JPH10324998A - Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material - Google Patents

Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material

Info

Publication number
JPH10324998A
JPH10324998A JP14987697A JP14987697A JPH10324998A JP H10324998 A JPH10324998 A JP H10324998A JP 14987697 A JP14987697 A JP 14987697A JP 14987697 A JP14987697 A JP 14987697A JP H10324998 A JPH10324998 A JP H10324998A
Authority
JP
Japan
Prior art keywords
film thickness
hydrogen gas
controlling
profile
cgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14987697A
Other languages
Japanese (ja)
Inventor
Toshiya Tada
季也 多田
Shozo Yamamoto
尚三 山本
Hiroshi Chiba
宏 千葉
Hiroshi Ozaki
弘 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP14987697A priority Critical patent/JPH10324998A/en
Publication of JPH10324998A publication Critical patent/JPH10324998A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily controlling an anodically oxidized film thickness by a relatively simple method of decreasing the variations in the film thickness by positively utilizing the gaseous hydrogen generated at the time of anodic oxidation for controlling the film thickness and more particularly changing the form of CGF. SOLUTION: The anodically oxidized film thickness is controlled by controlling the surface temp. of the aluminum shape material 3 by utilizing the thermal diffusivity of the electrolyte by the flow of the bubbles of the gaseous hydrogen generated from a cathode at the time of the anodic oxidation of the aluminum shape material 3. More specifically, the sizes of the bubbles of the gaseous hydrogen flowing in the shape material direction and the stage of the density in the liquid, etc., are controlled by changing the micropore diameters of a barrier 4 disposed on the peripheral of the cathode 2 or the distribution and/or configuration form thereof, by which the sizes of the bubbles of the gaseous hydrogen and the state of the density in the liquid, etc., are partially controlled in accordance with the characteristics of the anodically oxidized film thickness distribution at the time of the current anodic oxidation. The surface temp. of the shape material is thereby controlled and the relatively easy control of the anodically oxidized film thickness is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建材用等のアルミ
ニウム形材(以下、形材と略称する)上に陰極より発生
する水素ガスを利用して均一に陽極酸化皮膜(以下、皮
膜と略称することもある)を生成させる方法に関するも
のである。なお、本明細書において、アルミニウム形材
とはアルミニウム又はアルミニウム合金製形材を総称す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anodic oxide film (hereinafter abbreviated as a film) uniformly on an aluminum profile (hereinafter abbreviated as a profile) for building materials or the like by utilizing hydrogen gas generated from a cathode. In some cases). In this specification, the aluminum profile is a general term for aluminum or aluminum alloy profiles.

【0002】[0002]

【従来の技術】一般に建材用等の形材は、装飾性、耐食
性等を付与することを目的として、希硫酸等の電解液中
で陽極酸化処理を行い、その表面に陽極酸化皮膜を生成
させる。近年はその皮膜上にさらに電着塗装皮膜を付け
た陽極酸化塗装複合皮膜が主流となっているが、その陽
極酸化工程において長尺の形材を大型の処理槽で大量に
処理する場合、様々な要因から形材表面温度に違いが生
じ、結果として皮膜厚のバラツキが生ずる。その対策と
して、従来から、陽極である形材に電解液を吹き付けな
がら陽極酸化する方法(特公昭59−44400号、特
公昭59−50758号、特開昭55−79898号、
特開昭57−43996号)や、空気等の気泡で電解液
を攪拌しながら陽極酸化する方法(特公昭61−105
60号、特開昭55−54600号、特開昭55−11
9199号、特開昭57−13196号)が用いられて
きた。前者の方法では電解液、後者の方法では気泡を用
いていずれも形材表面温度の均一化を図り、皮膜厚のバ
ラツキを低減しようとするものである。しかしながら、
いずれの方法も設備費がかかる上に、生産時のトラブル
発生頻度も高く、また設備維持の観点からも問題点は非
常に多い。例えば、前者の方法の場合には電解液を吹き
出す配管が形材の接触によって損傷することも多く、そ
のメンテナンスが非常に負担となる。このように、従来
の技術は必ずしもコスト削減に結び付いているとは言い
難い。
2. Description of the Related Art In general, for a building material or the like, an anodizing treatment is performed in an electrolytic solution such as dilute sulfuric acid for the purpose of imparting decorative properties, corrosion resistance, etc., and an anodized film is formed on the surface. . In recent years, anodic oxidation composite coatings with an electrodeposition coating coating on the coating have become the mainstream.However, in the anodizing process, when processing long shapes in large quantities in large processing tanks, Due to various factors, there is a difference in the profile surface temperature, and as a result, the film thickness varies. Conventionally, as a countermeasure, a method of anodizing while spraying an electrolytic solution onto a shape material as an anode (Japanese Patent Publication No. 59-44400, Japanese Patent Publication No. 59-50758, Japanese Patent Application Laid-Open No. 55-79898,
JP-A-57-43996) or a method of anodizing while stirring an electrolytic solution with bubbles such as air (Japanese Patent Publication No. Sho 61-105).
No. 60, JP-A-55-54600, JP-A-55-11
No. 9199, JP-A-57-13196). In the former method, an electrolyte solution is used, and in the latter method, air bubbles are used. In each case, the surface temperature of the shaped material is made uniform to reduce the variation in film thickness. However,
Each of these methods requires equipment costs, frequently causes troubles during production, and has many problems from the viewpoint of equipment maintenance. For example, in the case of the former method, the piping from which the electrolytic solution is blown out is often damaged by the contact of the profile, and the maintenance thereof becomes very burdensome. As described above, it is hard to say that the conventional technology is necessarily linked to cost reduction.

【0003】一方、陽極酸化時に、陰極では水素ガスが
微細な気泡となって発生する。この水素ガスの気泡は、
放置すれば電解液中に拡散した後、電解液面まで浮上し
て破裂し、ミストを発生する。これらのミストは作業環
境を著しく悪化させるため、従来から電解液は透過する
が水素ガスの気泡は透過させない障壁(Cathode GasFil
ter、以下ではCGFと略記する)を陰極全面に取り付
け、電解液中への水素ガスの拡散を全て抑制し、速やか
に水素ガスを系外へ排気することによってミストの飛散
を防止する方法が行われてきた(特公昭58−4475
9号、特公昭59−24199号、特開昭55−273
8号、特開昭55−58390号、特開昭56−334
69号、特開昭57−41397号)。この場合、水素
ガスの気泡による電解液に対する攪拌作用が無いため
に、処理槽上部の電解液温度が高くなってしまい、それ
に伴って形材上部の皮膜厚が厚くなるという傾向があ
る。逆に設備上の制約等からCGFを取り付けない場合
には、水素ガスが作り出す電解液の流れのため、形材上
部が極端に薄膜となる。皮膜厚の分布傾向に違いはある
が、いずれも均一に皮膜が生成されないために、最低膜
厚を確保しようとすれば過剰な電流を流さなければなら
ず、陽極酸化時には必要以上に電力を消費せざるをえな
いのが現状である。
On the other hand, during anodization, hydrogen gas is generated as fine bubbles at the cathode. This hydrogen gas bubble
If left undisturbed, it diffuses into the electrolyte and then rises to the electrolyte surface and bursts, generating mist. Since these mist significantly deteriorate the working environment, a barrier (Cathode Gas Filtration) that permeates the electrolyte but does not allow hydrogen gas bubbles to permeate.
ter, hereafter abbreviated as CGF) is attached to the entire surface of the cathode to suppress all diffusion of hydrogen gas into the electrolyte and to quickly evacuate the hydrogen gas to the outside of the system to prevent mist scattering. We have been (Japanese Patent Publication No. 58-4475)
9, JP-B-59-24199, JP-A-55-273
No. 8, JP-A-55-58390, JP-A-56-334
No. 69, JP-A-57-41397). In this case, since there is no agitation action on the electrolytic solution by the hydrogen gas bubbles, the temperature of the electrolytic solution at the upper portion of the processing tank increases, and accordingly, the film thickness at the upper portion of the profile tends to increase. Conversely, when the CGF is not attached due to restrictions on facilities, the upper portion of the profile becomes extremely thin due to the flow of the electrolyte produced by the hydrogen gas. There is a difference in the distribution tendency of the film thickness, but in all cases, the film is not evenly formed, so if a minimum film thickness is to be secured, an excessive current must be applied, and excessive power is consumed during anodization. At present, it is inevitable.

【0004】[0004]

【発明が解決しようとする課題】このように、前述した
ような電解液の吹き付けあるいは空気等の気泡による電
解液攪拌によって皮膜厚のバラツキを低減しようとする
工夫は、コスト面や運用面等で問題がある。一方、CG
Fは主に環境面対策、つまりミストの原因となる水素ガ
スを速やかに系外へ排気するためにのみ用いられてお
り、これまではこの水素ガスを皮膜厚の制御に対して積
極的に利用する試みはなされていない。本発明は、この
ような従来技術に鑑みなされたものであり、陽極酸化時
に発生する水素ガスを積極的に皮膜厚の制御に利用し、
ミストの影響を抑えながら、皮膜厚のバラツキを低減す
ることを目的としている。特にCGFの形態を変化させ
るという比較的簡便な手法によって、容易に皮膜厚を制
御する方法を提供しようとするものである。
As described above, the method of reducing the variation in the film thickness by spraying the electrolyte solution or stirring the electrolyte solution by bubbles such as air as described above is required in terms of cost and operation. There's a problem. On the other hand, CG
F is mainly used only for environmental measures, that is, only to quickly exhaust hydrogen gas that causes mist to the outside of the system. Until now, this hydrogen gas has been actively used for controlling the film thickness. No attempt has been made to do so. The present invention has been made in view of such prior art, and actively uses hydrogen gas generated during anodic oxidation for controlling the film thickness.
The purpose is to reduce variations in film thickness while suppressing the effects of mist. In particular, an object of the present invention is to provide a method for easily controlling the film thickness by a relatively simple method of changing the form of CGF.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、アルミニウム形材の陽極酸化時に
陰極より発生する水素ガスの気泡の流れによる電解液の
熱拡散性を利用して形材表面温度を制御し、陽極酸化皮
膜厚を制御することを特徴とするアルミニウム形材の陽
極酸化皮膜生成時における酸化皮膜厚制御方法が提供さ
れる。より具体的には、電解液中を形材方向に流れる水
素ガスの気泡の大きさ、液中密度等の状態を制御するこ
とにより、例えば部分的に又は処理槽上下方向にわたっ
て段階的に制御することにより、あるいは既存の陽極酸
化処理装置の場合、現状の陽極酸化時の陽極酸化皮膜厚
分布特性に対応して部分的に水素ガスの気泡の大きさ、
液中密度等の状態を制御することにより、形材表面温度
を制御し、陽極酸化皮膜厚を制御する。形材方向に流れ
る水素ガスの気泡の大きさ、液中密度等の状態は、陰極
周辺に設ける障壁の微細孔のサイズもしくはその分布及
び/又は配置形態を変えることによって比較的容易に制
御することができる。
According to the present invention, in order to achieve the above object, the thermal diffusivity of an electrolytic solution due to the flow of bubbles of hydrogen gas generated from a cathode at the time of anodic oxidation of an aluminum material is utilized. The present invention provides a method for controlling the thickness of an oxide film when an anodic oxide film is formed on an aluminum shape, wherein the method controls the surface temperature of the profile and thereby controls the thickness of the anodic oxide film. More specifically, by controlling the state of the size of the bubbles of hydrogen gas flowing in the shape direction in the electrolyte solution, the density in the liquid, etc., for example, control is performed stepwise or stepwise in the vertical direction of the processing tank. In the case of an existing anodizing apparatus, or in the case of an existing anodizing apparatus, the size of the hydrogen gas bubbles partially corresponds to the current anodic oxidation film thickness distribution characteristics,
By controlling the state such as the liquid density, the surface temperature of the profile is controlled, and the thickness of the anodic oxide film is controlled. The state of hydrogen gas bubbles flowing in the shape direction, such as the size of bubbles in the liquid and the density in the liquid, can be controlled relatively easily by changing the size or distribution and / or arrangement of the micropores of the barrier provided around the cathode. Can be.

【0006】[0006]

【発明の実施の形態】皮膜厚にバラツキが存在するとい
うことは、一般には陽極酸化時の形材表面温度にバラツ
キがあるということを意味する。すなわち、陽極酸化時
の皮膜生成速度は温度依存性があり、形材表面温度が高
い部分は電流が流れやすいためにより多くの電流が流
れ、その結果、皮膜が厚くなり、逆に形材表面温度が低
い部分は皮膜が薄くなる。電流が多く流れる部分は、ジ
ュール熱や酸化反応熱によって形材表面温度がますます
高くなるため、さらに電流が多く流れるようになるとい
った相乗作用を生じ、そのため、ますます皮膜厚のバラ
ツキが増幅される。形材表面温度のバラツキを生ずる要
因は、電流のエッジ効果や余剰陰極の作用による形材表
面温度の偏りを除けば、形材の周囲にある電解液温度と
その流れ(流れの方向や強さ)が主なものであると考え
られる。均一に発熱する形材から一様に熱を奪い取れ
ば、形材表面温度は均一となる。そのためには、処理槽
内の電解液温度と、形材に対する液の流れを、できる限
り均一にする必要がある。電解液温度を均一にするには
電解液を強制的に攪拌させる必要があり、また形材に対
して均一な流れを付与するには電解液に強制的な流れを
起こす必要がある。均一に発熱した形材であっても、形
材周囲の電解液温度や液の流れの違いのために形材から
均一に熱が拡散されなければ、結果的に形材表面温度は
不均一となり、皮膜厚のバラツキが生じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The presence of a variation in the film thickness generally means that the profile surface temperature during the anodic oxidation varies. In other words, the rate of film formation during anodization is temperature-dependent, and current flows more easily in areas where the surface temperature of the profile is high, so more current flows, resulting in a thicker film and conversely, the surface temperature of the profile The lower the part, the thinner the film. In the areas where a large amount of current flows, the surface temperature of the profile increases further due to Joule heat or oxidation reaction heat, causing a synergistic effect such that more current flows, and as a result, variations in the film thickness are amplified more and more. You. Factors that cause variations in the profile surface temperature are the electrolyte temperature around the profile and its flow (flow direction and strength) except for the edge effect of the current and the bias of the profile surface temperature due to the action of the surplus cathode. ) Is considered to be the main one. If heat is uniformly removed from a profile that generates heat uniformly, the profile surface temperature becomes uniform. For that purpose, it is necessary to make the temperature of the electrolytic solution in the processing tank and the flow of the solution to the profile as uniform as possible. In order to make the electrolyte temperature uniform, it is necessary to forcibly agitate the electrolyte solution, and to impart a uniform flow to the profile, it is necessary to cause a forced flow in the electrolyte solution. Even if the heat is generated uniformly, if the heat is not diffused uniformly from the shape due to the difference in electrolyte temperature and liquid flow around the shape, the surface temperature of the shape will be uneven In addition, the film thickness varies.

【0007】本発明は、陽極酸化時に陰極に発生する水
素ガスの気泡の流れによって電解液を攪拌するととも
に、その時の水素ガス気泡の拡散を制御し、水素ガス気
泡の流れによる熱拡散性を利用して形材表面温度を均一
とすることを特徴としている。以下、図1を参照しなが
ら本発明の方法について説明する。図1は陽極酸化処理
装置と電解液の流れを概略的に示している。図中、符号
1は陽極酸化処理槽、2は陰極、3はアルミニウム形材
(陽極)、4はCGF、5は槽底部近傍に配設された循
環パイプである。なお、陰極2上部には排気フード(図
示せず)が設けられている。
The present invention stirs the electrolytic solution by the flow of hydrogen gas bubbles generated on the cathode during anodization, controls the diffusion of hydrogen gas bubbles at that time, and utilizes the thermal diffusivity due to the flow of hydrogen gas bubbles. And the profile surface temperature is made uniform. Hereinafter, the method of the present invention will be described with reference to FIG. FIG. 1 schematically shows the anodizing apparatus and the flow of the electrolytic solution. In the drawing, reference numeral 1 denotes an anodizing tank, 2 denotes a cathode, 3 denotes an aluminum material (anode), 4 denotes a CGF, and 5 denotes a circulation pipe disposed near the bottom of the tank. Note that an exhaust hood (not shown) is provided above the cathode 2.

【0008】陽極酸化の際、形材は電流の流れにより発
生するジュール熱と酸化皮膜生成に伴う酸化反応熱によ
って発熱し、電解液Lの温度は徐々に上昇する。そのた
め、陽極酸化処理槽1の上部からオーバーフローした電
解液は、熱交換器(図示せず)を通して所定温度に冷却
された後、槽底部に循環パイプ5を介して図1に実線矢
印で示すような流れで戻され、上昇する。また、形材3
の周囲ではその発熱によって図1に破線矢印で示すよう
な自然対流による電解液Lの流れが生じる。この際、陰
極2の全周を覆うように水素ガスの気泡を通さないCG
F4を設けた場合、電解液及び形材表面の温度は形材3
の下部から上部に向かって漸次上昇するように分布す
る。その結果、一般に、前記したように皮膜厚は形材の
下部から上部にかけて漸次増大し、形材の下部と上部で
は大きな皮膜厚のバラツキが生じる(後述する比較例1
及び図3参照)。逆に、陰極2の周囲にCGFを設けな
い場合、前記したようなミスト発生の問題に加えて、水
素ガス気泡の上昇に伴って上昇する電解液Lの流れは、
電解液表面部において形材方向に向かって流れ、形材上
部における電解液の攪拌作用が大きくなるため、形材上
部の表面温度が低下する。その結果、一般に、皮膜厚は
形材下部から上部に向って漸次増大するが、形材上部に
おいて急激に減少する(比較例2及び図5参照)。
At the time of anodic oxidation, the shaped material generates heat due to Joule heat generated by the flow of electric current and heat of oxidation reaction accompanying the formation of an oxide film, and the temperature of the electrolytic solution L gradually rises. Therefore, the electrolyte solution overflowing from the upper part of the anodizing tank 1 is cooled to a predetermined temperature through a heat exchanger (not shown), and then is provided at the bottom of the tank via a circulation pipe 5 as shown by a solid line arrow in FIG. It is returned with a gentle flow and rises. In addition, profile 3
The flow of the electrolytic solution L by natural convection as shown by a broken arrow in FIG. At this time, the CG that does not allow bubbles of hydrogen gas to pass therethrough so as to cover the entire circumference of the cathode 2
When F4 is provided, the temperature of the electrolyte and the surface of the profile is
Are distributed so as to gradually rise from the bottom to the top. As a result, generally, as described above, the coating thickness gradually increases from the lower portion to the upper portion of the profile, and a large variation in the film thickness occurs at the lower portion and the upper portion of the profile (Comparative Example 1 described later).
And FIG. 3). Conversely, when no CGF is provided around the cathode 2, in addition to the problem of mist generation as described above, the flow of the electrolyte L that rises with the rise of the hydrogen gas bubbles is:
At the surface of the electrolytic solution, the fluid flows toward the profile, and the stirring action of the electrolytic solution at the upper portion of the profile increases, so that the surface temperature of the upper portion of the profile decreases. As a result, in general, the coating thickness gradually increases from the lower portion of the profile to the upper portion, but rapidly decreases at the upper portion of the profile (see Comparative Example 2 and FIG. 5).

【0009】そこで、本発明の方法では、ミスト発生に
それほど影響を及ぼさない大きさ及び量(電解液の単位
容積当たりの水素ガス気泡の量、すなわち液中密度)の
水素ガス気泡を形材3の表面に向かって流れるように制
御し、図1に中空矢印で示すような、水素ガス気泡の拡
散に伴う電解液Lの流れ(攪拌)によって、形材表面の
熱を均一に拡散させ、形材表面温度を均一にし、それに
よって均一な皮膜厚を得るものである。すなわち、CG
F4の微細孔のサイズもしくはその分布、配置態様等の
形態を変化させることにより、電解液中への水素ガス気
泡の拡散量、及び拡散を部分的に操作することで形材か
らの放熱量を制御し、結果的に形材表面温度を均一とす
る。水素ガス気泡の拡散により電解液が攪拌されるため
に電解液温度はかなり均一となり、水素ガス気泡を全く
拡散させないようなCGFを取り付けた場合に見られる
処理槽上部での電解液の高温化は抑制される。
Therefore, in the method of the present invention, hydrogen gas bubbles having a size and an amount (amount of hydrogen gas bubbles per unit volume of the electrolytic solution, that is, a liquid density) that do not significantly affect the generation of mist are formed. The heat of the profile is uniformly diffused by the flow (stirring) of the electrolytic solution L accompanying the diffusion of the hydrogen gas bubbles as shown by the hollow arrows in FIG. The purpose is to make the material surface temperature uniform and thereby obtain a uniform film thickness. That is, CG
The amount of diffusion of hydrogen gas bubbles into the electrolytic solution, and the amount of heat radiation from the profile by partially manipulating the diffusion, by changing the size of the fine pores of F4 or the form such as the distribution and arrangement of the pores. Control so that the profile surface temperature is uniform. Since the electrolyte is stirred by the diffusion of hydrogen gas bubbles, the temperature of the electrolyte becomes fairly uniform, and the increase in the temperature of the electrolyte at the top of the processing tank, which is seen when a CGF that does not diffuse hydrogen gas bubbles at all, is installed. Is suppressed.

【0010】CGFは、電解液の透過を妨げず、陽極酸
化に支障を来さないもので、かつ水素ガス気泡のCGF
からの拡散量を調節できる微細孔を有するものである必
要がある。CGFの材質や水素ガス気泡がCGF外へ拡
散しようとする圧力等によって変動はするものの、微細
孔のサイズがおよそ0.005mm以下であれば水素ガ
ス気泡の拡散はほとんど妨げられ、およそ0.5mmを
超えると水素ガスの気泡の拡散はほとんど妨げられるこ
とはない。微細孔のサイズが0.005mmから0.5
mmの間であれば、そのサイズに応じて水素ガス気泡の
拡散量は変化する。全くCGF外へ水素ガスを拡散させ
ないのではなく、CGFの微細孔のサイズを変化させた
り、部分的にCGFを取り除く等の手法を用いれば、電
解液中への水素ガス気泡の拡散量や液中密度を制御する
ことが可能となる。本発明は、水素ガス気泡の拡散量や
液中密度を制御することで、形材表面温度のバラツキを
抑え、皮膜厚の均一化を図るものである。
The CGF does not hinder the permeation of the electrolyte, does not hinder the anodic oxidation, and has a CGF of hydrogen gas bubbles.
It is necessary to have fine pores capable of controlling the amount of diffusion from the glass. Although it varies depending on the material of the CGF and the pressure at which the hydrogen gas bubbles try to diffuse out of the CGF, diffusion of the hydrogen gas bubbles is almost hindered if the size of the micropores is about 0.005 mm or less, and about 0.5 mm. Is exceeded, the diffusion of hydrogen gas bubbles is hardly hindered. Micropore size from 0.005mm to 0.5
If it is between mm, the diffusion amount of the hydrogen gas bubbles changes according to the size. Rather than diffusing the hydrogen gas out of the CGF at all, using techniques such as changing the size of the micropores in the CGF or partially removing the CGF, the amount of hydrogen gas bubbles diffused into the electrolyte and the amount of liquid The medium density can be controlled. The present invention controls the diffusion amount of hydrogen gas bubbles and the density of the hydrogen gas in the liquid, thereby suppressing the variation in the surface temperature of the shaped material and achieving a uniform film thickness.

【0011】CGFの材質は電解液に侵されない非導電
性のものであれば良く、例えば合成樹脂繊維や多孔質焼
結材等を好適に用いることができる。陰極への取り付け
方法としては、袋状のものを陰極それぞれに取り付ける
方法、袋状のものを陰極何本かにまとめて取り付ける方
法、シート状のものを陰極と形材の間に挿入する方法、
陰極周辺を陰極室として障壁で隔離する方法などが挙げ
られる。
The material of the CGF may be a non-conductive material which is not affected by the electrolytic solution. For example, a synthetic resin fiber or a porous sintered material can be suitably used. As a method of attaching to the cathode, a method of attaching a bag-shaped thing to each cathode, a method of attaching a bag-shaped thing to several cathodes collectively, a method of inserting a sheet-shaped thing between the cathode and the shape,
There is a method in which the periphery of the cathode is used as a cathode chamber and isolated by a barrier.

【0012】部分的に厚膜部が存在する場合、つまりそ
の部分の形材表面温度が相対的に他と比較して高い場合
には、そこに水素ガス気泡を拡散させるようにCGFの
形態を選択し、形材表面温度を下げれば良い。既存の生
産ラインの皮膜厚分布に固有の特性がある場合には、そ
れに応じたCGF形態を調整すれば皮膜厚の均一化を図
ることが可能となる。例えば形材上下方向中央部に厚膜
部がある場合には、その部分の形材表面温度が他の部分
と同程度となるように水素ガスを拡散させるようなCG
Fの形態を選択すれば良い。上下方向でCGF外への水
素ガスの拡散量を変化させる方法としては、CGFの微
細孔のサイズを変える方法や同じサイズで微細孔の分布
密度を変える方法が考えられる。ここで留意すべき点
は、処理槽上下方向の違いである。いったん、CGF外
へ水素ガスが拡散すれば、CGF内へは戻ることなく電
解液中を上昇して行く。つまり、陰極上部から拡散した
水素ガスは、ほぼ形材上部のみに影響を及ぼすが、陰極
下部から拡散した水素ガスは、形材下部だけでなく形材
中央部や形材上部にまで影響を与える。一方、CGF内
では、上部程CGF内の水素ガス量が多いために、CG
F外へ水素ガスが拡散しようとする圧力は下部に比べ大
きい。また、処理槽上下で水圧に差があるため、水素ガ
ス気泡の大きさにも違いが存在する。このように、処理
槽上下方向での違いがあるために、CGFの形態を選択
する際には注意を要する。
When the thick film portion exists partially, that is, when the surface temperature of the profile of the portion is relatively higher than that of the other portion, the form of CGF is changed so as to diffuse hydrogen gas bubbles there. It is only necessary to select and lower the profile surface temperature. If the film thickness distribution of an existing production line has unique characteristics, it is possible to make the film thickness uniform by adjusting the CGF form according to the characteristics. For example, if there is a thick film portion in the center of the profile in the vertical direction, a CG that diffuses hydrogen gas so that the profile surface temperature at that portion is almost the same as other portions
What is necessary is just to select the form of F. As a method of changing the amount of diffusion of hydrogen gas outside the CGF in the vertical direction, a method of changing the size of the micropores of the CGF or a method of changing the distribution density of the micropores at the same size can be considered. A point to be noted here is the difference between the processing tanks in the vertical direction. Once hydrogen gas diffuses out of the CGF, it rises in the electrolyte without returning to the CGF. In other words, the hydrogen gas diffused from the upper part of the cathode substantially affects only the upper part of the section, but the hydrogen gas diffused from the lower part of the cathode affects not only the lower part of the section but also the central part and the upper part of the section. . On the other hand, in the CGF, since the amount of hydrogen gas in the
The pressure at which hydrogen gas tries to diffuse out of F is higher than in the lower part. In addition, since there is a difference in water pressure between the upper and lower processing tanks, there is also a difference in the size of hydrogen gas bubbles. As described above, due to the difference in the vertical direction of the processing tank, care must be taken when selecting the form of CGF.

【0013】[0013]

【実施例】以下、実施例及び比較例を示して本発明につ
いて具体的に説明するが、本発明が下記実施例に限定さ
れるものでないことはもとよりである。なお、以下に示
す各実施例及び比較例においては、常法の前処理を施し
た後、図1に示す陽極酸化処理槽1において陽極酸化を
行った。用いた材料は6063Sアルミニウム合金押出
形材(長さ1,500mm)であり、1度に異なる形状
のものを8本、希硫酸浴中で陽極酸化した。陽極酸化処
理条件は、硫酸濃度19w/v%、電解液温度21℃、
電流密度1.3A/dm2 、陽極酸化時間30分であ
る。皮膜厚は渦電流式膜厚計を用いて、それぞれのCG
F形態において同じ測定位置の皮膜厚を測定した(測定
点は60点)。なお、皮膜厚分布を示す図3、図5、図
7、図9、図11、図13及び図15において、「左」
は8本のうちの左端の形材、「右」は8本のうちの右端
の形材、「中央」は8本のうちの中央部に配された形
材、「中央(短)」は8本のうち他の形材の1/2の長
さを有する中央部に配された形材のそれぞれの測定デー
タを示している。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples. In each of the following examples and comparative examples, anodizing was performed in the anodizing tank 1 shown in FIG. The material used was an extruded 6063S aluminum alloy material (1,500 mm length), and eight different shapes were anodized in a dilute sulfuric acid bath at a time. Anodizing conditions were as follows: sulfuric acid concentration 19 w / v%, electrolyte temperature 21 ° C.
The current density was 1.3 A / dm 2 and the anodic oxidation time was 30 minutes. The film thickness was measured using the eddy current film thickness meter.
In Form F, the film thickness at the same measurement position was measured (measurement points were 60 points). In addition, in FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11, FIG.
Is the leftmost profile of the eight, "right" is the rightmost profile of the eight, "center" is the profile located at the center of the eight, "center (short)" is The measurement data of each of the profiles arranged in the central portion having half the length of the other profiles among the eight profiles is shown.

【0014】比較例1 用いたCGF形態(部分図)を図2に、得られた皮膜厚
分布を図3に示す。水素ガスの気泡を全く透過しないC
GF(メッシュ・サイズ(メッシュ布地の網目の大き
さ、以下同様)0.001mm)4aを陰極2の全てに
取り付け陽極酸化を行ったところ、形材上部が厚膜とな
った。
Comparative Example 1 FIG. 2 shows the CGF morphology (partial view) used, and FIG. 3 shows the obtained film thickness distribution. C that does not transmit hydrogen gas bubbles at all
When GF (mesh size (mesh mesh size, the same applies hereinafter) 0.001 mm) 4a was attached to all of the cathodes 2 and anodized, the upper part of the profile became thick.

【0015】比較例2 用いた陰極形態を図4に、得られた皮膜厚分布を図5に
示す。CGFを全く取り付けずに陽極酸化を行ったとこ
ろ、形材上部が極端に薄膜となった。
Comparative Example 2 The form of the cathode used is shown in FIG. 4, and the distribution of the obtained film thickness is shown in FIG. When anodic oxidation was performed without attaching any CGF, the upper part of the profile became extremely thin.

【0016】実施例1 用いたCGF形態(部分図)を図6に、得られた皮膜厚
分布を図7に示す。やや水素ガスの気泡を透過するCG
F(メッシュ・サイズ0.05mm)4bを陰極2の全
てに取り付けた以外は全て比較例1と同様に陽極酸化を
行ったところ、比較例1に比べ形材上部の厚膜傾向がや
や緩和された。
Example 1 FIG. 6 shows the CGF morphology (partial view) used, and FIG. 7 shows the obtained film thickness distribution. CG that slightly permeates hydrogen gas bubbles
Anodization was performed in the same manner as in Comparative Example 1 except that F (mesh size: 0.05 mm) 4b was attached to all of the cathodes 2, and the thick film tendency at the upper part of the profile was slightly relaxed as compared with Comparative Example 1. Was.

【0017】実施例2 用いたCGF形態(部分図)を図8に、得られた皮膜厚
分布を図9に示す。ほとんどの水素ガスの気泡を透過す
るCGF(メッシュ・サイズ0.2mm)4cを陰極2
の全てに取り付けた以外は比較例1と同様に陽極酸化を
行ったところ、比較例2に比べ形材上部の薄膜傾向がや
や緩和された。
Example 2 FIG. 8 shows the CGF morphology (partial view) used, and FIG. 9 shows the obtained film thickness distribution. CGF (mesh size 0.2 mm) 4c that transmits most hydrogen gas bubbles into cathode 2
When anodic oxidation was performed in the same manner as in Comparative Example 1 except that all were attached, the tendency of the thin film on the upper portion of the profile was slightly relaxed as compared with Comparative Example 2.

【0018】実施例3 用いたCGF形態(部分図)を図10に、得られた皮膜
厚分布を図11に示す。水素ガスの気泡を全く透過しな
いCGF(メッシュ・サイズ0.001mm)4aを陰
極2の上部2/3にだけ取り付けた以外は全て比較例1
と同様に陽極酸化を行ったところ(陰極下部1/3はC
GF無しの状態)、CGF有無の境界付近でやや厚膜と
なったが、比較例1のような形材上部のの厚膜傾向はほ
ぼ解消された。
Example 3 FIG. 10 shows the CGF morphology (partial view) used, and FIG. 11 shows the obtained film thickness distribution. Comparative Example 1 except that CGF (mesh size 0.001 mm) 4a, which does not transmit hydrogen gas bubbles at all, was attached only to upper 2/3 of cathode 2.
When anodic oxidation was performed in the same manner as in
(Without GF), the film became slightly thick near the boundary between the presence and absence of CGF, but the tendency of thick film on the upper part of the profile as in Comparative Example 1 was almost completely eliminated.

【0019】実施例4 用いたCGF形態(部分図)を図12に、得られた皮膜
厚分布を図13に示す。水素ガスの気泡を全く透過しな
いCGF(メッシュ・サイズ0.001mm)4aを陰
極2の上部2/3、全体の本数に対して1/3に取り付
けた以外は全て比較例1と同様に陽極酸化を行ったとこ
ろ(全体本数の1/3の陰極下部1/3はCGF無しの
状態)、比較的均一な皮膜厚分布となった。
Example 4 FIG. 12 shows the CGF morphology (partial view) used, and FIG. 13 shows the obtained film thickness distribution. Anodizing was performed in the same manner as in Comparative Example 1 except that CGF (mesh size 0.001 mm) 4a, which did not transmit hydrogen gas bubbles at all, was attached to the upper 2/3 of the cathode 2 and 1/3 of the total number. (The lower third of the cathode, which is 1/3 of the total number, has no CGF), and a relatively uniform coating thickness distribution was obtained.

【0020】実施例5 用いたCGF形態(部分図)を図14に、得られた皮膜
厚分布を図15に示す。下部1/3は水素ガスの気泡を
ほとんど透過するCGF(メッシュ・サイズ0.2m
m)4c、中央部1/3はやや透過するCGF(メッシ
ュ・サイズ0.05mm)4b、上部1/3は全く透過
しないCGF(メッシュ・サイズ0.001mm)4a
のように上下方向で変化させたCGFを陰極2の全面に
取り付けた以外は全て比較例1と同様に陽極酸化を行っ
たところ、比較的均一な皮膜厚分布となった。前記各実
施例及び比較例で得られた皮膜厚の標準偏差を下記表1
に示す。
Example 5 FIG. 14 shows the CGF morphology (partial view) used, and FIG. 15 shows the obtained film thickness distribution. The lower one-third is CGF (mesh size 0.2m) that almost transmits hydrogen gas bubbles.
m) 4c, CGF (mesh size 0.05 mm) 4b that is slightly transparent at the center 1/3, CGF (mesh size 0.001 mm) 4a that is completely transparent at the top 1/3
Anodizing was performed in the same manner as in Comparative Example 1 except that the CGF changed in the vertical direction was attached to the entire surface of the cathode 2 as described above, and a relatively uniform film thickness distribution was obtained. Table 1 below shows the standard deviation of the film thickness obtained in each of the above Examples and Comparative Examples.
Shown in

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上のように、本発明の方法によれば、
水素ガス気泡の拡散を皮膜厚制御に積極的に利用するこ
とで皮膜厚のバラツキを低減することができ、陽極酸化
時の電力を削減することが可能となる。特にCGFの形
態を変えて水素ガスの気泡の大きさ、液中密度等の状態
を制御する手法は、比較的簡単に行えると共に、皮膜厚
のバラツキ低減、ひいては陽極酸化時の電力削減に結び
つき、その工業的価値は極めて大きい。
As described above, according to the method of the present invention,
By actively utilizing the diffusion of the hydrogen gas bubbles for controlling the film thickness, it is possible to reduce the variation in the film thickness and reduce the electric power during anodic oxidation. In particular, the method of controlling the size of hydrogen gas bubbles, liquid density, etc. by changing the form of CGF can be performed relatively easily, and also leads to reduction in variation in film thickness and, consequently, power reduction during anodic oxidation. Its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施例及び比較例で用いた陽極酸化処理装置
の概略断面図である。
FIG. 1 is a schematic sectional view of an anodizing apparatus used in each of Examples and Comparative Examples.

【図2】比較例1で用いたCGFの部分形態図である。FIG. 2 is a partial morphological diagram of CGF used in Comparative Example 1.

【図3】比較例1で得られた皮膜厚測定結果(8本中同
じ形状の4本の結果)を示すグラフである。
FIG. 3 is a graph showing the results of measuring the film thickness obtained in Comparative Example 1 (the results of four of the eight films having the same shape).

【図4】比較例2で用いた陰極の部分形態図である。FIG. 4 is a partial form view of a cathode used in Comparative Example 2.

【図5】比較例2で得られた皮膜厚測定結果(8本中同
じ形状の4本の結果)を示すグラフである。
FIG. 5 is a graph showing film thickness measurement results (four results of the same shape out of eight films) obtained in Comparative Example 2.

【図6】実施例1で用いたCGFの部分形態図である。FIG. 6 is a partial morphological diagram of CGF used in Example 1.

【図7】実施例1で得られた皮膜厚測定結果(8本中同
じ形状の4本の結果)を示すグラフである。
FIG. 7 is a graph showing the results of measuring the film thickness obtained in Example 1 (the results of four of the eight films having the same shape).

【図8】実施例2で用いたCGFの部分形態図である。FIG. 8 is a partial morphology diagram of CGF used in Example 2.

【図9】実施例2で得られた皮膜厚測定結果(8本中同
じ形状の4本の結果)を示すグラフである。
FIG. 9 is a graph showing the results of measuring the film thickness obtained in Example 2 (4 out of 8 films having the same shape).

【図10】実施例3で用いたCGFの部分形態図であ
る。
FIG. 10 is a partial morphology diagram of CGF used in Example 3.

【図11】実施例3で得られた皮膜厚測定結果(8本中
同じ形状の4本の結果)を示すグラフである。
FIG. 11 is a graph showing film thickness measurement results (four results of the same shape out of eight films) obtained in Example 3.

【図12】実施例4で用いたCGFの部分形態図であ
る。
FIG. 12 is a partial morphological diagram of CGF used in Example 4.

【図13】実施例4で得られた皮膜厚測定結果(8本中
同じ形状の4本の結果)を示すグラフである。
FIG. 13 is a graph showing film thickness measurement results (four results of the same shape out of eight films) obtained in Example 4.

【図14】実施例5で用いたCGFの部分形態図であ
る。
FIG. 14 is a partial morphology diagram of CGF used in Example 5.

【図15】実施例5で得られた皮膜厚測定結果(8本中
同じ形状の4本の結果)を示すグラフである。
FIG. 15 is a graph showing the results of measuring the thickness of the film obtained in Example 5 (the results of four of the eight films having the same shape).

【符号の説明】[Explanation of symbols]

1 陽極酸化処理槽 2 陰極 3 アルミニウム形材(陽極) 4 CGF 5 循環パイプ L 電解液 DESCRIPTION OF SYMBOLS 1 Anodizing tank 2 Cathode 3 Aluminum profile (anode) 4 CGF 5 Circulation pipe L Electrolyte

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム形材の陽極酸化時に陰極よ
り発生する水素ガスの気泡の流れによる電解液の熱拡散
性を利用してアルミニウム形材表面温度を制御し、陽極
酸化皮膜厚を制御することを特徴とするアルミニウム形
材の陽極酸化皮膜生成時における酸化皮膜厚制御方法。
1. A method for controlling the thickness of an anodic oxide film by controlling the surface temperature of an aluminum profile by utilizing the thermal diffusivity of an electrolytic solution caused by the flow of hydrogen gas bubbles generated from a cathode during anodization of the aluminum profile. A method for controlling the thickness of an oxide film when an anodic oxide film is formed on an aluminum material.
【請求項2】 電解液中をアルミニウム形材方向に流れ
る水素ガスの気泡の大きさ、液中密度等の状態を制御す
ることにより形材表面温度を制御し、陽極酸化皮膜厚を
制御する請求項1に記載する方法。
2. A method for controlling the surface temperature of a profile by controlling the size and density of a hydrogen gas flowing in an electrolytic solution toward the aluminum profile in the direction of the aluminum profile, thereby controlling the thickness of the anodic oxide film. Item 7. The method according to Item 1.
【請求項3】 電解液中をアルミニウム形材方向に流れ
る水素ガスの気泡の大きさ、液中密度等の状態を、部分
的に又は処理槽上下方向にわたって段階的に制御するこ
とにより、形材表面温度を制御し、陽極酸化皮膜厚を制
御する請求項1に記載する方法。
3. The shape of a hydrogen gas flowing in an electrolytic solution in the direction of an aluminum shape, such as the size and density of bubbles in the liquid, is controlled partially or stepwise in the vertical direction of the processing tank. The method according to claim 1, wherein the surface temperature is controlled and the thickness of the anodic oxide film is controlled.
【請求項4】 陽極酸化時の陽極酸化皮膜厚分布特性に
対応して部分的に、アルミニウム形材方向に流れる水素
ガスの気泡の大きさ、液中密度等の状態を制御すること
により形材表面温度を制御し、陽極酸化皮膜厚を制御す
る請求項1に記載する方法。
4. A method of controlling the shape of a hydrogen gas flowing in the direction of an aluminum profile by partially controlling the size of bubbles, the density in a liquid, and the like of the hydrogen gas in accordance with the thickness distribution characteristics of the anodized film during anodization. The method according to claim 1, wherein the surface temperature is controlled and the thickness of the anodic oxide film is controlled.
【請求項5】 陰極周辺に設ける障壁の微細孔のサイズ
もしくはその分布及び/又は配置形態を変えることによ
って、アルミニウム形材方向に流れる水素ガスの気泡の
大きさ、液中密度等の状態を制御する請求項2乃至4の
いずれか一項に記載の方法。
5. The state of the size of hydrogen gas bubbles flowing in the direction of the aluminum material, such as the size and density in a liquid, is controlled by changing the size or the distribution and / or arrangement of the micropores of the barrier provided around the cathode. The method according to any one of claims 2 to 4.
JP14987697A 1997-05-26 1997-05-26 Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material Pending JPH10324998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14987697A JPH10324998A (en) 1997-05-26 1997-05-26 Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14987697A JPH10324998A (en) 1997-05-26 1997-05-26 Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material

Publications (1)

Publication Number Publication Date
JPH10324998A true JPH10324998A (en) 1998-12-08

Family

ID=15484578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14987697A Pending JPH10324998A (en) 1997-05-26 1997-05-26 Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material

Country Status (1)

Country Link
JP (1) JPH10324998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999133B2 (en) 2010-08-30 2015-04-07 Sharp Kabushiki Kaisha Method for forming anodized layer and mold production method
US9108351B2 (en) 2010-03-09 2015-08-18 Sharp Kabushiki Kaisha Method for forming anodized layer, method for producing mold and method for producing antireflective film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108351B2 (en) 2010-03-09 2015-08-18 Sharp Kabushiki Kaisha Method for forming anodized layer, method for producing mold and method for producing antireflective film
US8999133B2 (en) 2010-08-30 2015-04-07 Sharp Kabushiki Kaisha Method for forming anodized layer and mold production method

Similar Documents

Publication Publication Date Title
JP3046594B1 (en) Anodizing system for metals utilizing vibrating flow agitation
Wood et al. The anodizing of aluminium in sulphate solutions
US3871982A (en) Apparatus for treatment of metal strip with a liquid
US4647345A (en) Metallurgical structure control of electrodeposits using ultrasonic agitation
JP3281783B2 (en) Copper foil for printed wiring board, method for producing the same, and electrolytic apparatus
JP2010168642A (en) Anodization method of aluminum and anodized aluminum
CN104294324B (en) A kind of experimental provision and method for screening and optimizing electrolytic copper foil technique
US3880744A (en) Apparatus for the electrochemical treatment of metal strip
JPH10324998A (en) Method for controlling oxidized film thickness in formation of anodically oxidized film of aluminum shape material
JP4595830B2 (en) Anodized processing method and apparatus, and anodized processing system
RU2676203C2 (en) Device intended for anodizing and anodizing treatment
CN103014802A (en) Ultrasonic micro-arc oxidation device and ultrasonic micro-arc oxidation method thereof
CN105877433A (en) Processing method of aluminum alloy ornaments for funeral and interment
US3434956A (en) Apparatus for the electrolytic thinning of metallic specimens for transmission electron microscopy
CN211284588U (en) Composite low-temperature anodic oxidation device
JP2012177189A (en) Treatment tank and electrolytic treatment device
CN206599618U (en) A kind of Aluminium alloy anode oxidation device
JPS5839796A (en) Hard anodizing method for inside surface of pipe
JP2005206928A (en) Method and apparatus for electropolishing of titanium or titanium alloy
JPS62269737A (en) Apparatus for introducing gas into liquid
CN213013141U (en) Tank liquor air stirring device of aluminum anodic oxidation tank
JPS5931709Y2 (en) Aluminum anodizing treatment tank
CN214060674U (en) Nano inflating device for electroplating anodic oxidation tank
CN211921724U (en) Stable temperature control device for aluminum alloy section electrophoresis tank liquid
KR20180049534A (en) Apparatus for manufacturing various color of precious metal