JP2004059936A - Surface treatment apparatus for aluminum alloy - Google Patents

Surface treatment apparatus for aluminum alloy Download PDF

Info

Publication number
JP2004059936A
JP2004059936A JP2002215689A JP2002215689A JP2004059936A JP 2004059936 A JP2004059936 A JP 2004059936A JP 2002215689 A JP2002215689 A JP 2002215689A JP 2002215689 A JP2002215689 A JP 2002215689A JP 2004059936 A JP2004059936 A JP 2004059936A
Authority
JP
Japan
Prior art keywords
discharge port
processed
electrolytic solution
electrode
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002215689A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hiraki
平木 宏幸
Hitoshi Niimura
新村 仁
Toshihiro Toyomoto
豊本 敏弘
Satoru Murakami
村上 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Original Assignee
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Keikinzoku Co Ltd filed Critical Aisin Keikinzoku Co Ltd
Priority to JP2002215689A priority Critical patent/JP2004059936A/en
Publication of JP2004059936A publication Critical patent/JP2004059936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment apparatus for partially forming an anodized coating on the outer circumferential face of the member to be treated consisting of an aluminum alloy by which the process and time of anodization treatment can be reduced while satisfying the quality of the anodized coating to be formed without using large-scale equipment and complicated control. <P>SOLUTION: The apparatus is provided with an electrolytic cell 25 comprising a seal member 31 of sealing the part 22a to be treated in the member 22 to be treated on which an anodized coating is formed and the other part in a liquidtight way, a hollow electrode 24, a discharge port 27 in which an electrolyte 28 flows, an exhaust port 33 from which the electrolyte 28 flows, an electrolyte circulating means 36 of injecting the electrolyte 28 from the discharge port 27 so as to be made to flow between the part 22a to be treated and the electrode 24, exhausting the electrolyte 28 from the exhaust port 27 and returning the electrolyte 28 to the discharge port 27, and an energizing means 41 of energizing the electrode 24 and the member 22 to be treated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム及びアルミニウム合金(以下、アルミニウム合金という)の表面に陽極酸化皮膜を形成する表面処理装置に関する。
【0002】
【従来の技術】
従来、アルミニウム合金は、軽量で加工性や耐食性に優れていることより、家庭用品や建材等、幅広い用途で用いられている。その多くは、陽極酸化処理が施されているが、部分的に陽極酸化処理を施す場合は、被処理部位以外をマスキングして電解浴中に浸漬させていた。
【0003】
また、処理時間を短縮しようとして電流密度を増加させた場合に、ジュール熱の発生により皮膜の厚さが不均一となったり皮膜焼けとなったりすることを防止する必要があるため、特開平11−117092号公報に開示されているように、中空パイプ状で複数の孔を有した電極を回転させながら、両端に蓋を取付けた筒状の被処理物の内面に電解液を噴射する技術や、特開平9−217200号公報に開示されているように、専用マスクに差し込んだ状態でマスキングしない被処理物の表面に、噴射盤を回転させながら吐出口から電解液を噴射する技術も知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の技術においては、陽極酸化皮膜を形成する被処理部位の大きさにあわせて孔や吐出口の数を増やしたり、電極や噴射盤を回転させたりする必要があり、構成が複雑なものであった。
【0005】
それゆえ、本発明は、以上の事情を背景になされたものであり、大規模な設備や複雑な制御を用いることなく、生成される陽極酸化皮膜の品質を満足しながら陽極酸化処理の工程時間も低減可能な、アルミニウム合金からなる被処理部材の外周面に部分的に陽極酸化皮膜を形成する表面処理装置を提供することを技術的課題とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明は、請求項1に記載のように、アルミニウム合金からなる被処理部材の外周面に部分的に陽極酸化皮膜を形成する表面処理装置であって、陽極酸化皮膜が形成される前記被処理部材の被処理部位と他の部位とを液密的にシールするシール部材と、前記被処理部位に対して間隔を介して覆うように構成される中空状の電極と、電解液が流入する吐出口と、電解液が流出する排出口とを有する電解槽と、吐出口から電解液を噴出させて被処理部位と電極との間に流し、排出口から電解液を排出させ、この電解液を前記吐出口に戻す電解液循環手段と、電極と被処理部材とに通電する通電手段とを備えていることを特徴とするアルミニウム合金の表面処理装置とした。
【0007】
本発明に係るアルミニウム合金の表面処理装置によれば、シール部材により被処理部材の被処理部位と他の部位とを液密的にシールすることで、必要とされる被処理部位のみに陽極酸化皮膜が形成されるので、通電する電力量を最小限に抑えることができる。更に、吐出口から電解液を噴出させて被処理部位と電極との間に流すので、陽極酸化皮膜の生成にともなって発生するジュール熱を速やかに除去することができる。また、ジュール熱を吸収して液温が上がった電解液は、電解槽から排出され、循環して再び吐出口から噴出されるときは放熱されて液温が下がった状態となっているため、被処理部位と電極との間は常に液温の低い電解液が流れていることとなる。従って、電流密度を増加させても連続的にジュール熱が除去されるので、皮膜厚さの不均一な部位や皮膜焼けを生じることなく、陽極酸化処理の工程時間を大幅に低減することが可能となる。
【0008】
好ましくは、請求項2に記載のように、前記吐出口から噴出された電解液が、電解槽内で被処理部材の周囲を回転しながら被処理部位と電極との間を流されるよう構成されていることが望ましい。これによって、より効率的に陽極酸化皮膜の生成にともなって発生するジュール熱を被処理部材の全体から速やかに除去することができる。
【0009】
更に好ましくは、請求項3に記載のように、前記吐出口は電解槽の下部に配設されるとともに、前記排出口は電解槽の上部に配設され、吐出口から噴出された電解液が、被処理部材の周囲を下方から上方へ螺旋状に回転しながら被処理部位と電極との間を流されるよう構成されていることが望ましい。これによれば、被処理部位の大きさに関わらず、吐出口は被処理部位の下方にのみ設ければよいので、装置を簡略化することができる。更に、吐出口を少なくすると乱流が起こりにくくなり、電解液の流れをスムーズなものとすることができる。
【0010】
また好ましくは、請求項4に記載のように、被処理部材は、前記吐出口の噴出方向軸線上から外れて配置されるよう構成されていることが望ましい。これにより、吐出口から噴出された電解液は、その噴出力が直接的に被処理部材に作用することは少なく、そのまま被処理部材の周囲を回転することとなる。即ち、被処理部材は、電解液の流速の抵抗をあまり受けないので、被処理部材を強固に保持したり落下を心配したりすることなく、電解液の流速を上げることができる。
【0011】
【発明の実施の形態】
以下、本発明に係る実施形態を、図面を用いて説明する。図1は、本発明に係るアルミニウム合金の表面処理装置の一実施形態を模式的に示す図であり、図1(a)は主要断面図、図1(b)は上面図である。
【0012】
図1に示すように、本実施形態における表面処理装置21は、電解液28を収容する電解槽25が設けられており、電解槽25の中央部には、円柱状を呈した被処理部材22が保持されている。被処理部材22は、アルミニウム合金の押出材からなるが、アルミニウム合金の鍛造材や鋳造材であってもよい。陽極酸化皮膜を形成する被処理部位22aは被処理部材22の中央とし、被処理部材22の下端は台32の上面に接しているとともに、陽極23が接続されている。
【0013】
陽極23には極片23aが構成されており、被処理部材22が挿入された状態では、電気的に接続するようになっている。また、台32と電解槽25との間隔の調整や被処理部材22をローダーでセットする時に位置を調整することにより、被処理部位22aの位置が決定される。尚、本実施形態では、被処理部材22の中央を被処理部としたが、必要に応じて被処理部材22の先端付近や、治具を用いて被処理部材22の略全体に陽極酸化処理を施すことも可能である。
【0014】
電解槽25は、台32の上方に配置されており、樹脂材からなる上部材25aと下部材25bが構成されている。上部材25aと下部材25bの間には、陰極24が組み込まれている。陰極24は、中空円筒状を呈しており、陰極24の内側と、上部材25a及び下部材25bで囲まれた空間が電解液28の収容室25cとなっている。陽極23と陰極24は、通電手段41に接続されており、所定の電圧が付加されるようになっている。
【0015】
被処理部材22は、上部材25a及び下部材25bに形成された貫通孔に挿通されており、上部材25a及び下部材25bと被処理部材22との間は収容室25cの上端及び下端の位置に設けられたOリング31により液密的にシールされている。即ち、被処理部材22における2つのOリング31の間が、陽極酸化皮膜を形成する被処理部位22aとなっている。また、被処理部位22aに対して陰極24が、間隔を介して覆うように構成されている。
【0016】
収容室25cの下端には、4つの吐出口27が形成されており、電解液28が噴出されるようになっている。吐出口27の噴出方向f27は、被処理部材22が保持されている電解槽25の中央部よりも左側となっている。詳しく言えば、吐出口27の噴出方向f27は、被処理部材22の水平断面の形状である円の接線方向あるいは、円筒状の陰極24の接線方向となっている。即ち、被処理部材22は、吐出口27の噴出方向f27の軸線上から外れた位置となっている。更に、電解液28が(図1の矢印方向f22に示すようにして)被処理部材22の周囲を下方から上方へ螺旋状に回転しながら流されるように、吐出口27の噴出方向f27は調整される。
【0017】
吐出口27から噴出された電解液28は、やがて収容室25cの上端に位置する排出口33から溢れ出して排出され、流路37を流れてタンクRに貯留される。タンクRには、必要に応じて冷却用の熱交換器を組みこんでもよい。タンクRに貯留された電解液8は、ポンプPによって吸い込まれて供給路38に流入し、再び吐出口27から噴出される。このような電解液循環手段36にて、電解液28は循環操作されている。この循環操作を行いながら、陰極24と陽極23を通電して被処理部材22に陽極酸化処理を施すと、電解液28によりジュール熱を除去しながら被処理部位22aに陽極酸化皮膜が形成される。
【0018】
以上のように、本発明に係るアルミニウム合金の表面処理装置においては、シール部材であるOリング31により被処理部材22の被処理部位22aと他の部位とを液密的にシールすることで、必要とされる被処理部位22aのみに陽極酸化皮膜が形成されるので、通電する電力量を最小限に抑えることができる。更に、吐出口27から電解液28を噴出させて被処理部位22aと陰極24との間に流すので、陽極酸化皮膜の生成にともなって発生するジュール熱を速やかに除去することができる。
【0019】
また、ジュール熱を吸収して液温が上がった電解液28は、電解槽25の排出口33から排出され、循環して再び吐出口27から噴出されるときは放熱されて液温が下がった状態となっているため、被処理部位22aと陰極24との間は常に液温の低い電解液28が流れていることとなる。従って、電流密度を増加させても連続的にジュール熱が除去されるので、皮膜厚さの不均一な部位や皮膜焼けを生じることなく、陽極酸化処理の工程時間を大幅に低減することが可能となる。
【0020】
更に、吐出口27から噴出された電解液28が、電解槽25内で被処理部材22の周囲を回転しながら被処理部位22aと陰極24との間を流されるよう構成されているので、より効率的に陽極酸化皮膜の生成にともなって発生するジュール熱を被処理部材の全体から速やかに除去することができる。また、吐出口27は電解槽25の下部に配設されるとともに、排出口27は電解槽25の上部に配設され、吐出口27から噴出された電解液28が、被処理部材22の周囲を下方から上方へ螺旋状に回転しながら被処理部位22aと陰極24との間を流されるよう構成されていることによって、被処理部位22aの大きさに関わらず、吐出口27は被処理部位22aの下方にのみ設ければよいので、装置を簡略化することができる。更に、吐出口27を少なくすると乱流が起こりにくくなり、電解液28の流れをスムーズなものとすることができる。
【0021】
また、被処理部材22は、吐出口27の噴出方向f27の軸線上から外れた位置にあることより、吐出口27から噴出された電解液28は、その噴出力が直接的に被処理部材22に作用することは少なく、そのまま被処理部材22の周囲を回転することとなる。即ち、被処理部材22は、電解液28の流速の抵抗をあまり受けないので、被処理部材22を強固に保持することなく、電解液28の流速を上げることができる。
【0022】
【実施例】
次に、本発明の実施例について、比較例と対比して具体的に説明する。
【0023】
被処理部材は、7000系アルミニウム合金をT6処理した押出材(φ23.5mm×300mm)を使用し、従来の方法と同様に脱脂処理を施した後、電解槽に保持させた。電解液は、200g/Lの硫酸水溶液を用い、処理浴の温度を10℃として、表1に示す条件にて陽極酸化処理を行った。
【0024】
実施例1〜2は、上記した実施形態の表面処理装置21を使用した。比較例3は、従来の電解槽に被処理部材を浸漬させ、電解液の循環操作を行わずに、エアで撹拌させて使用した。比較例3では、被処理部材にマスキングを施して、実施例1〜2及び比較例3の処理面積は、0.4dmとした。
【0025】
電解液の流速は、吐出口から噴出された直後の値とした。通電はスロースタートとし、通電時間は、このスロースタートの昇圧時間も含めたものとした。膜厚は、処理後の被処理部材を切断した断面を光学顕微鏡(20倍)にて観察して測定した。皮膜の硬度(ビッカース硬さ)は、常温でJIS−Z2244に従い5点平均により測定した。表面粗さは、JIS−B0601に従い十点平均粗さ(Rz)を測定した。これらの結果も表1に併せて示す。
【0026】
【表1】

Figure 2004059936
【0027】
通電後、それぞれ表1に示す膜厚の陽極酸化皮膜が均一に形成され、この皮膜は、いずれも皮膜焼けも生じておらず良好な表面状態であった。更に、表1に示すように、本発明における実施例1〜2は、いずれも、比較例3と比べて大幅に電流密度を増加させることができ、短時間で20μm以上の陽極酸化皮膜を形成することができた。このとき、実施例1〜2は、電流密度を30A/dm以上と格別に大きな値とすることができた。
【0028】
その上、実施例1〜2は耐摩耗性に要求される品質(皮膜硬度270Hv以上、表面粗さRz6.3μm以下)を満足するものであった。特に、実施例1〜2は、皮膜硬度を比較例3と比べて大幅に上げることができ、耐摩耗性も向上することができた。従って、本発明は、耐摩耗性が要求されるシャフト等の摺動部に、効果的に適用することができる。
【0029】
尚、実施例1〜2は、電解液の流速を上げて処理を行ってもよい。特に、上記した実施形態の表面処理装置21では、流速を0.4m/sec以上とすることも可能である。また、被処理部材は、上記した実施形態で使用した円柱状が適しているが、角柱状等の他の断面形状であっても、吐出口から噴出された電解液が、電解槽内で被処理部材の周囲を回転しながら流されるようにすることにより、上記した実施形態と同様の効果を得ることができる。このとき、被処理部材の断面形状にあわせて、シール部材や陰極の形状を変更することが望ましい。
【0030】
【発明の効果】
以上説明したように、本発明によれば、大規模な設備や複雑な制御を用いることなく、生成される陽極酸化皮膜の品質を満足しながら陽極酸化処理の工程時間も低減でき、アルミニウム合金からなる被処理部材の外周面に部分的に陽極酸化皮膜を形成することが可能となる。
【図面の簡単な説明】
【図1】本発明に係るアルミニウム合金の表面処理装置の一実施形態を模式的に示す図であり、図1(a)は主要断面図、図1(b)は上面図である。
【符号の説明】
21   表面処理装置
22   被処理部材
22a  被処理部位
23   陽極
24   陰極(電極)
25   電解槽
27   吐出口
28   電解液
31   Oリング(シール部材)
33   排出口
36   電解液循環手段
37   流路
38   供給路
41   通電手段
P      ポンプ
R      タンク
f7、f27   噴出方向[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface treatment apparatus for forming an anodic oxide film on the surface of aluminum and an aluminum alloy (hereinafter, referred to as an aluminum alloy).
[0002]
[Prior art]
BACKGROUND ART Conventionally, aluminum alloys have been used in a wide range of applications such as household goods and building materials because of their light weight and excellent workability and corrosion resistance. Most of them have been subjected to anodizing treatment. However, when the anodizing treatment is partially performed, a portion other than the portion to be treated is masked and immersed in an electrolytic bath.
[0003]
Further, when the current density is increased in order to shorten the processing time, it is necessary to prevent the thickness of the film from becoming uneven or burning due to the generation of Joule heat. As disclosed in Japanese Patent Publication No. -117092, while rotating an electrode having a plurality of holes in a hollow pipe shape, a technique of injecting an electrolytic solution onto the inner surface of a cylindrical object to be processed having lids attached to both ends, As disclosed in Japanese Patent Application Laid-Open No. 9-217200, there is also known a technique in which an electrolyte is sprayed from a discharge port while rotating a spraying plate on a surface of a processing target that is not masked while inserted into a dedicated mask. ing.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technology, it is necessary to increase the number of holes and discharge ports in accordance with the size of the portion to be processed on which the anodic oxide film is to be formed, or to rotate the electrodes and the injection plate, and the configuration is not sufficient. It was complicated.
[0005]
Therefore, the present invention has been made in view of the above circumstances, and without using a large-scale facility or complicated control, the process time of the anodizing treatment while satisfying the quality of the anodized film to be generated. It is a technical object of the present invention to provide a surface treatment apparatus that can form an anodic oxide film partially on the outer peripheral surface of a member to be treated made of an aluminum alloy and can also reduce the amount of the anodized film.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a surface treatment apparatus for partially forming an anodic oxide film on an outer peripheral surface of a member to be treated made of an aluminum alloy, as described in claim 1, comprising: A sealing member for liquid-tightly sealing the processed portion and other portions of the processed member formed with a hollow electrode configured to cover the processed portion at an interval. An electrolytic bath having a discharge port into which an electrolytic solution flows, and a discharge port through which an electrolytic solution flows, and a method in which the electrolytic solution is ejected from the discharge port to flow between a portion to be processed and an electrode, and the electrolytic solution is discharged from the discharge port. A surface treatment apparatus for an aluminum alloy, comprising: an electrolyte circulation means for discharging the electrolyte and returning the electrolyte to the discharge port; and an energization means for energizing the electrode and the member to be processed.
[0007]
ADVANTAGE OF THE INVENTION According to the surface treatment apparatus of the aluminum alloy which concerns on this invention, the to-be-processed part of a to-be-processed member and other parts are liquid-tightly sealed by a sealing member, and only the required to-be-processed part is anodized. Since the film is formed, the amount of electric power to be supplied can be minimized. Further, since the electrolytic solution is ejected from the discharge port and flows between the processing target portion and the electrode, Joule heat generated due to the formation of the anodic oxide film can be quickly removed. Also, the electrolyte solution whose temperature has risen due to absorption of Joule heat is discharged from the electrolytic cell, circulated and radiated again when it is ejected from the discharge port. An electrolytic solution having a low solution temperature always flows between the portion to be treated and the electrode. Therefore, even if the current density is increased, Joule heat is continuously removed, so that the anodizing process time can be greatly reduced without causing uneven thickness of the film or burning of the film. It becomes.
[0008]
Preferably, as described in claim 2, the electrolytic solution ejected from the discharge port is configured to flow between the processing target portion and the electrode while rotating around the processing target member in the electrolytic tank. Is desirable. This makes it possible to more efficiently remove the Joule heat generated with the formation of the anodic oxide film from the entire member to be processed.
[0009]
More preferably, as set forth in claim 3, the discharge port is provided at a lower part of the electrolytic cell, and the discharge port is provided at an upper part of the electrolytic cell, and the electrolytic solution ejected from the discharge port is used. It is desirable that the processing member be configured to flow between the electrode to be processed and the electrode while spirally rotating from below to above the member to be processed. According to this, regardless of the size of the processing target portion, the discharge port only needs to be provided below the processing target portion, so that the apparatus can be simplified. Furthermore, when the number of discharge ports is reduced, turbulence is less likely to occur, and the flow of the electrolyte can be made smooth.
[0010]
Preferably, as described in claim 4, it is desirable that the member to be processed is configured to be arranged off the ejection direction axis of the discharge port. Thus, the output of the electrolytic solution ejected from the discharge port rarely acts directly on the member to be processed, and the electrolytic solution rotates around the member to be processed as it is. That is, since the member to be processed does not receive much resistance to the flow rate of the electrolytic solution, the flow rate of the electrolytic solution can be increased without holding the member to be processed firmly or worrying about falling.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating an embodiment of an aluminum alloy surface treatment apparatus according to the present invention. FIG. 1A is a main cross-sectional view, and FIG. 1B is a top view.
[0012]
As shown in FIG. 1, a surface treatment apparatus 21 in the present embodiment is provided with an electrolytic tank 25 for storing an electrolytic solution 28, and a column-shaped member 22 to be processed is provided at the center of the electrolytic tank 25. Is held. The member to be processed 22 is made of an extruded material of an aluminum alloy, but may be a forged material or a cast material of an aluminum alloy. The processed portion 22a where the anodic oxide film is formed is located at the center of the processed member 22, and the lower end of the processed member 22 is in contact with the upper surface of the base 32 and the anode 23 is connected.
[0013]
A pole piece 23a is formed on the anode 23, and is electrically connected when the member to be processed 22 is inserted. Further, the position of the processing target portion 22a is determined by adjusting the distance between the table 32 and the electrolytic cell 25 or by adjusting the position when the processing target member 22 is set by the loader. In the present embodiment, the center of the member to be processed 22 is set as the portion to be processed. However, if necessary, anodizing treatment may be performed on the vicinity of the tip of the member to be processed 22 or substantially the entirety of the member to be processed 22 using a jig. Can also be applied.
[0014]
The electrolytic cell 25 is disposed above the table 32, and includes an upper member 25a and a lower member 25b made of a resin material. The cathode 24 is incorporated between the upper member 25a and the lower member 25b. The cathode 24 has a hollow cylindrical shape, and a space surrounded by the inside of the cathode 24 and the upper member 25a and the lower member 25b is a storage chamber 25c for the electrolyte solution. The anode 23 and the cathode 24 are connected to an energizing unit 41 so that a predetermined voltage is applied.
[0015]
The member to be processed 22 is inserted into through holes formed in the upper member 25a and the lower member 25b, and the positions of the upper end and the lower end of the storage chamber 25c are between the upper member 25a and the lower member 25b and the member to be processed 22. Are sealed in a liquid-tight manner by an O-ring 31 provided at the bottom. That is, a portion between the two O-rings 31 of the member to be processed 22 is a portion to be processed 22a on which an anodic oxide film is formed. Further, the cathode 24 is configured to cover the portion to be processed 22a with an interval therebetween.
[0016]
Four discharge ports 27 are formed at the lower end of the storage chamber 25c, and the electrolytic solution 28 is ejected. The ejection direction f27 of the discharge port 27 is on the left side of the center of the electrolytic cell 25 where the member to be processed 22 is held. More specifically, the ejection direction f27 of the discharge port 27 is a tangential direction of a circle having a horizontal cross-sectional shape of the member to be processed 22 or a tangential direction of the cylindrical cathode 24. That is, the member to be processed 22 is located at a position off the axis of the ejection port 27 in the ejection direction f27. Further, the ejection direction f27 of the discharge port 27 is adjusted so that the electrolytic solution 28 is spirally rotated from below to above around the member to be processed 22 (as indicated by the arrow direction f22 in FIG. 1). Is done.
[0017]
The electrolytic solution 28 spouted from the discharge port 27 eventually overflows from the discharge port 33 located at the upper end of the storage chamber 25c, is discharged, flows through the flow path 37, and is stored in the tank R. A heat exchanger for cooling may be incorporated in the tank R as needed. The electrolyte 8 stored in the tank R is sucked by the pump P, flows into the supply path 38, and is ejected from the discharge port 27 again. The electrolytic solution 28 is circulated by such an electrolytic solution circulating means 36. When the anode 24 and the anode 23 are energized while performing this circulating operation and the member 22 to be treated is subjected to anodizing treatment, an anodic oxide film is formed on the portion 22a to be treated while removing Joule heat by the electrolytic solution 28. .
[0018]
As described above, in the surface treatment apparatus for an aluminum alloy according to the present invention, the processing target portion 22a of the processing target member 22 and other portions are liquid-tightly sealed by the O-ring 31 serving as a sealing member, Since the anodic oxide film is formed only on the required portion to be processed 22a, the amount of power to be supplied can be minimized. Furthermore, since the electrolytic solution 28 is ejected from the discharge port 27 and flows between the processing target portion 22a and the cathode 24, Joule heat generated due to the formation of the anodic oxide film can be quickly removed.
[0019]
Further, the electrolytic solution 28 whose temperature has risen by absorbing Joule heat is discharged from the discharge port 33 of the electrolytic cell 25, and when circulated and ejected again from the discharge port 27, heat is radiated to lower the liquid temperature. In this state, the electrolytic solution 28 having a low solution temperature always flows between the processing target portion 22a and the cathode 24. Therefore, even if the current density is increased, Joule heat is continuously removed, so that the anodizing process time can be greatly reduced without causing uneven thickness of the film or burning of the film. It becomes.
[0020]
Further, since the electrolytic solution 28 spouted from the discharge port 27 is configured to flow between the processing target portion 22a and the cathode 24 while rotating around the processing target member 22 in the electrolytic cell 25, Joule heat generated with the formation of the anodic oxide film can be efficiently removed from the entire member to be processed. Further, the discharge port 27 is provided at a lower portion of the electrolytic cell 25, and the discharge port 27 is provided at an upper portion of the electrolytic cell 25. Is configured to flow between the processing target portion 22a and the cathode 24 while spirally rotating from below to above, so that the discharge port 27 is provided regardless of the size of the processing target portion 22a. Since it is sufficient to provide the device only below the portion 22a, the device can be simplified. Furthermore, when the number of the discharge ports 27 is reduced, turbulence is less likely to occur, and the flow of the electrolyte solution 28 can be made smooth.
[0021]
Further, since the processing target member 22 is located at a position deviated from the axis of the discharge port 27 in the discharge direction f27, the electrolytic solution 28 discharged from the discharge port 27 is directly discharged from the processing target member 22. The rotation around the member to be processed 22 is not affected. That is, since the member to be processed 22 does not receive much resistance to the flow rate of the electrolytic solution 28, the flow rate of the electrolytic solution 28 can be increased without holding the member to be processed 22 firmly.
[0022]
【Example】
Next, examples of the present invention will be specifically described in comparison with comparative examples.
[0023]
As the member to be treated, an extruded material (φ23.5 mm × 300 mm) obtained by subjecting a 7000 series aluminum alloy to T6 treatment was used, subjected to a degreasing treatment in the same manner as in the conventional method, and then held in an electrolytic cell. As an electrolytic solution, a 200 g / L sulfuric acid aqueous solution was used, the temperature of the treatment bath was set to 10 ° C., and the anodic oxidation treatment was performed under the conditions shown in Table 1.
[0024]
In Examples 1 and 2, the surface treatment apparatus 21 of the above embodiment was used. In Comparative Example 3, the member to be treated was immersed in a conventional electrolytic cell, and was stirred with air without using a circulating operation of the electrolytic solution. In Comparative Example 3, the member to be processed was masked, and the processing area of Examples 1 and 2 and Comparative Example 3 was set to 0.4 dm 2 .
[0025]
The flow rate of the electrolytic solution was a value immediately after being ejected from the discharge port. The energization was performed with a slow start, and the energization time included the boosting time of the slow start. The film thickness was measured by observing a cross section of the processed member after processing with an optical microscope (20 times). The hardness (Vickers hardness) of the film was measured at room temperature by averaging five points according to JIS-Z2244. As for the surface roughness, a ten-point average roughness (Rz) was measured according to JIS-B0601. These results are also shown in Table 1.
[0026]
[Table 1]
Figure 2004059936
[0027]
After the energization, anodized films having the film thicknesses shown in Table 1 were formed uniformly, and all of the films were in a good surface state without burning. Furthermore, as shown in Table 1, in each of Examples 1 and 2 of the present invention, the current density can be greatly increased as compared with Comparative Example 3, and an anodic oxide film of 20 μm or more can be formed in a short time. We were able to. At this time, in Examples 1 and 2, the current density could be set to an extremely large value of 30 A / dm 2 or more.
[0028]
In addition, Examples 1 and 2 satisfied the quality required for abrasion resistance (film hardness 270 Hv or more, surface roughness Rz 6.3 μm or less). In particular, in Examples 1 and 2, the film hardness was significantly increased as compared with Comparative Example 3, and the abrasion resistance was also improved. Therefore, the present invention can be effectively applied to a sliding portion such as a shaft that requires abrasion resistance.
[0029]
In Examples 1 and 2, the treatment may be performed by increasing the flow rate of the electrolytic solution. In particular, in the surface treatment apparatus 21 of the above-described embodiment, the flow velocity can be set to 0.4 m / sec or more. The member to be processed is suitably the columnar shape used in the above-described embodiment. However, even if the member to be processed has another cross-sectional shape such as a prismatic shape, the electrolytic solution ejected from the discharge port is treated in the electrolytic cell. The same effect as in the above-described embodiment can be obtained by causing the flow to flow while rotating around the processing member. At this time, it is desirable to change the shapes of the sealing member and the cathode according to the cross-sectional shape of the member to be processed.
[0030]
【The invention's effect】
As described above, according to the present invention, the process time of the anodizing treatment can be reduced while satisfying the quality of the generated anodized film without using large-scale equipment and complicated control, and the aluminum alloy can be used. It is possible to partially form the anodic oxide film on the outer peripheral surface of the member to be processed.
[Brief description of the drawings]
FIG. 1 is a view schematically showing an embodiment of an aluminum alloy surface treatment apparatus according to the present invention, FIG. 1 (a) is a main sectional view, and FIG. 1 (b) is a top view.
[Explanation of symbols]
Reference Signs List 21 Surface treatment device 22 Member 22a Member 23 Anode 24 Cathode (electrode)
25 electrolytic cell 27 discharge port 28 electrolytic solution 31 O-ring (seal member)
33 Discharge port 36 Electrolyte circulating means 37 Flow path 38 Supply path 41 Conducting means P Pump R Tank f7, f27 Jetting direction

Claims (4)

アルミニウム合金からなる被処理部材の外周面に部分的に陽極酸化皮膜を形成する表面処理装置であって、
陽極酸化皮膜が形成される前記被処理部材の被処理部位と他の部位とを液密的にシールするシール部材と、前記被処理部位に対して間隔を介して覆うように構成される中空状の電極と、電解液が流入する吐出口と、電解液が流出する排出口とを有する電解槽と、
前記吐出口から電解液を噴出させて前記被処理部位と前記電極との間に流し、前記排出口から電解液を排出させ、この電解液を前記吐出口に戻す電解液循環手段と、
前記電極と前記被処理部材とに通電する通電手段とを備えていることを特徴とするアルミニウム合金の表面処理装置。
A surface treatment apparatus for partially forming an anodic oxide film on an outer peripheral surface of a member to be treated made of an aluminum alloy,
A sealing member for liquid-tightly sealing a portion to be processed and another portion of the member to be processed on which the anodic oxide film is formed; and a hollow member configured to cover the portion to be processed with an interval therebetween. An electrode, an electrolytic cell having a discharge port into which the electrolytic solution flows, and a discharge port from which the electrolytic solution flows out,
Electrolyte circulating means for ejecting an electrolytic solution from the discharge port to flow between the processing target portion and the electrode, discharging the electrolytic solution from the discharge port, and returning the electrolytic solution to the discharge port,
A surface treatment apparatus for an aluminum alloy, comprising: an energization unit for energizing the electrode and the member to be processed.
前記吐出口から噴出された電解液が、前記電解槽内で前記被処理部材の周囲を回転しながら前記被処理部位と前記電極との間を流されるよう構成されていることを特徴とする請求項1に記載のアルミニウム合金の表面処理装置。The electrolytic solution ejected from the discharge port is configured to flow between the electrode and the target portion while rotating around the target member in the electrolytic cell. Item 4. A surface treatment apparatus for an aluminum alloy according to item 1. 前記吐出口は前記電解槽の下部に配設されるとともに、前記排出口は前記電解槽の上部に配設され、前記吐出口から噴出された電解液が、前記被処理部材の周囲を下方から上方へ螺旋状に回転しながら前記被処理部位と前記電極との間を流されるよう構成されていることを特徴とする請求項2に記載のアルミニウム合金の表面処理装置。The discharge port is provided at a lower part of the electrolytic cell, and the discharge port is provided at an upper part of the electrolytic cell. The surface treatment apparatus for an aluminum alloy according to claim 2, wherein the apparatus is configured to flow between the electrode to be processed and the electrode while spirally rotating upward. 前記被処理部材は、前記吐出口の噴出方向軸線上から外れて配置されるよう構成されていることを特徴とする請求項2又は3に記載のアルミニウム合金の表面処理装置。The surface treatment apparatus for an aluminum alloy according to claim 2, wherein the member to be processed is arranged so as to be displaced from the axis of the ejection port in the ejection direction.
JP2002215689A 2002-07-24 2002-07-24 Surface treatment apparatus for aluminum alloy Pending JP2004059936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215689A JP2004059936A (en) 2002-07-24 2002-07-24 Surface treatment apparatus for aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215689A JP2004059936A (en) 2002-07-24 2002-07-24 Surface treatment apparatus for aluminum alloy

Publications (1)

Publication Number Publication Date
JP2004059936A true JP2004059936A (en) 2004-02-26

Family

ID=31937655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215689A Pending JP2004059936A (en) 2002-07-24 2002-07-24 Surface treatment apparatus for aluminum alloy

Country Status (1)

Country Link
JP (1) JP2004059936A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336050A (en) * 2005-05-31 2006-12-14 Aisin Seiki Co Ltd Anodization apparatus for metallic component
CN100335682C (en) * 2004-11-05 2007-09-05 李瓯 Method and apparatus for rapid preparation of anodic oxidation film on aluminium alloy products
JP2008291302A (en) * 2007-05-24 2008-12-04 Aisin Seiki Co Ltd Anodizing apparatus
JP2016056440A (en) * 2014-09-12 2016-04-21 株式会社デンソー Surface treatment apparatus
JP2017061736A (en) * 2015-09-25 2017-03-30 アイシン軽金属株式会社 Electrolytic device for partial anode oxidation treatment and treatment method using the same
KR102675660B1 (en) * 2023-03-15 2024-06-17 주식회사 현대케피코 Method and apparatus for surface treatment of aluminum products

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335682C (en) * 2004-11-05 2007-09-05 李瓯 Method and apparatus for rapid preparation of anodic oxidation film on aluminium alloy products
JP2006336050A (en) * 2005-05-31 2006-12-14 Aisin Seiki Co Ltd Anodization apparatus for metallic component
JP4677829B2 (en) * 2005-05-31 2011-04-27 アイシン精機株式会社 Anodizing equipment for metal parts
JP2008291302A (en) * 2007-05-24 2008-12-04 Aisin Seiki Co Ltd Anodizing apparatus
JP2016056440A (en) * 2014-09-12 2016-04-21 株式会社デンソー Surface treatment apparatus
JP2017061736A (en) * 2015-09-25 2017-03-30 アイシン軽金属株式会社 Electrolytic device for partial anode oxidation treatment and treatment method using the same
KR102675660B1 (en) * 2023-03-15 2024-06-17 주식회사 현대케피코 Method and apparatus for surface treatment of aluminum products

Similar Documents

Publication Publication Date Title
JP5152574B2 (en) Method for anodizing aluminum member
CA2253311A1 (en) An electrolytic process for cleaning electrically conducting surfaces
UA64032C2 (en) A process for cleaning and/or applying the electrically conducting surface, an apparatus for realizing the same (variants) and an anode device
JPH11315396A (en) Method for subjecting object to anodic oxidation treatment and device therefor
JP4609713B2 (en) Anodizing equipment
US9790611B2 (en) Partial anodizing apparatus and anodizing method using the same
CN105714367A (en) Electrolytic polishing device
JP6217312B2 (en) Anodizing apparatus and anodizing method
JP4677829B2 (en) Anodizing equipment for metal parts
JP2019157270A (en) Cathode drum for electrolytic deposition
JP4175840B2 (en) Surface treatment method of aluminum alloy
JP2004059936A (en) Surface treatment apparatus for aluminum alloy
US5981084A (en) Electrolytic process for cleaning electrically conducting surfaces and product thereof
JP4595830B2 (en) Anodized processing method and apparatus, and anodized processing system
CN111321444A (en) Method for reducing surface treatment rework of back plate
KR20060126009A (en) All-precipitation roller plating apparatus
JP2004211116A (en) Apparatus for anodic oxidation-treatment to aluminum or aluminum alloy
FI85290B (en) ANORDNING OCH FOERFARANDE FOER FRAMSTAELLNING AV EN MYCKET TUNN METALLHINNA.
RU2378420C2 (en) Installation for electrolytic-plasma treatment
JPS5839796A (en) Hard anodizing method for inside surface of pipe
KR200381299Y1 (en) Electro-polishing apparatus
JP2005068458A (en) Method for anodizing aluminum alloy
JP6889400B2 (en) Method of forming an anodic oxide film
US3745100A (en) Method of preparing semiporous film of aluminum oxide voltage anodization
JP2000282292A (en) Method of anodizing treatment