JP5851136B2 - Cooling device and cooling method for metal tube after heating - Google Patents

Cooling device and cooling method for metal tube after heating Download PDF

Info

Publication number
JP5851136B2
JP5851136B2 JP2011153071A JP2011153071A JP5851136B2 JP 5851136 B2 JP5851136 B2 JP 5851136B2 JP 2011153071 A JP2011153071 A JP 2011153071A JP 2011153071 A JP2011153071 A JP 2011153071A JP 5851136 B2 JP5851136 B2 JP 5851136B2
Authority
JP
Japan
Prior art keywords
cooling
metal tube
slit
heating
annular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011153071A
Other languages
Japanese (ja)
Other versions
JP2013019023A (en
Inventor
公典 稲葉
公典 稲葉
順一 稲葉
順一 稲葉
Original Assignee
日鉄住金ステンレス鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄住金ステンレス鋼管株式会社 filed Critical 日鉄住金ステンレス鋼管株式会社
Priority to JP2011153071A priority Critical patent/JP5851136B2/en
Publication of JP2013019023A publication Critical patent/JP2013019023A/en
Application granted granted Critical
Publication of JP5851136B2 publication Critical patent/JP5851136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属管の熱処理工程や溶接加工による金属管の製造工程等において、加熱後
の金属管を冷却液で急冷するための冷却装置と該冷却装置を用いる加熱後の金属管の冷却
方法に関する。
The present invention relates to a cooling device for rapidly cooling a heated metal tube with a cooling liquid in a heat treatment step of the metal tube or a metal tube manufacturing step by welding, and a method for cooling the heated metal tube using the cooling device. About.

鋼管、アルミニウム合金管、チタン合金管、ジルコニウム合金管等は、冷間加工、熱間
加工、又は連続溶接製管などの方法で製造される。これらの方法において、製管後に一定
の長さに切断した後、又は製管機の後段に連続して、所望の特性を得るために金属管を所
定の温度、例えば鋼管の場合950℃程度以上、に加熱後に急冷する焼入や残留歪除去処
理等の熱処理が行われる。連続溶接製管法では冷却された金属管は仕上げ成形ロールで寸
法精度を高められた後に走行切断機で製品寸法長さに切断される。
Steel pipes, aluminum alloy pipes, titanium alloy pipes, zirconium alloy pipes and the like are manufactured by a method such as cold working, hot working, or continuous welding pipe making. In these methods, after cutting to a certain length after pipe making, or continuously after the pipe making machine, the metal pipe is placed at a predetermined temperature, for example, about 950 ° C. or more in the case of a steel pipe, in order to obtain desired characteristics. Then, a heat treatment such as quenching that rapidly cools after heating or a residual strain removing process is performed. In the continuous welding pipe manufacturing method, the cooled metal pipe is cut into a product dimension length by a traveling cutting machine after the dimensional accuracy is increased by a finish forming roll.

加熱後の金属管を急冷する方法として、一般的に、短時間に高効率の冷却を行うために
一定の孔サイズの噴射孔をもつ複数個の穴状噴霧ノズルを金属管の外周にヘッダー等を用
いて空間的に配置して冷却液を噴射して熱伝導により冷却液の温度近くまで数秒から十数
秒以内で冷却する方法が用いられている(例えば、特許文献1〜7)。そして、穴状噴霧
ノズルと金属管を金属管の中心軸方向に相対的に移動可能にしたり、穴状噴霧ノズルと金
属管を金属管の中心軸の周りに相対的に回転可能にしたりすることも行われている。また
、外筒と内筒の二重構造とし、鋼管を通す内筒の内部にリング状の2個以上のノズルの流
出口から冷却水を段階的に流出させて長さ1m程度の内筒内に水を溜めて金属管を浸漬状
態にして冷却する装置も知られる(特許文献8)が、この装置では流出口の大きさは一定
であり、冷却水量を増やすには供給水圧を増加するか、流出口の数を増加する必要がある
As a method of rapidly cooling a metal pipe after heating, generally, a plurality of hole-shaped spray nozzles having injection holes of a certain hole size are provided on the outer periphery of the metal pipe in order to perform highly efficient cooling in a short time. There is used a method in which a cooling liquid is sprayed by using a gas and is cooled within a few seconds to a few dozen seconds by heat conduction to near the temperature of the cooling liquid (for example, Patent Documents 1 to 7). Then, the hole-shaped spray nozzle and the metal tube can be relatively moved in the central axis direction of the metal tube, or the hole-shaped spray nozzle and the metal tube can be relatively rotated around the center axis of the metal tube. Has also been done. In addition, a double structure of the outer cylinder and the inner cylinder is used, and cooling water is gradually discharged from the outlets of two or more ring-shaped nozzles into the inner cylinder through which the steel pipe is passed. There is also known an apparatus that cools the metal tube by immersing it in the water (Patent Document 8). In this apparatus, the size of the outlet is constant, and can the supply water pressure be increased to increase the amount of cooling water? Need to increase the number of outlets.

図2〜4は、穴状噴霧ノズル列を用いる従来の冷却方法を示す概略斜視図である。図2
は、金属管2の外周にほぼ一定間隔に穴状噴霧ノズルを配置した冷却装置1を用いて冷却
する方法である。図3は、穴状噴霧ノズル列をさらに金属管2の中心軸方向に複数組配置
した冷却装置1を用いて冷却する方法である。図4は、複数組配置した穴状噴霧ノズル列
をもつ冷却装置1をさらに金属管2の周方向に回転して冷却する方法である。しかし、図
2、図3に示すような穴状噴霧ノズル列では冷却液が金属管外面にスポット状に衝突する
ので冷却能力のムラが生じ、金属管表面に凸凹が生じる。図4のように、穴状噴霧ノズル
列を回転させる方法では、冷却能力のムラは軽減されるが、冷却装置の周辺にモーターな
どの駆動系が存在し、保守上好ましくなく、改善の余地が残る。
2 to 4 are schematic perspective views showing a conventional cooling method using a hole-shaped spray nozzle array. FIG.
Is a method of cooling using the cooling device 1 in which hole spray nozzles are arranged at substantially constant intervals on the outer periphery of the metal tube 2. FIG. 3 shows a cooling method using the cooling device 1 in which a plurality of sets of hole-shaped spray nozzle arrays are arranged in the direction of the central axis of the metal tube 2. FIG. 4 shows a method of cooling the cooling device 1 having a plurality of hole spray nozzle arrays arranged in the circumferential direction of the metal tube 2. However, in the hole-shaped spray nozzle array as shown in FIGS. 2 and 3, the cooling liquid collides with the outer surface of the metal tube in a spot shape, resulting in uneven cooling capacity and unevenness on the surface of the metal tube. As shown in FIG. 4, in the method of rotating the hole-shaped spray nozzle row, the unevenness of the cooling capacity is reduced, but there is a drive system such as a motor around the cooling device, which is not preferable for maintenance, and there is room for improvement. Remains.

従来の冷却方法のように、金属管の外周に離散的に配置した多数の穴状噴霧ノズルから
噴射される冷却液が金属管の外面に衝突するまでのパターンは離散的であり、干渉により
冷却の不均一や時間差が生じ、金属管に変形や表面性状のむらを生じ、好ましいものでは
ない。穴状噴霧ノズルの個数を多くしたり、穴状噴霧ノズルと金属管を相対的に移動させ
たりするなどの工夫は考えられるが、いずれにしても原理的な限界はある。
As in the conventional cooling method, the pattern until the coolant sprayed from the many hole-shaped spray nozzles discretely arranged on the outer periphery of the metal tube collides with the outer surface of the metal tube is discrete, and cooling is caused by interference. This causes a non-uniformity and a time difference, and causes deformation and uneven surface properties in the metal tube, which is not preferable. Although ideas such as increasing the number of hole-shaped spray nozzles or moving the hole-shaped spray nozzle and the metal tube relative to each other can be considered, there is a limit in principle in any case.

従来例の穴状噴霧ノズルは、一定の孔サイズのノズルに流す冷却液にかける圧力を変化
させることによって冷却液の噴射量を制御するが、制御範囲が狭い範囲に制限される。ま
た、冷却液として実用上用いられる工業用水の使用においては、工業用水に混入した異物
によるノズル孔の詰まりによって冷却水が意図せぬ噴射パターンとなることがあり、詰ま
りを除くためのメンテナンスが困難であった。
The hole spray nozzle of the conventional example controls the injection amount of the coolant by changing the pressure applied to the coolant flowing through the nozzle having a constant hole size, but the control range is limited to a narrow range. In addition, when using industrial water that is practically used as a cooling liquid, the nozzle hole may be clogged with foreign matter mixed in the industrial water, resulting in an unintended injection pattern of the cooling water, making maintenance difficult to remove the clogging. Met.

そこで、従来例では、冷却液の流速、流量の広い制御範囲と穴状噴霧ノズルの噴射部に
おける異物の詰まりを除去するメンテナンス性の改善が求められる。また、冷却すべき金
属管が水平方向に保持される場合、金属管の外周に天地のいずれの方向から冷却液を噴射
するかによって重力の影響の差が生じるが、噴射条件を選定することによって実用上その
影響を最小化できるようにすべきであるという観点からも冷却液の流速、流量の広い制御
範囲の確保は重要である。
Therefore, in the conventional example, it is required to improve the maintainability of removing the clogging of the foreign matter in the injection range of the injection portion of the hole-shaped spray nozzle and the wide control range of the flow rate and flow rate of the coolant. In addition, when the metal pipe to be cooled is held in the horizontal direction, there is a difference in the influence of gravity depending on which direction of the coolant is injected from the top and bottom on the outer periphery of the metal pipe, but by selecting the injection conditions It is important to secure a wide control range of the flow rate and flow rate of the coolant from the viewpoint that the influence should be minimized in practical use.

複数の穴状噴霧ノズルを金属管の外周に空間的に分布させて配置して用いる場合、複数
のノズルの空間配置(ノズル列)と個々のノズルの噴き付けパターンを調和させて金属管
全周の均一冷却を目指すが、一つのノズルからの噴霧は立体角をもつような広がりの水流
となるので、空間配置と噴き付けパターンの調和作業が複雑で困難である。また、有限個
の供給部から冷却液が離散的に供給されるという原理的な限界は超えることはできず、冷
却むらは依然発生する。
When multiple hole spray nozzles are used in a spatially distributed manner on the outer periphery of the metal tube, the entire circumference of the metal tube is harmonized with the spatial arrangement of the nozzles (nozzle row) and the spray pattern of each nozzle. However, since the spray from one nozzle forms a water stream with a solid angle, the work of reconciling the spatial arrangement and the spray pattern is complicated and difficult. Further, the theoretical limit that the coolant is supplied discretely from a finite number of supply units cannot be exceeded, and cooling unevenness still occurs.

特開昭53−117610号公報JP 53-117610 A 特開昭59−140331号公報JP 59-140331 A 特開平06−073455号公報Japanese Patent Laid-Open No. 06-073455 特開2001−246408号公報JP 2001-246408 A 特開2008−261018号公報JP 2008-261018 A 特開2008−296271号公報JP 2008-296271 A 特開2010−242153号公報JP 2010-242153 A 実開平04−069445号公報Japanese Utility Model Publication No. 04-069445

連続的に金属管を製造して金属管を搬送しながら加熱及び急冷を行う方法や一定の長さ
の金属管を静置した状態で加熱及び急冷を行う方法において、金属管を高周波誘導加熱装
置等によりその中心軸に対称的に均一な温度に加熱した後に金属管の外周に冷却液を噴射
して急冷する方法が通常採用されている。これらの方法において、加熱後の金属管を冷却
装置から冷却液を噴射して急冷する際に、金属管の部位毎の冷却の不均一により発生する
部位毎の熱処理履歴の違いによる金属管の変形や表面性状のむらの発生が問題となる。冷
却の不均一は、部位毎に噴き付けられる水量と水圧が不均一であること、金属管の周方向
の真円上にあるべき噴射位置が金属管の軸方向に部位毎に乱れることなどにより生じる。
そこで、金属管をその中心軸に対称的に確実に均一に急冷することが必要である。金属管
が水平方向に配置されている場合には、噴射される冷却液は金属管の上面、下面、側面ご
とに重力の影響が異なることになるので金属管が鉛直方向に配置されている場合に比べて
金属管全周の均一な冷却はより困難になる。
In a method of heating and quenching while continuously manufacturing a metal tube and conveying the metal tube, or a method of heating and quenching with a metal tube of a certain length standing still, the metal tube is a high frequency induction heating device For example, a method in which a cooling liquid is sprayed on the outer periphery of the metal tube and then rapidly cooled after being heated to a uniform temperature symmetrical with respect to the central axis by the above method is generally employed. In these methods, when a metal tube after heating is quenched by injecting a cooling liquid from a cooling device, the deformation of the metal tube due to the difference in heat treatment history of each part caused by uneven cooling of each part of the metal pipe And the occurrence of surface irregularities is a problem. The non-uniform cooling is caused by the non-uniform amount of water and water pressure sprayed at each part, and the injection position that should be on a perfect circle in the circumferential direction of the metal pipe is disturbed by the part in the axial direction of the metal pipe. Arise.
Therefore, it is necessary to quench the metal tube uniformly and symmetrically with respect to its central axis. When the metal tube is arranged in the horizontal direction, the sprayed coolant has different gravity effects on the upper, lower and side surfaces of the metal tube, so the metal tube is arranged in the vertical direction. Compared to, uniform cooling of the entire circumference of the metal tube becomes more difficult.

金属管の中心軸に対称的に均一に急冷できないと熱処理温度履歴依存性により周方向に
生じる金属の機械的性質の違いにより金属管が部分的に収縮し、変形し、金属管の周方向
の真円度の劣化、管表面の凸凹、長尺方向の曲りや蛇行の発生などの製品品質上及び操業
上の不具合が生じる。また、加熱から冷却までの間に金属管の表面に生成する酸化物の状
態が不均一となり、この後の酸洗工程において、酸化物の除去後の金属管の表面性状にむ
らが発生する原因となる。
If the metal tube cannot be cooled rapidly and symmetrically to the central axis, the metal tube partially contracts and deforms due to the difference in the mechanical properties of the metal that occurs in the circumferential direction due to the heat treatment temperature history dependence. Product quality and operational problems such as deterioration of roundness, unevenness of the tube surface, bending in the long direction and occurrence of meandering occur. In addition, the state of the oxide generated on the surface of the metal tube from heating to cooling becomes non-uniform, and in the subsequent pickling step, the surface property of the metal tube after the removal of the oxide is uneven It becomes.

さらに、金属管を一定速度で水平方向に搬送しながら加熱装置で加熱し、次いで冷却装
置で急冷して熱処理する方法においては、加熱装置の直後に配置した冷却装置により高温
の金属管に冷却液を噴射すると、噴射条件によっては加熱装置の熱源側に冷却液が意図せ
ずに逆流し、熱源を損傷するおそれがあり、適正な方法をもって熱源側への逆流を阻止す
る必要がある。
Furthermore, in the method in which the metal tube is heated by the heating device while being transported in the horizontal direction at a constant speed, and then rapidly cooled by the cooling device and heat-treated, the cooling liquid is placed on the hot metal tube by the cooling device disposed immediately after the heating device. If the spray is sprayed, the coolant may unintentionally flow back to the heat source side of the heating device depending on the spraying conditions, possibly damaging the heat source, and it is necessary to prevent the back flow to the heat source side by an appropriate method.

金属管をその中心軸に対称的に均一に急冷しようとする場合、穴状噴霧ノズルの離散的
配置による冷却方法は、上記のような解決すべき課題がある。本発明は、冷却液を液膜状
で噴き付けることにより前記の課題を解決するものである。なお、以下は、冷却液として
代表的な工業用水等の冷却水を用いる場合について記述するが、冷却液は水以外の油等の
冷却媒体でもよい。
When trying to rapidly cool a metal tube symmetrically about its central axis, the cooling method by discrete arrangement of hole-shaped spray nozzles has the above-mentioned problems to be solved. The present invention solves the above-mentioned problems by spraying a coolant in the form of a liquid film. In the following description, a case where cooling water such as typical industrial water is used as the cooling liquid will be described. However, the cooling liquid may be a cooling medium such as oil other than water.

本発明の冷却装置は、金属管の外周に金属管と同心円状に配置された噴射口から金属管
の外面に冷却水を噴射させて、加熱後の金属管を冷却する冷却装置である。
この冷却装置は、第一の部材と第二の部材を組み合わせて、内部に冷却水流路と該冷却
水流路に接続する円錐台状に傾斜した環状のスリットノズルを有している。
そして、このスリットノズルは、その最先端のスリット内縁とスリット外縁により形成
された環状のスリット開口部からなり、冷却液を金属管外面に斜め方向に液膜状に噴射す
る噴射口を有している。
また、該スリット内縁は該スリット外縁よりも長さLだけ冷却液の噴射方向に突出可能
であり、該長さL及び前記スリット開口部のスリット間隔dが第一の部材と第二の部材の
相対的移動によって調整可能である。
スリット内縁に至る円錐台状の傾斜は、噴射口を金属管と同心円状に配置した場合に、
金属管の中心軸に対する角度θで表わして30°から60°が好ましい。
The cooling device of the present invention is a cooling device that cools the heated metal tube by injecting cooling water onto the outer surface of the metal tube from an injection port arranged concentrically with the metal tube on the outer periphery of the metal tube.
This cooling device includes a first member and a second member, and has a cooling water passage and an annular slit nozzle inclined in a truncated cone shape connected to the cooling water passage.
The slit nozzle is composed of an annular slit opening formed by the leading edge of the slit inner edge and the outer edge of the slit, and has an injection port for injecting the coolant in the form of a liquid film obliquely on the outer surface of the metal tube. Yes.
Further, the inner edge of the slit can protrude in the cooling liquid injection direction by a length L from the outer edge of the slit, and the length L and the slit interval d of the slit opening are set between the first member and the second member. It can be adjusted by relative movement.
The frustoconical inclination leading to the inner edge of the slit is when the injection port is arranged concentrically with the metal tube.
It is preferably 30 ° to 60 ° expressed by an angle θ with respect to the central axis of the metal tube.

上記冷却装置の一態様として、第一の部材を内側環状体、第二の部材を外側環状体とし
、外側環状体の内部に冷却水流路を設ける。外側環状体の先端側内表面及び内側環状体の
先端側外表面の間に環状スリットノズルが形成される。そして、内側環状体と外側環状体
は金属管の中心軸方向に相対的に移動可能とする。
As one aspect of the cooling device, the first member is an inner annular body, the second member is an outer annular body, and a cooling water flow path is provided inside the outer annular body. An annular slit nozzle is formed between the tip-side inner surface of the outer annular body and the tip-side outer surface of the inner annular body. The inner annular body and the outer annular body are relatively movable in the central axis direction of the metal tube.

前記の冷却装置を用いて、噴射口から噴射される冷却水の噴射方向と順方向に金属管を
走行させるか、静置した金属管に対して前記噴射方向と逆方向に冷却装置を移動させて、
加熱後の金属管を冷却することができる。この方法では、冷却液が安定して液膜状で噴射
され、金属管の外面の真円状の同一円周上に液膜が衝突するように前記長さLを調整する
ことができる。
Using the cooling device, the metal pipe is run in the forward direction with the injection direction of the cooling water injected from the injection port, or the cooling device is moved in the direction opposite to the injection direction with respect to the stationary metal pipe. And
The metal tube after heating can be cooled. In this method, the length L can be adjusted so that the cooling liquid is stably ejected in the form of a liquid film, and the liquid film collides on the same circle of the outer circumference of the metal tube.

また、前記の冷却方法において、金属管の外面の真円状の同一円周上の衝突位置に衝突
する冷却水の角度もできるだけθか、θに近いほど好ましいので、冷却水の角度が前記θ
の角度を維持するように前記スリット間隔を調整することにより、金属管に衝突した水膜
状の冷却水が金属管に水膜状に接触して流れるようにすることができる。
In the above cooling method, the angle of the cooling water that collides with the collision position on the same circular circumference of the outer surface of the metal tube is preferably as close to θ or as close to θ as possible.
By adjusting the slit interval so as to maintain the angle, the cooling water in the form of a water film colliding with the metal tube can flow in contact with the metal tube in the form of a water film.

スリット間隔が過度に大きかったり噴射される冷却水の圧力が過度に小さかったりした
場合には、噴出速度が不十分となり、重力の影響を大きく受け、金属管の外面に衝突する
角度がθとなる理想的な状態から外れることになり、金属管の上面、側面、下面で水膜の
衝突位置が真円状の同一円周上からずれてしまい、曲りなどの金属管の品質の不具合の原
因となる。これを防ぐために、水膜が重力に負けて崩れた形状にならないように十分の速
度と流量をもって冷却水を噴出させることが必要である。
If the slit interval is excessively large or the pressure of the cooling water to be injected is excessively small, the ejection speed becomes insufficient, the influence of gravity is large, and the angle of collision with the outer surface of the metal tube is θ. It will deviate from the ideal state, and the collision position of the water film will deviate from the same circle on the upper, side and lower surfaces of the metal tube, causing defects in the quality of the metal tube such as bending. Become. In order to prevent this, it is necessary to eject the cooling water at a sufficient speed and flow rate so that the water film does not collapse due to gravity.

水膜状の冷却水に噴射角度θをつけた結果、冷却水は金属管外面に沿うような均一な厚
みの水膜状の流れとなり冷却が均一となり、かつ冷却水の金属管外面への接触時間を長く
保つことによる冷却効率を高めることができ、不十分な冷却に起因する金属管の曲がりの
発生を抑制できる。さらに、加熱装置の後段にこの冷却装置を設けて金属管を走行させる
場合に、噴き付けられた冷却水の飛沫や水流が金属管外面の上側を伝い金属管の上流側の
加熱設備に向けて逆流することを軽減でき、設備損傷を軽減することもできる。
As a result of the injection angle θ applied to the water film-like cooling water, the cooling water becomes a water film-like flow with a uniform thickness along the outer surface of the metal tube, the cooling becomes uniform, and the cooling water contacts the outer surface of the metal tube. Cooling efficiency by keeping the time long can be increased, and the occurrence of bending of the metal tube due to insufficient cooling can be suppressed. Furthermore, when this cooling device is provided at the rear stage of the heating device and the metal tube is run, the sprayed water splash or water flow is directed on the upper side of the outer surface of the metal tube toward the heating equipment upstream of the metal tube. Backflow can be reduced and equipment damage can also be reduced.

また、前記の冷却方法において、前記冷却水流路の断面積を前記スリット開口部の面積
で除した値を2〜5とした冷却装置を用いることが好ましい。これにより、冷却水を環状
スリット内部の周方向に安定して送り込むことができるので金属管の中心軸に対称的によ
り均一な流量、圧力で冷却水を噴射できる。
Moreover, in the said cooling method, it is preferable to use the cooling device which made the value which remove | divided the cross-sectional area of the said cooling water flow path by the area of the said slit opening part 2-5. As a result, the cooling water can be stably fed in the circumferential direction inside the annular slit, so that the cooling water can be jetted with a more uniform flow rate and pressure symmetrically to the central axis of the metal tube.

本発明の環状スリットノズル構造を持つ冷却装置を用いると、加熱された金属管の外面
の真円状の同一円周上の全ての箇所に冷却水が同時に均一な量で噴き付けられ、金属管が
その中心軸に対称的に均一に急冷されるため、金属管全周の均一な冷却ができ、従来の噴
霧ノズルを用いた冷却による金属管の周方向温度差の発生が軽減され、金属管の周方向の
冷却の不均一による金属管の歪・変形、曲り、蛇行が軽減され、さらに、加熱により金属
管表面に生成した酸化皮膜除去後に現れる表面性状のむらも改善される。
When the cooling device having the annular slit nozzle structure of the present invention is used, the cooling water is sprayed in a uniform amount all at the same time on all the same circles on the outer circumference of the heated metal tube. Is cooled uniformly and symmetrically around its central axis, so that the entire circumference of the metal tube can be uniformly cooled, and the occurrence of a temperature difference in the circumferential direction of the metal tube due to cooling using a conventional spray nozzle is reduced. Distortion / deformation, bending, and meandering of the metal tube due to uneven cooling in the circumferential direction of the metal tube are alleviated, and unevenness in surface properties that appears after removal of the oxide film formed on the surface of the metal tube by heating is also improved.

本発明の冷却装置による冷却の態様を図2〜4に示す従来法と対比して概念的に示す斜視図。The perspective view which shows notionally the aspect of the cooling by the cooling device of this invention in contrast with the conventional method shown in FIGS. 従来例の穴状噴霧ノズル列による冷却態様(例1)を示す概略斜視図。The schematic perspective view which shows the cooling mode (Example 1) by the hole-shaped spray nozzle row | line | column of a prior art example. 従来例の穴状噴霧ノズル列による冷却態様(例2)を示す概略斜視図。The schematic perspective view which shows the cooling mode (Example 2) by the hole-shaped spray nozzle row | line | column of a prior art example. 従来例の穴状噴霧ノズル列による冷却態様(例3)を示す概略斜視図。The schematic perspective view which shows the cooling mode (Example 3) by the hole-shaped spray nozzle row | line | column of a prior art example. 本発明の冷却装置の一態様を示す縦断面図。The longitudinal cross-sectional view which shows the one aspect | mode of the cooling device of this invention. 本発明の冷却装置において、スリット開口部のスリット間隔についての説明図。In the cooling device of this invention, explanatory drawing about the slit space | interval of a slit opening part. 本発明の冷却装置において、スリット内縁がスリット外縁よりも冷却水の噴射方向に突出する長さLの説明図。In the cooling apparatus of this invention, explanatory drawing of the length L which a slit inner edge protrudes in the injection direction of a cooling water rather than a slit outer edge. 本発明の冷却装置において、冷却水流路の断面積とスリットの開口面積の比の説明図。The cooling device of this invention WHEREIN: Explanatory drawing of ratio of the cross-sectional area of a cooling water flow path, and the opening area of a slit. 本発明の冷却装置を連続溶接製管機の一部に設けた熱処理設備に適用した実施例を模式的に示す概略側面図。The schematic side view which shows typically the Example which applied the cooling device of this invention to the heat processing equipment provided in a part of continuous welding pipe manufacturing machine.

本発明の冷却装置の一態様として、第一の部材を内側環状体、第二の部材を外側環状体
とし、外側環状体の内部に冷却水流路を設け、外側環状体の先端側内表面及び内側環状体
の先端側外表面の間に環状スリットノズルを形成し、内側環状体と外側環状体を金属管の
中心軸方向に相対的に移動可能とした態様について説明する。
As one aspect of the cooling device of the present invention, the first member is an inner annular body, the second member is an outer annular body, a cooling water flow path is provided inside the outer annular body, An embodiment will be described in which an annular slit nozzle is formed between the front-end-side outer surfaces of the inner annular body so that the inner annular body and the outer annular body can be moved relatively in the central axis direction of the metal tube.

図1に示すように、本発明の冷却装置1は、環状体からなり、従来法と同様に金属管2
と同心円状に配置して用いられるが、冷却水流Wは環状スリットノズルから金属管2の中
心軸に対して絞られるように水膜となって金属管2の外面に斜め方向に噴き付けられる。
金属管2は高周波誘導加熱装置等(図示せず)によりその中心軸に対称的に均一な温度に
加熱した後に急冷される。本発明の冷却装置を使用する方法において、金属管を走行させ
ずに使用する場合は、冷却装置を図1に示す金属管の走行方向と逆方向に移動させること
によって、金属管の外面に順次冷却水を噴き付ける。
As shown in FIG. 1, the cooling device 1 of the present invention comprises an annular body, and a metal tube 2 as in the conventional method.
The cooling water flow W is formed as a water film so as to be squeezed from the annular slit nozzle with respect to the central axis of the metal tube 2 and is sprayed obliquely on the outer surface of the metal tube 2.
The metal tube 2 is rapidly cooled after being heated to a uniform temperature symmetrical to its central axis by a high frequency induction heating device or the like (not shown). In the method of using the cooling device of the present invention, when the metal tube is used without traveling, the cooling device is moved in the direction opposite to the traveling direction of the metal tube shown in FIG. Spray cooling water.

図5は、本発明の冷却装置を水平方向に走行する金属管と同心円状に配置した一態様を
示している。図5に示すように、冷却装置1は、内側環状体3と、その外側にネジ構造1
1やスライド構造等により嵌合した外側環状体4の組み合わせによって形成されている。
外側環状体4の内部には冷却水流路5及び冷却水流路5に接続したスリット6を有してい
る。
FIG. 5 shows an embodiment in which the cooling device of the present invention is arranged concentrically with a metal tube that runs in the horizontal direction. As shown in FIG. 5, the cooling device 1 includes an inner annular body 3 and a screw structure 1 on the outer side.
1 and the outer annular body 4 fitted by a slide structure or the like.
The outer annular body 4 has a cooling water passage 5 and a slit 6 connected to the cooling water passage 5 inside.

外側環状体4の内部に形成された冷却水流路5は、外側環状体4の全周に環状に設けて
もよいが、一部に設けるだけでもよい。冷却水流路5から外側環状体4の外部へ向けて冷
却水供給口7を設けて冷却水供給パイプ(図示せず)に接続し、水圧を調整した冷却水が
供給される。
The cooling water flow path 5 formed inside the outer annular body 4 may be provided in an annular shape around the entire circumference of the outer annular body 4, but may be provided only in part. A cooling water supply port 7 is provided from the cooling water flow path 5 to the outside of the outer annular body 4 and connected to a cooling water supply pipe (not shown), and the cooling water whose water pressure is adjusted is supplied.

冷却水流路5に接続したスリット6を形成するように、外側環状体4の先端側内表面及
び内側環状体3の先端側外表面は円錐台状に傾斜した形成され、スリット内縁8と、スリ
ット外縁9により環状の開口部10が形成される。スリット6は、通常の先細ノズルと同
様に開口部10に向かって間隔を次第に狭くするとよい。この環状の開口部10から冷却
水が大気中に噴射される。図6(A)、(B)に示すように、スリット内縁8を形成する
内側環状体3とスリット外縁9を形成する外側環状体4を相対的に移動させることにより
冷却水が噴射されるスリット開口部のスリット間隔dを調整し、冷却水の単位時間当たり
の噴射量と噴射速度を制御できる。
The inner surface of the outer annular body 4 and the outer surface of the inner annular body 3 are inclined in a truncated cone shape so as to form a slit 6 connected to the cooling water flow path 5. An annular opening 10 is formed by the outer edge 9. The slit 6 may have a space gradually narrowed toward the opening 10 in the same manner as a normal tapered nozzle. Cooling water is injected from the annular opening 10 into the atmosphere. As shown in FIGS. 6A and 6B, the slit in which the cooling water is jetted by relatively moving the inner annular body 3 forming the slit inner edge 8 and the outer annular body 4 forming the slit outer edge 9. By adjusting the slit interval d of the opening, it is possible to control the injection amount and the injection speed of the cooling water per unit time.

内側環状体3と外側環状体4は、環状の開口部10の反対側の位置でネジ構造11によ
り相対的に回転可能に嵌合する。この相対的な回転によりスリット間隔を調整できる。そ
して、内側環状体3と外側環状体4を、両者の中心軸方向に相対的に移動可能にしてスリ
ット開口部のスリット間隔dを調整するための環状のクリアランス12を両者の間に設け
る。スリット間隔dの調整は、ネジ構造の代わりにスライド機構など他の相対的な位置調
整機を用いてもよい。スリット間隔dは環状スリットノズルの全周で均一な値とする。冷
却水流路5とクリアランス12との中間部に水密シールとしてOリング13を設ける。内
側環状体3と外側環状体4との軸方向長さは例えば200mm程度であればよい。内側環
状体3及び外側環状体4は鋼材等を切削加工して製作できる。
The inner annular body 3 and the outer annular body 4 are fitted so as to be relatively rotatable by the screw structure 11 at a position opposite to the annular opening 10. The slit interval can be adjusted by this relative rotation. And the annular clearance 12 for adjusting the slit space | interval d of a slit opening part by making the inner side annular body 3 and the outer side annular body 4 relatively movable in the center-axis direction of both is provided between both. For adjustment of the slit distance d, other relative position adjusters such as a slide mechanism may be used instead of the screw structure. The slit interval d is a uniform value over the entire circumference of the annular slit nozzle. An O-ring 13 is provided as a watertight seal at an intermediate portion between the cooling water flow path 5 and the clearance 12. The axial lengths of the inner annular body 3 and the outer annular body 4 may be about 200 mm, for example. The inner annular body 3 and the outer annular body 4 can be manufactured by cutting a steel material or the like.

図5に示すように、スリット内縁8の直径D2は、金属管2を通す必要があるから当然
金属管2の外面の直径D1よりも大きい。直径D1とD2との差は好ましくは40mm〜10
0mm程度とする。なお、図5では、スリット内縁8の位置と反対側の端部の位置の直径
D3をD2よりも大きくしているが、これは金属管を上流側から冷却装置内に挿入し易く
するためであり、D2とD3は同じ大きさでもよい。
As shown in FIG. 5, the diameter D <b> 2 of the slit inner edge 8 is naturally larger than the diameter D <b> 1 of the outer surface of the metal tube 2 because it is necessary to pass the metal tube 2. The difference between the diameters D1 and D2 is preferably 40mm-10
About 0 mm. In FIG. 5, the diameter D3 of the position of the end opposite to the position of the slit inner edge 8 is made larger than D2, but this is to facilitate insertion of the metal tube into the cooling device from the upstream side. Yes, D2 and D3 may be the same size.

冷却水はスリット6の環状の開口部から図5に示すように、金属管の中心軸に対する角
度θの噴き付け角度で金属管2の中心軸に向けて収束する方向に金属管2の外面に大気中
で水膜状に噴き付けられる。この際に、金属管2の外面の円周上の衝突位置a−bに衝突
する冷却水の角度ができるだけθの角度を維持するように噴射水圧、スリット間隔dを調
整する。この円周上の衝突位置a−bは、金属管の中心軸に直交する断面で形成される真
円状の同一円周上かそれに近いほど均一な冷却のために望ましい。衝突位置a−bはθの
値及び前記D1とD2の差異に応じて金属管の中心軸方向に変ることになる。
As shown in FIG. 5, the cooling water is applied to the outer surface of the metal tube 2 in such a direction as to converge toward the center axis of the metal tube 2 at a spray angle of an angle θ with respect to the center axis of the metal tube. It is sprayed in the form of a water film in the atmosphere. At this time, the injection water pressure and the slit interval d are adjusted so that the angle of the cooling water that collides with the collision position ab on the circumference of the outer surface of the metal tube 2 is maintained as much as possible. The collision position a-b on the circumference is desirable for uniform cooling as it is on or close to a perfect circle formed in a cross section perpendicular to the central axis of the metal tube. The collision position ab changes in the direction of the central axis of the metal tube according to the value of θ and the difference between D1 and D2.

真円状の同一円周上の衝突位置a−bに衝突した水膜状の冷却水Wは、金属管全周を金
属管2に沿うように一定の長さ流れ、一部は蒸発し、一部は下方に離脱する。このように
、角度θの噴き付け角度で冷却水を噴き付けることにより金属管2が水平方向に位置する
場合でも、その上側、側面側、下側のいずれにおいても、衝突位置で多くの熱交換が行な
われた後に即座に金属管の表面から離脱するのではなく、水膜が一定の厚みを保った状態
で金属管全周に一定の長さだけ接触し続け、冷却水の接触機会を増すことにより冷却水へ
の非浸漬状態で金属管全周の均一な冷却能力を高めることができる。また、金属管2の外
面の上側を進行方向と逆方向へ飛散する飛沫状の冷却水Aの量は少なくなる。
The cooling water W in the form of a water film that has collided with the collision position a-b on the same circumference of the perfect circle flows for a certain length along the entire circumference of the metal tube 2, and partly evaporates. Some leave downwards. Thus, even when the metal pipe 2 is positioned in the horizontal direction by spraying the cooling water at the spray angle of the angle θ, many heat exchanges are performed at the collision position on any of the upper side, the side surface, and the lower side. Instead of detaching from the surface of the metal tube immediately after the operation is performed, the water film continues to contact the entire circumference of the metal tube for a certain length while maintaining a certain thickness, increasing the chance of contacting the cooling water. Thus, the uniform cooling capacity of the entire circumference of the metal tube can be enhanced in a non-immersed state in the cooling water. Further, the amount of the splash-like cooling water A that scatters on the upper side of the outer surface of the metal tube 2 in the direction opposite to the traveling direction is reduced.

水膜状の冷却水の噴き付け角度θは、30°から60°程度の範囲が好ましく、このよ
うな角度とすることにより金属管に到達した後の冷却水の流れを金属管の中心軸方向に平
行に導くことができる。この噴き付け角度θは、被冷却物である金属管の種類、金属管の
加熱温度、所望の冷却速度、冷却水の水量などに依存して適正な角度を選択する。噴き付
け角度θが30°よりも小さいと金属管への水流の到達にばらつきが生じ、金属管に表面
肌のムラや曲がりが発生し易くなる。また、噴き付け角度θが60°よりも大きいと金属
管への水流の到達はよくなるが、高周波誘導加熱装置などの加熱装置側への逆流も発生し
、冷却開始点を冷却水の衝突位置に確実に定めることができず、冷却状態が揺らぎ、金属
管に表面肌のムラや曲がりが発生する。
The spray angle θ of the water-film-like cooling water is preferably in the range of about 30 ° to 60 °. With such an angle, the flow of the cooling water after reaching the metal tube is changed in the direction of the central axis of the metal tube. Can be guided in parallel. The spraying angle θ is selected appropriately depending on the type of the metal tube to be cooled, the heating temperature of the metal tube, the desired cooling rate, the amount of cooling water, and the like. When the spraying angle θ is smaller than 30 °, the arrival of the water flow to the metal pipe varies, and the surface of the metal pipe is likely to be uneven or bent. In addition, when the spray angle θ is larger than 60 °, the water flow reaches the metal tube better, but a reverse flow to the heating device such as a high-frequency induction heating device also occurs, and the cooling start point is set to the collision position of the cooling water. It cannot be determined with certainty, the cooling state fluctuates, and the surface of the metal tube is uneven or bent.

このように、金属管2の中心軸に向けて環状開口部10から円錐状に絞られるように噴
出する水膜状の冷却水を金属管2に噴き付けることにより、従来の穴状噴霧ノズル列を用
いて液滴状に噴射したときのような冷却水の噴き付け状態の変動を軽減し、冷却状態を安
定化させ、冷却能力のムラの発生を軽減でき、得られた金属管製品の表面品質改善を図る
ことができる。
Thus, the conventional hole-shaped spray nozzle array is formed by spraying water film-like cooling water, which is jetted so as to be conically constricted from the annular opening 10 toward the central axis of the metal pipe 2, onto the metal pipe 2. The surface of the obtained metal tube product can reduce fluctuations in the spraying state of the cooling water, such as when sprayed in droplets using the, stabilize the cooling state, and reduce the occurrence of uneven cooling capacity. Quality can be improved.

例えば、ステンレス鋼管の固溶化熱処理の場合、ラインスピード1〜3m/min程度で走行
する鋼管を加熱装置により約1100℃まで加熱した後に冷却装置により約40℃以下となるま
で冷却速度50℃/秒以上で急冷する必要があるが、このようなオンライン製管法におい
ても金属管をその中心軸に対称的に均一に急冷が可能となる。
For example, in the case of solution heat treatment of a stainless steel pipe, a steel pipe traveling at a line speed of about 1 to 3 m / min is heated to about 1100 ° C. with a heating device and then cooled to about 40 ° C. or less with a cooling device at a cooling rate of 50 ° C./second. Although it is necessary to rapidly cool as described above, even in such an on-line pipe making method, the metal pipe can be rapidly cooled symmetrically and uniformly with respect to its central axis.

冷却装置の対象となる金属管はその材質、管径、肉厚、熱処理条件などが多岐に亘るの
で、熱容量をはじめとした金属管製品の特性と処理速度に応じた冷却状態を得るために冷
却能力を調整できることが望ましい。冷却水を噴きつけるシステムには、圧力と流量をそ
れぞれ調整することができれば上記冷却条件の変化に対応できる。本発明の冷却装置にお
いては、スリット間隔は環状スリットノズルの全周で均一な値としているので、スリット
間隔を調整することによって金属管の中心軸に対称的に均一な圧力と流量で噴き付けて所
望の冷却効果が得られるようにする。
The metal pipes that are subject to cooling devices vary widely in material, pipe diameter, wall thickness, heat treatment conditions, etc., so cooling is required to obtain a cooling state according to the characteristics and processing speed of metal pipe products including heat capacity. It is desirable to be able to adjust the capacity. The system for spraying cooling water can cope with the change in the cooling condition if the pressure and flow rate can be adjusted respectively. In the cooling device of the present invention, since the slit interval is a uniform value around the entire circumference of the annular slit nozzle, the slit interval is adjusted so that it is sprayed symmetrically and uniformly on the central axis of the metal tube. A desired cooling effect is obtained.

スリット間隔dは、図6に示すように、内側環状体3と外側環状体4を両者の中心軸方
向に相対的に移動させることにより冷却条件に応じて変更することができる。図6(A)
は、相対的な移動量を大きくしてスリット間隔dを小さくした状態を、図6(B)は、ス
リット間隔dを大きくした状態を示す。
As shown in FIG. 6, the slit interval d can be changed according to the cooling condition by relatively moving the inner annular body 3 and the outer annular body 4 in the central axis direction of both. FIG. 6 (A)
FIG. 6B shows a state where the relative distance is increased to reduce the slit interval d, and FIG. 6B shows a state where the slit interval d is increased.

噴射部を冷却水の噴射方向の断面で観察する場合、冷却水が最終的にスリット開口部か
ら大気中に離脱する位置において水膜の両側が拘束された状態であると、冷却水の後背か
らの圧力と離脱先の大気圧との差から拘束した両側の端部分から拘束の外側へ向けて冷却
水が解放されることにより、離脱の際に噴射方向の外に向けて冷却水が屈曲し、又は、飛
沫が多く発生し、金属管の上面、下面、側面の衝突位置が真円状の同一円周上からずれた
り、噴き付けパターンが広範囲にわたったり、また、飛沫が散乱したりする不具合がある
When observing the injection section in a cross section in the injection direction of the cooling water, if the cooling water is in a state where both sides of the water film are constrained at the position where the cooling water finally leaves the slit opening, When the cooling water is released from the ends of both sides constrained from the difference between the pressure of the air and the atmospheric pressure of the separation destination toward the outside of the restriction, the cooling water bends outward in the injection direction at the time of separation. Or, many splashes occur, the collision position of the upper, lower, and side surfaces of the metal tube deviates from the same circle, the spray pattern spreads over a wide range, and the splashes are scattered. There is a bug.

しかし、スリット内縁8をスリット外縁9の位置よりも冷却水の噴射方向に少し突出さ
せると冷却水の流れが均一な厚みの水膜をなすようになり、噴射水流の乱れを抑制できる
効果が高まる。図7は、冷却水の噴射方向の断面で見て、スリット内縁8がスリット外縁
9よりも突出した長さL(以下、「スリット内縁の突出長さL」という)を説明する図で
ある。例えば、スリットの開口間隔を1mmと一定とし、スリット内縁の突出長さLをパ
ラメータとしたノズルを作製した場合、大気中に噴射する水の安定具合は、長さLが5m
m以上となると冷却水の流れが水膜をなすようになり、噴き付け水流の乱れを抑制できる
。長さLは、長くても30mm程度あれば十分であるが、原理的には図5に示すD1=D
2なるまで可能である。しかし、金属管2の外面とスリット内縁8との接触を避けるだけ
のクリアランスは必要である。
However, if the slit inner edge 8 is slightly protruded in the cooling water injection direction from the position of the slit outer edge 9, the flow of the cooling water forms a water film with a uniform thickness, which increases the effect of suppressing the disturbance of the injection water flow. . FIG. 7 is a diagram for explaining the length L of the slit inner edge 8 protruding from the slit outer edge 9 (hereinafter referred to as “projection length L of the slit inner edge”) as viewed in the cross section in the cooling water injection direction. For example, when a nozzle having a slit opening interval constant of 1 mm and a projection length L of the inner edge of the slit as a parameter is produced, the stability of water sprayed into the atmosphere is such that the length L is 5 m.
When it becomes m or more, the flow of the cooling water forms a water film, and the turbulence of the sprayed water flow can be suppressed. The length L is sufficient if it is about 30 mm at the longest, but in principle, D1 = D shown in FIG.
This is possible up to 2. However, a clearance sufficient to avoid contact between the outer surface of the metal tube 2 and the slit inner edge 8 is necessary.

スリット内縁の突出長さLは、スリット開口間隔d、噴射水圧、冷却媒体の種類、スリ
ット内縁8の直径D1と金属管2の外面の直径D2の差等に応じて求めることができる。
これにより、内側環状体3と外側環状体4を相対的に移動させて長さLを調整するだけで
金属管2の外面の真円状の同一円周上へ冷却水を噴き付けることができるようになる。
The protruding length L of the slit inner edge can be determined according to the slit opening interval d, the jet water pressure, the type of the cooling medium, the difference between the diameter D1 of the slit inner edge 8 and the diameter D2 of the outer surface of the metal tube 2, and the like.
As a result, the cooling water can be sprayed onto the exact same circumference of the outer surface of the metal tube 2 only by adjusting the length L by relatively moving the inner annular body 3 and the outer annular body 4. It becomes like this.

冷却装置は、熱容量の大きな金属管製品が高速で通過する場合や、熱容量の小さな金属
管製品が低速で通過する場合にも対応できる必要がある。前者の場合には冷却能力を高め
る必要がある。一般的には、冷却水の供給能力から流量の上限が定められる場合には、そ
の制限内の一定の流量の冷却水を用いる中で高温物体と冷却水の接触表面積を増すために
スリット間隔dを絞って高速で噴出させることが良い。
The cooling device needs to be able to cope with a case where a metal tube product having a large heat capacity passes at a high speed and a case where a metal tube product having a small heat capacity passes at a low speed. In the former case, it is necessary to increase the cooling capacity. In general, when the upper limit of the flow rate is determined from the supply capacity of the cooling water, the slit distance d is increased in order to increase the contact surface area of the high temperature object and the cooling water while using the cooling water having a constant flow rate within the limit. It is good to squeeze out at high speed.

流量に余裕がある場合で、急冷を要する場合には冷却水の噴出速度を維持するとともに
流量を増す。また、経済性の観点から、また、冷却水の回収などの処理作業の負荷軽減の
観点から、流量を減ずることもある。
When there is a margin in the flow rate and rapid cooling is required, the flow rate is increased while maintaining the cooling water ejection speed. Further, the flow rate may be reduced from the viewpoint of economy and from the viewpoint of reducing the load of processing work such as recovery of cooling water.

冷却装置1内の冷却水流路5は十分な大きさの流路断面積を有することが好ましい。ス
リット6の環状の開口部10から冷却水が噴射されるので、冷却水供給口7からスリット
6への冷却水の供給も環状であることは理想的であるが、外部から冷却装置1へ環状に冷
却水を供給しようとすると外部構造が複雑となる。外部から冷却装置1への冷却水の供給
は、図5に示すように、1箇所又は数箇所程度であるのが実用的である。この位置的に偏
った冷却水供給口7からスリット6に至るまでに小さな断面積の流路しかない場合、環状
の開口部10からの噴射も偏ってしまい、理想的な形の環状の水膜が得られない。この原
因は、小さな断面積の流路においては、流速が速くなり流れ抵抗の影響が大きくなり、冷
却水供給口7から環状の開口部10の各部への流れ抵抗の差異から冷却水の供給が偏り、
また、スリット6内部を高速で冷却水が環状のスリットの周方向に移動しながら環状の開
口部10に至り、噴射角度に周方向成分が加わり、さらに、冷却水供給口7が例えば2個
程度の複数の場合、それぞれの冷却水供給口から等距離にある環状の開口部の部分におい
ては水流のぶつかりも生じるためと考えられる。
The cooling water channel 5 in the cooling device 1 preferably has a sufficiently large channel cross-sectional area. Since cooling water is jetted from the annular opening 10 of the slit 6, it is ideal that the cooling water is supplied from the cooling water supply port 7 to the slit 6. If an attempt is made to supply cooling water, the external structure becomes complicated. As shown in FIG. 5, the supply of cooling water from the outside to the cooling device 1 is practically at one place or several places. If there is only a small cross-sectional flow path from the positionally biased cooling water supply port 7 to the slit 6, the injection from the annular opening 10 is also biased, and an ideal annular water film Cannot be obtained. The reason for this is that, in a flow path having a small cross-sectional area, the flow velocity increases and the influence of flow resistance increases, and cooling water is supplied from the difference in flow resistance from the cooling water supply port 7 to each part of the annular opening 10. Bias,
Further, the cooling water reaches the annular opening 10 while moving in the circumferential direction of the annular slit at a high speed inside the slit 6, a circumferential component is added to the injection angle, and, for example, about two cooling water supply ports 7 are provided. In the plurality of cases, it is considered that the collision of the water flow also occurs in the annular opening portions that are equidistant from the respective cooling water supply ports.

この不具合の是正方法の一つとして、冷却水供給口7の個数を増やすことが考えられる
が、個数増加には自ずと制限があり、また、それぞれの供給部からの冷却水の供給をバラ
ンスさせる必要があり困難がともなう。また、開口部10からの噴射角度を整えるための
是正方法の一つとして、スリット6の内部に整流板を設ける方法があるが、流れ抵抗の増
加となり、開口部10の位置毎の噴射量の差異が拡大する弊害を増長する。
One way to correct this problem is to increase the number of cooling water supply ports 7, but there is a limit to the increase in the number of cooling water supplies, and it is necessary to balance the supply of cooling water from each supply section. There are difficulties. Further, as one of the correction methods for adjusting the injection angle from the opening 10, there is a method of providing a rectifying plate inside the slit 6. However, the flow resistance is increased, and the injection amount for each position of the opening 10 is increased. Aggravate the negative effects of increasing differences.

これらの困難は、大きな断面積を有する冷却水流路5を設け、その断面積とスリット6
の開口面積の比を調整することにより解決できる。図8に示すノズル形状において、スリ
ット6の開口面積(スリットの内縁の延長線上から覗き込むスリット開口部の総面積)と
冷却水流路5の断面積の比を一定以上にすれば噴射時の冷却水の形状が安定し、より均一
に冷却水を噴き付けることができる。流路断面積をスリット開口部の面積で除した値を2
程度以上として流路の断面積をノズルからの冷却水の噴射量に対して十分に大きくするこ
とが好ましい。あまり大きくしても効果は少なくなるので、大きくても5倍程度であれば
よい。このことにより、冷却装置1内の周方向の流速を抑制することにより流れ抵抗を極
小化しスリット6への冷却水の流れ込み部に十分な冷却水を保持し、そこに圧力が均等に
かけられている形とし、冷却水流路5に流速均一化チャンバーの機能を持たせることがで
きる。
These difficulties are caused by providing the cooling water flow path 5 having a large cross-sectional area and the cross-sectional area and the slit 6.
This can be solved by adjusting the ratio of the opening areas. In the nozzle shape shown in FIG. 8, if the ratio of the opening area of the slit 6 (the total area of the slit opening portion viewed from the extension line of the inner edge of the slit) and the cross-sectional area of the cooling water channel 5 is set to a certain level or more, cooling at the time of injection is performed. The shape of water is stable, and cooling water can be sprayed more uniformly. The value obtained by dividing the channel cross-sectional area by the area of the slit opening is 2.
It is preferable that the cross-sectional area of the flow path is sufficiently large with respect to the amount of cooling water jetted from the nozzle. Even if it is too large, the effect is reduced, so it is sufficient that it is about 5 times at most. Thus, the flow resistance is minimized by suppressing the flow velocity in the circumferential direction in the cooling device 1, and sufficient cooling water is held in the cooling water flowing portion into the slit 6, and the pressure is evenly applied thereto. The cooling water flow path 5 can have a function of a flow velocity equalizing chamber.

本発明の冷却装置1を図9に模式的に示すように、ステンレス鋼管2の連続溶接製管機
内で加熱冷却を行う工程に適用した。一定の速度で連続的に成形、溶接された外径D1=
φ34.0、肉厚=3.0tのステンレス鋼管(SUS304)は、鋼管の中心軸に対称的に均一に約11
50℃になるように高周波加熱コイル14で均一加熱処理され駆動ロール15で搬送された
。ラインスピード2.0 m/minで搬送中の加熱後の鋼管に対し、図5に示すような冷却装置
(内側環状体の径D2=75mm、軸方向長さ=210mm)を用いて冷却水を鋼管外面に噴き付
け、約40℃まで冷却した。連続溶接製管ラインの最後の位置において走行切断機で約4mの
長さに切断した。流路の面積/スリット開口部の面積は2、スリット開口間隔d=1mm
、噴射角度θは45°とし、スリット内縁の突出長さLを0、1、3、5、10、20、
30mmと変えて実施した。ノズルへの供給水圧は0.2MPa、噴射水量は200L/
minとした。結果を表1に示す。
As schematically shown in FIG. 9, the cooling device 1 of the present invention was applied to a process of heating and cooling in a continuous welding pipe making machine for a stainless steel pipe 2. Outer diameter D1 = continuously formed and welded at a constant speed
A stainless steel pipe (SUS304) with a diameter of 34.0 mm and a wall thickness of 3.0 t is approximately 11 symmetrically and symmetrically about the central axis of the steel pipe.
The heat was uniformly applied by the high-frequency heating coil 14 so as to be 50 ° C. and conveyed by the drive roll 15. For the heated steel pipe being transported at a line speed of 2.0 m / min, the cooling water is supplied to the outer surface of the steel pipe using a cooling device as shown in FIG. 5 (inner annular body diameter D2 = 75 mm, axial length = 210 mm). And cooled to about 40 ° C. At the last position of the continuous welding pipe making line, it was cut to a length of about 4 m with a traveling cutting machine. The area of the flow path / the area of the slit opening is 2, the slit opening interval d = 1 mm.
The injection angle θ is 45 °, and the protruding length L of the inner edge of the slit is 0, 1, 3, 5, 10, 20,
It changed into 30 mm and implemented. The water pressure supplied to the nozzle is 0.2 MPa, and the amount of water jetted is 200 L /
It was set to min. The results are shown in Table 1.

Figure 0005851136
Figure 0005851136

長さLが約5mm以上となると、冷却水の水膜は均一な厚みの層をなすようになり、鋼
管外面への噴き付け水膜の乱れを抑制できる効果が高かった。これにより、金属管外面の
真円状の同一円周上へ確実に冷却水を噴き付けることが容易にできた。
When the length L was about 5 mm or more, the water film of the cooling water became a layer having a uniform thickness, and the effect of suppressing the disturbance of the water film sprayed on the outer surface of the steel pipe was high. Thereby, it was possible to easily spray the cooling water surely on the same circular circumference of the outer surface of the metal tube.

表2に実施例1においてスリット内縁の突出長さLを20mmとした場合の冷却結果と
図2から図4に示した従来法の穴状噴霧ノズルを用いて同じ給水条件で冷却した冷却結果
から得られた製品の品質を比較して示す。
Table 2 shows the cooling results when the protrusion length L of the inner edge of the slit is 20 mm in Example 1 and the cooling results of cooling using the conventional hole spray nozzle shown in FIGS. 2 to 4 under the same water supply conditions. The quality of the obtained product is compared and shown.

Figure 0005851136
Figure 0005851136

本発明の方法は、冷却後の金属管の表面肌のむらの発生、金属管表面の周方向の凸凹の
発生、金属管の中心軸方向の曲がりの発生抑止のいずれについても優れた品質が得られる
ことを示した。
The method of the present invention provides excellent quality for any of the occurrence of unevenness of the surface of the metal tube after cooling, the occurrence of unevenness in the circumferential direction of the surface of the metal tube, and the suppression of the occurrence of bending in the central axis direction of the metal tube. Showed that.

本発明は、焼き入れ等の熱処理や溶接による連続製管において、加熱後の金属管を急冷
する方法において、従来の穴状噴霧ノズル列を使用した冷却方法よりも金属管の全周を確
実に均一に急冷することが可能であり、金属管表面の凸凹と曲りの発生を防止し、表面性
状にむらのない均一な製品表面を得ることができる。
According to the present invention, in continuous pipe making by heat treatment such as quenching or welding, the whole circumference of the metal tube is more reliably ensured in the method of rapidly cooling the metal pipe after heating than the cooling method using the conventional hole spray nozzle array. Uniform and rapid cooling is possible, the occurrence of unevenness and bending of the surface of the metal tube can be prevented, and a uniform product surface with no uneven surface properties can be obtained.

1 冷却装置
2 金属管
3 内側環状体
4 外側環状体
5 冷却水流路
6 スリット
7 冷却水供給口
8 スリット内縁
9 スリット外縁
10 環状の開口部
11 ネジ構造
12 クリアランス
13 Oリング
14 高周波加熱コイル
15 駆動ロール
W 冷却水
A 加熱装置側に逆流する水滴・飛沫
a−b 金属管の外面への冷却水の衝突位置
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Metal pipe 3 Inner ring body 4 Outer ring body 5 Cooling water flow path 6 Slit 7 Cooling water supply port 8 Slit inner edge 9 Slit outer edge 10 Annular opening 11 Screw structure 12 Clearance 13 O ring 14 High frequency heating coil 15 Drive Roll W Cooling water A Water droplet / splash a-b that flows back to the heating device side Colliding position of cooling water on the outer surface of the metal tube

Claims (6)

水平方向に位置する金属管の外周に金属管と同心円状に配置された噴射口から金属管の外
面に冷却液を噴射させて、金属管に衝突した液膜状の冷却液が金属管に液膜状に接触して
流れるようにすることによって加熱後の金属管を冷却する冷却装置であって、
該冷却装置は第一の部材と第二の部材を組み合わせて、内部に冷却液流路と該冷却液流路
に接続する円錐台状に傾斜した環状のスリットノズルを有し、
該スリットノズルは、その最先端のスリット内縁とスリット外縁により形成された環状の
スリット開口部からなり、冷却液を金属管外面に斜め方向に液膜状に噴射する噴射口を有
し、
該スリット内縁に至る円錐台状の傾斜は、金属管の中心軸に対する角度θで表わして30
°から60°であり、
該スリット内縁は該スリット外縁よりも長さLだけ冷却液の噴射方向に突出可能であり、
スリット内縁の突出長さL及び前記スリット開口部のスリット間隔dが第一の部材と第
二の部材の相対的移動によって調整可能であることを特徴とする加熱後の金属管の冷却装
置。
Cooling liquid is sprayed to the outer surface of the metal pipe from the injection port arranged concentrically with the metal pipe on the outer periphery of the metal pipe located in the horizontal direction, and the liquid film-like cooling liquid colliding with the metal pipe is liquidized on the metal pipe. In contact with the film
A cooling device for cooling the metal tube after heating by allowing it to flow ;
The cooling device is a combination of a first member and a second member, and has a cooling fluid channel and an annular slit nozzle inclined in a truncated cone shape connected to the cooling fluid channel,
The slit nozzle is composed of an annular slit opening formed by the leading edge of the slit inner edge and the outer edge of the slit, and has an injection port for injecting the coolant in a liquid film obliquely to the outer surface of the metal tube.
The frusto-conical inclination leading to the inner edge of the slit is represented by an angle θ with respect to the central axis of the metal tube.
° to 60 °,
The inner edge of the slit can protrude in the jet direction of the coolant by a length L from the outer edge of the slit,
The apparatus for cooling a metal tube after heating, wherein the protruding length L of the inner edge of the slit and the slit interval d of the slit opening can be adjusted by relative movement of the first member and the second member.
前記冷却液流路の断面積を前記スリット開口部の面積で除した値を2〜5としたことを特The value obtained by dividing the cross-sectional area of the coolant flow path by the area of the slit opening is 2 to 5.
徴とする請求項1記載の金属管の冷却装置。The metal pipe cooling device according to claim 1.
前記第一の部材が内側環状体であり、前記第二の部材が外側環状体であり、外側環状体の
内部に冷却液流路が設けられており、
外側環状体の先端側内表面及び内側環状体の先端側外表面の間に環状スリットノズルが形
成されており、
内側環状体と外側環状体は金属管の中心軸方向に相対的に移動可能であることを特徴とす
る請求項1記載の加熱後の金属管の冷却装置。
The first member is an inner annular body, the second member is an outer annular body, and a coolant flow path is provided inside the outer annular body;
An annular slit nozzle is formed between the tip side inner surface of the outer annular body and the tip side outer surface of the inner annular body,
The apparatus for cooling a metal tube after heating according to claim 1, wherein the inner annular body and the outer annular body are relatively movable in the direction of the central axis of the metal tube.
請求項1乃至3のいずれかに記載の冷却装置を用いて、加熱後の金属管を冷却する方法に
おいて、冷却液が安定して液膜状で噴射され、金属管の外面の真円状の同一円周上に液膜
が衝突するように前記スリット内縁の突出長さLをスリット間隔d、噴射水圧、冷却媒体
の種類、スリット内縁の直径D1と金属管の外面の直径D2の差に応じて調整することを
特徴とする加熱後の金属管の冷却方法。
In the method of cooling the metal tube after heating using the cooling device according to any one of claims 1 to 3 , the cooling liquid is stably sprayed in a liquid film shape, and a round shape on the outer surface of the metal tube The protrusion length L of the inner edge of the slit is set to the slit interval d, the jet water pressure, the cooling medium so that the liquid film collides on the same circumference.
The method for cooling a metal tube after heating is characterized in that it is adjusted according to the difference between the diameter D1 of the inner edge of the slit and the diameter D2 of the outer surface of the metal tube.
請求項記載の冷却方法において、金属管の外面の真円状の同一円周上の衝突位置に衝突
する冷却液の角度が前記θの角度を維持するように、前記スリット間隔を調整することを
特徴とする加熱後の金属管の冷却方法。
5. The cooling method according to claim 4 , wherein the slit interval is adjusted so that the angle of the cooling liquid that collides with a collision position on the same circular circumference of the outer surface of the metal tube maintains the angle θ. A method for cooling a metal tube after heating.
請求項4又は5に記載の冷却方法において、金属管を高周波誘導加熱装置によりその中心
軸に対称的に均一な温度に加熱した後に冷却することを特徴とする加熱後の金属管の冷却
方法。
The cooling method according to claim 4 or 5, wherein the metal tube is centered by a high frequency induction heating device.
A method for cooling a metal tube after heating, wherein the metal tube is cooled after being heated to a uniform temperature symmetrical to an axis .
JP2011153071A 2011-07-11 2011-07-11 Cooling device and cooling method for metal tube after heating Active JP5851136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153071A JP5851136B2 (en) 2011-07-11 2011-07-11 Cooling device and cooling method for metal tube after heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153071A JP5851136B2 (en) 2011-07-11 2011-07-11 Cooling device and cooling method for metal tube after heating

Publications (2)

Publication Number Publication Date
JP2013019023A JP2013019023A (en) 2013-01-31
JP5851136B2 true JP5851136B2 (en) 2016-02-03

Family

ID=47690737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153071A Active JP5851136B2 (en) 2011-07-11 2011-07-11 Cooling device and cooling method for metal tube after heating

Country Status (1)

Country Link
JP (1) JP5851136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280962A (en) * 2020-10-22 2021-01-29 燕山大学 Steel pipe layer-by-layer cooling device and cooling method
KR102563907B1 (en) * 2021-06-24 2023-08-04 김경민 Metal quenching treatment device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252366A (en) * 2013-05-07 2013-08-21 攀钢集团江油长城特殊钢有限公司 Cooling spray nozzle and through-water cooling device
CN103264055B (en) * 2013-06-08 2015-07-08 莱芜钢铁集团有限公司 Cooling device for rod wire rolled piece
JP6195599B2 (en) * 2015-10-22 2017-09-13 中外炉工業株式会社 Cooling system
CN105537291B (en) * 2016-01-25 2017-07-11 湖南天益高技术材料制造有限公司 Rotary turbulent flow pipe energy-saving Water cooling device
CN108620545A (en) * 2017-03-21 2018-10-09 江油市重鑫特种金属材料有限公司 A kind of atomization cooling device
KR101967154B1 (en) * 2017-11-22 2019-04-09 (주)포스코케미칼 Unshaped refractory construction apparatus
CN107955873A (en) * 2017-11-29 2018-04-24 无锡市汇鼎金属制管有限公司 A kind of metal tube processing surface heat treatment device
KR101922497B1 (en) * 2018-07-26 2018-12-04 (주)대코 Coolant Injection Module System for Heat Treated Metal Product
CN109174983A (en) * 2018-09-25 2019-01-11 湖南华菱湘潭钢铁有限公司 A kind of wire and rod controlled rolling and controlled cooling spiral-flow type cooler
DE102019205724A1 (en) * 2019-04-18 2020-10-22 Sms Group Gmbh Cooling device for seamless steel pipes
JP7392596B2 (en) 2020-07-13 2023-12-06 株式会社デンソー Cooling system
CN114377774B (en) * 2021-12-30 2023-05-30 江苏中科重工股份有限公司 Medium-speed roller type coal mill grinding roller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148611A (en) * 1975-06-17 1976-12-21 Nippon Steel Corp Heat-treatment process of steel
JPH09157750A (en) * 1995-12-01 1997-06-17 Nisshin Steel Co Ltd High speed quenching method for steel pipe
JP4307357B2 (en) * 2004-10-08 2009-08-05 住友金属工業株式会社 Header and cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280962A (en) * 2020-10-22 2021-01-29 燕山大学 Steel pipe layer-by-layer cooling device and cooling method
KR102563907B1 (en) * 2021-06-24 2023-08-04 김경민 Metal quenching treatment device

Also Published As

Publication number Publication date
JP2013019023A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5851136B2 (en) Cooling device and cooling method for metal tube after heating
TWI460031B (en) Cooling apparatus of hot rolled steel sheet
EP2072157B1 (en) Method of cooling hot-rolled steel strip
KR100973692B1 (en) Hot rolling facility of steel plate and hot rolling method
JP4903913B2 (en) Method and apparatus for cooling hot-rolled steel sheet
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
JP6321407B2 (en) Deposition equipment
JP5597989B2 (en) Bottom surface cooling device for hot-rolled steel strip
EP2979770B1 (en) Thick steel plate manufacturing device and manufacturing method
JP2010167501A (en) Steel plate cooling device
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
KR102141068B1 (en) Thermal treatment furnace
JP6264464B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
KR100527064B1 (en) Injection nozzle and Method for manufacturing strip wire using it
JP2006212666A (en) Apparatus and method for cooling thick steel plate
JP2006283179A (en) Facility for cooling pipe and cooling method
JP2006095545A (en) Apparatus and method for cooling metallic material
JP2011167740A (en) Apparatus for cooling hot steel plate
JP2006289417A (en) Steel plate cooling device
KR101988284B1 (en) Materials treatment apparatus
EP3187275B1 (en) Thick steel plate manufacturing method
JP4752252B2 (en) H-shaped steel cooling method
JPH1058026A (en) Method and device for cooling high temperature steel plate
JP2015083710A (en) Mist cooling apparatus
JP5482705B2 (en) Cooling device and cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151202

R150 Certificate of patent or registration of utility model

Ref document number: 5851136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250