JPS629163B2 - - Google Patents

Info

Publication number
JPS629163B2
JPS629163B2 JP58080095A JP8009583A JPS629163B2 JP S629163 B2 JPS629163 B2 JP S629163B2 JP 58080095 A JP58080095 A JP 58080095A JP 8009583 A JP8009583 A JP 8009583A JP S629163 B2 JPS629163 B2 JP S629163B2
Authority
JP
Japan
Prior art keywords
cooling
water
metal tube
header
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58080095A
Other languages
Japanese (ja)
Other versions
JPS59205418A (en
Inventor
Kyohei Murata
Yasuhiko Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8009583A priority Critical patent/JPS59205418A/en
Publication of JPS59205418A publication Critical patent/JPS59205418A/en
Publication of JPS629163B2 publication Critical patent/JPS629163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に継目無鋼管や電縫鋼管等の金属
管の加工熱処理、制御加工(圧延も含む)+制御
冷却熱処理あるいは制御焼入等の主として制御冷
却方法及びその装置に関する。 本発明の制御冷却方法及びその装置の特徴及び
用途等を継目無鋼管あるいは電縫鋼管の熱処理プ
ロセスを例に挙げ、以下に具体的に説明する。 最近の油井あるいはガス井の掘削環境条件は、
増々厳しくなる一方であり、しかも原油価格の下
落により、安価で高品質の鋼管ニーズが高くなり
つつある。これらの情勢、ニーズに対応するため
には、厚板製造法の進歩等に見られるように、非
調質化あるいは広義のオンライン加工熱処理、制
御冷却プロセスの実用化が必須になつて来た。と
ころが、これまでに提案された冷却方法やその装
置は、主として焼入れを対象としており、後述の
如く種々の問題点があり、鋼管の広義の「加工及
び又は制御冷却」熱処理に適した制御冷却技術や
装置は、未だ、十分提案されていない。 既に提案されている冷却法やその装置を広義の
「鋼管の加工及び/又は制御冷却」熱処理法等に
適用した場合の欠点や問題点を要約すると以下の
通りである。 1 先端あるいは後端からの冷却水の侵入と歩留
低下; 例えば、特願昭50―39494、特願昭50―
123849、米国特許第3140964号(JuIy14,
1964)及び第3507712号(Apr.211970)等に開
示されている方法や装置は、基本的には被焼入
れ鋼管の先端あるいは後端から冷却水が浸入す
るか、若しくはそれを防止するため、あるいは
円周方向の冷却の不均一性を改良するためにな
された発明である。 冷却水を被焼入れ鋼管の進行方向に斜め噴射
する方法においては、該鋼管の後端に蓋を取付
けておかないと必ず後端より冷却水が浸入し、
「鋼管の加工及び/又は制御冷却」熱処理法や
残留応力制御冷却法等の各種の広義の制御冷却
法において、材質や残留応力の制御が不可能な
部分が生じ、切り捨て部が生じ、歩留りが低下
し、工業的には致命的に不利となる。また、斜
め噴射冷却法の場合、噴射された冷却水が該鋼
管の内外壁に沿つて流れるために冷却終了温度
の制御が困難である。これに対して、特公昭53
―32097号公報に開示された方法は、細い糸状
“中実ジエツト流体”を飛行中に露化(液滴状
あるいは霧滴状)させることなく、被焼入れ鋼
管に直角に且つ空間に輪環状トンネルを形成さ
せるように噴射させることにより、端部からの
冷却水の浸入を防ぐことが出来ると提案されて
いる。しかし、この方法は、焼入れが主眼で後
述の“水頭差”対策を要するような「鋼管の加
工及び/又は制御冷却」法等においては、円周
方向での冷却の不均一は明白である。何故な
ら、被焼入れ鋼管に平行に配列された多数のヘ
ツダーの各々に流量あるいは圧力調整機構を介
さずに冷却水が供給されているので、上側ヘツ
ダーと下側ヘツダーとの間に“水頭差”が生
じ、円周方向で冷却が均一とならない。 後述の通り、該冷却法を焼戻し後の残留応力
制御冷却法に適用すると、残留応力の円周方向
の均一性が非常に悪かつた。特に、鋼管を回転
搬送冷却しない場合に著しかつた。 2 “水頭差”対策がなく円周方向の冷却の不均
一; 前記例示した従来の発明は焼入れを対象とし
ているので、冷却水の噴出圧力は約0.35〜6Kg
f/cm2G(ヘツダー圧)であるために、トンネ
ル型環状ヘツダーやその他の形式の環状ヘツダ
ーには、冷却水(あるいは冷媒)の供給口は1
個所であり、そのために給水配管が複雑になら
ず簡潔な冷却装置となつている。そのために通
常の外径範囲の鋼管を焼入れる場合、スキユー
ロールで搬送しながら鋼管を回転させる方法以
外に、円周方向の冷却の不均一を改善するため
に、水頭差対策等を講ずる必要は特になかつ
た。 本発明者等の調査では、焼入れを対象とした
場合、従来の焼入冷却装置では、水頭差は高々
ヘツダー圧の10〜15%以内であつた。後述の焼
戻し後の残留応力制御冷却法では、従来の冷却
水の供給口が1個所(上部あるいは下部)の前
記環状ヘツダーの場合、水頭差が50〜85%にも
達する場合があり、円周方向の冷却の不均一が
非常に大きくなつた。このような場合、前述の
通り焼戻し後の残留応力制御冷却法では、水頭
差が致命的な欠点となる。 また、広義の「鋼管の加工及び/又は制御冷
却」熱処理においては、前例と同様に焼入れの
場合に比較して、冷却能力(severity of
cooling)が比較的弱くて十分な例が多い。こ
のような場合、水量あるいは平均水量密度が少
なくてよいから、ヘツダー圧が低くてよい。空
気と水との混合噴霧冷却においても同様であ
り、水圧は低くてよく、且つ空気の使用量が少
ない方が望ましいから、円周方向の冷却の均一
性向上のために、水頭差対策を講ずる必要が生
じてくる。 3 冷却能力の制御幅が狭く且つ制御性が劣る;
鋼管の焼入れの場合、焼割れの問題を除くと、
冷却の強さ(Severity of cooling)は高い方が
望ましく、且つ冷却終了温度はほぼ200℃以下
であればよい。通常の鋼管の外面焼入れの場合
には、鋼管の単位表面積当り約4〜5m3
min.m2の平均水量密度の冷却水量を供給すれ
ば、冷却能力はほぼ飽和する。したがつて、冷
却能力を小さくするとかあるいは制御するため
には、主として平均水量密度を制御すればよい
ことになるが、後述の如く実際には容易ではな
い。 しかし、前記の米国特許第3140964号及び第
3507712号その他の冷却方法や装置では、ノズ
ルから噴射された冷却水が鋼管表面に衝突後、
鋼管の進行方向に鋼管表面に沿つて流れる方式
であるから水量が少なく、したがつて噴出圧力
(あるいは流速)が低い場合には重力の影響を
強く受け、鋼管の下面側に流下する傾向が強く
なるので、円周方向での冷却の均一性が悪くな
る。 特願昭50―123849の例では多少の改善が提案
されているが、上述の傾向、すなわち低水量
(密度)冷却域での円周方向の冷却の均一性が
悪くなるのは避けられない。また、該例では、
両端開放のままの状態の場合、管端からの冷却
水の浸入が生じ、制御冷却に不適当である。 このように、既に提案されている、主として
焼入れを主目的とした冷却装置では、冷却の均
一性等の制約から、冷却能力の下限が高く(焼
入れに近い)、したがつて冷却能力の制御幅が
狭い。 通常の鋼管の各種の制御熱処理冷却において
は、管径、肉厚に応じて冷却の強さや冷却終了
温度(あるいは冷却温度区間)を制御する必要
があるから、冷却能力の制御幅が狭いと実用適
用範囲が限定される。 特公昭53−32097号公報の方法は、工業的に
は流体冷媒は水となり、“中実流体ジエツト
流”で且つ露化を避けるため、同様に冷却能力
の下限が高く、冷却の強さ(冷却能力)の制御
幅が狭い。 本発明者等は、前述の如く広義の各種サイ
ズ、肉厚の鋼管の「加工及び/又は制御冷却」
熱処理法や、冷却終了温度制御に適した流体冷
媒単独あるいは気体冷媒と液体冷媒の混合噴霧
冷却が兼用も可能で、冷却の均一性がよく、冷
却能力の制御幅が広く、また管端からの冷媒の
浸入もなく、全長にわたつて均一な材質が得ら
れ且つ冷却後の形状(曲がり、真円度等)の優
れた冷却方法とその装置を発明した。 本発明の冷却方法及びその装置の特徴と用途を
要約すると以下の通りである。 (1) 同一冷却装置で冷媒の選択の自由度が高く、
冷却能力の制御幅が広い。 鋼管用の気水混合噴霧冷却の如き、気体と液
体冷媒との混合噴霧冷却が可能であり且つ最適
である。また、液体冷媒単独の冷却装置とな
り、噴出状態も液滴状あるいは膜状の形態の選
択が可能である。更に、衝風冷却の如き、気体
冷媒単独の冷却も可能である。 以上の通り、冷媒及びその噴出形態の選択の
自由度が高く、しかも例えば気水混合噴霧冷却
の場合には、空気:水の重量比を制御すること
により、冷却能力の制御が可能である。また、
空間に形成される冷媒のトンネル型輪環の内径
及び外径を変化させることによつても、平均水
量密度を制御可能であるので、冷却能力の制御
幅が非常に広い冷却方法及びその装置といえ
る。 冷媒の噴出形態あるいは冷媒に応じてヘツダ
ーやノズルの形状を変更してもよいが、本発明
者等の実験によれば後掲のヘツダー構造ノズル
で、上述の冷媒の選択と冷却能力の大幅な制御
が可能であることが確認されている。 (2) 管端からの冷却水の浸入がなく、歩留りが向
上する。 本発明の冷却方法では冷媒を管軸に直角方向
に噴射するので、両管端が開放されていても管
端からの冷却水の浸入がなく、あるいはあつて
も極めて僅かであるため、全く実害がなく、広
義の鋼管の「加工及び/又は制御冷却熱処理」
プロセス用に最適であり、全長にわたつて均一
な材質が得られる。また、焼戻し後の残留応力
制御冷却においても同様であり、管端切捨てが
不要となり歩留りが向上するので、工業上極め
て有利である。上記の事項は、空間に形成され
た冷媒のトンネル型輪環の内径が被冷却鋼管の
外径より著しく小さい場合でも確認された。 (3) 円周方向の冷却の均一性が非常に良好であ
る。 冷媒(気体と液体の混合冷媒も含む)の噴射
方向が管軸に直角であり、しかも管壁に対して
ほぼ接線方向であるため、空間にトンネル型輪
環が形成され、各ヘツダーから噴射された該冷
媒の相互作用で殆んど均一な水量密度状態とな
るため、円周方向の冷却の均一性が極めて良好
である。 (4) 長手方向での冷却パターン制御が可能且つ容
易である。 米国特許第3507712号に代表される斜め噴射
方式冷却方法では、前段のノズル列から噴射さ
れた冷媒が後段(進行方向)に行く程累積して
行くので、実際上冷却パターン制御が殆んど不
可能で、焼入れにしか不向きであつた。そのた
め、冷却終了温度の制御が出来なかつた。(従
来の焼入れ法では不必要であつた)。しかし、
本発明の冷却方法及び冷却装置では、長手方向
での冷却パターン制御が容易にできるようにな
り、また冷却終了温度制御も可能になつた。特
に、該冷却装置を複数段配列した鋼管の冷却装
置列において冷却終了温度制御が容易となる。 (5) 広義の各種制御冷却(加工熱処理との結合も
含む)から焼入れに広範な適用が可能となる。 本発明の冷却方法及びその装置の用途の代表例
を具体的に例示すれば、以下のようであるが、該
用途に限定されるものではない。 焼戻し後の残留応力制御冷却(特願昭55―
2588等参照) 焼戻し脆性防止のための急冷処理 ストレツチレデユーサ後面でのオンライン
「制御圧延及び/又は制御冷却」熱処理による
非調質化プロセス リーラ後面と再加熱炉間でAr1変態以下に、
一旦冷却してAc3変態点以上に再加熱後「圧延
(Sizing Rolling)及び/又は熱処理」するオ
ンラインプロセス。ここでいう熱処理とは焼入
れ、あるいは、焼準等を意味する) 焼入れにおける冷却終了温度をMf点以上に
高めて「焼入れ+焼戻し」(=調質化熱処理)
工程の連続化乃至簡略化するプロセス、または
ラインパイプ等に対しては焼戻し工程を省略す
る熱処理プロセス。 次に、本発明の冷却装置を実施例に基づいて後
掲の図面により説明する。 第1図及び第2図は円周上に配列された多数
(該例では16本)のヘツダーを高さ方向に3等分
し、水頭差を1/3に減少させた実施例である。す
なわち、高さ方向に3等分するためには、∠
AOB=θとすると、幾何学的に(1)式の関係が成
立しなければならない。 2cosθ=(1−cosθ) …(1) cosθ=1/3 ∴θ=70.5゜ …(2) この関係から、16本のヘツダー2を円周上に等
間隔に配列すると、上・下(各々FAB,CDE)
に各6本のヘツダー、左・右(各々BC,EF)に
各2本宛配列すると、従来の冷却装置のように上
部または下部の1個所から冷却水を供給する方法
と比較して、水頭差はほぼ1/3に減少可能であ
る。 次に、上下のゾーン(各ヘツダー6本宛)並び
に左右を一体ゾーン(合計ヘツダー4本)とし
て、3個の中間レシーバータンク1(各々、空
気、水用別々に区別され且つ一体となつている)
を設置し、該中間レシーバータンクから流量調節
弁を介して各ヘツダーに空気と水を所要量供給す
る方法と、中間レシーバータンク〜ヘツダー間に
流量調節弁を介さずに空気と水を供給する方法を
実施した。その結果、各ゾーンの幾何学的水頭差
が、使用時の最高ヘツダー圧(水)の約20%以下
ならば、各ヘツダーから噴射された気水混合また
は水単独冷媒が相互干渉し、空間に形成されるト
ンネル型輪環は、円周方向で殆んど均一化され、
中間レシーバータンク〜ヘツダーに流量調節弁を
介さずとも、円周方向で均一な材質あるいは残留
応力が得られた。 特に、搬送ロールを水平面内で傾斜させたスキ
ユーロールで鋼管を回転させながら搬送し制御冷
却する場合には、第2図の送水ポンプあるいは送
風用コンプレツサー間の流量調節のみで十分円周
方向で均一な冷却が可能であつた。換言するとヘ
ツダー群を第1図に例示した如く、高さ方向に3
等分すると、中間レシーバータンク〜ヘツダー間
に流量調節弁が不要となる用途が殆んどである。
また、スキユーロールによる回転搬送冷却の場
合、鋼管の回転数が40RPM以下ならば、回転の
効果は余り期待できないことも確認された。 したがつて、回転搬送冷却をしない場合で且つ
より完全な円周方向での均一冷却を望むならば、
高さ方向の分割数を増加させるか、あるいは中間
レシーバタンク〜各ヘツダー間に流量調節弁を介
して、流量あるいはヘツダー圧を制御すればよ
い。 ヘツダーを複数のブロツクに分割し、各々のヘ
ツダー群の噴出条件(圧力、冷媒量、スプレー状
態その他)を制御することは円周方向の冷却の均
一性を確保する上で本質的に有利である。その理
由は、伝熱工学の分野で、伝熱面の空間における
姿勢により熱伝達が異なることが明らかにされて
いるので、伝熱面の姿勢、例えば鋼管の上面と下
面で各々のヘツダー群の噴出条件を制御し、円周
方向で均一な冷却が可能となるからである。 第2図の配管系統図は水単独の場合であるか、
気水混合噴射の場合には、水及び空気用に同様の
2系統の配管を施し、用途あるいは必要に応じて
中間レシーバータンク1及び各ヘツダー2間に
各々流量調節弁13を設置すればよい。また、中
間レシーバータンクを設置せずに送水配管及び/
あるいは送風配管から、各ヘツダーに流量調節弁
を介して直接適正なヘツダー圧あるいは流量が確
保できるようにしてもよい。しかし、中間レシー
バーを設置する方が、ヘツダー圧あるいは流量の
変動を低減し安定化できる。 第3図は、ノズル取付部を含むヘツダーの断面
図である。該実施例のヘツダーは2重管構造とな
つており、内管2Bからは水を、またその外側の
外管2Aからは空気を送り、先端のノズルチツプ
内で空気と水を内部混合し、気水噴霧粒を噴射で
きる構造となつている。但し、前述の通り水単独
あるいは空気単独噴射も可能で、用途あるいは所
要冷却速度に応じて使い分けが可能である利点が
ある。 その他、ノズルチツプの内部あるいは開口部形
状の変更により、例えば気水噴霧の噴射形状を、
フルコーンスプレー型あるいはフラツトスプレー
型その他任意の形状を選択できる。しかし、本発
明者の熱間実験では、フラツトスプレー型形状の
方が空間に形成されるトンネル型輪環の環の厚さ
が薄くなるので、冷媒の集中度が高く、冷媒密度
も大きくなるので冷却能力が向上する。 次に、冷却能力の制御法について、気水混合噴
霧冷却を例にして説明する。第3図に例示した内
部混合型気水ノズルの場合、空気の重量/水の重
量〓0.05〜0.1程度でも、細粒の液滴状トンネル
型輪環が形成され、焼戻し後の残留応力制御冷却
法に適用でき、円周方向で十分均一な残留応力が
確保できた。被冷却鋼管の肉厚が厚く冷却能力を
強くしたい場合には、空気/水の重量比のバラン
スを調整しながら水の重量を増加させる方法、空
間に形成させるトンネル型輪環の内径/被冷却鋼
管の外径の比を小さくする方法、液滴流速を調整
する方法、その他搬送速度を制御する方法等を組
合せて冷却能力を大幅に且つ自由自在に制御可能
であつた。 また、該トンネル型輪環の内径が被冷却鋼管の
内径の約1/2程度に縮少しても、搬送中に該鋼管
の先端から冷媒特に水が浸入することはなく、該
鋼管の全長にわたつて均一な材質あるいは残留応
力が得られた。 第4図は、第1図に示した複数パイプヘツダー
平行配列型環状ヘツダーに配列した2重管式パイ
プヘツダーの長手方向断面の構造図である。長手
方向での空気、水あるいは気水混合噴射の量的分
布パターンの均一化や息つきを防止するには、空
気用整流板17(第3図)を取付け、且つ水用内
管の中に水用ノズル9の吸込口を、内管中心程度
まで突出させるとよいことが、実験で確められ
た。 空間に形成されるトンネル型輪環内径の調整機
構は、第1図に示す通りヘツダー角度調整装置3
を手動または電動機で動かす(回転)ことによ
り、連結回転機構(詳細図示せず)でヘツダー角
度調整リング30を介して各ヘツダーが一体とな
つて全ノズルの向きが変更されるようになつてい
る。又、第1図では被冷却管径が変化しても、環
状平行ヘツダー群の中心と金属管16の中心を一
致させるための昇降装置4が設けられている。5
は該装置4によつて昇降するフレームである。 なお、第5図は第1図の中間レシーバータンク
の構造例を示し、空気用中間レシーバータンク室
18と、水用中間レシーバータンク室19とから
なり、それぞれの室に配管口20,21が設けら
れている。 本発明の冷却装置を「焼戻し後の残留応力制御
冷却法」に適用した場合の残留応力の円周方向の
均一性を、公知の斜め噴斜冷却法と対比して第1
表に示した。第1表は、水頭差対策を講じていな
い水単独斜め噴射冷却装置(従来旧法)と本発明
の冷却装置で、焼戻し後の残留応力制御冷却を実
施した場合の円周方向での残留応力の偏差の最大
値(鋼管の内表面における円周方向の残留応力分
布で最大値と最小値の差)を比較したもので、表
から本発明の冷却装置、すなわち水頭差対策を講
じトンネル型輪環を形成させることにより、円周
方向で均一な冷却が実現できたことを示している
ことがわかる。
The present invention mainly relates to a controlled cooling method and apparatus for processing heat treatment, controlled processing (including rolling) + controlled cooling heat treatment, or controlled quenching of metal pipes such as seamless steel pipes and electric resistance welded steel pipes. The characteristics and applications of the controlled cooling method and device of the present invention will be specifically explained below using a heat treatment process for seamless steel pipes or electric resistance welded steel pipes as an example. The recent drilling environmental conditions for oil or gas wells are as follows:
This situation is becoming increasingly difficult, and with the drop in crude oil prices, the need for inexpensive, high-quality steel pipes is increasing. In order to respond to these situations and needs, it has become essential to put non-thermal refining, online processing heat treatment in a broad sense, and controlled cooling processes into practical use, as seen in advances in plate manufacturing methods. However, the cooling methods and devices that have been proposed so far are mainly aimed at quenching, and have various problems as described below. However, not enough devices have been proposed yet. The following is a summary of the shortcomings and problems when the cooling methods and devices that have already been proposed are applied to heat treatment methods for "processing and/or controlled cooling of steel pipes" in a broad sense. 1 Intrusion of cooling water from the front or rear end and decrease in yield; For example, Japanese Patent Application No. 39494, No. 1983,
123849, U.S. Patent No. 3140964 (JuIy14,
1964) and No. 3507712 (Apr. 211970) etc. are basically used to prevent or prevent cooling water from entering from the tip or rear end of the steel pipe to be hardened. This invention was made to improve the non-uniformity of cooling in the circumferential direction. In the method of injecting cooling water obliquely in the direction of progress of the steel pipe to be quenched, if a lid is not attached to the rear end of the steel pipe, the cooling water will inevitably enter from the rear end.
"Processing and/or Controlled Cooling of Steel Pipe" In various broadly defined controlled cooling methods such as heat treatment methods and residual stress controlled cooling methods, there are parts where the material quality and residual stress cannot be controlled, resulting in cut-off parts and reduced yield. This results in a fatal industrial disadvantage. In addition, in the case of the oblique injection cooling method, since the injected cooling water flows along the inner and outer walls of the steel pipe, it is difficult to control the cooling end temperature. In contrast,
The method disclosed in Publication No. 32097 is to create an annular tunnel at right angles to the steel pipe to be hardened and in space without exposing the thin filamentous "solid jet fluid" (in the form of droplets or mist) during flight. It has been proposed that cooling water can be prevented from entering from the ends by injecting it so as to form a . However, in this method, non-uniform cooling in the circumferential direction is obvious in the "processing and/or controlled cooling of steel pipes" method, which focuses on hardening and requires countermeasures against "hydraulic head difference" described later. This is because cooling water is supplied to each of the many headers arranged parallel to the steel pipe to be hardened, without going through a flow rate or pressure adjustment mechanism, so there is a "hydraulic head difference" between the upper and lower headers. occurs, and cooling is not uniform in the circumferential direction. As will be described later, when this cooling method was applied to the residual stress control cooling method after tempering, the uniformity of the residual stress in the circumferential direction was extremely poor. This was particularly noticeable when the steel pipe was not cooled while being conveyed by rotation. 2. There is no countermeasure for "water head difference" and non-uniform cooling in the circumferential direction; since the conventional invention mentioned above targets quenching, the jetting pressure of the cooling water is about 0.35 to 6 kg.
f/cm 2 G (header pressure), tunnel-type annular headers and other types of annular headers have only one cooling water (or refrigerant) supply port.
Because of this, the water supply piping is not complicated and the cooling system is simple. For this reason, when quenching steel pipes with a normal outside diameter range, in addition to rotating the steel pipes while conveying them on squee rolls, it is especially necessary to take measures such as water head differences to improve uneven cooling in the circumferential direction. Nakatsuta. According to research conducted by the present inventors, in the case of quenching, in conventional quenching cooling devices, the water head difference was within 10 to 15% of the header pressure at most. In the post-tempering residual stress control cooling method described below, in the case of the conventional annular header with one cooling water supply port (upper or lower), the water head difference can reach 50 to 85%, and the circumference The directional cooling non-uniformity became very large. In such a case, the water head difference becomes a fatal drawback in the residual stress control cooling method after tempering, as described above. In addition, in the heat treatment of "processing and/or controlled cooling of steel pipes" in a broad sense, the cooling capacity (severity of
cooling) is relatively weak and sufficient in many cases. In such a case, the header pressure may be low because the amount of water or the average water density may be small. The same is true for mixed spray cooling of air and water; the water pressure can be low, and it is desirable to use less air, so measures are taken to improve the uniformity of cooling in the circumferential direction by taking measures against water head differences. The need arises. 3. The control range of cooling capacity is narrow and the controllability is poor;
In the case of quenching steel pipes, excluding the problem of quench cracking,
It is desirable that the severity of cooling be higher, and the cooling end temperature may be approximately 200° C. or less. In the case of ordinary external hardening of steel pipes, approximately 4 to 5 m 3 /unit surface area of the steel pipe is applied.
If a cooling water amount with an average water density of min.m 2 is supplied, the cooling capacity is almost saturated. Therefore, in order to reduce or control the cooling capacity, it is sufficient to mainly control the average water flow density, but this is not easy in practice as will be described later. However, the aforementioned U.S. Pat.
No. 3507712 and other cooling methods and devices, after the cooling water injected from the nozzle collides with the surface of the steel pipe,
Since the water flow is along the surface of the steel pipe in the direction of movement of the steel pipe, the amount of water is small. Therefore, when the jetting pressure (or flow rate) is low, it is strongly influenced by gravity and has a strong tendency to flow down to the bottom side of the steel pipe. Therefore, the uniformity of cooling in the circumferential direction deteriorates. Although some improvements have been proposed in the example of Japanese Patent Application No. 123849/1984, the above-mentioned tendency, that is, deterioration of the uniformity of cooling in the circumferential direction in the low water flow (density) cooling region, cannot be avoided. Also, in this example,
If both ends are left open, cooling water will enter from the pipe ends, making it unsuitable for controlled cooling. As described above, in the cooling devices that have been proposed primarily for quenching, the lower limit of the cooling capacity is high (close to quenching) due to constraints such as uniformity of cooling, and therefore the control width of the cooling capacity is limited. is narrow. Various types of controlled heat treatment of ordinary steel pipes In cooling, it is necessary to control the cooling intensity and cooling end temperature (or cooling temperature range) according to the pipe diameter and wall thickness, so it is practical to have a narrow control range of cooling capacity. The scope of application is limited. In the method disclosed in Japanese Patent Publication No. 53-32097, water is used as the fluid refrigerant for industrial purposes, and the lower limit of the cooling capacity is similarly high, since water is used as a "solid fluid jet flow" and exposure is avoided. (cooling capacity) control range is narrow. As mentioned above, the present inventors have focused on the "processing and/or controlled cooling" of steel pipes of various sizes and wall thicknesses in a broad sense.
It is possible to use a single fluid refrigerant or a mixed spray cooling of gas refrigerant and liquid refrigerant suitable for heat treatment method and cooling end temperature control, and it has good uniformity of cooling, wide control range of cooling capacity, and easy cooling from the pipe end. We have invented a cooling method and device that allows uniform material to be obtained over the entire length without the infiltration of refrigerant, and which has an excellent shape (curvature, roundness, etc.) after cooling. The features and uses of the cooling method and device of the present invention are summarized as follows. (1) High degree of freedom in selecting refrigerant in the same cooling device;
Wide control range of cooling capacity. Mixed spray cooling of gas and liquid refrigerant, such as mixed air-water spray cooling for steel pipes, is possible and optimal. Furthermore, the cooling device uses only liquid refrigerant, and the jetting state can be selected from droplet-like or film-like. Furthermore, cooling with a gaseous refrigerant alone is also possible, such as blast cooling. As described above, there is a high degree of freedom in selecting the refrigerant and its jetting form, and in the case of air/water mixed spray cooling, for example, the cooling capacity can be controlled by controlling the weight ratio of air:water. Also,
Since the average water density can be controlled by changing the inner and outer diameters of the tunnel-shaped ring of refrigerant formed in the space, the present invention provides a cooling method and device that allows a very wide range of control over the cooling capacity. I can say that. The shape of the header and nozzle may be changed depending on the refrigerant jetting form or the refrigerant, but according to the experiments of the present inventors, the header structure nozzle described below has a large effect on the above-mentioned refrigerant selection and cooling capacity. It has been confirmed that control is possible. (2) There is no intrusion of cooling water from the pipe end, improving yield. In the cooling method of the present invention, the refrigerant is injected in a direction perpendicular to the tube axis, so even if both tube ends are open, there is no intrusion of cooling water from the tube ends, or even if there is, it is extremely small, so there is no actual damage at all. There is no “processing and/or controlled cooling heat treatment” of steel pipes in a broad sense.
Ideal for process use, providing uniform material over the entire length. The same applies to residual stress controlled cooling after tempering, which eliminates the need to cut off the tube end and improves yield, which is extremely advantageous industrially. The above was confirmed even when the inner diameter of the refrigerant tunnel ring formed in the space was significantly smaller than the outer diameter of the steel pipe to be cooled. (3) Very good cooling uniformity in the circumferential direction. Since the injection direction of refrigerant (including mixed refrigerant of gas and liquid) is perpendicular to the tube axis and almost tangential to the tube wall, a tunnel-shaped ring is formed in the space, and the refrigerant is injected from each header. The interaction of the refrigerant results in an almost uniform water density state, so the uniformity of cooling in the circumferential direction is extremely good. (4) It is possible and easy to control the cooling pattern in the longitudinal direction. In the oblique injection cooling method typified by U.S. Pat. No. 3,507,712, the refrigerant injected from the nozzle row in the previous stage accumulates as it goes to the latter stage (in the direction of travel), so in practice there is almost no cooling pattern control. However, it was only suitable for hardening. Therefore, it was not possible to control the cooling end temperature. (This was not necessary with conventional hardening methods). but,
With the cooling method and cooling device of the present invention, it has become possible to easily control the cooling pattern in the longitudinal direction, and it has also become possible to control the cooling end temperature. Particularly, in a steel pipe cooling device row in which the cooling devices are arranged in multiple stages, the cooling end temperature can be easily controlled. (5) A wide range of applications are possible, from various types of controlled cooling in a broad sense (including combination with processing heat treatment) to hardening. Typical examples of the uses of the cooling method and apparatus of the present invention are as follows, but they are not limited to these uses. Residual stress control cooling after tempering (patent application 1986-
(Refer to 2588, etc.) Rapid cooling treatment to prevent temper brittleness Non-thermal refinement process by online "controlled rolling and/or controlled cooling" heat treatment at the rear surface of the stretch reducer Ar 1 transformation or less between the rear surface of the reeler and the reheating furnace,
An online process in which "sizing rolling and/or heat treatment" is performed once cooled and reheated to above the Ac 3 transformation point. Heat treatment here means quenching, normalizing, etc.) "Quenching + tempering" (= refining heat treatment) by increasing the cooling end temperature in quenching to above the Mf point.
A process that makes the process continuous or simple, or a heat treatment process that omit the tempering process for line pipes, etc. Next, the cooling device of the present invention will be explained based on an embodiment with reference to the drawings shown below. Figures 1 and 2 show an embodiment in which a large number of headers (16 in this example) arranged on the circumference are divided into three equal parts in the height direction to reduce the water head difference to one-third. In other words, to divide into three equal parts in the height direction, ∠
When AOB=θ, the relationship of equation (1) must be established geometrically. 2cosθ=(1−cosθ) …(1) cosθ=1/3 ∴θ=70.5゜ …(2) From this relationship, if 16 headers 2 are arranged at equal intervals on the circumference, the upper and lower (respectively FAB, CDE)
By arranging 6 headers each and 2 headers each on the left and right (BC and EF, respectively), the water head will be reduced compared to the conventional cooling system that supplies cooling water from one location at the top or bottom. The difference can be reduced to almost 1/3. Next, three intermediate receiver tanks 1 (separately differentiated for air and water, but integrated) are defined as upper and lower zones (each with 6 headers) and left and right integrated zones (total of 4 headers). )
A method for supplying the required amount of air and water from the intermediate receiver tank to each header via a flow control valve, and a method for supplying air and water between the intermediate receiver tank and the header without using a flow control valve. was carried out. As a result, if the geometric head difference between each zone is less than approximately 20% of the maximum header pressure (water) during use, the air/water mixture or water-only refrigerant injected from each header will interfere with each other, causing The tunnel-type ring that is formed is almost uniform in the circumferential direction,
Uniform material quality or residual stress was obtained in the circumferential direction without using a flow control valve between the intermediate receiver tank and the header. In particular, when the steel pipe is conveyed and cooled while being rotated by ski rolls that are inclined in the horizontal plane, it is sufficient to maintain uniformity in the circumferential direction by simply adjusting the flow rate between the water pump or air compressor shown in Figure 2. Cooling was possible. In other words, the header group is 3 in the height direction as illustrated in Figure 1.
When divided into equal parts, most applications do not require a flow control valve between the intermediate receiver tank and the header.
It was also confirmed that in the case of rotation conveyance cooling using skie rolls, if the rotation speed of the steel pipe is 40 RPM or less, the effect of rotation cannot be expected to be much. Therefore, if rotational conveyance cooling is not used and more complete uniform cooling in the circumferential direction is desired,
The flow rate or header pressure may be controlled by increasing the number of divisions in the height direction or by using a flow rate control valve between the intermediate receiver tank and each header. Dividing the header into multiple blocks and controlling the ejection conditions (pressure, refrigerant amount, spray condition, etc.) of each header group is essentially advantageous in ensuring uniform cooling in the circumferential direction. . The reason for this is that in the field of heat transfer engineering, it has been clarified that heat transfer differs depending on the position of the heat transfer surface in space. This is because the ejection conditions can be controlled and uniform cooling can be achieved in the circumferential direction. Is the piping system diagram in Figure 2 for water only?
In the case of air/water mixed injection, two similar piping systems for water and air may be provided, and flow control valves 13 may be installed between the intermediate receiver tank 1 and each header 2 depending on the purpose or necessity. In addition, it is possible to connect water pipes and/or
Alternatively, appropriate header pressure or flow rate may be ensured directly from the blower piping to each header via a flow rate control valve. However, installing an intermediate receiver can reduce and stabilize fluctuations in header pressure or flow rate. FIG. 3 is a sectional view of the header including the nozzle mounting portion. The header of this embodiment has a double-tube structure, and water is sent from the inner tube 2B and air is sent from the outer tube 2A outside the header, and the air and water are internally mixed in the nozzle tip at the tip. It has a structure that allows it to spray water spray particles. However, as mentioned above, it is also possible to inject water alone or air alone, which has the advantage of being able to be used selectively depending on the application or required cooling rate. In addition, by changing the inside of the nozzle tip or the shape of the opening, for example, the shape of the air/water spray can be changed.
Full cone spray type, flat spray type, or any other shape can be selected. However, in the inventor's hot experiments, the thickness of the tunnel-shaped ring formed in the space is thinner in the flat spray type shape, so the refrigerant concentration is higher and the refrigerant density is also higher. Therefore, cooling capacity is improved. Next, a method for controlling the cooling capacity will be explained using air-water mixed spray cooling as an example. In the case of the internal mixing air/water nozzle shown in Fig. 3, even when the weight of air/weight of water is about 0.05 to 0.1, a fine droplet-like tunnel-type ring is formed, and residual stress control cooling after tempering occurs. The method was applicable to the method, and a sufficiently uniform residual stress could be secured in the circumferential direction. If the steel pipe to be cooled is thick and you want to increase the cooling capacity, increase the weight of the water while adjusting the balance of the air/water weight ratio, or increase the inner diameter of the tunnel ring formed in the space/to be cooled. By combining methods such as reducing the ratio of the outer diameter of the steel pipe, adjusting the droplet flow rate, and other methods of controlling the conveyance speed, it was possible to control the cooling capacity to a large extent and freely. In addition, even if the inner diameter of the tunnel ring is reduced to approximately 1/2 of the inner diameter of the steel pipe to be cooled, refrigerant, especially water, will not enter from the tip of the steel pipe during transportation, and the entire length of the steel pipe will be reduced. Uniform material quality or residual stress was obtained throughout. FIG. 4 is a longitudinal cross-sectional structural diagram of the double pipe type pipe header arranged in the plural pipe header parallel arrangement type annular header shown in FIG. 1. In order to make the quantitative distribution pattern of air, water, or air/water mixed jet uniform in the longitudinal direction and to prevent breathing, install an air rectifier plate 17 (Fig. 3) and install a It has been confirmed through experiments that it is better to make the suction port of the water nozzle 9 protrude to about the center of the inner tube. The adjustment mechanism for the inner diameter of the tunnel-type ring formed in the space is a header angle adjustment device 3 as shown in FIG.
By moving (rotating) manually or with an electric motor, each header is integrated via a header angle adjustment ring 30 by a connected rotation mechanism (details not shown), and the orientation of all nozzles is changed. . Further, in FIG. 1, an elevating device 4 is provided for aligning the center of the annular parallel header group with the center of the metal tube 16 even if the diameter of the pipe to be cooled changes. 5
is a frame that is raised and lowered by the device 4. Note that FIG. 5 shows an example of the structure of the intermediate receiver tank shown in FIG. It is being The uniformity of the residual stress in the circumferential direction when the cooling device of the present invention is applied to the "residual stress control cooling method after tempering" is compared with the known oblique jet cooling method.
Shown in the table. Table 1 shows the residual stress in the circumferential direction when residual stress control cooling after tempering is performed using a water-only diagonal injection cooling system (conventional old method) that does not take measures against water head difference and the cooling system of the present invention. This is a comparison of the maximum value of deviation (the difference between the maximum value and the minimum value in the residual stress distribution in the circumferential direction on the inner surface of the steel pipe). It can be seen that this shows that uniform cooling in the circumferential direction was achieved by forming .

【表】 このように特に各種の制御冷却においては、冷
却の円周方向の均一性が特に必要である。該沸謄
熱伝達が支配的で冷却の強さの制御が、水単独且
つ斜め噴射冷却法では、円周方向の冷却の均一性
との両立が非常に困難であつたが、本発明の水頭
差対策を講じた鋼管の冷却装置では、殆んど完全
に解決された。 本発明の水頭差対策を講じ、円周方向及び長手
方向で均一な冷却が実現された金属管の冷却装置
は、前述の通り、広義の各種の鋼管の「加工及
び/又は制御冷却」熱処理法等に最適であり、冷
却の強さに関しても、冷媒の噴射条件の(比較
的)弱い制御冷却から、冷却能力の強い焼入れに
わたる広範な用途に適用可能である。したがつ
て、該冷却装置を複数段配列した鋼管の冷却装置
列において、所望の冷却パターンが容易に実現可
能となり、工業的メリツトは莫大である。 なお、本発明は管軸に垂直な面に対し、たとえ
ば±20℃の角度をもつ円錐面内で半径方向に所与
の角度で冷却媒体を噴射せしめて冷却媒体の輪環
状トンネルを形成するようにしても、工業的に適
用することができること勿論である。
[Table] As described above, uniformity of cooling in the circumferential direction is particularly required in various types of controlled cooling. The boiling heat transfer is dominant, and it is very difficult to control the cooling intensity with uniform cooling in the circumferential direction using water alone and diagonal injection cooling. However, the water head of the present invention With steel pipe cooling systems that take measures against the difference, the problem has almost been completely solved. As mentioned above, the metal pipe cooling device which takes measures against the water head difference and realizes uniform cooling in the circumferential direction and the longitudinal direction is a heat treatment method for "processing and/or controlled cooling" of various steel pipes in a broad sense. In terms of cooling intensity, it can be applied to a wide range of applications, from controlled cooling with (relatively) weak refrigerant injection conditions to quenching with strong cooling capacity. Therefore, a desired cooling pattern can be easily realized in a steel pipe cooling device row in which the cooling devices are arranged in multiple stages, and the industrial merits are enormous. In addition, the present invention injects the cooling medium at a given angle in the radial direction within a conical surface having an angle of, for example, ±20 degrees with respect to a plane perpendicular to the tube axis to form an annular tunnel of the cooling medium. However, it goes without saying that it can be applied industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷却装置の1実施例で水頭差
対策のためにヘツダー群を高さ方向に3分割し、
中間レシーバータンクを設置した複数パイプヘツ
ダー平行配列型ヘツダーを持つ冷却装置の断面
図。第2図は本発明の冷却装置の液体または気体
冷媒の配管一流量制御系統図の実施例の一つで第
1図に対応する場合である。第3図は2重管式気
水混合噴霧用ヘツダーの断面詳細図である。第4
図は第3図のヘツダーの長手方向断面図である。
第5図は第1図に示した冷却装置に採用した中間
レシーバータンクの構造概略図で、複数パイプヘ
ツダー平行配列型環状ヘツダー群の外周に設置さ
れている。 1:中間レシーバータンク、2:2重管式ヘツ
ダー、2A:空気用ヘツダー(外管)、2B:水
用ヘツダー(内管)、3:ヘツダー角度調整装
置、4:昇降装置(センターリング機構)、5:
昇降フレーム(センターリング機構)、6:金属
管支持搬送ローラー、7:水配管(液体冷媒
用)、8:空気配管(気体冷媒用)、9:水用ノズ
ル、10:空気用ノズル(内部混合方式気水噴霧
ノズル)、11:空気供給口、12:水供給口、
13:流量調節弁、14:圧力計、15:流量
計、16:金属管、17:整流板、18:空気用
中間レシーバータンク(室)、19:水用中間レ
シーバータンク(室)、20:各ヘツダーへの配
管口(空気)、21:各ヘツダーへの配管口
(水)、30:ヘツダー角度調整リング(3と連
動)。
Fig. 1 shows an embodiment of the cooling device of the present invention, in which the header group is divided into three in the height direction in order to counteract the water head difference.
FIG. 2 is a cross-sectional view of a cooling device having a parallel array header with multiple pipe headers installed with an intermediate receiver tank. FIG. 2 is one embodiment of a piping flow rate control system diagram for a liquid or gas refrigerant in a cooling device of the present invention, and corresponds to FIG. 1. FIG. 3 is a detailed cross-sectional view of the double-pipe air-water mixing header. Fourth
The figure is a longitudinal sectional view of the header of FIG. 3.
FIG. 5 is a structural schematic diagram of an intermediate receiver tank employed in the cooling device shown in FIG. 1, which is installed around the outer periphery of a group of annular headers having a plurality of parallel pipe headers. 1: Intermediate receiver tank, 2: Double pipe header, 2A: Air header (outer pipe), 2B: Water header (inner pipe), 3: Header angle adjustment device, 4: Lifting device (centering mechanism) , 5:
Elevating frame (centering mechanism), 6: Metal tube support conveyance roller, 7: Water piping (for liquid refrigerant), 8: Air piping (for gas refrigerant), 9: Water nozzle, 10: Air nozzle (internal mixing) Type Air water spray nozzle), 11: Air supply port, 12: Water supply port,
13: Flow rate control valve, 14: Pressure gauge, 15: Flow meter, 16: Metal pipe, 17: Rectifier plate, 18: Intermediate receiver tank for air (chamber), 19: Intermediate receiver tank for water (chamber), 20: Piping port to each header (air), 21: Piping port to each header (water), 30: Header angle adjustment ring (linked with 3).

Claims (1)

【特許請求の範囲】 1 冷却対象である金属管の軸方向に延在すると
ともに、周方向に間隔をおいて配設され、周方向
に複数のブロツクに分割された単位で圧力を制御
せしめられる複数本のヘツダから前記金属管軸に
垂直或はほぼ垂直な面内で、冷却媒体噴射方向を
同時に同一の角度だけ変化せしめるノズル角度調
整機構によつて設定される、半経方向に対する所
与の角度で冷却媒体を噴射せしめて、所望の直径
を有する輪環状トンネルを形成し、該輪環状トン
ネルに金属管を通過せしめて冷却するようにした
ことを特徴とする金属管の冷却方法。 2 金属管を、その外周表面に冷却媒体を適用す
ることによつて冷却する装置であつて、金属管の
軸方向に延在するとともに少なくとも周方向に分
割された複数のブロツク単位で冷却媒体の圧力を
制御する圧力制御機構を有する複数本のヘツダ
と、該ヘツダからの冷却媒体を金属管外周表面に
噴射するノズルと、該ノズルの、上記金属管軸方
向に垂直或はほぼ垂直な面内で、冷却媒体噴射方
向の、金属管半径方向とのなす角を、同時に同一
の角度だけ変化せしめるノズル角度調整機構とを
有してなる金属管の冷却装置。
[Claims] 1 Extending in the axial direction of the metal tube to be cooled, disposed at intervals in the circumferential direction, and capable of controlling pressure in units divided into a plurality of blocks in the circumferential direction. A given angle in a semi-longitudinal direction is set by a nozzle angle adjustment mechanism that simultaneously changes the cooling medium injection direction by the same angle in a plane perpendicular or almost perpendicular to the metal tube axis from a plurality of headers. A method for cooling a metal tube, characterized in that a cooling medium is injected at an angle to form an annular tunnel having a desired diameter, and a metal tube is cooled by passing through the annular tunnel. 2 A device that cools a metal tube by applying a cooling medium to its outer circumferential surface, which cools the metal tube in units of a plurality of blocks extending in the axial direction of the metal tube and divided at least in the circumferential direction. a plurality of headers having a pressure control mechanism for controlling pressure; a nozzle for injecting a cooling medium from the header onto the outer circumferential surface of the metal tube; A cooling device for a metal tube, comprising a nozzle angle adjustment mechanism that simultaneously changes the angle between the cooling medium injection direction and the radial direction of the metal tube by the same angle.
JP8009583A 1983-05-10 1983-05-10 Cooling process and device of metal tube Granted JPS59205418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8009583A JPS59205418A (en) 1983-05-10 1983-05-10 Cooling process and device of metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8009583A JPS59205418A (en) 1983-05-10 1983-05-10 Cooling process and device of metal tube

Publications (2)

Publication Number Publication Date
JPS59205418A JPS59205418A (en) 1984-11-21
JPS629163B2 true JPS629163B2 (en) 1987-02-26

Family

ID=13708631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8009583A Granted JPS59205418A (en) 1983-05-10 1983-05-10 Cooling process and device of metal tube

Country Status (1)

Country Link
JP (1) JPS59205418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111851A1 (en) 2017-12-05 2019-06-13 大日本印刷株式会社 Thermal transfer printing device, and thermal transfer sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342325A (en) * 1986-08-08 1988-02-23 Nippon Steel Corp Method and device for cooling steel materials
JP5019783B2 (en) * 2006-05-09 2012-09-05 ナカジマ鋼管株式会社 Steel pipe manufacturing method and steel pipe manufacturing equipment
CN103264054B (en) * 2013-06-04 2015-04-08 中冶赛迪工程技术股份有限公司 Steel tube even cooling device
CN105195532A (en) * 2015-09-15 2015-12-30 天津正安无缝钢管有限公司 Instant cooling device for seamless steel pipe sizing
CN107841602A (en) * 2017-11-09 2018-03-27 新昌县鹏晟机械有限公司 Steel tube quenching device
CN108070701A (en) * 2018-01-31 2018-05-25 中国重型机械研究院股份公司 A kind of annular quenching unit and its application process
CN108048630A (en) * 2018-01-31 2018-05-18 中国重型机械研究院股份公司 One kind passes through formula steel pipe tempering product line and methods for using them
CN111014328B (en) * 2019-12-25 2021-06-29 江西融兴铝业有限公司 Aluminum alloy section extrusion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556417A (en) * 1978-06-24 1980-01-17 Sumitomo Metal Ind Ltd Method and apparatus for continuous quenching of steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556417A (en) * 1978-06-24 1980-01-17 Sumitomo Metal Ind Ltd Method and apparatus for continuous quenching of steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111851A1 (en) 2017-12-05 2019-06-13 大日本印刷株式会社 Thermal transfer printing device, and thermal transfer sheet

Also Published As

Publication number Publication date
JPS59205418A (en) 1984-11-21

Similar Documents

Publication Publication Date Title
JP5851136B2 (en) Cooling device and cooling method for metal tube after heating
US4371149A (en) Apparatus for cooling sheet steel by water spraying
CN101247902B (en) Cooling device for thick steel plate
EP2072157A1 (en) Method of cooling hot-rolled steel strip
KR100973692B1 (en) Hot rolling facility of steel plate and hot rolling method
CN106269931B (en) A kind of method of hot rolled seamless steel tube on-line continuous cooling
JPS629163B2 (en)
CA1065745A (en) Method of quenching large-diameter thin-wall metal pipe
CN102266872A (en) Steel tube cooling device
WO2008081955A1 (en) Method of cooling hot forged part, apparatus therefor, and process for producing hot forged part
CN108070699A (en) A kind of steel plate rolled quenching machine high pressure cooling device and cooling means
EP2039786A1 (en) Cooling method of steel pipe
CN104611665B (en) A kind of method of the thermal spraying prepares coating on large scale bend pipe class workpiece
JP6569843B1 (en) Thick steel plate cooling device and cooling method, and thick steel plate manufacturing equipment and manufacturing method
JP2017518988A (en) Effluent cooler in the production of acrylonitrile.
JP2001246408A (en) Device and method for uniformly cooling long size steel tube which is heated to high temperature
US20170349965A1 (en) Method of quenching steel pipe, apparatus for quenching steel pipe, method of manufacturing steel pipe and facility for manufacturing steel pipe
KR100527064B1 (en) Injection nozzle and Method for manufacturing strip wire using it
JP4063813B2 (en) Mist cooling device for hot rolled steel sheet
JP4388499B2 (en) Pipe cooling equipment and cooling method
JP2005111575A (en) Co2 snow jetting device and co2 snow jetting method
CN210974792U (en) Railway wheel cooling device
KR101988284B1 (en) Materials treatment apparatus
CN109423541A (en) The process units and method of steel pipe off-line quenching
JPH0810432Y2 (en) Bottom cooling device for high temperature steel sheet