JP2003054929A - Method for producing dry ice aerosol - Google Patents

Method for producing dry ice aerosol

Info

Publication number
JP2003054929A
JP2003054929A JP2001253166A JP2001253166A JP2003054929A JP 2003054929 A JP2003054929 A JP 2003054929A JP 2001253166 A JP2001253166 A JP 2001253166A JP 2001253166 A JP2001253166 A JP 2001253166A JP 2003054929 A JP2003054929 A JP 2003054929A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
dry ice
nitrogen gas
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001253166A
Other languages
Japanese (ja)
Other versions
JP4812986B2 (en
Inventor
Hiromi Kiyama
洋実 木山
Takashi Yokoyama
敬志 横山
Hidehiko Oku
秀彦 奥
Daisuke Sanjo
大輔 三条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2001253166A priority Critical patent/JP4812986B2/en
Publication of JP2003054929A publication Critical patent/JP2003054929A/en
Application granted granted Critical
Publication of JP4812986B2 publication Critical patent/JP4812986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Nozzles (AREA)
  • Colloid Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing dry ice aerosol, by which high hardness dry ice particles of a micrometer order or lower can be produced, which has no possibility of inclusi on of impurities, and is suitable for cleaning the surface of a semiconductor wafer or the like. SOLUTION: A liquefied carbon dioxide gas is evacuated so as to be a gas- liquid mixed state, and is thereafter jetted to the inside of a nozzle 3. Further, gaseous nitrogen is jetted to the inside of the nozzle 3 at a high speed, and the liquefied carbon dioxide gas and carbon dioxide gas in a gas-liquid mixed state are cooled by the cold of the gaseous nitrogen to produce aerosol with the gaseous nitrogen as a dispersion medium and dry ice particles as a dispersion phase. Further, the aerosol is jetted from the nozzle 3 by the jet flow of the gaseous nitrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハ,シ
リコン基板,精密加工部品等の表面洗浄用等に用いられ
るドライアイスエーロゾルの製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing dry ice aerosol used for cleaning the surfaces of semiconductor wafers, silicon substrates, precision processed parts and the like.

【0002】[0002]

【従来の技術】近年、半導体ウエハ,シリコン基板,精
密加工部品等の表面上等、高清浄度が必要とされる表面
上の微細なパーティクル(サブミクロン以下)を除去す
るために、ドライアイス粒子を用いるドライアイスブラ
スト方法が提案されている。このドライアイスブラスト
方法は、ドライアイス粒子を上記表面に吹きつけ、この
衝突時の爆発力を利用して上記表面を洗浄する方法であ
り、サンドブラスト方法に比べて清浄範囲が広いという
利点や、サンドブラスト方法では砂が残るのに対し、上
記衝突時にドライアイス粒子が揮発するために残留物が
残らないという利点がある。このようなドライアイスブ
ラスト方法では、ドライアイス粒子の硬度が高いほど洗
浄能力に優れるので、ドライアイス粒子の硬度を高める
ための技術改善がなされてきた。そして、断熱膨脹で製
造したスノー状ドライアイスを圧搾成形したのちにこれ
を微細化する方法(特開昭60−145906号公報)
や断熱膨張させる時に液化炭酸ガスの流れの中に調湿さ
れた炭酸ガスを添加する方法(特開平7−187638
号公報)等が提案されている。
2. Description of the Related Art In recent years, dry ice particles have been used to remove fine particles (sub-micron or less) on the surface of semiconductor wafers, silicon substrates, precision processed parts, etc., where high cleanliness is required. A dry ice blasting method using is proposed. This dry ice blast method is a method in which dry ice particles are sprayed onto the surface and the explosive force at the time of this collision is used to clean the surface, which has the advantage that the cleaning range is wider than the sand blast method, and sand blast. In the method, sand remains, but dry ice particles volatilize at the time of the above collision, which has an advantage that no residue remains. In such a dry ice blasting method, the higher the hardness of the dry ice particles is, the more excellent the cleaning ability is. Therefore, technical improvements have been made to increase the hardness of the dry ice particles. A method of squeezing snow-like dry ice produced by adiabatic expansion and then refining it (Japanese Patent Laid-Open No. 60-145906).
Or a method of adding conditioned carbon dioxide gas into the flow of liquefied carbon dioxide gas during adiabatic expansion (JP-A-7-187638).
No. publication) is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、圧搾成
形したドライアイス塊を微細化する方法では、その粒径
が大きくなり、ミクロンオーダー以下のドライアイス粒
子を製造することが難しく、極微小部の洗浄能力が劣る
という問題があった。しかも、微細化するための工程で
不純物が混入するおそれもある。一方、液化炭酸ガスの
流れの中に調湿された炭酸ガスを添加する方法では、ド
ライアイス粒子の中に氷の粒子が存在するため洗浄後の
洗浄面に水が残るという問題がある。
However, in the method of refining the crushed dry ice lumps, the particle size becomes large, and it is difficult to produce dry ice particles of micron order or less, and the cleaning of extremely minute parts is difficult. There was a problem of poor ability. Moreover, impurities may be mixed in the step of miniaturization. On the other hand, in the method of adding the conditioned carbon dioxide gas to the flow of the liquefied carbon dioxide gas, there is a problem that water remains on the cleaned surface after cleaning because ice particles exist in the dry ice particles.

【0004】本発明は、このような事情に鑑みなされた
もので、硬度が高く、ミクロンオーダー以下のドライア
イス粒子を製造することができ、しかも、不純物の混合
のおそれがなく、半導体ウエハ等の表面洗浄用等に適し
たドライアイスエーロゾルの製法の提供をその目的とす
る。
The present invention has been made in view of the above circumstances, and is capable of producing dry ice particles having a high hardness and having a particle size of micron order or less. Moreover, there is no fear of mixing impurities, and a semiconductor wafer or the like can be manufactured. It is an object of the present invention to provide a method for producing dry ice aerosol suitable for surface cleaning and the like.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明者らは、鋭意研究を重ねた結果、断熱膨張で
製造したスノー状ドライアイスに低温の窒素ガスを噴射
すると、ドライアイスの硬度が上がり、粒子径がミクロ
ンオーダー以下になることを見出し、本発明に到達し
た。本発明のドライアイスエーロゾルの製法は、液化炭
酸ガスを減圧して気液混合状態にしたのちノズル内部に
噴射するとともに、このノズル内部に窒素ガスを高速で
噴射し、この窒素ガスの冷熱で上記気液混合状態の液化
炭酸ガスおよび炭酸ガスを冷却し、窒素ガスを分散媒と
しドライアイス粒子を分散相とするエーロゾルを製造す
るとともに、このエーロゾルを窒素ガスの噴射流により
ノズルから噴出するようにしたという構成をとる。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have conducted extensive studies and as a result, when low-temperature nitrogen gas was injected into snow-like dry ice produced by adiabatic expansion, the dry ice was dried. The present invention has been accomplished by finding that the hardness is increased and the particle size is on the order of microns or less. The method for producing dry ice aerosol of the present invention is to depressurize liquefied carbon dioxide gas into a gas-liquid mixed state and then to inject it into a nozzle, and at the same time injecting nitrogen gas into this nozzle at a high speed, the cold heat of the nitrogen gas Liquefied carbon dioxide gas and carbon dioxide gas in a gas-liquid mixed state are cooled to produce an aerosol in which nitrogen gas is a dispersion medium and dry ice particles are a dispersed phase, and the aerosol is jetted from a nozzle by a jet stream of nitrogen gas. It takes the structure that it did.

【0006】すなわち、本発明のドライアイスエーロゾ
ルの製法は、液化炭酸ガスを減圧して断熱膨脹により気
液混合状態(この気液混合状態には、主に液化炭酸ガス
がミスト状で含まれている。また、この気液混合状態に
は、上記断熱膨脹により固体SNOW状炭酸ガスが含ま
れている場合もある)にしたのち、ノズル内部に噴射す
るとともに、このノズル内部に窒素ガスを高速噴射して
いる。そして、ノズル内部で、窒素ガスの冷熱により、
上記気液混合状態の液化炭酸ガス,炭酸ガスを過冷却
し、窒素ガスを分散媒としドライアイス粒子を分散相と
するエーロゾルを製造するようにしている。このとき、
上記気液混合状態の液化炭酸ガスはノズル内部にミスト
状に勢いよく噴射されるため、低温の窒素ガスで過冷却
されると、ミクロンオーダー以下で、硬度の高いドライ
アイス粒子へと変化する。また、炭酸ガスもノズル内部
に勢いよく噴射されるため、低温の窒素ガスで過冷却さ
れると、ミクロンオーダー以下で、硬度の高いドライア
イス粒子へと変化する。なお、炭酸ガスが全てドライア
イス粒子へと変化しない場合があり、この場合には、炭
酸ガスが分散媒に混入する。また、固体SNOW状炭酸
ガスが含まれている場合には、この固体SNOW状炭酸
ガスもノズル内部に微細粒化しながら勢いよく噴射され
るため、低温の窒素ガスで過冷却されると、ミクロンオ
ーダー以下で、液化炭酸ガスもしくは炭酸ガスから得ら
れるドライアイス粒子よりさらに硬度の高いドライアイ
ス粒子へと変化する。このようにして得られたエーロゾ
ルは窒素ガスの噴射流によりノズルから噴出され、半導
体ウエハ等の表面に吹き付けられ、この表面が洗浄され
る。このようなエーロゾルの硬度,流速,濃度は、窒素
ガスや液化炭酸ガスの温度・流量を変化させることによ
り、調整することが可能であり、これにより、汚染物質
に最適なエーロゾルを製造し、最適条件で洗浄すること
ができる。このように、本発明では、硬度が高く、ミク
ロンオーダー以下のドライアイス粒子を製造することが
できる。また、これにより、半導体ウエハ等の表面を高
い洗浄力で洗浄することができる。しかも、切削歯を用
いていないため、メタル成分がドライアイス粒子に混入
するおそれがない。
That is, in the method for producing dry ice aerosol of the present invention, the liquefied carbon dioxide gas is decompressed and adiabatic expansion is performed to form a gas-liquid mixed state (this gas-liquid mixed state mainly contains liquefied carbon dioxide gas in the form of mist). Further, in this gas-liquid mixed state, solid SNOW-like carbon dioxide gas may be contained due to the adiabatic expansion), and then the gas is injected into the nozzle and nitrogen gas is injected at high speed into the nozzle. is doing. And inside the nozzle, due to the cold heat of nitrogen gas,
The liquefied carbon dioxide gas and the carbon dioxide gas in the gas-liquid mixed state are supercooled to produce an aerosol having nitrogen gas as a dispersion medium and dry ice particles as a dispersion phase. At this time,
Since the liquefied carbon dioxide gas in the gas-liquid mixed state is vigorously jetted into the nozzle in the form of mist, when it is supercooled by low-temperature nitrogen gas, it changes into dry ice particles having a hardness of micron order or less and high hardness. Further, since carbon dioxide gas is also vigorously injected into the nozzle, when it is supercooled by low-temperature nitrogen gas, it changes into dry ice particles of micron order or less and having high hardness. In some cases, the carbon dioxide gas may not be entirely changed to dry ice particles, and in this case, the carbon dioxide gas is mixed in the dispersion medium. Further, when solid SNOW-like carbon dioxide gas is contained, this solid SNOW-like carbon dioxide gas is also jetted vigorously into the inside of the nozzle while being atomized, so if it is supercooled with low-temperature nitrogen gas, it will be in the order of microns. In the following, the liquefied carbon dioxide gas or dry ice particles obtained from carbon dioxide gas is changed to dry ice particles having higher hardness. The aerosol thus obtained is jetted from a nozzle by a jet stream of nitrogen gas, sprayed on the surface of a semiconductor wafer or the like, and the surface is cleaned. The hardness, flow rate, and concentration of such an aerosol can be adjusted by changing the temperature and flow rate of nitrogen gas or liquefied carbon dioxide gas, which makes it possible to produce the optimum aerosol for pollutants and It can be washed under the conditions. As described above, according to the present invention, dry ice particles having a high hardness and having a micron order or less can be manufactured. Further, this makes it possible to clean the surface of the semiconductor wafer or the like with high cleaning power. Moreover, since no cutting teeth are used, there is no risk of metal components being mixed in the dry ice particles.

【0007】本発明において、上記ノズルを、窒素ガス
導入室と、この窒素ガス導入室の窒素ガス出口から延び
るエーロゾル噴射用筒体とで構成し、上記窒素ガス出口
の近傍に上記気液混合状態の液化炭酸ガスおよび炭酸ガ
スを噴出するようにした場合には、窒素ガス導入室に高
速噴射される窒素ガスを利用して、効率よくエーロゾル
を製造し、この製造したエーロゾルをそのまま洗浄に供
することができる。
In the present invention, the nozzle is composed of a nitrogen gas introducing chamber and an aerosol injection cylinder extending from the nitrogen gas outlet of the nitrogen gas introducing chamber, and the gas-liquid mixed state is provided in the vicinity of the nitrogen gas outlet. When the liquefied carbon dioxide gas and the carbon dioxide gas are sprayed, use the nitrogen gas that is sprayed at high speed into the nitrogen gas introduction chamber to efficiently produce an aerosol, and use the produced aerosol as it is for cleaning. You can

【0008】つぎに、本発明を詳しく説明する。Next, the present invention will be described in detail.

【0009】本発明は、窒素ガスと液化炭酸ガスを用
い、窒素ガスを分散媒としドライアイス粒子を分散相と
するエーロゾルを製造している。なお、分散媒に炭酸ガ
スが混入する場合もある。
The present invention produces an aerosol using nitrogen gas and liquefied carbon dioxide gas, using nitrogen gas as a dispersion medium, and dry ice particles as a dispersed phase. Note that carbon dioxide may be mixed in the dispersion medium.

【0010】上記エーロゾルを構成するドライアイス粒
子の粒径は、2μm以下の範囲内に設定され、好適には
0.5〜1μmの範囲内に設定される。
The particle size of the dry ice particles constituting the above-mentioned aerosol is set within the range of 2 μm or less, and preferably within the range of 0.5 to 1 μm.

【0011】上記液化炭酸ガスは、減圧されてからノズ
ル内部に噴射される。上記減圧は、0.6〜1.0MP
aの範囲内で行われ、好適には0.6〜0.8MPaの
範囲内で行われる。
The liquefied carbon dioxide gas is decompressed and then injected into the nozzle. The reduced pressure is 0.6 to 1.0MP
It is carried out in the range of a, preferably in the range of 0.6 to 0.8 MPa.

【0012】[0012]

【発明の実施の形態】つぎに、本発明の実施の形態を図
面にもとづいて詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0013】図1は本発明の一実施の形態を利用した洗
浄装置を示している。図において、1は窒素ガス供給ラ
インで、2はCO2 供給ラインで、3はノズルで、4は
温度制御部である。上記窒素ガス供給ライン1は、高純
度の窒素ガスを最適な温度・流量状態でノズル3の内部
に供給するためのラインである。このような窒素ガス供
給ライン1は、フィルター6,流量調整バルブ7を設け
た窒素ガス供給パイプ5と、フィルター9,流量調整バ
ルブ10を設けた液化窒素供給パイプ8と、両パイプ
5,8が合流する合流パイプ11とを備えており、この
合流パイプ11の先端開口部が、後述するノズル3の窒
素ガス導入室25に接続している。
FIG. 1 shows a cleaning apparatus utilizing an embodiment of the present invention. In the figure, 1 is a nitrogen gas supply line, 2 is a CO 2 supply line, 3 is a nozzle, and 4 is a temperature control unit. The nitrogen gas supply line 1 is a line for supplying high-purity nitrogen gas into the nozzle 3 at an optimum temperature and flow rate. Such a nitrogen gas supply line 1 includes a nitrogen gas supply pipe 5 provided with a filter 6 and a flow rate adjusting valve 7, a liquefied nitrogen supply pipe 8 provided with a filter 9 and a flow rate adjusting valve 10, and both pipes 5 and 8. The merging pipe 11 for merging is provided, and the front end opening of the merging pipe 11 is connected to the nitrogen gas introducing chamber 25 of the nozzle 3 described later.

【0014】また、上記両パイプ5,8に取り付けられ
た流量調整バルブ7,10は温度制御部4に電気的に接
続しているとともに、この温度制御部4が上記窒素ガス
導入室25に取り付けた温度センサー15に電気的に接
続している。そして、この温度センサー15により窒素
ガス導入室25内の温度がモニターされ、そのモニター
結果が温度制御部4に入力され、この入力されたモニタ
ー結果に基づいて上記両流量調整バルブ7,10の開閉
が制御され、窒素ガスと液化窒素の流量調整が行われて
いる。これにより、窒素ガスと液化窒素が最適な混合比
と流量に制御され、最適の温度・流量状態で合流パイプ
11に供給される。また、この合流パイプ11の先端開
口部は、その径を絞ること等により、低温高速噴射しう
るように構成されている。
The flow rate adjusting valves 7 and 10 attached to both the pipes 5 and 8 are electrically connected to the temperature control unit 4, and the temperature control unit 4 is attached to the nitrogen gas introducing chamber 25. It is electrically connected to the temperature sensor 15. Then, the temperature inside the nitrogen gas introducing chamber 25 is monitored by the temperature sensor 15, the monitoring result is input to the temperature control unit 4, and the opening and closing of the both flow rate adjusting valves 7 and 10 are performed based on the input monitoring result. Is controlled, and the flow rates of nitrogen gas and liquefied nitrogen are adjusted. Thereby, the nitrogen gas and the liquefied nitrogen are controlled to have the optimum mixing ratio and flow rate, and are supplied to the merging pipe 11 at the optimum temperature and flow rate state. Further, the tip end opening of the merging pipe 11 is configured to be capable of low-temperature and high-speed injection by narrowing the diameter or the like.

【0015】上記CO2 供給ライン2は、後述する気固
液混合状態の高純度のミスト状液化炭酸ガスを最適な温
度・流量状態で上記ノズル3の内部に供給するためのラ
インである。このようなCO2 供給ライン2は、高純度
の液化炭酸ガスを収容するLCO2 収容ボンベ20と、
このLCO2 収容ボンベ20から延びるCO2 供給パイ
プ21とを備えており、このCO2 供給パイプ21の先
端部は、上記ノズル3の窒素ガス導入室25の窒素ガス
出口25aの内側近傍部に突入し、そののち、この内側
近傍部の中央部で合流パイプ11の先端開口部側もしく
は円周方向に直角に折れ曲っている。また、上記CO2
供給パイプ21の先端開口部は、その径を絞ること等に
より、上記気固液混合状態のミスト状液化炭酸ガスを合
流パイプ11の先端開口部側もしくは円周方向に噴射し
うるように構成されている。
The CO 2 supply line 2 is a line for supplying a high-purity mist-like liquefied carbon dioxide gas, which will be described later, in a gas-solid mixed state into the nozzle 3 at an optimum temperature and flow rate. Such a CO 2 supply line 2 includes an LCO 2 storage cylinder 20 that stores high-purity liquefied carbon dioxide gas,
A CO 2 supply pipe 21 extending from the LCO 2 accommodating cylinder 20 is provided, and a tip end portion of the CO 2 supply pipe 21 penetrates into a vicinity of an inside of the nitrogen gas outlet 25a of the nitrogen gas introduction chamber 25 of the nozzle 3. Then, after that, at the central portion of the vicinity of the inner side, it is bent at a right angle to the tip opening side of the confluent pipe 11 or to the circumferential direction. In addition, the above CO 2
The tip opening portion of the supply pipe 21 is configured such that the mist-like liquefied carbon dioxide gas in the gas-solid mixed state can be injected toward the tip opening portion side or the circumferential direction of the merging pipe 11 by reducing the diameter or the like. ing.

【0016】また、上記CO2 供給パイプ21には、そ
の上流側に不織布等からなるフィルター22が設けら
れ、その下流側に減圧弁23が設けられている。そし
て、上記フィルター22により、CO2 供給パイプ21
を通る液化炭酸ガス中の微細パーティクル(サブミクロ
ン以下)が除去される。また、上記減圧弁23により、
上記フィルター22を経た液化炭酸ガスが0.6〜0.
8MPaに減圧され、この断熱膨脹により炭酸ガス,ミ
スト状液化炭酸ガス,固体SNOW状炭酸ガス状の気固
液混合状態(この気固液混合状態には、主にミスト状液
化炭酸ガスが含まれている)になる。これにより、気固
液混合状態のミスト状液化炭酸ガスが最適の温度・流量
状態でノズル3の内部に供給される。
The CO 2 supply pipe 21 is provided with a filter 22 made of non-woven fabric or the like on its upstream side and a pressure reducing valve 23 on its downstream side. Then, by the filter 22, the CO 2 supply pipe 21
Fine particles (sub-micron or less) in the liquefied carbon dioxide passing through are removed. Further, by the pressure reducing valve 23,
The liquefied carbon dioxide gas that has passed through the filter 22 is 0.6 to 0.
The pressure is reduced to 8 MPa, and due to this adiabatic expansion, carbon dioxide, mist-like liquefied carbon dioxide, and solid SNOW-like carbon dioxide gas-solid mixed state (this gas-solid mixed state mainly contains mist-like liquefied carbon dioxide gas. It becomes). As a result, the mist-like liquefied carbon dioxide gas in the gas-solid mixed state is supplied to the inside of the nozzle 3 at the optimum temperature and flow rate.

【0017】上記ノズル3は、略円筒形状の窒素ガス導
入室25と、円錐形状の筒体(エーロゾル噴射用筒体)
26とを備えている。上記窒素ガス導入室25は、合流
パイプ11の導入部25bから拡径状に湾曲する湾曲傾
斜壁に形成され、つぎに、適度のストレート部に形成さ
れたのち、中央部に向かって縮径状に湾曲する湾曲傾斜
壁に形成されており、その円形の中央開口部の内径は、
窒素ガス導入室25のストレート部の内径の略1/2に
設定されている。また、上記筒体26は、外側に向かっ
て拡径する円錐形状に形成されている。
The nozzle 3 has a substantially cylindrical nitrogen gas introduction chamber 25 and a conical cylinder (aerosol injection cylinder).
26 and. The nitrogen gas introducing chamber 25 is formed on a curved inclined wall which is curved from the introducing portion 25b of the merging pipe 11 in a diameter-expanding manner, and is then formed on an appropriate straight portion, and then is reduced in diameter toward the central portion. It is formed on a curved slanted wall that bends to, and the inner diameter of the circular central opening is
The inner diameter of the straight portion of the nitrogen gas introducing chamber 25 is set to approximately 1/2. Further, the cylindrical body 26 is formed in a conical shape whose diameter increases toward the outside.

【0018】上記洗浄装置を用い、つぎのようにしてド
ライアイスエーロゾルを製造することができる。すなわ
ち、まず、窒素ガス供給ライン1では、窒素ガス供給パ
イプ5に供給された高純度の窒素ガス(室温で,0.7
〜0.9MPa)がフィルター6で不純物除去され、流
量調整バルブ7で流量調整されたのち合流パイプ11に
送られる。また、液化窒素供給パイプ8に供給された高
純度の液化窒素がフィルター9で不純物除去され、流量
調整バルブ10で流量調整されたのち合流パイプ11に
送られる。この合流パイプ11に送られた窒素ガスと液
化窒素は窒素ガス導入室25内に窒素ガス(−150〜
−70℃で,0.6〜0.8MPa)として高速噴射さ
れる。この高速噴射された窒素ガスは窒素ガス出口25
a,筒体26に向かって流れる。つぎに、CO2 供給ラ
イン2では、LCO2 収容ボンベ20から取り出された
高純度の液化炭酸ガスが減圧弁23で0.6〜0.8M
Paに減圧されて、炭酸ガス,ミスト状液化炭酸ガス,
固体SNOW状炭酸ガス状の気固液混合状態になったの
ち、CO2 供給パイプ21の先端開口部から気固液混合
状態のミスト状液化炭酸ガス(室温で,0.3〜0.4
MPa)が噴射される。この噴射された気固液混合状態
のミスト状液化炭酸ガスは、上記窒素ガスの噴射流中
に、この噴射流に逆らうようにして噴射されたのち、窒
素ガスとともに筒体26に向かって流れる。
Dry ice aerosol can be produced in the following manner using the above-mentioned cleaning device. That is, first, in the nitrogen gas supply line 1, the high-purity nitrogen gas supplied to the nitrogen gas supply pipe 5 (at room temperature, 0.7
Impurities are removed by the filter 6, the flow rate is adjusted by the flow rate adjusting valve 7, and then sent to the merging pipe 11. Further, impurities of the high-purity liquefied nitrogen supplied to the liquefied nitrogen supply pipe 8 are removed by the filter 9, the flow rate is adjusted by the flow rate adjusting valve 10, and the liquefied nitrogen is then sent to the merging pipe 11. The nitrogen gas and the liquefied nitrogen sent to the merging pipe 11 are stored in the nitrogen gas introducing chamber 25 with nitrogen gas (-150 to
High-speed injection of 0.6 to 0.8 MPa) at -70 ° C. This high-speed injected nitrogen gas is the nitrogen gas outlet 25
a, flows toward the cylindrical body 26. Next, in the CO 2 supply line 2, the high-purity liquefied carbon dioxide gas taken out from the LCO 2 storage cylinder 20 is 0.6 to 0.8 M at the pressure reducing valve 23.
Decompressed to Pa, carbon dioxide gas, mist-like liquefied carbon dioxide gas,
After a solid SNOW-like carbon dioxide gas-solid mixture state is obtained, a mist-like liquefied carbon dioxide gas (at room temperature, 0.3 to 0.4 at room temperature) is mixed from the tip opening of the CO 2 supply pipe 21.
(MPa) is injected. The injected mist-like liquefied carbon dioxide gas in the gas-solid mixed state is injected into the jet stream of the nitrogen gas against the jet stream, and then flows toward the cylinder 26 together with the nitrogen gas.

【0019】ノズル3の窒素ガス導入室25では、縮径
状に湾曲する湾曲傾斜壁を窒素ガスの噴射流が通過する
際のベンチュリー効果により、窒素ガスと気固液混合状
態のミスト状液化炭酸ガスとがよく混合し、ミクロンオ
ーダー以下で、硬度の高いドライアイス粒子が効率よく
製造される。すなわち、ミスト状液化炭酸ガスはミスト
状に勢いよく噴射されるため、窒素ガスで過冷却される
と、ミクロンオーダー以下で、硬度の高いドライアイス
粒子が生成される。また、炭酸ガスも勢いよく噴射され
たのち、低温の窒素ガスで過冷却されて、ミクロンオー
ダー以下で、硬度の高いドライアイス粒子が生成され
る。また、固体SNOW状炭酸ガスも微細化しながら勢
いよく噴射されるため、窒素ガスで過冷却されて、ミク
ロンオーダー以下で、さらに硬度の高いドライアイス粒
子が生成される。
In the nitrogen gas introducing chamber 25 of the nozzle 3, a mist-like liquefied carbon dioxide in a gas-solid mixture state with the nitrogen gas is produced by the Venturi effect when the jet flow of the nitrogen gas passes through the curved slanted wall curved in a diameter-reduced manner. It mixes well with gas and efficiently produces dry ice particles of micron order or less and having high hardness. That is, since the mist-like liquefied carbon dioxide gas is jetted vigorously in the form of mist, when it is supercooled with nitrogen gas, dry ice particles of micron order or less and having high hardness are generated. Further, carbon dioxide gas is also jetted vigorously, and then supercooled by low-temperature nitrogen gas to generate dry ice particles having a hardness of micron order or less and high hardness. Further, since the solid SNOW-like carbon dioxide gas is also jetted vigorously while being made finer, it is supercooled by the nitrogen gas, and dry ice particles of micron order or less and having higher hardness are generated.

【0020】そして、ノズル3の筒体26内部で、窒素
ガスを分散媒(なお、炭酸ガスが全てドライアイス粒子
へと変化しない場合には、炭酸ガスが分散媒に混入す
る)としドライアイス粒子を分散相とするエーロゾルが
製造されながら、筒体26から噴出され、半導体ウエハ
等の表面に吹き付けられ、この表面が洗浄される。この
洗浄に際して、従来法で製造されるドライアイスでは除
去しきれない5μm以下の微細な塵芥をドライアイス粒
子で除去することができる。
Inside the cylindrical body 26 of the nozzle 3, nitrogen gas is used as a dispersion medium (when the carbon dioxide gas is not entirely changed to the dry ice particles, the carbon dioxide gas is mixed into the dispersion medium). While the aerosol having the dispersed phase is produced, the aerosol is ejected from the cylinder 26 and sprayed on the surface of a semiconductor wafer or the like, and the surface is washed. During this cleaning, fine particles of 5 μm or less which cannot be completely removed by the dry ice produced by the conventional method can be removed by the dry ice particles.

【0021】さらに、窒素ガス,液化窒素や液化炭酸ガ
スの温度・流量を変えることにより、自在にエーロゾル
の硬度,流速,濃度を調節することができる。
Furthermore, by changing the temperature and flow rate of nitrogen gas, liquefied nitrogen and liquefied carbon dioxide, the hardness, flow rate and concentration of the aerosol can be adjusted freely.

【0022】[0022]

【実施例】以下、本発明を実施例にもとづいて説明する
が、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below based on examples, but the present invention is not limited thereto.

【0023】図1の洗浄装置を用い、液化炭酸ガスを減
圧弁23で0.7MPaに減圧して流量2Nm3 /分で
ノズル3の内部に導入した。そして、液化窒素と窒素ガ
スをそれぞれ1.2Nm3 /分、0.8Nm3 /分で窒
素ガス導入室25に供給したところ、温度センサー15
は−90℃を検出した。生成したドライアイス粒子を筒
体26の出口で捕捉して調べたところ、硬くて透明で、
粒子の直径は0.2〜1μm、嵩密度は0.8〜1.2
g/cm3 で、金属不純物(Al,B,Cd,Co,C
r,Fe,Cu,K,Li,Mg,Mn,Na,Ni,
Pb,Sb,Zn,Zr,V)は検出されなかった。ま
た、ノズル3から噴出したドライアイスエーロゾルを1
分間噴射して洗浄したのちのシリコンウエハの表面には
0.1μm以上のパーティクルは検出されなかった。
Using the cleaning apparatus of FIG. 1, the liquefied carbon dioxide gas was decompressed to 0.7 MPa by the decompression valve 23 and introduced into the nozzle 3 at a flow rate of 2 Nm 3 / min. Then, liquid nitrogen and nitrogen gas, respectively 1.2 Nm 3 / min, was supplied to a nitrogen gas introduction chamber 25 at 0.8 Nm 3 / min, a temperature sensor 15
Detected -90 ° C. When the generated dry ice particles were captured and examined at the outlet of the cylinder 26, they were hard and transparent,
The particle diameter is 0.2 to 1 μm, and the bulk density is 0.8 to 1.2.
g / cm 3 , metal impurities (Al, B, Cd, Co, C
r, Fe, Cu, K, Li, Mg, Mn, Na, Ni,
Pb, Sb, Zn, Zr, V) was not detected. In addition, the dry ice aerosol ejected from the nozzle 3
No particles of 0.1 μm or more were detected on the surface of the silicon wafer after being sprayed for cleaning for one minute.

【0024】[0024]

【比較例】図1の洗浄装置を用い、液化炭酸ガスを減圧
弁23で0.7MPaに減圧して流量2Nm3 /分でノ
ズル3の内部に導入したが、液化窒素と窒素ガスを流さ
なかった。生成されたドライアイス粒子は軟らかいスノ
ー状であり、粒子の直径は10μm〜2mmであった。
また、ドライアイス粒子の嵩密度は0.08〜0.32
g/cm3 であった。
Comparative Example Using the cleaning apparatus of FIG. 1, the liquefied carbon dioxide gas was decompressed to 0.7 MPa by the decompression valve 23 and introduced into the nozzle 3 at a flow rate of 2 Nm 3 / min, but liquefied nitrogen and nitrogen gas were not flowed. It was The produced dry ice particles were in the shape of soft snow and had a diameter of 10 μm to 2 mm.
The bulk density of dry ice particles is 0.08 to 0.32.
It was g / cm 3 .

【0025】[0025]

【発明の効果】以上のように、本発明のドライアイスエ
ーロゾルの製法によれば、硬度が高く、ミクロンオーダ
ー以下のドライアイス粒子を製造することができる。ま
た、これにより、半導体ウエハ等の表面を高い洗浄力で
洗浄することができる。しかも、切削歯を用いていない
ため、メタル成分がドライアイス粒子に混入するおそれ
がない。
As described above, according to the dry ice aerosol manufacturing method of the present invention, it is possible to manufacture dry ice particles having a high hardness and having a micron order or less. Further, this makes it possible to clean the surface of the semiconductor wafer or the like with high cleaning power. Moreover, since no cutting teeth are used, there is no risk of metal components being mixed in the dry ice particles.

【0026】本発明において、上記ノズルを、窒素ガス
導入室と、この窒素ガス導入室の窒素ガス出口から延び
るエーロゾル噴射用筒体とで構成し、上記窒素ガス出口
の近傍に上記気液混合状態の液化炭酸ガスおよび炭酸ガ
スを噴出するようにした場合には、窒素ガス導入室に高
速噴射される窒素ガスを利用して、効率よくエーロゾル
を製造し、この製造したエーロゾルをそのまま洗浄に供
することができる。
In the present invention, the nozzle is composed of a nitrogen gas introducing chamber and an aerosol injection cylinder extending from the nitrogen gas outlet of the nitrogen gas introducing chamber, and the gas-liquid mixed state is provided in the vicinity of the nitrogen gas outlet. When the liquefied carbon dioxide gas and the carbon dioxide gas are sprayed, use the nitrogen gas that is sprayed at high speed into the nitrogen gas introduction chamber to efficiently produce an aerosol, and use the produced aerosol as it is for cleaning. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を利用した洗浄装置の説
明図である。
FIG. 1 is an explanatory diagram of a cleaning device using an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 ノズル 3 nozzles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/304 643 H01L 21/304 643Z (72)発明者 奥 秀彦 大阪府堺市築港新町2丁6番地40 エア・ ウォーター株式会社堺事業所内 (72)発明者 三条 大輔 大阪府堺市築港新町2丁6番地40 エア・ ウォーター株式会社堺事業所内 Fターム(参考) 3B116 AA01 BA06 BB38 BB82 BB90 4F033 QA04 QB02Y QB08X QD02 4G046 JB22 4G065 AA10 BB01 BB02 BB05 CA17 DA08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/304 643 H01L 21/304 643Z (72) Inventor Hidehiko Oku 2-6 Tsukikoshinmachi, Sakai City, Osaka Prefecture 40 Air Water Co., Ltd. Sakai Plant (72) Inventor Daisuke Sanjo 2-6 Tsukiko Shinmachi, Sakai City, Osaka Prefecture 40 Air Water Co., Ltd. Sakai Plant F-term (reference) 3B116 AA01 BA06 BB38 BB82 BB90 4F033 QA04 QB02Y QB08X QD02 4G046 JB22 4G065 AA10 BB01 BB02 BB05 CA17 DA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液化炭酸ガスを減圧して気液混合状態に
したのちノズル内部に噴射するとともに、このノズル内
部に窒素ガスを高速で噴射し、この窒素ガスの冷熱で上
記気液混合状態の液化炭酸ガスおよび炭酸ガスを冷却
し、窒素ガスを分散媒としドライアイス粒子を分散相と
するエーロゾルを製造するとともに、このエーロゾルを
窒素ガスの噴射流によりノズルから噴出するようにした
ドライアイスエーロゾルの製法。
1. A liquefied carbon dioxide gas is decompressed into a gas-liquid mixed state and then injected into a nozzle, and nitrogen gas is injected at a high speed into the nozzle, and the cold heat of the nitrogen gas produces a gas-liquid mixed state. Cooling liquefied carbon dioxide and carbon dioxide, producing an aerosol with nitrogen gas as the dispersion medium and dry ice particles as the dispersed phase, and the dry ice aerosol which is made to be ejected from the nozzle by the jet stream of nitrogen gas. Manufacturing method.
【請求項2】 上記分散媒に炭酸ガスが混入している請
求項1記載のドライアイスエーロゾルの製法。
2. The method for producing a dry ice aerosol according to claim 1, wherein carbon dioxide is mixed in the dispersion medium.
【請求項3】 上記ノズルを、窒素ガス導入室と、この
窒素ガス導入室の窒素ガス出口から延びるエーロゾル噴
射用筒体とで構成し、上記窒素ガス出口の近傍に上記気
液混合状態の液化炭酸ガスおよび炭酸ガスを噴出するよ
うにした請求項1または2記載のドライアイスエーロゾ
ルの製法。
3. The nozzle comprises a nitrogen gas introducing chamber and an aerosol injection cylinder extending from a nitrogen gas outlet of the nitrogen gas introducing chamber, and the liquefaction of the gas-liquid mixed state is in the vicinity of the nitrogen gas outlet. The method for producing dry ice aerosol according to claim 1 or 2, wherein carbon dioxide gas and carbon dioxide gas are ejected.
JP2001253166A 2001-08-23 2001-08-23 Manufacturing method of dry ice aerosol Expired - Fee Related JP4812986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253166A JP4812986B2 (en) 2001-08-23 2001-08-23 Manufacturing method of dry ice aerosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253166A JP4812986B2 (en) 2001-08-23 2001-08-23 Manufacturing method of dry ice aerosol

Publications (2)

Publication Number Publication Date
JP2003054929A true JP2003054929A (en) 2003-02-26
JP4812986B2 JP4812986B2 (en) 2011-11-09

Family

ID=19081538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253166A Expired - Fee Related JP4812986B2 (en) 2001-08-23 2001-08-23 Manufacturing method of dry ice aerosol

Country Status (1)

Country Link
JP (1) JP4812986B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280412A (en) * 2008-05-19 2009-12-03 Showa Tansan Co Ltd Apparatus for spraying dry ice particles
WO2010010647A1 (en) 2008-07-23 2010-01-28 竹和工業株式会社 Blast cleaning process, and method and apparatus for producing solid carbon dioxide used in the same
JP2010045392A (en) * 2004-10-05 2010-02-25 Asml Netherlands Bv Lithographic apparatus, cleaning system, and cleaning method of removing contaminants on site from lithographic apparatus components of the lithographic apparatus
US7837805B2 (en) 2007-08-29 2010-11-23 Micron Technology, Inc. Methods for treating surfaces
JP2011207664A (en) * 2010-03-30 2011-10-20 Showa Tansan Co Ltd Device for spraying dry ice particles
KR101731236B1 (en) 2015-06-22 2017-05-02 주식회사 케이씨텍 Substrate cleaning apparatus
KR101814493B1 (en) * 2016-05-30 2018-01-04 주식회사 아이엠티 apparatus and method of selective removal of molding resin on semiconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230292A (en) * 1975-09-02 1977-03-07 Showa Tansan Kk Method for production of dry ice
JPS5935013A (en) * 1982-08-18 1984-02-25 Showa Denko Kk Preparation of dry ice
JPH01320213A (en) * 1988-06-21 1989-12-26 Osaka Gas Co Ltd Production of solid carbon dioxide having excellent transparency and device of same
JPH10296131A (en) * 1997-04-25 1998-11-10 Iwatani Internatl Corp Liquefied gas jetting nozzle
JP2001114507A (en) * 1999-10-13 2001-04-24 Nippon Sanso Corp Device for and method of producing/supplying dry ice snow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230292A (en) * 1975-09-02 1977-03-07 Showa Tansan Kk Method for production of dry ice
JPS5935013A (en) * 1982-08-18 1984-02-25 Showa Denko Kk Preparation of dry ice
JPH01320213A (en) * 1988-06-21 1989-12-26 Osaka Gas Co Ltd Production of solid carbon dioxide having excellent transparency and device of same
JPH10296131A (en) * 1997-04-25 1998-11-10 Iwatani Internatl Corp Liquefied gas jetting nozzle
JP2001114507A (en) * 1999-10-13 2001-04-24 Nippon Sanso Corp Device for and method of producing/supplying dry ice snow

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045392A (en) * 2004-10-05 2010-02-25 Asml Netherlands Bv Lithographic apparatus, cleaning system, and cleaning method of removing contaminants on site from lithographic apparatus components of the lithographic apparatus
US8902399B2 (en) 2004-10-05 2014-12-02 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US7837805B2 (en) 2007-08-29 2010-11-23 Micron Technology, Inc. Methods for treating surfaces
JP2009280412A (en) * 2008-05-19 2009-12-03 Showa Tansan Co Ltd Apparatus for spraying dry ice particles
WO2010010647A1 (en) 2008-07-23 2010-01-28 竹和工業株式会社 Blast cleaning process, and method and apparatus for producing solid carbon dioxide used in the same
JP2011207664A (en) * 2010-03-30 2011-10-20 Showa Tansan Co Ltd Device for spraying dry ice particles
KR101731236B1 (en) 2015-06-22 2017-05-02 주식회사 케이씨텍 Substrate cleaning apparatus
KR101814493B1 (en) * 2016-05-30 2018-01-04 주식회사 아이엠티 apparatus and method of selective removal of molding resin on semiconductor

Also Published As

Publication number Publication date
JP4812986B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
TWI632001B (en) Cleaning device for atomizing and spraying liquid in two-phase flow
CN104841660B (en) Gas-liquid two-phase atomization cleaner and cleaning method
JP4120991B2 (en) Cleaning nozzle and cleaning method using the same
JP3315611B2 (en) Two-fluid jet nozzle for cleaning, cleaning device, and semiconductor device
US4932168A (en) Processing apparatus for semiconductor wafers
JPH04253331A (en) Cleaning method of substrate and apparatus used for said method
CN104854682B (en) Generation nozzle, generating means and the generation method of ultrahigh speed uniform particle
WO2005086214A1 (en) Two-fluid nozzle for cleaning substrate and substrate cleaning device
JP2003054929A (en) Method for producing dry ice aerosol
WO2002068107A3 (en) Apparatus and method for micron and submicron particle formation
WO2014199705A1 (en) Device for continuous generation of single-component cryogenic fine solid particles, and method for continuous generation of single component cryogenic fine solid particles
JP4580985B2 (en) Method and apparatus for generating jet of dry ice particles
CN114078692A (en) Wafer cleaning method and wafer cleaning equipment
KR100419299B1 (en) Nozzle for injecting sublimable solid particles entrained in gas for cleaning a surface
JPH0549258U (en) Dry ice blast injection gun
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
CN115283369A (en) Carbon dioxide state control system and method
JP2002079145A (en) Cleaning nozzle and cleaning device
JP6990848B2 (en) Injection nozzle and injection method
JP2012035166A (en) Fluid ejecting nozzle and washing device using the same
JP2877263B2 (en) Cleaning method using fine ice particles
JP3223560U (en) Dry ice cleaning equipment
JP2019081211A (en) Surface treatment device and surface treatment method
US20220168762A1 (en) Device for generating a co2 snow jet
WO2010097896A1 (en) Cleaning nozzle and cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4812986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees