generate CO 2 snow and injecting it toward a work.

従来から液体COを膨張させてCOスノーを生成しワークに向けて噴射することによって精密洗浄等に用いるCOスノー噴射システムにおいて、
1.COスノーを加速せしめるため
2.COスノーを周囲雰囲気の湿分から隔離するため
3.COスノーの噴射形状や噴射密度を所望する状態に調整するため
等のためにアシストガスが用いられていた。上記2や3の場合はCOスノー噴射流の外周を囲むようにアシストガスを噴射し、上記1の場合は噴射前にCOスノーにアシストガスを合流させる。この噴射前にCOスノーにアシストガスを合流させてCOスノーを加速する場合において、従来は、特許文献1に示す「ドライアイス・ブラスト用噴射ガン」のように主流(液体CO流路)の外周環状流路に垂直にアシストガスを合流させたり、特許文献2の“CO2 Cleaning System and Method”のように主流(液体CO流路)の外周環状流路にアシストガスを合流させる際に噴射方向に傾斜したりしていた。いずれの場合も、供給する両流体の圧力又は流量の調整又は制御を行なっているものの合流個所の圧力計測は行なっていない。
In a CO 2 snow injection system used for precision cleaning or the like by conventionally inflating liquid CO 2 to generate CO 2 snow and injecting it toward a workpiece,
1. 1. To accelerate CO 2 snow 2. Isolate CO 2 snow from ambient moisture. Assist gas has been used for adjusting the injection shape and injection density of CO 2 snow to a desired state. In the case of 2 and 3, the assist gas is injected so as to surround the outer periphery of the CO 2 snow injection flow, and in the case of 1, the assist gas is joined to the CO 2 snow before the injection. In the case of accelerating the CO 2 snow by joining the assist gas to the CO 2 snow before this injection, conventionally, the mainstream (liquid CO 2 flow path as in the “dry ice / blast injection gun” shown in Patent Document 1 is used. ) Or the assist gas is joined to the main annular (liquid CO 2 channel) outer annular channel as in “CO 2 Cleaning System and Method” of Patent Document 2. Sometimes it was inclined in the injection direction. In either case, the pressure or flow rate of both fluids to be supplied is adjusted or controlled, but the pressure at the junction is not measured.

特許文献3には、液体炭酸ガス貯槽と、該液体炭酸ガスを気化させ炭酸ガスにする蒸発器と、該炭酸ガスを昇圧する圧縮機と、該炭酸ガス中の不純物を除去する精製部と、炭酸ガスを再液化する凝縮部と、液体炭酸ガス中の不純物を除去する液体フィルタと、液体炭酸ガスを膨張させる絞り部と、膨張により得られたドライアイススノーを被洗浄物に向けて噴射する洗浄ノズルとを備え、絞り部が、液体炭酸ガスを膨張させるオリフィスを有し、このオリフィスは、表面硬化処理が施されているか、または表面硬化処理により形成された表面硬化層と同等の硬度を有する材料から構成されているドライアイス噴射洗浄装置が記載されている。   Patent Document 3 includes a liquid carbon dioxide storage tank, an evaporator that vaporizes the liquid carbon dioxide gas into carbon dioxide gas, a compressor that pressurizes the carbon dioxide gas, a purification unit that removes impurities in the carbon dioxide gas, A condensing unit for re-liquefying carbon dioxide, a liquid filter for removing impurities in the liquid carbon dioxide, a throttle unit for expanding the liquid carbon dioxide, and dry ice snow obtained by the expansion is sprayed toward the object to be cleaned. The orifice has an orifice for expanding liquid carbon dioxide gas, and the orifice has a surface hardening treatment or a hardness equivalent to that of the surface hardening layer formed by the surface hardening treatment. A dry ice jet cleaning apparatus is described which is composed of a material having the same.

実用新案登録第2557383号公報Utility Model Registration No. 2557383 U.S.P.5405283U. S. P. 5405283 特開2003−128793号公報JP 2003-128793 A

噴射前にCOスノーにアシストガスを合流させてCOスノーを加速する場合において、
1.COスノーの発生個所であると共に、アシストガスとの合流個所である膨張室の圧力がアシストガスを供給することにより供給ガス圧力が高くなり過ぎると、充分なCOスノーを発生させるための膨張が行なえなくなる。このため、供給ガス圧力の制御だけでは充分でない要因として、以下のことが考えられる。COスノー発生に伴う温度低下による中心部の液体CO供給管の収縮によりアシストガスの環状供給流路の間隙が拡大するという変化が、噴射開始時から噴射継続中に発生する。断続的に噴射を繰り返すシステムで用いられる場合、噴射開始時毎に流路圧損(システムロス)が異なってしまう。長期停止状態からの起動時に合わせて調整すると、時間経過とともに合流部の圧力は低下しアシストガスによる十分な加速が得られない。温度変化が無視できる定常状態に合わせて調整すると、COは吹き始め時に膨張室での充分な膨張ができずCOスノー発生量が少なくなり、定常状態に達するまでの時間も余分に掛かることになる。この影響を排除するために、温度変化が無視できる定常状態になるまでの間無駄吹きすることで対応しようとした場合、液体COやアシストガスの無駄な消費によるコスト上昇と、トータルのタクトタイムの上昇を招いてしまう。
In the case of accelerating the CO 2 snow by joining the assist gas to the CO 2 snow before the injection,
1. When the supply gas pressure becomes too high due to the pressure of the expansion chamber, which is a location where CO 2 snow is generated and where the assist gas is merged, by supplying the assist gas, expansion is performed to generate sufficient CO 2 snow. Cannot be done. For this reason, the following may be considered as factors that are not sufficient only by controlling the supply gas pressure. A change that the gap in the annular supply flow path of the assist gas expands due to the contraction of the liquid CO 2 supply pipe at the center due to the temperature drop due to the generation of CO 2 snow occurs from the start of the injection to the continuing of the injection. When used in a system that repeats injection intermittently, the flow path pressure loss (system loss) differs at each injection start time. If the adjustment is made at the time of starting from the long-term stop state, the pressure at the merging portion decreases with time and sufficient acceleration by the assist gas cannot be obtained. If adjusted to a steady state where the temperature change can be ignored, CO 2 cannot expand sufficiently in the expansion chamber at the start of blowing, and the amount of CO 2 snow generated decreases, and it takes extra time to reach the steady state. become. In order to eliminate this influence, when trying to cope with wasteful blowing until the steady state where the temperature change can be ignored, the cost increases due to wasteful consumption of liquid CO 2 and assist gas, and the total tact time Will lead to an increase.

2.COスノーとアシストガスとが合流した際、周方向の成分分布不均一が生じると、周方向の温度分布不均一、周方向の密度分布不均一、そして周方向の流速分布不均一も発生し、噴射前のノズルの絞り周辺において部分的にCOスノーが付着堆積し、目詰まりの原因となる。側方から合流する環状流路において、ヘッダ部で拡大した流路断面積を絞ることにより周方向流速分布の均一性を得ようとすると、上記1に記載した温度変化による流路断面積変化の影響が、さらに大きくなる。
という課題の解決が求められていた。
2. When CO 2 snow and assist gas merge, if circumferential component distribution non-uniformity occurs, circumferential temperature distribution non-uniformity, circumferential density distribution non-uniformity, and circumferential flow velocity non-uniformity also occur. In the vicinity of the nozzle stop before injection, CO 2 snow partially adheres and accumulates, causing clogging. In the annular flow path that merges from the side, when trying to obtain the uniformity of the circumferential flow velocity distribution by narrowing the flow path cross-sectional area enlarged at the header portion, the flow path cross-sectional area change due to the temperature change described in 1 above The impact is even greater.
There was a need to solve this problem.

本発明は、上記の課題を解決し、温度変化によるシステムロス変化の影響を少なくしたCOスノー噴射装置および方法を提供することを目的とする。 An object of the present invention is to provide a CO 2 snow injection apparatus and method that solve the above-described problems and reduce the influence of a system loss change due to a temperature change.

本発明は、上記課題を解決するために、NガスやCOガス等のアシストガスに旋回を与えてCOスノーに包囲合流させると共に、合流個所である膨張室の圧力を計測してアシストガスの供給圧力制御に用い、温度変化によるシステムロス変化の影響を少なくしたCOスノー噴射装置および噴射方法を提供する。 In order to solve the above-mentioned problems, the present invention turns the assist gas such as N 2 gas or CO 2 gas to swirl it so as to surround and join the CO 2 snow, and measures the pressure of the expansion chamber which is the joining point to assist. Provided are a CO 2 snow injection device and an injection method which are used for gas supply pressure control and which are less affected by changes in system loss due to temperature changes.

本発明によって、液体COを膨張させてCOスノーを生成し、該COスノーにアシストガスを合流させて噴射させるCOスノー噴射装置において、前記アシストガスに旋回を与える旋回手段を設けてアシストガスの旋回流を合流箇所である膨張室でCOスノーの周囲に形成し、該膨張室の壁部付近の圧力を測定する圧力測定手段を設け、測定された圧力の信号に基づいて前記アシストガスの供給圧力制御を行うことを特徴とするCOスノー噴射装置およびこれを使用したCOスノー噴射方法が構成される。 The present invention, the liquid CO 2 is expanded to produce a CO 2 snow in CO 2 snow injection device for injecting by merging the assist gas to the CO 2 snow, provided swivel means for providing swirl to the assist gas A swirling flow of the assist gas is formed around the CO 2 snow in the expansion chamber, which is the confluence, and pressure measuring means for measuring the pressure in the vicinity of the wall of the expansion chamber is provided. Based on the signal of the measured pressure, A CO 2 snow injection device characterized by performing supply gas pressure control of the assist gas and a CO 2 snow injection method using the same are configured.

本発明によると、膨張によるCOスノー生成を確保しつつアシストガスを追加分散媒として分散相密度低下による固体粒子速度増加を図ることができ、旋回流による成分・温度・密度・流速の周方向均一化により、および固体粒子と内壁面の間の緩衝層として存在することにより壁面への付着・堆積・目詰まりを防止することができる。 According to the present invention, it is possible to increase the solid particle velocity by reducing the density of the dispersed phase by using the assist gas as an additional dispersion medium while ensuring the generation of CO 2 snow by expansion, and the circumferential direction of the component, temperature, density, and flow velocity due to the swirl flow Adhesion / deposition / clogging on the wall surface can be prevented by homogenization and by existing as a buffer layer between the solid particles and the inner wall surface.

液体COを膨張させてCOスノーを生成し、該COスノーにアシストガスを合流させて噴射させるCOスノー噴射方法において、前記アシストガスに旋回を与えてアシストガスの旋回流を合流箇所である膨張室でCOスノーの周囲に形成し、該膨張室の壁部付近の圧力を測定し、測定された圧力の信号に基づいて前記アシストガスの供給圧力制御を行ってCOスノー噴射を行う。
また、液体CO流量一定制御を行い、前記アシストガスの供給圧力制御を行ってCOスノー噴射を行う。
The liquid CO 2 is expanded to produce a CO 2 snow in CO 2 snow injection method for injecting by merging the assist gas to the CO 2 snow, merging the swirling flow of the assist gas giving swirl to the assist gas portion The expansion chamber is formed around the CO 2 snow, the pressure in the vicinity of the wall of the expansion chamber is measured, and the supply pressure of the assist gas is controlled based on the measured pressure signal, thereby injecting the CO 2 snow. I do.
Further, liquid CO 2 flow rate constant control is performed, and supply pressure control of the assist gas is performed to perform CO 2 snow injection.

以下、本発明の実施例を図面に基づいて説明する。図1は、実施例1の縦断面図を示し、図2は図1のA−A断面を示す。これらの図において、COスノー噴射装置100は、噴射ノズル6、噴射ノズル6内に形成された膨張室5、膨張室5の上部に絞り部9を介して接続形成されたアシストガスガス導入室となるアシストガスヘッダ8、アシストガスヘッダ8に接続されたアシストガス導入管7、先端部にオリフィス4を備え、周囲にスワラ10を備えてオリフィス4およびスワラ10が絞り部9内に配置された構成の円筒の液体CO導入管22、膨張室5に接続され、噴出口23、膨張室5の周囲の壁24を貫通して設けられる管座11、この管座11内に設けられ、膨張室5の内壁付近の旋回するアシストガスの圧力を計測する圧力センサ12、およびアシストガス導入管7に接続された配管25に設けられた圧力制御弁13からなる。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a longitudinal sectional view of the first embodiment, and FIG. 2 shows an AA section of FIG. In these drawings, a CO 2 snow injection device 100 includes an injection nozzle 6, an expansion chamber 5 formed in the injection nozzle 6, an assist gas gas introduction chamber connected to the upper portion of the expansion chamber 5 via a throttle 9, and The assist gas header 8, the assist gas introduction pipe 7 connected to the assist gas header 8, the orifice 4 at the tip, the swirler 10 around the periphery, and the orifice 4 and the swirler 10 are arranged in the throttle portion 9. A cylindrical liquid CO 2 introduction pipe 22, connected to the expansion chamber 5, a jet seat 23, a pipe seat 11 provided through the wall 24 around the expansion chamber 5, and provided in the pipe seat 11, the expansion chamber 5 includes a pressure sensor 12 for measuring the pressure of the turning assist gas in the vicinity of the inner wall 5 and a pressure control valve 13 provided in a pipe 25 connected to the assist gas introduction pipe 7.

このような構成において、液体CO1はオリフィス4を通って膨張室5で膨張してCOスノーとなり、噴射ノズル6を通って噴出口23から噴出する。一方、アシストガス2はアシストガスヘッダ8に偏心して取付けられたアシストガス入口ノズル7より導入され、アシストガスヘッダ8内で旋回流を形成する。アシストガスヘッダ8から絞り部9で周方向に均一な流れとなって、スワラ10で旋回成分をさらに付加されて、膨張室5に至る。集中的に冷却されるオリフィス4の外周において、絞り部9からスワラ10における速い流速が熱伝達を促進し、オリフィス4で発生した冷熱を速やかに後流側に伝える。膨張室5にはいったアシストガスは、高速で直進するCOスノー噴流の周囲を旋回しながらCOスノー固体成分の壁面との接触を防ぐ。いずれの場所においても旋回流は、成分・温度・密度・流速の周方向不均一を均一にする効果がある。さらにボルテックスチューブの原理で、旋回している外壁面近傍で圧力が高く旋回軸中心部で圧力が低くなることにより、外壁面近傍で温度が高く旋回軸中心部で温度が低くなり、外壁面近傍で気体成分比が高く旋回軸中心部で固体成分比が高くなる。COスノー固体成分(ドライアイス)の壁面への付着は流速が遅い個所で局部的な不均一が起点となって発達すると考えられるため、上記の旋回効果により目詰まりを防止できる。COスノーを噴射後、回収・精製・再利用する場合、アシストガスはCOガスにしておく方が、分離コストを掛けずに済むメリットがあるが、回収・精製・再利用しないシステムの場合、アシストガス2はNガス又は空気を用いる例が多いと考えられる。この場合、アシストガス2は分散相であるスノー粒子の分布密度を下げるための追加分散媒としての効果が有る他、COガスに比べてランニングコストを低く抑えられ、地球温暖化ガスの排出を行なわないことにより局所的な環境へ与える負荷も小さく出来る。圧力センサ12の所要の耐冷温環境性能を緩和するために管座11を介して膨張室5に取付けた圧力センサ12によって膨張室の内壁付近の旋回するアシストガスの圧力を測定する。アシストガスの圧力は直接的に測定してもよいし、間接的に測定するようにしてもよい。圧力センサ12で計測された圧力信号を用いて圧力制御弁13によって、圧力制御弁13を操作し、アシストガス2の供給圧力を制御する。これにより、液体CO流量一定制御を行って、温度変化によるシステムロス変化の影響を受けずに膨張室5におけるCOスノー生成を確保することができる。もし、圧力センサ12の信号を用いて液体CO供給圧力の制御を行なった場合、オリフィス4で目詰まりを起こすと液体CO供給圧力を増加させることによりオリフィス4前後の差圧がある値に達したところで一気に目詰まりを吹き飛ばすことになる。目詰まりが解消して一見良さそうではあるが、噴出圧力の急激な変動を招くため、洗浄や加工の状態が急激に変化してしまう。液体COを流量一定制御のみを採用した場合も同様である。液体COの純度が充分高くCOスノー噴射システムの接液内面が充分に平滑であれば、オリフィス4の目詰まりや温度低下による間隙の減少が起こる場合には徐々に進行する。このため、液体CO流量一定制御に加えて、圧力センサ12の信号を用いてアシストガス2の供給圧力を制御すると、噴射されるCOスノーの組成は徐々に変化するものの洗浄や加工の状態はゆるやかに変化させることができる。 In such a configuration, the liquid CO 2 1 expands in the expansion chamber 5 through the orifice 4 to become CO 2 snow, and is ejected from the ejection port 23 through the ejection nozzle 6. On the other hand, the assist gas 2 is introduced from an assist gas inlet nozzle 7 that is eccentrically attached to the assist gas header 8, and forms a swirl flow in the assist gas header 8. A uniform flow is generated in the circumferential direction from the assist gas header 8 through the throttle portion 9, and a swirling component is further added by the swirler 10 to reach the expansion chamber 5. On the outer periphery of the orifice 4 that is intensively cooled, the fast flow rate from the throttle 9 to the swirler 10 promotes heat transfer, and quickly transfers the cold generated at the orifice 4 to the downstream side. The assist gas that has entered the expansion chamber 5 prevents contact with the wall surface of the CO 2 snow solid component while swirling around the CO 2 snow jet that travels straight at high speed. In any place, the swirling flow has the effect of making the circumferential nonuniformity of the component, temperature, density, and flow velocity uniform. Furthermore, due to the principle of the vortex tube, the pressure is high near the rotating outer wall surface and the pressure is lowered at the center of the rotating shaft, so that the temperature is higher near the outer wall surface and the temperature is lower at the center of the rotating shaft. Thus, the gas component ratio is high, and the solid component ratio is high at the center of the pivot axis. Since the CO 2 snow solid component (dry ice) adheres to the wall surface at a location where the flow velocity is low and is thought to develop from a local non-uniformity, clogging can be prevented by the above-mentioned turning effect. When recovering, purifying, and reusing CO 2 snow, it is advantageous to keep the assist gas to CO 2 gas without incurring separation costs, but for systems that do not collect, purify, and reuse The assist gas 2 is considered to have many examples using N 2 gas or air. In this case, the assist gas 2 has an effect as an additional dispersion medium for lowering the distribution density of the snow particles that are the dispersed phase, and the running cost can be suppressed lower than that of the CO 2 gas. If this is not done, the load on the local environment can be reduced. In order to relax the required cold / warm environment performance of the pressure sensor 12, the pressure of the assist gas swirling in the vicinity of the inner wall of the expansion chamber is measured by the pressure sensor 12 attached to the expansion chamber 5 via the tube seat 11. The pressure of the assist gas may be measured directly or indirectly. The pressure control valve 13 is operated by the pressure control valve 13 using the pressure signal measured by the pressure sensor 12 to control the supply pressure of the assist gas 2. Thereby, the liquid CO 2 flow rate constant control is performed, and the generation of CO 2 snow in the expansion chamber 5 can be ensured without being affected by the system loss change due to the temperature change. If the liquid CO 2 supply pressure is controlled using the signal from the pressure sensor 12, if the orifice 4 is clogged, the liquid CO 2 supply pressure is increased so that the differential pressure across the orifice 4 becomes a certain value. When it reaches, it will blow off the clogging at once. Although clogging is resolved and it looks good at first glance, it causes rapid fluctuations in the ejection pressure, so that the state of cleaning and processing changes abruptly. The same applies to the case where only liquid constant flow control is used for liquid CO 2 . If the purity of the liquid CO 2 is sufficiently high and the wetted inner surface of the CO 2 snow injection system is sufficiently smooth, the process proceeds gradually when the orifice 4 is clogged or the gap decreases due to a temperature drop. Therefore, when the supply pressure of the assist gas 2 is controlled using the signal of the pressure sensor 12 in addition to the constant control of the liquid CO 2 flow rate, the composition of the injected CO 2 snow gradually changes, but the state of cleaning or processing Can be changed slowly.

図3は、第2の実施例を示す。実施例1と同一の構成には同一の番号が付してあり、説明の重複を避ける。従って、その場合には、実施例1の説明が援用されるものとする。
図3に示す実施例においては、オリフィス4に代えてマイクロメータヘッド15付きのニードルバルブ14によって液体CO1の膨張を行なう。この場合、絞りの程度を連続的に可変にすることが出来る。液体CO1を供給する際、周方向に均一性を確保するためにアシストガスヘッダ8と同様の構造を用いると、その空間で膨張による相変化を来してしまってニードルファインギャップでの目詰まりを引き起こすおそれがある。このため、流路断面積を変化させず、かつ圧損を少なくするために噴射方向と周方向に傾きを持たせて液体CO1を導入する構造としている。液体CO1の旋回方向とアシストガス2の旋回方向と同一にすることにより、相対速度ベクトルを小さくして急激な混合およびドライアイス粒子の粗大化を防止することができる。
FIG. 3 shows a second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and overlapping description is avoided. Therefore, in that case, the description of Example 1 is used.
In the embodiment shown in FIG. 3, the liquid CO 2 1 is expanded by a needle valve 14 with a micrometer head 15 instead of the orifice 4. In this case, the degree of aperture can be made continuously variable. When the liquid CO 2 1 is supplied, if a structure similar to the assist gas header 8 is used in order to ensure uniformity in the circumferential direction, a phase change due to expansion occurs in the space, and the eye at the needle fine gap. May cause clogging. For this reason, in order to reduce pressure loss without changing the flow path cross-sectional area, the liquid CO 2 1 is introduced with an inclination in the injection direction and the circumferential direction. By making the swirl direction of the liquid CO 2 1 and the swirl direction of the assist gas 2 the same, the relative velocity vector can be reduced to prevent rapid mixing and coarsening of dry ice particles.

図4に、フラットパネルディスプレイ製造ライン、あるいは半導体ウエハ製造ラインにおいて用いられる精密洗浄システム、延性金属薄膜平坦化システム、あるいはプラズマディスプレイパネルリブ形成システムとして用いられる、本発明の対象とするCOスノー噴射システムを利用したCOスノー噴射方法の実施例を示す。実施例3においても実施例1、実施例2と同一の構成には同一の番号が付してあり、説明の重複を避ける。従って、その場合には、実施例1、実施例2の説明が援用されるものとする。
図4に示す実施例は、ワーク26を搬入搬出装置28で各システム内に搬入し、搬送装置27で噴射位置および噴射角度を変えながらCOスノー噴射によって、精密洗浄、平坦化加工、あるいは切削加工を行うCOスノー噴射方法の例である。
FIG. 4 shows a CO 2 snow jet used in the present invention, which is used as a precision cleaning system, a ductile metal thin film planarization system, or a plasma display panel rib forming system used in a flat panel display production line or a semiconductor wafer production line. shows an embodiment of a CO 2 snow injection method using the system. Also in the third embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and overlapping description is avoided. Therefore, in that case, the description of Example 1 and Example 2 shall be incorporated.
In the embodiment shown in FIG. 4, the workpiece 26 is carried into each system by the carry-in / out device 28, and precision cleaning, flattening, or cutting is performed by CO 2 snow injection while changing the injection position and the injection angle by the transfer device 27. it is an example of a CO 2 snow injection method for machining.

図4に示す例によれば、一定流量のCOスノーと制御されたアシストガスの噴射流をフラットパネルディスプレイ製造ライン、半導体ウエハ製造ラインにおいて用いられる精密洗浄システム、延性金属薄膜平坦化システム、あるいはプラズマディスプレイパネルリブ形成システム上を流れるワークに向けて噴射することによって精密洗浄、平坦化加工、あるいは切削加工を行うCOスノー噴射方法が構成される。 According to the example shown in FIG. 4, a constant flow of CO 2 snow and a controlled assist gas injection flow are used in a flat panel display production line, a semiconductor wafer production line, a precision cleaning system, a ductile metal thin film planarization system, or A CO 2 snow injection method for performing precision cleaning, flattening, or cutting by injecting toward a workpiece flowing on the plasma display panel rib forming system is configured.

本発明のCOスノー噴射装置において、液体COの膨張にオリフィスを用いた場合の実施例の構成を示す断面図。In CO 2 snow jetting apparatus of the present invention, cross-sectional view showing the configuration of an embodiment of a case of using an orifice expansion of liquid CO 2. 図1のA−A断面図。AA sectional drawing of FIG. 本発明のCOスノー噴射システムにおいて液体COの膨張にニードルバルブを用いた場合の別の実施例の構成を示す縦断面図。Longitudinal sectional view showing the configuration of another embodiment using a needle valve to the expansion of the liquid CO 2 in the CO 2 snow injection system of the present invention. COスノー噴射システムを利用したCOスノー噴射方法の例を示す図。Shows an example of a CO 2 snow injection method using the CO 2 snow injection system.

符号の説明Explanation of symbols

1…液体CO、2…アシストガス、3…COスノー噴射、4…オリフィス、5…膨張室、6…噴射ノズル、7…アシストガス導入管、8…アシストガスヘッダ、9…絞り部、10…スワラ、11…管座、12…圧力センサ、13…圧力制御弁、14…ニードルバルブ、15…マイクロメータヘッド、22…液体CO導入管、23…噴出口、24…膨張室周囲壁、25…アシストガス供給配管、26…ワーク、27…搬送装置、28…搬入搬出装置。
1 ... liquid CO 2, 2 ... assist gas, 3 ... CO 2 snow injection, 4 ... orifice, 5 ... expansion chamber 6 ... injection nozzle, 7 ... assist gas introducing pipe, 8 ... assist gas header, 9 ... throttle portion, 10 ... swirler, 11 ... Kan seat, 12 ... pressure sensor, 13 ... pressure control valve, 14 ... needle valve, 15 ... micrometer head, 22 ... liquid CO 2 introduction tube, 23 ... spout 24 ... expansion chamber peripheral wall , 25 ... assist gas supply piping, 26 ... work, 27 ... transfer device, 28 ... loading / unloading device.

Claims (7)

液体COを膨張させてCOスノーを生成し、該COスノーにアシストガスを合流させて噴射させるCOスノー噴射装置において、前記アシストガスに旋回を与える旋回手段を設けてアシストガスの旋回流を合流箇所である膨張室でCOスノーの周囲に形成し、該膨張室の壁部付近の圧力を測定する圧力測定手段を設け、測定された圧力の信号に基づいて前記アシストガスの供給圧力制御を行うことを特徴とするCOスノー噴射装置。 The liquid CO 2 is expanded to produce a CO 2 snow in CO 2 snow injection device for injecting by merging the assist gas to the CO 2 snow, rotation of the assist gas provided swivel means for providing swirl to the assist gas A flow is formed around the CO 2 snow in the expansion chamber, which is the confluence, and pressure measuring means for measuring the pressure in the vicinity of the wall of the expansion chamber is provided, and the assist gas is supplied based on the measured pressure signal. A CO 2 snow injection device characterized by performing pressure control. 液体COを膨張させてCOスノーを生成し、該COスノーにアシストガスを合流させて噴射させるCOスノー噴射装置において、液体CO流量一定制御手段を有し、前記アシストガスに旋回を与える旋回手段を設けてアシストガスの旋回流を合流箇所である膨張室でCOスノーの周囲に形成し、前記アシストガスの供給圧力制御手段を設けたことを特徴とするCOスノー噴射装置。 The liquid CO 2 is expanded to produce a CO 2 snow in CO 2 snow injection device for injecting by merging the assist gas to the CO 2 snow, has a liquid CO 2 flow rate constant control means, turning the assist gas The CO 2 snow injection apparatus is characterized in that a swirling means for supplying the assist gas is provided, a swirling flow of the assist gas is formed around the CO 2 snow in the expansion chamber as a joining location, and a supply pressure control means for the assist gas is provided. . 請求項1または2において、前記液体COをオリフィスを通して膨張室で膨張するようにしたCOスノー噴射装置。 3. The CO 2 snow injection device according to claim 1, wherein the liquid CO 2 is expanded in an expansion chamber through an orifice. 請求項1または2において、前記液体COをニードルバルブを通して絞りを可変にして膨張室で膨張するようにしたCOスノー噴射装置。 3. The CO 2 snow injection device according to claim 1, wherein the liquid CO 2 is expanded in an expansion chamber with a variable throttle through a needle valve. 液体COを膨張させてCOスノーを生成し、該COスノーにアシストガスを合流させて噴射させるCOスノー噴射方法において、前記アシストガスに旋回を与えてアシストガスの旋回流を合流箇所である膨張室でCOスノーの周囲に形成し、該膨張室の壁部付近の圧力を測定し、測定された圧力の信号に基づいて前記アシストガスの供給圧力制御を行うことを特徴とするCOスノー噴射方法。 The liquid CO 2 is expanded to produce a CO 2 snow in CO 2 snow injection method for injecting by merging the assist gas to the CO 2 snow, merging the swirling flow of the assist gas giving swirl to the assist gas portion The expansion chamber is formed around a CO 2 snow, the pressure near the wall of the expansion chamber is measured, and the supply pressure of the assist gas is controlled based on the measured pressure signal. CO 2 snow injection method. 液体COを膨張させてCOスノーを生成し、該COスノーにアシストガスを合流させて噴射させるCOスノー噴射方法において、前記アシストガスに旋回を与えてアシストガスの旋回流を合流箇所である膨張室でCOスノーの周囲に形成し、液体CO流量一定制御を行い、前記アシストガスの供給圧力制御を行うことを特徴とするCOスノー噴射方法。 The liquid CO 2 is expanded to produce a CO 2 snow in CO 2 snow injection method for injecting by merging the assist gas to the CO 2 snow, merging the swirling flow of the assist gas giving swirl to the assist gas portion A CO 2 snow injection method comprising: forming an expansion chamber around the CO 2 snow, performing a constant control of a flow rate of liquid CO 2 , and controlling a supply pressure of the assist gas. 請求項6によって発生した一定流量のCOスノーと制御されたアシストガスの噴射流をフラットパネルディスプレイ製造ライン、半導体ウエハ製造ラインにおいて用いられる精密洗浄システム、延性金属薄膜平坦化システム、あるいはプラズマディスプレイパネルリブ形成システム上を流れるワークに向けて噴射することによって精密洗浄、平坦化加工、あるいは切削加工を行うことを特徴とするCOスノー噴射方法。
7. A constant flow of CO 2 snow and a controlled assist gas jet generated according to claim 6 are used in a flat panel display production line, a semiconductor wafer production line, a precision cleaning system, a ductile metal thin film planarization system, or a plasma display panel. CO 2 snow jet method and performing precision cleaning, planarization, or cutting by sprayed toward the workpiece flowing on the rib forming system.
JP2003345290A 2003-10-03 2003-10-03 Co2 snow jetting device and co2 snow jetting method Pending JP2005111575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345290A JP2005111575A (en) 2003-10-03 2003-10-03 Co2 snow jetting device and co2 snow jetting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345290A JP2005111575A (en) 2003-10-03 2003-10-03 Co2 snow jetting device and co2 snow jetting method

Publications (1)

Publication Number Publication Date
JP2005111575A true JP2005111575A (en) 2005-04-28

Family

ID=34538610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345290A Pending JP2005111575A (en) 2003-10-03 2003-10-03 Co2 snow jetting device and co2 snow jetting method

Country Status (1)

Country Link
JP (1) JP2005111575A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269013A (en) * 2006-03-10 2007-10-18 Fujifilm Corp Solution film formation method and apparatus for removing deposit
JP2008505772A (en) * 2004-07-13 2008-02-28 ヴェルナー キップ イェンス Method and apparatus for generating jet of dry ice particles
JP2008230219A (en) * 2007-02-23 2008-10-02 Fujifilm Corp Solution casting method
JP2009078444A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Method for forming film from solution and cleaning apparatus
JP2011506054A (en) * 2007-12-10 2011-03-03 ヴェルナー キップ イェンス Dry ice spraying equipment
CN108074805A (en) * 2016-11-11 2018-05-25 株式会社迪思科 The processing method of chip
JP7462601B2 (en) 2021-11-04 2024-04-05 大陽日酸株式会社 Dry Ice Blaster

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505772A (en) * 2004-07-13 2008-02-28 ヴェルナー キップ イェンス Method and apparatus for generating jet of dry ice particles
JP2007269013A (en) * 2006-03-10 2007-10-18 Fujifilm Corp Solution film formation method and apparatus for removing deposit
JP2008230219A (en) * 2007-02-23 2008-10-02 Fujifilm Corp Solution casting method
JP2009078444A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Method for forming film from solution and cleaning apparatus
JP2011506054A (en) * 2007-12-10 2011-03-03 ヴェルナー キップ イェンス Dry ice spraying equipment
US8491354B2 (en) 2007-12-10 2013-07-23 Jens Werner Kipp Dry ice blasting device
CN108074805A (en) * 2016-11-11 2018-05-25 株式会社迪思科 The processing method of chip
JP7462601B2 (en) 2021-11-04 2024-04-05 大陽日酸株式会社 Dry Ice Blaster

Similar Documents

Publication Publication Date Title
US7621466B2 (en) Nozzle for cold spray and cold spray apparatus using same
US5186948A (en) Apparatus for manufacturing seamless capsules
JP5718055B2 (en) Apparatus and method for changing the characteristics of a multiphase jet
AU2018379291B2 (en) Metal powder manufacturing device, gas injector for same, and crucible
JP2005111575A (en) Co2 snow jetting device and co2 snow jetting method
JP2010090410A (en) Metal powder production apparatus
JP2009544925A (en) Flame burner and method for flame treatment of metal surface
EP1072307B1 (en) Injection apparatus for gas-liquid mixed flow
DK2574408T3 (en) Process and apparatus for supplying a refrigerant stream
JP5573505B2 (en) Ejector nozzle for cold spray device and cold spray device
JP5845733B2 (en) Cold spray nozzle and cold spray device
JP2005113200A (en) Nozzle structure in burner or lance, and method for melting and refining metal
KR20090050707A (en) Aerosol cleaning apparatus and method of nano-sized particle using supersonic speed nozzle
JP5422958B2 (en) Metal powder production equipment
TWI723596B (en) Atomizing nozzle, atmizing device, method for metal powder and metal powder prodeced by the same
JP2003145429A (en) Dry ice injecting nozzle and blast device
JP2002079145A (en) Cleaning nozzle and cleaning device
JPS629163B2 (en)
JP6990848B2 (en) Injection nozzle and injection method
JP2003054929A (en) Method for producing dry ice aerosol
JP7244820B2 (en) dry ice injector
JP6059871B2 (en) Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method
JP2007283299A (en) Spray nozzle
JP2000257610A (en) Turbulence restraining method by autogenous swirl flow using surface flow of fixed rotor, autogenous swirl flow generating device, autogenous swirl flow generating and maintaining control method and verifying method for turbulence restrain effect
JP3223560U (en) Dry ice cleaning equipment