JPS59205418A - Cooling process and device of metal tube - Google Patents
Cooling process and device of metal tubeInfo
- Publication number
- JPS59205418A JPS59205418A JP8009583A JP8009583A JPS59205418A JP S59205418 A JPS59205418 A JP S59205418A JP 8009583 A JP8009583 A JP 8009583A JP 8009583 A JP8009583 A JP 8009583A JP S59205418 A JPS59205418 A JP S59205418A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- metal tube
- water
- headers
- cooling medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
管の加工熱処理、制御加工(圧延も含む)子制御冷却熱
処理あるいは制御焼入等の主として制御冷却方法及びそ
の装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a controlled cooling method and apparatus for pipe processing heat treatment, controlled processing (including rolling), controlled cooling heat treatment, controlled hardening, etc.
本発明の制御冷却方法及びその装置の特徴及び用途等を
継目無鋼管あるいは電縫鋼管の熱処理プロセスを例に挙
げ、以下に具体的に説明する。The characteristics and applications of the controlled cooling method and device of the present invention will be specifically explained below using a heat treatment process for seamless steel pipes or electric resistance welded steel pipes as an example.
最近の油井あるいはガス井の掘削環境条件は、増々厳し
くなる一方であり、しかも原油価格の下落により、安価
で高品質の鋼管ニーズが高くなりつつある。これらの情
勢、ニーズに対応するためには、厚板製造法の進歩等に
見られるように、非調質化あるいは広義のオンライン加
工熱処理、制御冷却プロセスの実用化が必須になって来
た。ところが、これまでに提案された冷却方法やその装
置は、主として焼入れを対象としており、後述の如く種
々の問題点があり、鋼管の広義の「加工及び又は制御冷
却」熱処理に適した制御冷却技術や装置は、未だ、十分
提案されていない。Recently, the environmental conditions for drilling oil or gas wells have become increasingly severe, and with the drop in crude oil prices, the need for inexpensive, high-quality steel pipes is increasing. In order to respond to these situations and needs, it has become essential to put non-thermal refining, online processing heat treatment in a broad sense, and controlled cooling processes into practical use, as seen in advances in thick plate manufacturing methods. However, the cooling methods and devices that have been proposed so far are mainly aimed at quenching, and have various problems as described below. However, not enough devices have been proposed yet.
既に提案されている冷却法やその装置を広義の[鋼管の
加工及び/又は制御冷却」熱処理法等に適用した場合の
欠点や問題点を要約すると以下の通りである。The following is a summary of the shortcomings and problems when the cooling methods and devices that have already been proposed are applied to heat treatment methods in the broad sense of "processing and/or controlled cooling of steel pipes."
1)先端あるいは後端からの冷却水の浸入と歩留低下;
例えば、特願昭50−39/194 、特願昭50−1
23849 、米国特許第3,140,964号(Ju
ly14 。1) Infiltration of cooling water from the leading or trailing end and decrease in yield; For example, Japanese Patent Application No. 1987-39/194, Japanese Patent Application No. 1983-1
23849, U.S. Pat. No. 3,140,964 (Ju.
ly14.
1964 )及び第3,507,712号(AI)r、
21.1970 )等に開示されている方法や装置は、
基本的には被焼入れ鋼管の先端あるいは後端から冷却水
が浸入するか、若しくはそれを防止するだめ、あるいは
円周方向の冷却の不均一性を改良するためになされた発
明である。1964) and No. 3,507,712 (AI) r.
21.1970) etc., the methods and devices disclosed in
Basically, this invention was made to prevent or prevent cooling water from entering from the tip or rear end of a steel pipe to be hardened, or to improve non-uniform cooling in the circumferential direction.
冷却水を被焼入れ鋼管の進行方向に斜め噴射する方法に
おいては、該鋼管の後端に蓋を取付けておかないと必ず
後端より冷却水が浸入し、「鋼管の加工及び/又は制御
冷却」熱処理法や残留応力制御冷却法等の各種の広義の
制御冷却法において、材質や残留応力の制御が不可能な
部分が生じ、切り捨て部が生じ、歩留りが低下し7、工
業的には致命的に不利となる。まだ、斜め噴射冷却法の
場合、噴射された冷却水が該鋼管の内外壁に沿って流れ
るだめに冷却終了温度の制御が困難である。これに対し
て、特公昭53−32097号公報に開示された方法は
、細い糸状゛中実ジェット流体°′を飛行中に露化(液
滴状あるいは霧滴状)させることなく、被焼入れ鋼管に
直角に且つ空間に輪環状トンネルを形成させるように噴
射させることにより、端部からの冷却水の浸入を防ぐこ
とが出来ると提案されている。し7かし、この方法は、
焼入れが主眼で後述の6水頭差′°対策を要するような
[鋼管の加工及び/又は制御冷却j法等においては、円
周方向での冷却の不均一は明白である。何故なら、被焼
入れ鋼管に平行に配列された多数のヘッダーの各々に流
量あるいは圧力調整機構を介さずに冷却水が供給されて
いるので、上側ヘッダーと下側ヘッダーとの間に゛水頭
差“°が生じ、円周方向で冷却が均一とならない。In the method of injecting cooling water obliquely in the direction of progress of the steel pipe to be quenched, if a lid is not attached to the rear end of the steel pipe, the cooling water will always enter from the rear end, causing problems in "steel pipe processing and/or controlled cooling." In various broadly defined controlled cooling methods such as heat treatment methods and residual stress controlled cooling methods, there are parts where the material quality and residual stress cannot be controlled, resulting in cut-off parts and lower yields7, which is fatal in industrial terms. be disadvantageous to However, in the case of the oblique injection cooling method, it is difficult to control the cooling end temperature because the injected cooling water flows along the inner and outer walls of the steel pipe. On the other hand, the method disclosed in Japanese Patent Publication No. 53-32097 does not expose thin filamentous "solid jet fluid" during flight (in the form of droplets or mist), and it It has been proposed that cooling water can be prevented from entering from the ends by injecting the water at right angles to the water so as to form an annular tunnel in the space. However, this method
In steel pipe machining and/or controlled cooling methods that focus on hardening and require countermeasures against the water head difference described below, non-uniform cooling in the circumferential direction is obvious. This is because cooling water is supplied to each of the many headers arranged parallel to the steel pipe to be hardened without going through a flow rate or pressure adjustment mechanism, so there is a "head difference" between the upper and lower headers. °, and cooling is not uniform in the circumferential direction.
後述の通り、該冷却法を焼戻し後の残留応力制御冷却法
に適用すると、残留応力の円周方向の均一性が非常に悪
かった。特に、鋼管を回転搬送冷却しない場合に著しか
った。As will be described later, when this cooling method was applied to the residual stress control cooling method after tempering, the uniformity of the residual stress in the circumferential direction was very poor. This was particularly noticeable when the steel pipe was not cooled during rotational transportation.
2)゛水頭差゛対策がなく円周方向の冷却の不均一;
前記例示した従来の発明は焼入れを対象とL2ているの
で、冷却水の噴出圧力は約0.35〜6Kg[/CrA
G(ヘッダー圧)であるために、トンネル型環状ヘッダ
ーやその他の形式の環状ヘッダーには、冷却水(あるい
は冷媒)の供給口は1個所であシ、そのために給水配管
が複雑にならず簡潔な冷却装置となっている。2) Non-uniform cooling in the circumferential direction because there is no countermeasure against water head difference; Since the conventional invention mentioned above targets quenching, the jetting pressure of the cooling water is about 0.35 to 6 kg [/CrA
G (header pressure), tunnel-type annular headers and other types of annular headers only have one cooling water (or refrigerant) supply port, which makes the water supply piping simple and simple. It is a cooling device.
そのだめに通常の外径範囲の鋼管を焼入れる場合、スキ
ューロールで搬送しながら鋼管を回転させる方法以外に
、円周方向の冷却の不均一を改善するために、水頭差対
策等を講する必要は特になかった。To avoid this, when quenching steel pipes with a normal outside diameter range, in addition to rotating the steel pipes while conveying them with skew rolls, it is necessary to take measures such as water head difference measures to improve uneven cooling in the circumferential direction. There was no particular need.
本発明者等の調査では、焼入れを対象とした場合、従来
の焼入冷却装置では、水頭差は高々ヘッダー圧の10〜
15%以内であった。According to the research conducted by the present inventors, when quenching is targeted, in conventional quenching cooling equipment, the water head difference is at most 10 to 10% of the header pressure.
It was within 15%.
後述の焼戻し後の残留応力制御冷却法では、従来の冷却
水の供給口が1個所(上部あるいは下部)の前記環状ヘ
ッダーの場合、水頭差が50〜85%にも達する場合が
あり、円周方向の冷却の不均一が非常に大きく彦った。In the post-tempering residual stress control cooling method described below, in the case of the conventional annular header with one cooling water supply port (upper or lower), the water head difference can reach 50 to 85%, and the circumference The non-uniformity of cooling in the direction was very large.
このような場合、前述の通り焼戻し7後の残留応力制御
冷却法では、水頭差か致命的な欠点となる。In such a case, as described above, in the residual stress control cooling method after tempering 7, the water head difference becomes a fatal drawback.
まだ、広義の「鋼管の加工及び/又は制御冷却」熱処理
においては、前例と同様に焼入れの場合に比較して、冷
却能力(severityo(cooling)が比較
的弱くて十分な例が多い。However, in the heat treatment of "processing and/or controlled cooling of steel pipes" in a broad sense, there are many cases where the cooling capacity is relatively weak and sufficient compared to the case of quenching, as in the previous example.
このような場合、水量あるいは平均水量密度が少なくて
よいから、ヘッダー圧が低くてよい。空気と水との混合
噴霧冷却においても同様であり、水圧は低くてよく、且
つ空気の使用量が少ない方が望ましいから、円周方向の
冷却の均一性向上のために、水頭差対策を講する必要が
生じてくる。In such a case, the header pressure may be low because the amount of water or the average water density may be small. The same is true for mixed spray cooling of air and water; the water pressure may be low, and it is desirable to use less air, so countermeasures against the water head difference should be taken to improve the uniformity of cooling in the circumferential direction. The need arises.
3)冷却能力の制御幅が狭く且つ制御性が劣る;鋼管の
焼入れの場合、焼割れの問題を除くと、冷却の強さく5
everity of cooling)は高い方が望
ましく、且つ冷却終了温度はほぼ200 ”C以下であ
ればよい。通常の鋼管の外面焼入れの場合には、鋼管の
単位表面積当り約4〜5 yj:/In + 11.7
fjの平均水量密度の冷却水量を供給すれば、冷却能力
はほぼ飽和する。しだがって、冷却能力を小さくすると
かあるいは制御するためには、主として平均水量密度を
制御すればよいことになるが、後述の如くしかし、前記
の米国特許第3.140.964号及び第3,507,
712号その他の冷却方法や装置では、ノズルから噴射
された冷却水が鋼管表面に衝突後、鋼管の進行方向に鋼
管表面に沿って流れる方式であるから水量が少なく、し
たがって噴出圧力(あるいは流速)が低い場合には重力
の影響を強く受け、鋼管の下面側に流下する傾向が強く
なるので、円周方向での冷却の均一性が悪くなる。3) The control range of the cooling capacity is narrow and the controllability is poor; in the case of quenching steel pipes, excluding the problem of quench cracking, the cooling strength is
The higher the degree of cooling (everity of cooling) is, the more desirable it is, and the cooling end temperature should be about 200"C or less. In the case of normal external hardening of steel pipes, about 4 to 5 yj:/In + per unit surface area of the steel pipes. 11.7
If an amount of cooling water having an average water density of fj is supplied, the cooling capacity is almost saturated. Therefore, in order to reduce or control the cooling capacity, it is sufficient to mainly control the average water flow density. 3,507,
In No. 712 and other cooling methods and devices, the cooling water injected from the nozzle collides with the surface of the steel pipe and then flows along the surface of the steel pipe in the direction of movement of the steel pipe, so the amount of water is small, and therefore the jetting pressure (or flow rate) is low. If it is low, it will be strongly influenced by gravity and will have a strong tendency to flow down to the lower surface of the steel pipe, resulting in poor cooling uniformity in the circumferential direction.
特願昭50−123849の例では多少の改善が提案さ
れているが、上述の傾向、すなわち低水量(密度)冷却
域での円周方向の冷却の均一性が悪くなるのは避けられ
ない。また、該例では、両端開放のままの状態の場合、
管端からの冷却水の浸入が生じ、制御冷却に不適当であ
る。Although some improvements have been proposed in the example of Japanese Patent Application No. 123,849/1984, the above-mentioned tendency, that is, the uniformity of cooling in the circumferential direction in the low water flow (density) cooling region is unavoidable. In addition, in this example, when both ends are left open,
Cooling water enters from the tube end, making it unsuitable for controlled cooling.
このように、既に提案されている、主として焼入れを主
目的とした冷却装置では、冷却の均−性等の制約から、
冷却能力の下限が高く(焼入れに近い)、したがって冷
却能力の制御幅が狭い。As described above, in the cooling devices that have been proposed mainly for the purpose of hardening, due to constraints such as uniformity of cooling,
The lower limit of cooling capacity is high (close to quenching), and therefore the control range of cooling capacity is narrow.
通常の鋼管の各種の制御熱処理冷却においては、管径、
肉厚に応じて冷却の強さや冷却終了温度(あるいは冷却
温度区間)を制御する必要があるから、冷却能力の制御
幅が狭いと実用適用範囲が限定される。In various controlled heat treatment cooling of ordinary steel pipes, pipe diameter,
Since it is necessary to control the cooling intensity and cooling end temperature (or cooling temperature range) according to the wall thickness, if the control range of the cooling capacity is narrow, the practical application range will be limited.
特公昭53−32097号公報の方法は、工業的には流
体冷媒は水となり、゛′中実流体ジェット流′°で且つ
露化を避けるため、同様に冷却能力の下限が高く、冷却
の強さく冷却能力)の制御幅が狭い。In the method disclosed in Japanese Patent Publication No. 53-32097, water is used as the fluid refrigerant for industrial purposes, and the lower limit of the cooling capacity is similarly high, since water is used as a "solid fluid jet flow" and exposure is avoided. (cooling capacity) has a narrow control range.
本発明者等は、前述の如く広義の各種サイズ、肉厚の鋼
管の「加工及び/又は制御冷却」熱処理法や、冷却終了
温度制御に適し7だ流体冷媒単独あるいは気体冷媒と液
体冷媒の混合噴霧冷却が兼用もげ能で、冷却の均一性が
よく、冷却能力の制御幅が広く、また管端からの冷媒の
浸入もなく、全長にわたって均一な材質が得られ且つ冷
却後の形状(曲がり、真円度等)の優れた冷却方法とそ
の装置を発明した。As mentioned above, the present inventors have discovered that a fluid refrigerant alone or a mixture of a gas refrigerant and a liquid refrigerant is suitable for the "processing and/or controlled cooling" heat treatment method of steel pipes of various sizes and wall thicknesses in a broad sense, and for controlling the cooling end temperature. Spray cooling can also be used for cooling, the cooling is uniform, the cooling capacity can be controlled over a wide range, there is no infiltration of refrigerant from the pipe end, uniform material is obtained over the entire length, and the shape after cooling (bent, Invented a cooling method and device with excellent roundness, etc.
本発明の冷却方法及びその装置の特徴と用途を要約する
と以下の通り・である。The features and uses of the cooling method and device of the present invention are summarized as follows.
(1) 同一冷却装置で冷媒の選択の自由度が高く、
冷却能力の制御幅が広い。(1) High degree of freedom in selecting refrigerant in the same cooling device;
Wide control range of cooling capacity.
鋼管用の気水混合噴霧冷却の如き、気体と液体冷媒との
混合噴霧冷却が可能であり且つ最適である。まだ、液体
冷媒単独の冷却装置となり、噴出状態も液滴状あるいは
膜状の形態の選択が可能である。更に、衝風冷却の如き
、気体冷媒単独の冷却も可能である。Mixed spray cooling of gas and liquid refrigerant, such as mixed air-water spray cooling for steel pipes, is possible and optimal. However, it is still a cooling device using only liquid refrigerant, and the ejection state can be selected to be droplet-like or film-like. Furthermore, cooling with a gaseous refrigerant alone is also possible, such as blast cooling.
以上の通り、冷媒及びその噴出形態の選択の自由度が高
く、しかも例えば気水混合噴霧冷却の場合には、空気:
水の重量比を制御することにより、冷却能力の制御が用
能である。As mentioned above, there is a high degree of freedom in selecting the refrigerant and its jetting form, and in the case of air/water mixed spray cooling, for example, air:
By controlling the weight ratio of water, it is possible to control the cooling capacity.
また、空間に形成される冷媒のトンネル型幅環の内径を
変化させることによっても、平均水量密度を制御可能で
あるので、冷却能力の制御幅が非常に広い冷却方法及び
その装置といえる。Furthermore, the average water density can be controlled by changing the inner diameter of the tunnel-shaped width ring of the refrigerant formed in the space, so it can be said that the cooling method and its apparatus have a very wide control range of cooling capacity.
冷媒の噴出形態あるいは冷媒に応じてヘッダーやノズル
の形状を変更してもよいが、本発明者等の実験によれば
後掲のヘッダー構造ノズルで、」−述の冷媒の選択と冷
却能力の大幅な制御が可能であることが確認されでいる
。Although the shape of the header and nozzle may be changed depending on the refrigerant jetting form or the refrigerant, according to the experiments of the present inventors, the header structure nozzle described below is suitable for the selection of refrigerant and the cooling capacity. It has been confirmed that significant control is possible.
(2)管端からの冷却水の浸入がなく、歩留りが向上す
る。(2) There is no intrusion of cooling water from the tube end, improving yield.
本発明の冷却方法では冷媒を管軸に直角方向に噴射する
ので、両管端が開放されていても管端からの冷却水の浸
入が々く、あるいはあっても極めて僅かであるため、全
く実害がなく、広義の鋼管の「加工及び/又は制御冷却
熱処理」ゾロセス用に最適であり、全長にわたって均一
な材質が得られる。また、焼戻し後の残留応力制御冷却
においても同様であり、管端リノ捨でか不要となり歩留
りが向上するので、]二業上極めて有利である。」二記
の小川C1、空間に形成された冷媒のトンネル型輪環の
内径か被冷却鋼管の外径より著しく小さく3) 円周
方向の冷却の均一性が非常に良好である。In the cooling method of the present invention, the refrigerant is injected in a direction perpendicular to the tube axis, so even if both tube ends are open, there is little intrusion of cooling water from the tube ends, or even if there is, it is completely injected. There is no actual damage, and it is ideal for the "processing and/or controlled cooling heat treatment" of steel pipes in a broad sense, and uniform material quality can be obtained over the entire length. The same applies to residual stress controlled cooling after tempering, which eliminates the need to discard the pipe end and improves yield, which is extremely advantageous for the second industry. The inner diameter of the refrigerant tunnel ring formed in the space is significantly smaller than the outer diameter of the steel pipe to be cooled. 3) The uniformity of cooling in the circumferential direction is very good.
冷媒(気体と液体の混合冷媒も含む)の噴射方向が管軸
に直角であり、し、かも管壁に対してほぼ接線方向であ
るため、空間にトンネル型輪環が形成され、各ヘッダー
から噴射された該冷媒の相互作用で殆んど均一な水量密
度状態となるため、円周方向の冷却の均一性が極めて良
好である。Since the injection direction of refrigerant (including mixed refrigerant of gas and liquid) is perpendicular to the pipe axis and almost tangential to the pipe wall, a tunnel-shaped ring is formed in the space, and from each header The interaction of the injected refrigerant results in a nearly uniform water volume and density, resulting in extremely good cooling uniformity in the circumferential direction.
(4)長手方向での冷却パターン制御が可能且つ容易で
ある。(4) It is possible and easy to control the cooling pattern in the longitudinal direction.
米国特許第3,507,712号に代表される斜め噴射
方式冷却方法でd、前段のノズル列から噴射された冷媒
が後段(進行方向)に行く程累積して行くので、実際上
冷却パターン制御が殆んど不可能で、焼入れにし7が不
向きであった。そのため、冷却終了温度の制御が出来な
かった。(従来の焼入れ法では不必要であった)。しか
し、本発明の冷却方法及び冷却装置では、長手方向での
冷却パターン制御が容易にできるようになり、また冷却
終了温度制御も可能になった。In the oblique injection cooling method represented by U.S. Patent No. 3,507,712, the refrigerant injected from the nozzle row in the previous stage accumulates as it goes to the latter stage (in the direction of travel), so it is actually possible to control the cooling pattern. It was almost impossible to do so, and 7 was not suitable for hardening. Therefore, it was not possible to control the cooling end temperature. (Unnecessary with traditional hardening methods). However, with the cooling method and cooling device of the present invention, it has become possible to easily control the cooling pattern in the longitudinal direction, and it has also become possible to control the cooling end temperature.
(5)広義の各種制御冷却(加工熱処理との結合も含む
)から焼入れ(で広範な適用が可能さなる。(5) A wide variety of controlled cooling (including combination with processing heat treatment) to quenching (in a broad sense) enables a wide range of applications.
本発明の冷却方法及びその装置の用途の代表例を基体的
に例示すれば、以下のようであるが、該用途に限定され
るものではない。Typical examples of the uses of the cooling method and apparatus of the present invention are as follows, but they are not limited to these uses.
(1)焼戻し、後の残留応力制御冷却(%願昭55−2
588等参照)
(2)焼戻し脆性防止のための急冷処理(β) ストレ
ンチレテユーサ後面でのオンラインr ili制御圧延
及び/又は制御冷却」熱処理による非調質化プロセス
(リ リーラ後面と再加熱炉間でA+“1変態以t−に
、一旦冷却してAc3変態点以干に再加熱後[圧延(S
izing Rolling)及び/又は熱処理」する
オンラインプロセス
ここでいう熱処理とは焼入れ、あるいは規準等を意味す
る)
■ 焼入れにおける冷却終了温度をMf点以」二に高め
て「焼入れ十焼戻し」(−調質化熱処理)工程の連続化
乃至簡略化するプロセス、またはラインパイプ等に対し
ては焼戻し工程を省略する熱処理プロセス。(1) Residual stress control cooling after tempering (%
588, etc.) (2) Rapid cooling treatment to prevent temper brittleness (β) On-line rili controlled rolling and/or controlled cooling on the rear surface of the trench retoucher. After A+"1 transformation and t- between furnaces, once cooled and reheated to Ac3 transformation point or higher [rolling (S
On-line process of ``quenching, rolling) and/or heat treatment'' (heat treatment here means quenching or standard, etc.) ■ ``Quenching and tempering'' (-quenching and tempering) by increasing the cooling end temperature in quenching to ``2'' above the Mf point. A heat treatment process that makes the heat treatment process continuous or simplified, or a heat treatment process that omits the tempering process for line pipes, etc.
次に、本発明の冷却装置を実施例に基づいて後掲の図面
により説明する。Next, the cooling device of the present invention will be explained based on an embodiment with reference to the drawings shown below.
第1図及び第2図は円周上に配列された多数(該例では
16本)のヘッダーを高さ方向に3等分し、水頭差を1
/3に減少させた実施例である。すなわち、高さ方向に
3等分するためには、/ A、 OB =θとすると、
幾何学的に(1)式の関係が成立し、なければならない
。In Figures 1 and 2, a large number of headers (16 in this example) arranged on the circumference are divided into three equal parts in the height direction, and the water head difference is set to 1.
This is an example in which the number is reduced to /3. That is, in order to divide it into three equal parts in the height direction, / A, OB = θ, then
Geometrically, the relationship in equation (1) must hold true.
2CO5θ=(1−cosθ)・・・(1)cosθ=
I/3
、°、θ−705° ・・・(2)この関係から、
16本のヘッダー2を円周上に等間隔に配列すると、上
・下(各々FAIJ、CI)E)に各6本のヘッダー、
左・右(各々IC、EF )に各2本宛配列すると、従
来の冷却装置のように上部または下部の1個所から冷却
水を供給する方法と比較して、水頭差はほぼ1/3に減
少可能である。2CO5θ=(1-cosθ)...(1) cosθ=
I/3,°, θ-705°...(2) From this relationship,
When 16 headers 2 are arranged at equal intervals on the circumference, there are 6 headers each on the top and bottom (FAIJ, CI, E),
When arranging two tubes on the left and right (IC and EF respectively), the water head difference is approximately 1/3 compared to a conventional cooling system that supplies cooling water from one location at the top or bottom. Can be reduced.
次に、上下のゾーン(各ヘッダー6木兄)並びに左右を
一体ゾーン(合計ヘッダー4本)として、3個の中間レ
シーバ−タンク1(各々、空気、水用別々に区別され且
つ一体となッテイル)を設置し、該中間レシーバ−タン
クから流量調節弁を介して各ヘッダーに空気と水を所要
量供給する方法と、中間レシーバ−タンクルヘッダー間
に流量調節弁を介さずに空気と水を供給する方法を実施
した。その結果、各ゾーンの幾何学的水頭差が、使用時
の最高へラダー圧(水)の約20%以下ならば、各ヘッ
ダーから噴射された気水混合まだit水単独冷媒が相互
干渉し、空間に形成される〃トンネル型輪環は、円周方
向で殆んど均一化され、中間レシーバ−タンクルヘッダ
ーに流量調節弁を介さずとも、円周方向で均一な材質あ
るいは残留応力が得られた。Next, the upper and lower zones (each header has 6 cylinders) and the left and right sides are integrated zones (total of 4 headers), and three intermediate receiver tanks 1 (separately differentiated for air and water, but not integrated) are installed. ) and supplying the required amount of air and water from the intermediate receiver tank to each header via a flow rate control valve; We implemented a method of supplying As a result, if the geometric head difference in each zone is less than about 20% of the maximum rudder pressure (water) during use, the air/water mixture injected from each header and the water-only refrigerant will interfere with each other. The tunnel-shaped ring formed in the space is almost uniform in the circumferential direction, and uniform material or residual stress can be obtained in the circumferential direction without the need for a flow control valve in the intermediate receiver tank header. It was done.
特に、搬送ロールを水平面内で傾斜させたスキューロー
ルで鋼管を回転さぜながら搬送し制御冷却する場合には
、第2図の送水ポンプあるいは送風用コンプレッサー間
の流量調節のみで十分円周方向で均一々冷却が可能であ
った。換言するとヘッダ一群を第1図に例示した如く、
高さ方向に3等分すると、中間レシーバ−タンクルヘッ
ダー間に流量調節弁が不要となる用途が殆んどである。In particular, when controlling and cooling steel pipes by rotating them using skew rolls with the transport rolls tilted in the horizontal plane, it is sufficient to adjust the flow rate between the water pump or air compressor shown in Figure 2 in the circumferential direction. Uniform cooling was possible. In other words, a group of headers as illustrated in Figure 1,
Dividing into three equal parts in the height direction eliminates the need for a flow control valve between the intermediate receiver and the tank header in most applications.
また、スキューロールによる回転搬送冷却の場合、鋼管
の回転数が4QR,PM以下ならば、回転の効果は余り
期待できないことも確認された。It was also confirmed that in the case of rotation conveyance cooling using skew rolls, if the rotation speed of the steel pipe is 4QR, PM or less, the effect of rotation cannot be expected to be much.
しだがって、回転搬送冷却を17ない場合で且つより完
全な円周方向での均一冷却を望むならば、高さ方向の分
割数を増加させるが、あるいは中間レシーバタンクル各
ヘッダー間に流量調節弁を介して、−流量あるいはヘッ
ダー圧を制御すればよい。Therefore, if rotary conveyance cooling is not used and more complete uniform cooling in the circumferential direction is desired, the number of divisions in the height direction may be increased, or the flow rate between each header of the intermediate receiver tank may be increased. The flow rate or the header pressure can be controlled via a regulating valve.
第2図の配管系統図は水単独の場合であるか、気水混合
噴射の場合には、水及び空気用に同様の2系統の配管を
施し、用途あるいは必要に応じて中間レシーバ−タンク
1及び各ヘッダー2間に各々流量調節弁13を設置すれ
ばよい。また、中間レシーバ−タンクを設置せずに送水
配管及び/あるいは送風配管から、各ヘッダーに流量調
節弁を介して直接適正々ヘッダー圧あるいは流量が確保
できるようにL7てもよい。しかし、中間レシーバ−を
設置する方が、ヘッダー圧あるいは流量の変動を低減し
安定化できる。The piping system diagram in Figure 2 is for water only, or in the case of air/water mixed injection, two similar piping systems are provided for water and air, and an intermediate receiver tank 1 is installed depending on the application or necessity. Flow control valves 13 may be installed between each header 2. Alternatively, L7 may be used so that an appropriate header pressure or flow rate can be directly secured from the water supply piping and/or ventilation piping to each header via a flow rate control valve without installing an intermediate receiver tank. However, installing an intermediate receiver can reduce and stabilize fluctuations in header pressure or flow rate.
第3図は、ノズル取付部を含むヘッダーの断面図である
。該実施例のヘッダーは2重管構造となっており、内管
2Bからは水を、またその外側の外管2Aがらは空気を
送り、先端のノズルチップ内で空気と水を内部混合し、
気水噴霧粒を噴射できる構造となっている。FIG. 3 is a sectional view of the header including the nozzle mounting portion. The header of this embodiment has a double pipe structure, and water is sent from the inner pipe 2B and air is sent from the outer pipe 2A on the outside, and the air and water are internally mixed in the nozzle tip at the tip.
It has a structure that allows it to spray air and water spray particles.
世し、前述の通り水単独あるいは空気単独噴射も可能で
、用途あるいは所要冷却速度に応じて使い分けが可能で
ある利点がある。However, as mentioned above, it is also possible to inject water alone or air alone, which has the advantage of being able to be used selectively depending on the application or required cooling rate.
その他、ノズルチップの内部あるいは開口部形状の変更
により、例えば気水噴霧の噴射形状を、フルコーンスプ
レー型あるいはフラットスプレー型その他任意の形状を
選択できる。しかし、本発明者の熱間実験では、フラッ
トスプレー型形状の方が空間に形成されるトンネル型輪
環の環の厚さが薄くなるので、冷媒の集中度が高く、冷
媒密度も大きくなるので冷却能力が向上する。In addition, by changing the shape of the inside of the nozzle tip or the opening, for example, the shape of the air/water spray can be selected from a full cone spray type, a flat spray type, or any other arbitrary shape. However, in the inventor's hot experiments, the thickness of the tunnel-shaped ring formed in the space is thinner in the flat spray type shape, so the refrigerant concentration is higher and the refrigerant density is also higher. Cooling capacity is improved.
次に、冷却能力の制御法について、気水混合噴霧冷却を
例にして説明する。第3図に例示した内部混合型気水ノ
ズルの場合、空気の重量/水の重量:1o、o5〜0.
1程度でも、細粒の液滴状トンネル型輪環が形成され、
焼戻し2後の残留応力制御冷却法に適用でき、円周方向
で十分均一な残留応力が確保できた。被冷却鋼管の肉厚
が厚く冷却能力を強くし7たい場合には、空気/水の重
量比のバランスを調整しながら水の重量を増加させる方
法、空間に形成させるトンネル型輪環の内径/被冷却鋼
管の外径の比を小さくする方法、液滴流速を調整する方
法、その弛皺送速度を制御する方法等を組合せて冷却能
力を大幅に且つ自由自在に制御”J能であった。Next, a method for controlling the cooling capacity will be explained using air-water mixed spray cooling as an example. In the case of the internal mixing air/water nozzle illustrated in FIG. 3, the air weight/water weight: 1o, o5~0.
Even at a level of 1, fine droplet-like tunnel-shaped rings are formed.
It can be applied to the residual stress control cooling method after tempering 2, and a sufficiently uniform residual stress in the circumferential direction can be ensured. If the steel pipe to be cooled is thick and you want to increase the cooling capacity, you can increase the weight of the water while adjusting the air/water weight ratio, or increase the inner diameter of the tunnel ring formed in the space. By combining methods such as reducing the ratio of the outer diameter of the steel pipe to be cooled, adjusting the droplet flow rate, and controlling the relaxation feed rate, it was possible to greatly and freely control the cooling capacity. .
才だ、該トンネル型輪環の内径が被冷却鋼管の内径の約
1/2程度に縮少しても、搬送中に該鋼管の先端から冷
媒特に水が浸入することはなく、該鋼管の全長にわたっ
て均一な材質あるいは残留応力が得られた。Even if the inner diameter of the tunnel ring is reduced to about 1/2 of the inner diameter of the steel pipe to be cooled, the refrigerant, especially water, will not enter from the tip of the steel pipe during transportation, and the entire length of the steel pipe will be reduced. Uniform material quality or residual stress was obtained throughout.
第4図は、第1図に示した複数パイプヘッダー平行配列
型環状ヘツグーに配列した2重管式パイプヘッダーの長
手方向断面の構造図である。長手方向での空気、水ある
いは気水混合噴射の量的分布パターンの均一化や息つき
を防止するには、空気用整流器板17(第3図)を取付
け、且つ水用内管の中に水用ノズル9の吸込口[を、内
管中心程度まで突出させるとよいことが、実験で確めら
れた。FIG. 4 is a structural diagram of a longitudinal cross-section of the double pipe type pipe header arranged in a circular hexagonal arrangement of the plurality of pipe headers shown in FIG. 1. In order to make the quantitative distribution pattern of air, water or air/water mixture jet uniform in the longitudinal direction and to prevent breathing, install an air rectifier plate 17 (Fig. 3) and install a rectifier plate 17 in the inner water pipe. It has been confirmed through experiments that it is better to make the suction port of the water nozzle 9 protrude to about the center of the inner tube.
窒間に形成されるトンネル型輪環内径の調整装置3を手
動または電動機で動かす(回転)ことにより、連結回転
機構(詳細図示せず)で各ヘッダーが一体となって全ノ
ズルの向きが変更されるようになっている。又、第1図
では被冷却管径が変化しても、環状平行ヘッダ一群の中
心と金属管16の中心を一致させるだめの昇降装置4が
設けられている。5は該装置4によって昇降するフレー
ムである。By moving (rotating) the tunnel-type annular inner diameter adjustment device 3 formed between the holes manually or with an electric motor, each header unites as a unit with a connecting rotation mechanism (details not shown) and the orientation of all nozzles is changed. It is now possible to do so. Further, in FIG. 1, an elevating device 4 is provided to keep the center of the group of annular parallel headers and the center of the metal tube 16 coincident even if the diameter of the pipe to be cooled changes. 5 is a frame that is raised and lowered by the device 4.
なお、第5図は第1図の中間し/−バータンクの構造例
を示し、空気用中間レシーバ−タンク室18と、水用中
間レシーバ−タンク室19とからなり、それぞれの室に
配管口20.21が設けられている。Note that FIG. 5 shows an example of the structure of the intermediate receiver tank shown in FIG. .21 is provided.
本発明の冷却装置を「焼戻し2後の残留応力制御冷却法
」に適用した場合の残留応力の円周方向の均一性を、公
知の斜め噴斜冷却法と対比して第1表に示しだ。第1表
は、水頭差対策を講じていない水単独斜め噴射冷却装置
(従来旧法)と本発明の冷却装置で、焼戻し7後の残留
応力制御冷却を実施した場合の円周方向での残留応力の
偏差の最大値(鋼管の内表面における円周方向の残留応
力分布で最大値と最小値の差)を比較したもので、表か
ら本発明の冷却装置、すなわち水頭差対策を講じトンネ
ル型輪環を形成させることにより、円周方向で均一な冷
却が実現できたことを示していることがわかる。Table 1 shows the uniformity of residual stress in the circumferential direction when the cooling device of the present invention is applied to the "residual stress control cooling method after tempering 2" in comparison with the known oblique jet cooling method. . Table 1 shows the residual stress in the circumferential direction when residual stress control cooling is performed after tempering 7 using a water-only diagonal injection cooling system (conventional old method) that does not take measures against water head difference and the cooling system of the present invention. (the difference between the maximum and minimum values in the residual stress distribution in the circumferential direction on the inner surface of the steel pipe). It can be seen that by forming the ring, uniform cooling could be achieved in the circumferential direction.
このように特に各種の制御冷却においては、冷却の円周
方向の均一性が特に必要である。Thus, especially in various types of controlled cooling, uniformity of cooling in the circumferential direction is particularly required.
核沸騰熱伝達が支配的で冷却の強さの制御が、水単独且
つ斜め噴射冷却法では、円周方向の冷却の均一性との両
立が非常に困難であったが、本発明の水頭差対策を講じ
た鋼管の冷却装置では、殆んど完全に解決された。Since nucleate boiling heat transfer is dominant, it is extremely difficult to control the cooling intensity while achieving uniform cooling in the circumferential direction using water alone and diagonal injection cooling.However, the present invention's water head difference With the steel pipe cooling system that took measures, the problem was almost completely resolved.
本発明の水頭差対策を講じ、円周方向及び長手方向で均
一な冷却が実現された金属管の冷却装置は、前述の通り
、広義の各種の鋼管の[加工及び/又は制窃1冷却」熱
処理法等に最適であり、冷却の強さに関゛し7ても、冷
媒の噴射条件の(比較的)弱い制御冷却から、冷却能力
の強い焼入れにわたる広範な用途に適用可能である。し
たがって、該冷却装置を複数段配列した鋼管の冷却装置
列において、所望の冷却パターンが容易に実現可能とな
り、1−業的メリットは莫犬である。As mentioned above, the cooling device for metal pipes that takes measures against the water head difference of the present invention and achieves uniform cooling in the circumferential direction and longitudinal direction can be used for [processing and/or plagiarism 1 cooling] of various steel pipes in a broad sense. It is most suitable for heat treatment methods, etc., and can be applied to a wide range of applications, from controlled cooling with (relatively) weak refrigerant injection conditions to quenching with strong cooling capacity, even in terms of cooling intensity. Therefore, a desired cooling pattern can be easily realized in a steel pipe cooling device row in which the cooling devices are arranged in multiple stages, and the first commercial advantage is enormous.
なお、本発明は管軸に垂直な面に対し、たとえば±20
℃の角度をもつ円錐面内で半径方向に所与の角度で冷却
媒体を噴射せしめて冷却媒体の輪環状トンネルを形成す
るようにしても、工業的に適用することができること勿
論である。In addition, in the present invention, for example, ±20
Of course, it is also possible to apply the method industrially by injecting the cooling medium at a given angle in the radial direction within a conical surface having an angle of .degree. C. to form an annular tunnel of the cooling medium.
第1図は本発明の冷却装置の1実施例で水頭差対策のた
めにヘッダ一群を高さ方向に3分割し、中間レシーバ−
タンクを設置した複数パイプヘッダー平行配列型ヘソグ
ーを持つ冷却装置の断面図。
第2図は本発明の冷却装置の液体または気体冷媒の配管
−流量制御系統図の実施例の一つで第1図に対応する場
合である。
第3図は2重管式気水混合噴霧用ヘッダーの断面詳細図
である。第4図は第3図のヘッダーの長手方向断面図で
ある。
第5図は第1図に示した冷却装置に採用にた中間レシー
バ−タンクの構造概略図で、複数パイプヘッダー平行配
列型環状ヘッダ一群の外周に設置されている。
■= 中間レシーバ−タンク
2: 2重管式ヘソダー
2A:空気用ヘッダー(外管)
213:水用ヘノター(内管)
:3: ヘッダー角度調整装置
・1: 昇降装置(センターリング機構)5ニー5’l
降フレーム(センターリング機構)6: 金属管支持搬
送ローラー
7: 水配管(液体冷媒用)
8: 空気配管(気体冷媒用)
9: 水用ノズル
10: 空気用ノズル(内部混合方式気水噴霧ノズル
)
11: 空気供給口+12:水供給口13: 流量
調節弁・14:圧力計
15: 流量計 ・16:金属管・17:整流板1
8: 空気用中間レシーバ−タンク(室)19:
水用中間レシーバ−タンク(室)20: 各ヘッダー
への配管[」(空気)21: 各ヘッダーへの配管口
(水)特許出願人 代理人
弁理士 矢 葺 知 之(ほか1名)
−・r糸完嗜杓夕正書 (自発)
昭和58年6り/%日
特1:1庁長官若杉和夫殿
l、・ハ件の表示
昭和58年特訂願第80095号
2発明の名称
金属管の冷却力法および装置
3、抽1]−をする者
・iS件との関係 出願人
住所 東京都千代田区大手町ニー丁目6番3号名称
(665)新日本製鐵株式会社(ほか1名)
4、代 理 人
11所 東京都港区赤坂6丁目4番21号704置
(584) 7022
(ほか1名 )
5、袖11−の対象
明細書の発明の詳細な説明の欄 、is−、”1.5
6、補正の内容
(1)明細書第10頁18行の「内径」を「内径及び外
径」と訂正する。
(2)明細書第10頁1行目の「可能になった。Jの次
に「特に、該冷却装置を複数段配列した鋼管の冷却装置
列において冷却路r温度制御が容易となる。」を挿入す
る。
・L続ネ市正書 (自発)
i協和5B年8月/1日
特許1i長官若杉和夫殿
1、・ハ件の表示
昭和58年特許願第80095号
2、発明の名称
金属管の冷却方法および装置
3、補正をする者
・l>件との関係 出願人
住所 東京都千代田区大手町二丁目6番3号名称 (
665)新日本製鐵株式会社(ほか1名)
4、f(理 人
5、袖11の対象 明細書の発明の詳細な説明および図
面の簡単な説明ならびに図面
6、補正の内容
(1)明細書第20頁4行の「で各へ・ンタ゛−力く」
を「でヘッダー角度調整リング30を介して各へ・ンダ
ーが」と訂□正する。
(2)明細書第25頁18行と19行の間へ以下の文を
挿入する。
「30:ヘッダー角度調整リング(3と連動)」(3)
添付図面の第1図を別紙の通り訂正する。
手続補正書印発)
昭和58年1月30日
’t’+ +i′II+″長官若杉和夫殿1.41件の
表示
昭和58年特許願第80095号
2、発明の名称
金属管の冷却方法および装置
3、補II日をする者
事件との関係 出願人
住所 東京都千代田区大手町二丁目6番3号名称 (
665)新日本製鐵株式会社(ほか1名)
4、代 理 人
住所 東京都港区赤坂6丁目4番21号704置 (
584) 7022
5、補iEの対象
明細潟の発明の詳細な説明
6、補正の内容
(1)明細書第16頁の最終行の後に以下の文章を追加
する。Figure 1 shows one embodiment of the cooling device of the present invention, in which a group of headers is divided into three parts in the height direction in order to counteract the water head difference, and an intermediate receiver is divided into three parts in the height direction.
Cross-sectional view of a cooling device with a parallel arrangement of multiple pipe headers equipped with tanks. FIG. 2 is one embodiment of a liquid or gas refrigerant piping-flow control system diagram of the cooling device of the present invention, and corresponds to FIG. 1. FIG. 3 is a detailed cross-sectional view of the double-pipe air-water mixing header. 4 is a longitudinal sectional view of the header of FIG. 3; FIG. FIG. 5 is a structural schematic diagram of an intermediate receiver tank employed in the cooling system shown in FIG. 1, which is installed around the outer periphery of a group of annular headers of a plurality of parallel pipe headers. ■= Intermediate receiver tank 2: Double pipe hesodar 2A: Air header (outer pipe) 213: Water henoter (inner pipe): 3: Header angle adjustment device 1: Lifting device (centering mechanism) 5 knees 5'l
Descending frame (centering mechanism) 6: Metal tube support conveyance roller 7: Water piping (for liquid refrigerant) 8: Air piping (for gas refrigerant) 9: Water nozzle 10: Air nozzle (internal mixing air-water spray nozzle) ) 11: Air supply port + 12: Water supply port 13: Flow rate adjustment valve ・14: Pressure gauge 15: Flow meter ・16: Metal pipe ・17: Rectifier plate 1
8: Air intermediate receiver tank (chamber) 19:
Intermediate water receiver tank (chamber) 20: Piping to each header (air) 21: Piping port to each header (water) Patent applicant Representative patent attorney Tomoyuki Ya Fuki (and one other person) -・r Thread completion letter (spontaneous) 1981 6 R/% Nippon Tokusoku 1:1 Director-General Kazuo Wakasugi, 1981 Special revision application No. 80095 2 Name of the invention Metal pipe Cooling power method and equipment 3, drawing 1]-Relationship with the IS case Applicant address: 6-3 Otemachi Knee-chome, Chiyoda-ku, Tokyo Name
(665) Nippon Steel Corporation (and 1 other person) 4, 11 agents 704, 6-4-21 Akasaka, Minato-ku, Tokyo
(584) 7022 (1 other person) 5. Detailed description of the invention in the subject specification of Sleeve 11-, is-, "1.5
6. Details of the amendment (1) "Inner diameter" on page 10, line 18 of the specification is corrected to "inner diameter and outer diameter." (2) On page 10, line 1 of the specification, ``It is now possible.'' Next to J, ``In particular, it becomes easy to control the temperature of the cooling path r in a row of cooling devices for steel pipes in which the cooling devices are arranged in multiple stages.'' Insert.・L Continued City Authorization (Spontaneous) i Kyowa 5B August/1 Patent 1i Director-General Kazuo Wakasugi 1 ・Indication of 1980 Patent Application No. 80095 2 Title of Invention Method for Cooling Metal Pipe and Device 3, Person making the amendment/Relationship with the matter Applicant Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (
665) Nippon Steel Corporation (and 1 other person) 4, f (Register 5, subject of sleeve 11 Detailed explanation of the invention in the specification, brief explanation of the drawings, drawing 6, contents of amendments (1) Specification On page 20 of the book, line 4, “Force each person.”
□Correct it to ``Each header is adjusted through the header angle adjustment ring 30.'' (2) Insert the following sentence between lines 18 and 19 on page 25 of the specification. "30: Header angle adjustment ring (linked with 3)" (3)
Figure 1 of the attached drawings is corrected as shown in the attached sheet. (Issue of procedural amendment) January 30, 1980 't'+ +i'II+'' Mr. Kazuo Wakasugi, Director General 1.41 indications 1982 Patent Application No. 80095 2 Title of invention Method for cooling metal pipes and Applicant 3: Relationship with the Supplementary II Case Applicant Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (
665) Nippon Steel Corporation (and 1 other person) 4. Agent Address: 704, 6-4-21 Akasaka, Minato-ku, Tokyo (
584) 7022 5. Detailed explanation of the invention of the subject specification of Supplement iE 6. Contents of amendment (1) The following sentence is added after the last line of page 16 of the specification.
Claims (2)
に、周方向に間隔をおいて配設され、周方向に複数のブ
ロックに分割された単位で圧力を制御せしめられる複数
本のヘッダから前記金属管軸に垂直或はほぼ垂直な面内
で、冷却媒体噴射方向を同時に同一の角度だけ変化せし
めるノズル角度調整機構によって設定される、半径方向
に対する所与の角度で冷却媒体を噴射せしめて、所望の
直径を有する輪環状トンネルを形成し、該輪環状トンネ
ルに金属管を通過せしめて冷却するようにしたことを特
徴とする金属管の冷却方法。(1) A plurality of headers that extend in the axial direction of the metal tube to be cooled, are arranged at intervals in the circumferential direction, and are able to control pressure in units divided into a plurality of blocks in the circumferential direction. The cooling medium is injected at a given angle with respect to the radial direction, which is set by a nozzle angle adjustment mechanism that simultaneously changes the cooling medium injection direction by the same angle in a plane perpendicular or approximately perpendicular to the metal tube axis. A method for cooling a metal tube, comprising: forming an annular tunnel having a desired diameter; and cooling the metal tube by passing the metal tube through the annular tunnel.
とによって冷却する装置であって、金属管の軸方向に延
在するとともに少なくとも周方向に分割された複数のブ
ロック単位で冷却媒体の圧力を制御する圧力制御機構を
有する複数本のヘッダと、該ヘッダからの冷却媒体を金
属管外周表面に噴射するノズルと、該ノズルの、上記金
属管軸方向に垂直或はほぼ垂直な面内で、冷却媒体噴射
方向の、金属管半径方向とのなす角を、同時に同一の角
度だけ変化せしめるノズル角度調整機構とを有してなる
金属管の冷却装置。(2) A device that cools a metal tube by applying a cooling medium to the outer circumferential surface of the metal tube, in which the cooling medium is applied in units of a plurality of blocks extending in the axial direction of the metal tube and divided at least in the circumferential direction. a plurality of headers each having a pressure control mechanism for controlling pressure; a nozzle for injecting a cooling medium from the header onto the outer circumferential surface of the metal tube; A cooling device for a metal tube, comprising a nozzle angle adjustment mechanism that simultaneously changes the angle between the cooling medium injection direction and the radial direction of the metal tube by the same angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8009583A JPS59205418A (en) | 1983-05-10 | 1983-05-10 | Cooling process and device of metal tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8009583A JPS59205418A (en) | 1983-05-10 | 1983-05-10 | Cooling process and device of metal tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59205418A true JPS59205418A (en) | 1984-11-21 |
JPS629163B2 JPS629163B2 (en) | 1987-02-26 |
Family
ID=13708631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8009583A Granted JPS59205418A (en) | 1983-05-10 | 1983-05-10 | Cooling process and device of metal tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59205418A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342325A (en) * | 1986-08-08 | 1988-02-23 | Nippon Steel Corp | Method and device for cooling steel materials |
JP2007301574A (en) * | 2006-05-09 | 2007-11-22 | Nakajima Steel Pipe Co Ltd | Steel tube manufacturing method, and steel tube manufacturing facility |
CN103264054A (en) * | 2013-06-04 | 2013-08-28 | 中冶赛迪工程技术股份有限公司 | Steel tube even cooling device |
CN105195532A (en) * | 2015-09-15 | 2015-12-30 | 天津正安无缝钢管有限公司 | Instant cooling device for seamless steel pipe sizing |
CN107841602A (en) * | 2017-11-09 | 2018-03-27 | 新昌县鹏晟机械有限公司 | Steel tube quenching device |
CN108048630A (en) * | 2018-01-31 | 2018-05-18 | 中国重型机械研究院股份公司 | One kind passes through formula steel pipe tempering product line and methods for using them |
CN108070701A (en) * | 2018-01-31 | 2018-05-25 | 中国重型机械研究院股份公司 | A kind of annular quenching unit and its application process |
CN111014328A (en) * | 2019-12-25 | 2020-04-17 | 陈尧 | Aluminum alloy section extrusion device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11117388B2 (en) | 2017-12-05 | 2021-09-14 | Dai Nippon Printing Co., Ltd. | Thermal transfer printing device and thermal transfer sheet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556417A (en) * | 1978-06-24 | 1980-01-17 | Sumitomo Metal Ind Ltd | Method and apparatus for continuous quenching of steel pipe |
-
1983
- 1983-05-10 JP JP8009583A patent/JPS59205418A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556417A (en) * | 1978-06-24 | 1980-01-17 | Sumitomo Metal Ind Ltd | Method and apparatus for continuous quenching of steel pipe |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342325A (en) * | 1986-08-08 | 1988-02-23 | Nippon Steel Corp | Method and device for cooling steel materials |
JP2007301574A (en) * | 2006-05-09 | 2007-11-22 | Nakajima Steel Pipe Co Ltd | Steel tube manufacturing method, and steel tube manufacturing facility |
CN103264054A (en) * | 2013-06-04 | 2013-08-28 | 中冶赛迪工程技术股份有限公司 | Steel tube even cooling device |
CN105195532A (en) * | 2015-09-15 | 2015-12-30 | 天津正安无缝钢管有限公司 | Instant cooling device for seamless steel pipe sizing |
CN107841602A (en) * | 2017-11-09 | 2018-03-27 | 新昌县鹏晟机械有限公司 | Steel tube quenching device |
CN108048630A (en) * | 2018-01-31 | 2018-05-18 | 中国重型机械研究院股份公司 | One kind passes through formula steel pipe tempering product line and methods for using them |
CN108070701A (en) * | 2018-01-31 | 2018-05-25 | 中国重型机械研究院股份公司 | A kind of annular quenching unit and its application process |
CN111014328A (en) * | 2019-12-25 | 2020-04-17 | 陈尧 | Aluminum alloy section extrusion device |
CN111014328B (en) * | 2019-12-25 | 2021-06-29 | 江西融兴铝业有限公司 | Aluminum alloy section extrusion device |
Also Published As
Publication number | Publication date |
---|---|
JPS629163B2 (en) | 1987-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101247902B (en) | Cooling device for thick steel plate | |
EP2072157B1 (en) | Method of cooling hot-rolled steel strip | |
DE69715795T2 (en) | Injection molding process and workpiece | |
JPS59205418A (en) | Cooling process and device of metal tube | |
WO2019124241A1 (en) | Cooling device and cooling method for thick steel sheet, and production equipment and production method for thick steel sheet | |
US20060016220A1 (en) | Device and method for thermally pre-stressing elongated hollow objects | |
US3937448A (en) | Apparatus for hardening steel pipes | |
CN110777241A (en) | Railway wheel cooling device, cooling method and preparation method | |
CN108070699A (en) | A kind of steel plate rolled quenching machine high pressure cooling device and cooling means | |
EP0293002B1 (en) | Method for heat-treating steel rail head | |
US2516282A (en) | Apparatus for heat-treating steel | |
CN210974792U (en) | Railway wheel cooling device | |
US4275569A (en) | Internal cooling of heat exchanger tubes | |
US2318145A (en) | Method of flame hardening tubular structures | |
JPS5853695B2 (en) | Cooling method for steel pipes | |
JPS5887226A (en) | Method and device for cooling steel pipe | |
US4575054A (en) | Apparatus for quenching steel pipes | |
CN109661551A (en) | Annealing device | |
JPS58151418A (en) | Method and device for carrying out steel heat treatment | |
JP4063813B2 (en) | Mist cooling device for hot rolled steel sheet | |
KR20030008132A (en) | Injection nozzle and Method for manufacturing strip wire using it | |
CN105821181B (en) | A kind of heat treatment method of metal | |
JPS6033314A (en) | Method of and apparatus for cooling metallic pipe having difference in level | |
JPH06192740A (en) | Method for heat-treating thick walled cast steel pipe | |
US2044384A (en) | Cooling of rolls |