JP2015050372A - Method for manufacturing thermoelectric conversion module - Google Patents

Method for manufacturing thermoelectric conversion module Download PDF

Info

Publication number
JP2015050372A
JP2015050372A JP2013182043A JP2013182043A JP2015050372A JP 2015050372 A JP2015050372 A JP 2015050372A JP 2013182043 A JP2013182043 A JP 2013182043A JP 2013182043 A JP2013182043 A JP 2013182043A JP 2015050372 A JP2015050372 A JP 2015050372A
Authority
JP
Japan
Prior art keywords
type element
metal layer
thermoelectric conversion
conversion module
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013182043A
Other languages
Japanese (ja)
Inventor
裕宣 鈴木
Hironobu Suzuki
裕宣 鈴木
雅 石垣
Masa Ishigaki
雅 石垣
之弘 東
Yukihiro Azuma
之弘 東
宏明 庄司
Hiroaki Shoji
宏明 庄司
公規 玄場
Kiminori Genba
公規 玄場
拓也 安野
Takuya Yasuno
拓也 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Gakuen
Original Assignee
Meisei Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Gakuen filed Critical Meisei Gakuen
Priority to JP2013182043A priority Critical patent/JP2015050372A/en
Publication of JP2015050372A publication Critical patent/JP2015050372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermoelectric conversion module, capable of achieving high efficiency and high output of the thermoelectric conversion module.SOLUTION: A method for manufacturing a thermoelectric conversion module 1 comprises the steps of: individually forming a p-type element 3 and an n-type element 4 by packing (1) a metal layer 6, (2) a FeSipowder and (3) a metal layer 6 into a sintering die 10 in this order to sinter them by a discharge plasma sintering method; leveling heights of the p-type element 3 and the n-type element 4 by cutting (1) the metal layer 6 and/or (3) the metal layer 6 about the formed p-type element 3 and n-type element 4; and appling a metal material 7 to both end surfaces of the p-type element 3 and the n-type element 4 having the leveled heights to connect both end surfaces of the p-type element 3 and the n-type element 4 to metal electrodes 5 through the metal material 7. In the step of individually forming the p-type element 3 and the n-type element 4, the thicknesses of (1) the metal layer 6 and/or (3) the metal layer 6 are 0.05 mm or more.

Description

本発明は、複数のp型素子とn型素子を接合して熱電変換モジュールを製造する方法に関する。   The present invention relates to a method of manufacturing a thermoelectric conversion module by joining a plurality of p-type elements and n-type elements.

従来、ゼーベック効果を利用した熱電変換モジュールが知られている。熱電変換モジュールは、一般に、セラミックス基板上にp型半導体からなる熱電変換素子(p型素子)とn型半導体からなる熱電変換素子(n型素子)を交互に配列し、それらのp型素子とn型素子を電極で直列に接続した構造を有している。   Conventionally, a thermoelectric conversion module using the Seebeck effect is known. In general, a thermoelectric conversion module is configured by alternately arranging a thermoelectric conversion element (p-type element) made of a p-type semiconductor and a thermoelectric conversion element (n-type element) made of an n-type semiconductor on a ceramic substrate. It has a structure in which n-type elements are connected in series with electrodes.

そして、従来から、熱電変換モジュールで高い出力(発電出力)を得ることができるように、様々な提案がなされてきた。例えば、従来、金属熱源の温度勾配を少なくし、金属熱源とセラミックス基板との接触面積を増大させて、金属熱源から熱電変換モジュールへの入熱効果を上げ、高い発電出力を得ることができる熱電変換装置が提案されている(例えば特許文献1参照)。   Conventionally, various proposals have been made so that a high output (power generation output) can be obtained with the thermoelectric conversion module. For example, conventionally, the temperature gradient of the metal heat source is reduced, the contact area between the metal heat source and the ceramic substrate is increased, the heat input effect from the metal heat source to the thermoelectric conversion module is increased, and a high electric power output can be obtained. A conversion device has been proposed (see, for example, Patent Document 1).

特開2011−23581号公報JP 2011-23581 A

しかしながら、従来の熱電変換装置では、金属熱源とセラミックス基板との接触面積(すなわち、熱電変換モジュール以外の構成)について高出力化のための工夫がされているものの、熱電変換モジュール自体の高出力化・高効率化については何らの工夫もされていなかった。   However, in the conventional thermoelectric conversion device, the contact area between the metal heat source and the ceramic substrate (that is, the configuration other than the thermoelectric conversion module) is devised to increase the output, but the output of the thermoelectric conversion module itself is increased. -No improvement was made for higher efficiency.

本発明は、上記の課題に鑑みてなされたもので、熱電変換モジュールの高出力化・高効率化をすることのできる熱電変換モジュールの製造方法を提供することを目的とする。   This invention is made | formed in view of said subject, and it aims at providing the manufacturing method of the thermoelectric conversion module which can make high output and high efficiency of a thermoelectric conversion module.

本発明の熱電変換モジュールの製造方法は、複数のp型素子とn型素子を接合して熱電変換モジュールを製造する熱電変換モジュールの製造方法であって、製造方法は、焼結ダイに、(1)金属層、(2)FeSi2粉末、(3)金属層を、(1)〜(3)の順に充填し、放電プラズマ焼結法にて焼結を行うことにより、p型素子とn型素子をそれぞれ個別に作製する工程と、作製したp型素子とn型素子について、(1)金属層および/または(3)金属層を切削することにより、p型素子とn型素子の高さを揃える工程と、高さを揃えたp型素子とn型素子の両端面に金属材を塗布し、金属材を介してp型素子とn型素子の両端面を金属電極に接合する工程と、を含み、前記p型素子と前記n型素子をそれぞれ個別に作製する工程において、前記(1)金属層および/または前記(3)金属層の厚さが0.05mm以上である。 The method for manufacturing a thermoelectric conversion module of the present invention is a method for manufacturing a thermoelectric conversion module in which a plurality of p-type elements and n-type elements are joined to manufacture a thermoelectric conversion module, 1) A metal layer, (2) FeSi 2 powder, and (3) a metal layer are filled in the order of (1) to (3), and sintered by a discharge plasma sintering method. For each of the steps of individually fabricating the mold elements and the fabricated p-type elements and n-type elements, (1) the metal layer and / or (3) the metal layer is cut, thereby increasing the height of the p-type element and the n-type element. And a step of applying a metal material to both end faces of the p-type element and the n-type element having the same height, and joining both end faces of the p-type element and the n-type element to the metal electrode via the metal material. And the step of individually manufacturing the p-type element and the n-type element. , (1) the thickness of the metal layer and / or the (3) the metal layer is 0.05mm or more.

これにより、複数のp型素子とn型素子を接合して間接接合型の熱電変換モジュールが製造される。この場合、p型素子とn型素子の両端面に形成される(1)金属層と(3)金属層の一方または両方を切削することにより、p型素子とn型素子の高さが揃えられる。そして、高さを揃えたp型素子とn型素子の両端面が金属材を介して金属電極に接合される。本発明によれば、p型素子とn型素子の高さ方向のバラツキが抑えられるので、金属電極と熱源が密着するようになり、熱電変換モジュールの高効率化・高出力化が可能になる。さらに、p型素子とn型素子を個別に作製する際に(1)金属層および/または(3)金属層の厚さが確保されるので、その(1)金属層および/または(3)金属層を切削してp型素子とn型素子の高さを揃える工程が容易になる。   As a result, an indirect junction type thermoelectric conversion module is manufactured by joining a plurality of p-type elements and n-type elements. In this case, the heights of the p-type element and the n-type element are equalized by cutting one or both of (1) the metal layer and (3) the metal layer formed on both end faces of the p-type element and the n-type element. It is done. Then, both end surfaces of the p-type element and the n-type element having the same height are joined to the metal electrode through a metal material. According to the present invention, since the variation in the height direction of the p-type element and the n-type element is suppressed, the metal electrode and the heat source come into close contact with each other, and it is possible to increase the efficiency and output of the thermoelectric conversion module. . Furthermore, since the thickness of the (1) metal layer and / or (3) metal layer is secured when the p-type element and the n-type element are separately manufactured, the (1) metal layer and / or (3) The process of cutting the metal layer and aligning the heights of the p-type element and the n-type element is facilitated.

また、本発明の熱電変換モジュール製造方法では、p型素子とn型素子の高さを揃える工程において、p型素子とn型素子の高さ方向のバラツキR が0.01以下であってもよい。   In the thermoelectric conversion module manufacturing method of the present invention, even when the height variation R 1 between the p-type element and the n-type element is 0.01 or less in the step of aligning the heights of the p-type element and the n-type element. Good.

これにより、p型素子とn型素子の高さ方向のバラツキR(=最大値−最小値)が0.01以下に抑えられる。これにより、金属電極に素子全体が好適に密着するようになり、熱電変換モジュールの高効率化・高出力化が可能になる。   Thereby, the variation R (= maximum value−minimum value) in the height direction of the p-type element and the n-type element is suppressed to 0.01 or less. As a result, the entire element comes into close contact with the metal electrode, and the thermoelectric conversion module can be made highly efficient and have high output.

また、本発明の熱電変換モジュール製造方法では、p型素子とn型素子をそれぞれ個別に作製する工程において、(1)金属層および/または(3)金属層の厚さが0.5mm以上であってもよい。   Moreover, in the thermoelectric conversion module manufacturing method of this invention, in the process of producing a p-type element and an n-type element separately, (1) the metal layer and / or (3) the thickness of the metal layer is 0.5 mm or more. There may be.

これにより、p型素子とn型素子を個別に作製する際に(1)金属層および/または(3)金属層の厚さが十分に確保されるので、その(1)金属層および/または(3)金属層を切削してp型素子とn型素子の高さを揃える工程が容易になる。   Thereby, when the p-type element and the n-type element are separately manufactured, the thickness of the (1) metal layer and / or (3) the metal layer is sufficiently secured, so that the (1) metal layer and / or (3) The process of cutting the metal layer and aligning the heights of the p-type element and the n-type element is facilitated.

本発明の熱電変換モジュールは、複数のp型素子とn型素子が接合された熱電変換モジュールであって、p型素子とn型素子は、焼結ダイに、(1)金属層、(2)FeSi2粉末、(3)金属層を、(1)〜(3)の順に充填し、放電プラズマ焼結法にて焼結を行うことにより、それぞれ個別に作製され、作製されたp型素子とn型素子について、(1)金属層および/または(3)金属層を切削することにより、p型素子とn型素子の高さが揃えられ、高さが揃えられたp型素子とn型素子の両端面に金属材が塗布され、金属材を介してp型素子とn型素子の両端面が金属電極に接合され、前記p型素子と前記n型素子をそれぞれ個別に作製する工程において、前記(1)金属層および/または前記(3)金属層の厚さが0.05mm以上である。 The thermoelectric conversion module of the present invention is a thermoelectric conversion module in which a plurality of p-type elements and n-type elements are joined, and the p-type elements and the n-type elements are provided on a sintered die, (1) a metal layer, (2 ) FeSi 2 powder, (3) A p-type element produced individually by filling the metal layer in the order of (1) to (3) and sintering by the discharge plasma sintering method. For the n-type element, (1) the metal layer and / or (3) the p-type element and the n-type element are aligned by cutting the metal layer so that the heights of the p-type element and the n-type element are the same. A metal material is applied to both end faces of the mold element, and both end faces of the p-type element and the n-type element are joined to the metal electrode through the metal material, and the p-type element and the n-type element are individually manufactured. The thickness of the (1) metal layer and / or the (3) metal layer is 0.05 mm or less. It is.

これにより、上記と同様、p型素子とn型素子の両端面に形成される(1)金属層と(3)金属層の一方または両方を切削することにより、p型素子とn型素子の高さが揃えられている。そして、高さを揃えたp型素子とn型素子の両端面が金属材を介して金属電極に接合されている。本発明によれば、p型素子とn型素子の高さ方向のバラツキが抑えられているので、金属電極と熱源が密着するようになり、熱電変換モジュールの高効率化・高出力化が可能になる。さらに、p型素子とn型素子を個別に作製する際に(1)金属層および/または(3)金属層の厚さが確保されるので、その(1)金属層および/または(3)金属層を切削してp型素子とn型素子の高さを揃える工程が容易になる。   Thereby, similarly to the above, by cutting one or both of the (1) metal layer and (3) metal layer formed on both end faces of the p-type element and the n-type element, the p-type element and the n-type element The height is aligned. Then, both end surfaces of the p-type element and the n-type element having the same height are joined to the metal electrode via a metal material. According to the present invention, since the variation in the height direction of the p-type element and the n-type element is suppressed, the metal electrode and the heat source come into close contact with each other, and the thermoelectric conversion module can be made highly efficient and have high output. become. Furthermore, since the thickness of the (1) metal layer and / or (3) metal layer is secured when the p-type element and the n-type element are separately manufactured, the (1) metal layer and / or (3) The process of cutting the metal layer and aligning the heights of the p-type element and the n-type element is facilitated.

本発明によれば、p型素子とn型素子の高さ方向のバラツキが抑えられているので、金属電極と熱源が密着するようになり、熱電変換モジュールの高効率化・高出力化を実現することができる。   According to the present invention, the variation in the height direction of the p-type element and the n-type element is suppressed, so that the metal electrode and the heat source come into close contact with each other, realizing high efficiency and high output of the thermoelectric conversion module. can do.

本発明の実施の形態における熱電変換モジュールの説明図Explanatory drawing of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの製造方法(カーボンペーパーの設置工程)の説明図Explanatory drawing of the manufacturing method (carbon paper installation process) of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの製造方法(FeSi2粉末の充填工程)の説明図Illustration of a method for manufacturing a thermoelectric conversion module according to an embodiment of the present invention (FeSi 2 powder filling step) 本発明の実施の形態における熱電変換モジュールの製造方法(金属層の挿入工程)の説明図Explanatory drawing of the manufacturing method (insertion process of a metal layer) of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの製造方法(SPS法による焼結工程)の説明図Explanatory drawing of the manufacturing method (sintering process by SPS method) of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの製造方法(熱電変換素子の切出し工程)の説明図Explanatory drawing of the manufacturing method (the extraction process of a thermoelectric conversion element) of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの出力測定方法の説明図Explanatory drawing of the output measuring method of the thermoelectric conversion module in embodiment of this invention 本発明の実施の形態における熱電変換モジュールの出力測定結果Output measurement result of thermoelectric conversion module in the embodiment of the present invention

以下、本発明の実施の形態の熱電変換モジュールについて、図面を用いて説明する。本実施の形態では、発電装置等に用いられる熱電変換モジュールの場合を例示する。   Hereinafter, a thermoelectric conversion module according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a case of a thermoelectric conversion module used for a power generation device or the like is illustrated.

<熱電変換モジュール>
本発明の実施の形態の熱電変換モジュールの構成を、図面を参照して説明する。図1は、本実施の形態の熱電変換モジュールの説明図である。図1に示すように、熱電変換モジュール1は、上下一対のセラミックス板2と、セラミックス板2(例えば、アルミナ板など)上に交互に配列される複数の熱電変換素子(p型素子3とn型素子4)を備えている。p型素子3とn型素子4は、金属電極5(例えば、Cu電極など)を介して直列に接続されている。
<Thermoelectric conversion module>
The configuration of the thermoelectric conversion module according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of the thermoelectric conversion module of the present embodiment. As shown in FIG. 1, a thermoelectric conversion module 1 includes a pair of upper and lower ceramic plates 2 and a plurality of thermoelectric conversion elements (p-type elements 3 and n) arranged alternately on a ceramic plate 2 (for example, an alumina plate). A mold element 4) is provided. The p-type element 3 and the n-type element 4 are connected in series via a metal electrode 5 (for example, a Cu electrode).

この場合、p型素子3とn型素子4の両端面(図1における上下面)には、金属層6が設けられており、p型素子3とn型素子4の金属層6と金属電極5との間には、金属材7が介在している。金属層6としては、例えば、銅、ニッケル、金、白金などの金属を材料とした、金属箔または金属板を用いることが可能である。また、金属材7としては、例えば銀ペースト、はんだ、ろう材などを用いることが可能である。このように、p型素子3とn型素子4は、金属層6と金属ペースト7を介して、金属電極5に接合されている。なお、金属層6の厚さは、0.05mm以上であることが望ましく、0.5mm以上であることが更に望ましい。   In this case, metal layers 6 are provided on both end surfaces (upper and lower surfaces in FIG. 1) of the p-type element 3 and the n-type element 4, and the metal layers 6 and the metal electrodes of the p-type element 3 and the n-type element 4 are provided. The metal material 7 is interposed between the two. As the metal layer 6, for example, a metal foil or a metal plate made of a metal such as copper, nickel, gold, or platinum can be used. Moreover, as the metal material 7, it is possible to use a silver paste, solder, brazing material, etc., for example. Thus, the p-type element 3 and the n-type element 4 are bonded to the metal electrode 5 via the metal layer 6 and the metal paste 7. Note that the thickness of the metal layer 6 is desirably 0.05 mm or more, and more desirably 0.5 mm or more.

なお、図1では、説明の便宜のため、2個のp型素子3と2個のn型素子4のみしか図示されていないが、p型素子3とn型素子4の数は、これに限定されず、それぞれ複数(2個以上)であればよい。例えば、熱電変換モジュール1は、8個のp型素子3と8個のn型素子4(8対の熱電変換素子)で構成することができる。   In FIG. 1, only two p-type elements 3 and two n-type elements 4 are shown for convenience of explanation, but the number of p-type elements 3 and n-type elements 4 is not limited to this. It is not limited, and may be plural (two or more). For example, the thermoelectric conversion module 1 can be composed of eight p-type elements 3 and eight n-type elements 4 (eight pairs of thermoelectric conversion elements).

<製造方法>
次に、図2〜図6を参照して、熱電変換モジュール1の製造方法について説明する。図2に示すように、まず、円柱型のキャビティを有する焼結ダイ10を用意し、焼結ダイ10のキャビティの内周面にカーボンペーパー11を設置する。
<Manufacturing method>
Next, with reference to FIGS. 2-6, the manufacturing method of the thermoelectric conversion module 1 is demonstrated. As shown in FIG. 2, first, a sintered die 10 having a cylindrical cavity is prepared, and carbon paper 11 is placed on the inner peripheral surface of the cavity of the sintered die 10.

つづいて、図3に示すように、キャビティの下側から下部パンチ12を挿入し、キャビティ内に熱電変換素子の材料となるFeSi2粉末を充填する。この場合、p型素子3とn型素子4は、それぞれ個別に作製される。p型素子3の材料としては、FeSi2−4.1重量%Crを用い、n型素子4の材料として、FeSi2−2.4重量%Coを用いた。その後、キャビティの上側から上部パンチ13を挿入し、充填したFeSi2粉末を軽く押し固める。FeSi2粉末を軽く押し固めるときの圧力は、例えば、0.1Mpa程度である。 Subsequently, as shown in FIG. 3, the lower punch 12 is inserted from the lower side of the cavity, and the FeSi 2 powder as the material of the thermoelectric conversion element is filled in the cavity. In this case, the p-type element 3 and the n-type element 4 are individually manufactured. FeSi 2 −4.1 wt% Cr was used as the material for the p-type element 3, and FeSi 2 −2.4 wt% Co was used as the material for the n-type element 4. Thereafter, the upper punch 13 is inserted from the upper side of the cavity, and the filled FeSi 2 powder is lightly pressed and hardened. The pressure when lightly compacting the FeSi 2 powder is, for example, about 0.1 Mpa.

つぎに、図4に示すように、上部パンチ13をキャビティから取り外し、上側の金属層6とカーボンペーパー14をキャビティ内に挿入し、その上側から上部パンチ13をキャビティ内に挿入する。同様に、下部パンチ12をキャビティから取り外し、下側の金属層6とカーボンペーパー14をキャビティ内に挿入し、その下側から下部パンチ12をキャビティ内に挿入する(図5参照)。   Next, as shown in FIG. 4, the upper punch 13 is removed from the cavity, the upper metal layer 6 and the carbon paper 14 are inserted into the cavity, and the upper punch 13 is inserted into the cavity from the upper side. Similarly, the lower punch 12 is removed from the cavity, the lower metal layer 6 and the carbon paper 14 are inserted into the cavity, and the lower punch 12 is inserted into the cavity from the lower side (see FIG. 5).

そして、図5に示すように、ハンドプレス機を用いて、上部パンチ13と下部パンチ12に圧力をかけて型締めを行う。そして、放電プラズマ焼結法(SPS法)により焼結を行う。型締めを行うときの圧力は、例えば、70Mpaであり、焼結を行うときの温度は、例えば、1023K(750℃)である。   Then, as shown in FIG. 5, the mold is clamped by applying pressure to the upper punch 13 and the lower punch 12 using a hand press. Then, sintering is performed by a discharge plasma sintering method (SPS method). The pressure at the time of clamping is, for example, 70 MPa, and the temperature at the time of sintering is, for example, 1023 K (750 ° C.).

このようにして、図6(左図)に示すような、円柱状の熱電変換素子(例えば、直径20mm、高さ約5mm)が作製される。そして、低速精密カッターを用いて、円柱状の熱電変換素子から、図6(右図)に示すような、角柱状の熱電変換素子(例えば、縦3mm、横3mm、高さ5mm)が切り出される。   In this way, a cylindrical thermoelectric conversion element (for example, a diameter of 20 mm and a height of about 5 mm) as shown in FIG. 6 (left figure) is produced. Then, using a low-speed precision cutter, a prismatic thermoelectric conversion element (for example, 3 mm long, 3 mm wide, 5 mm high) as shown in FIG. 6 (right figure) is cut out from the cylindrical thermoelectric conversion element. .

本実施の形態では、例えば、8対の熱電変換素子(8個のp型素子3と8個のn型素子4)が作製されるが、このとき、熱電変換素子の両端面の金属層6の一方または両方を切削することにより、8対の熱電変換素子の高さが精度良く揃えられる。金属層6としては、例えば、銀箔(厚さ0.05mm)や銀板(厚さ0.5mm)が用いられる。そして、図1に示すように、セラミックス板2の上に金属電極5を接合し、熱電変換素子の両端面に金属材7を塗布して、金属材7を介して熱電変換素子と金属電極5を接合する。金属材7としては、例えば、銀ペーストが用いられる。   In the present embodiment, for example, eight pairs of thermoelectric conversion elements (eight p-type elements 3 and eight n-type elements 4) are produced. At this time, the metal layers 6 on both end faces of the thermoelectric conversion elements are produced. By cutting one or both of them, the heights of the eight pairs of thermoelectric conversion elements are aligned with high accuracy. As the metal layer 6, for example, a silver foil (thickness 0.05 mm) or a silver plate (thickness 0.5 mm) is used. And as shown in FIG. 1, the metal electrode 5 is joined on the ceramic board 2, the metal material 7 is apply | coated to the both end surfaces of a thermoelectric conversion element, and the thermoelectric conversion element and the metal electrode 5 are passed through the metal material 7. Join. As the metal material 7, for example, a silver paste is used.

<発電出力の測定>
上記のように製造した熱電変換モジュール1(実施例)の発電出力を測定した。熱電変換モジュール1では、上下のセラミック基板に温度差が与えられると、ゼーベック効果により、その温度差が電圧に変換される(起電力が生じる)。そこで、本実施の形態では、図7に示すように、ヒーター20と冷却プレート21の間に熱電変換モジュール1を接合し、冷却装置(冷水循環装置)22にて冷却プレート21を冷やすとともに、ヒーター20の電源23を入れて電熱線24に100mAの電流を流した。
<Measurement of power generation output>
The power generation output of the thermoelectric conversion module 1 (Example) manufactured as described above was measured. In the thermoelectric conversion module 1, when a temperature difference is given to the upper and lower ceramic substrates, the temperature difference is converted into a voltage (electromotive force is generated) by the Seebeck effect. Therefore, in this embodiment, as shown in FIG. 7, the thermoelectric conversion module 1 is joined between the heater 20 and the cooling plate 21, the cooling plate 21 is cooled by the cooling device (cold water circulation device) 22, and the heater 20 power supplies 23 were turned on, and a current of 100 mA was passed through the heating wire 24.

このようにして、上下のセラミック基板に温度差を与えた状態で、熱電変換モジュール1に外部負荷抵抗(図視せず)をつけて、負荷抵抗を変化させたときの電流・電圧を測定し、最大電力量を求めた。図8には、その測定結果が示される。なお、バラツキRは、以下の式により算出される。
バラツキR=最大値−最小値
In this way, with a temperature difference between the upper and lower ceramic substrates, an external load resistance (not shown) is attached to the thermoelectric conversion module 1, and the current and voltage when the load resistance is changed are measured. The maximum amount of power was determined. FIG. 8 shows the measurement results. The variation R is calculated by the following equation.
Variation R = Maximum value-Minimum value

本実施例の熱電変換モジュール1は、上記のように、それぞれ個別に作製したp型素子3とn型素子4を接合した「間接接合型」である。図8には、実施例1として、金属層6として銀板(厚さ0.5mm)を用いた場合の熱電変換モジュールの測定結果を示し、実施例2として、金属層6として銀箔(厚さ0.05mm)を用いた場合の熱電変換モジュールの測定結果を示した。この測定結果から、高さ寸法のバラツキRを抑えたほうが、より高い最大電力量を得られることがわかる。   As described above, the thermoelectric conversion module 1 of the present embodiment is an “indirect junction type” in which the p-type element 3 and the n-type element 4 that are individually manufactured are joined. In FIG. 8, the measurement result of the thermoelectric conversion module at the time of using a silver plate (thickness 0.5 mm) as the metal layer 6 as Example 1 is shown, and as Example 2, the silver foil (thickness) as the metal layer 6 is shown. The measurement result of the thermoelectric conversion module when 0.05 mm) is used is shown. From this measurement result, it can be seen that a higher maximum electric energy can be obtained by suppressing the variation R in height dimension.

このように、本実施の形態の熱電変換モジュール1の製造方法によれば、p型素子3とn型素子4の両端面に形成される金属層6の一方または両方を切削することにより、p型素子3とn型素子4の高さが揃えられる。そして、高さを揃えたp型素子3とn型素子4の両端面が金属材7を介して金属電極5に接合される。本実施の形態によれば、p型素子3とn型素子4の高さ方向のバラツキが抑えられるので、金属電極5に素子全体が密着するようになり、熱電変換モジュール1の高効率化・高出力化が可能になる。   Thus, according to the manufacturing method of the thermoelectric conversion module 1 of the present embodiment, by cutting one or both of the metal layers 6 formed on both end faces of the p-type element 3 and the n-type element 4, p The heights of the mold element 3 and the n-type element 4 are aligned. Then, both end surfaces of the p-type element 3 and the n-type element 4 having the same height are joined to the metal electrode 5 via the metal material 7. According to the present embodiment, since variations in the height direction of the p-type element 3 and the n-type element 4 are suppressed, the entire element comes into close contact with the metal electrode 5, thereby improving the efficiency of the thermoelectric conversion module 1. High output is possible.

また、本実施の形態では、p型素子3とn型素子4の高さ方向のバラツキRが0.01以下に抑えられる。これにより、金属電極5に素子全体が好適に密着するようになり、熱電変換モジュール1の高効率化・高出力化が可能になる。   Further, in the present embodiment, the variation R in the height direction between the p-type element 3 and the n-type element 4 is suppressed to 0.01 or less. As a result, the entire element comes into close contact with the metal electrode 5, and the thermoelectric conversion module 1 can be made highly efficient and have high output.

また、本実施の形態では、p型素子3とn型素子4を個別に作製する際に金属層6の十分な厚さが確保されるので、その金属層6を切削してp型素子3とn型素子4の高さを揃える工程が容易になる。   Further, in the present embodiment, when the p-type element 3 and the n-type element 4 are separately manufactured, a sufficient thickness of the metal layer 6 is ensured. Therefore, the metal layer 6 is cut and the p-type element 3 is cut. And the process of aligning the height of the n-type element 4 is facilitated.

以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。   The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.

以上のように、本発明にかかる熱電変換モジュールの製造方法は、熱電変換モジュールの高効率化・高出力化を実現することができるという効果を有し、発電装置等の製造に用いられ、有用である。   As described above, the method for manufacturing a thermoelectric conversion module according to the present invention has the effect of achieving high efficiency and high output of the thermoelectric conversion module, and is useful for manufacturing power generators and the like. It is.

1 熱電変換モジュール
2 セラミックス板
3 p型素子
4 n型素子
5 金属電極
6 金属層(銀板)
7 金属材(銀ペースト)
10 焼結ダイ
11 カーボンペーパー
12 下部パンチ
13 上部パンチ
14 カーボンペーパー
20 ヒーター
21 冷却プレート
22 冷却装置(冷水循環装置)
23 電源
24 電熱線
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 2 Ceramic board 3 P-type element 4 N-type element 5 Metal electrode 6 Metal layer (silver plate)
7 Metal material (silver paste)
DESCRIPTION OF SYMBOLS 10 Sintering die 11 Carbon paper 12 Lower punch 13 Upper punch 14 Carbon paper 20 Heater 21 Cooling plate 22 Cooling device (cold water circulation device)
23 Power supply 24 Heating wire

Claims (4)

複数のp型素子とn型素子を接合して熱電変換モジュールを製造する熱電変換モジュールの製造方法であって、
前記製造方法は、
焼結ダイに、(1)金属層、(2)FeSi2粉末、(3)金属層を、前記(1)〜(3)の順に充填し、放電プラズマ焼結法にて焼結を行うことにより、前記p型素子と前記n型素子をそれぞれ個別に作製する工程と、
作製した前記p型素子と前記n型素子について、前記(1)金属層および/または前記(3)金属層を切削することにより、前記p型素子と前記n型素子の高さを揃える工程と、
高さを揃えた前記p型素子と前記n型素子の両端面に金属材を塗布し、前記金属材を介して前記p型素子と前記n型素子の両端面を金属電極に接合する工程と、
を含み、
前記p型素子と前記n型素子をそれぞれ個別に作製する工程において、前記(1)金属層および/または前記(3)金属層の厚さが0.05mm以上であることを特徴とする熱電変換モジュールの製造方法。
A thermoelectric conversion module manufacturing method for manufacturing a thermoelectric conversion module by joining a plurality of p-type elements and n-type elements,
The manufacturing method includes:
(1) Metal layer, (2) FeSi 2 powder, (3) Metal layer are filled in the sintering die in the order of (1) to (3), and sintered by the discharge plasma sintering method. A step of individually producing the p-type element and the n-type element,
For the produced p-type element and the n-type element, the step of aligning the heights of the p-type element and the n-type element by cutting the (1) metal layer and / or the (3) metal layer; ,
Applying a metal material to both end faces of the p-type element and the n-type element having the same height, and joining both end faces of the p-type element and the n-type element to metal electrodes via the metal material; ,
Including
In the step of individually producing the p-type element and the n-type element, the thickness of the (1) metal layer and / or the (3) metal layer is 0.05 mm or more, Module manufacturing method.
前記p型素子と前記n型素子の高さを揃える工程において、前記p型素子と前記n型素子の高さ方向のバラツキRが0.01以下である、請求項1に記載の熱電変換モジュールの製造方法。   The thermoelectric conversion module according to claim 1, wherein, in the step of aligning the heights of the p-type element and the n-type element, a variation R in the height direction of the p-type element and the n-type element is 0.01 or less. Manufacturing method. 前記p型素子と前記n型素子をそれぞれ個別に作製する工程において、前記(1)金属層および/または前記(3)金属層の厚さが0.5mm以上である、請求項1または請求項2に記載の熱電変換モジュールの製造方法。   The thickness of the said (1) metal layer and / or the said (3) metal layer is 0.5 mm or more in the process of producing the said p-type element and the said n-type element separately, respectively. The manufacturing method of the thermoelectric conversion module of 2. 複数のp型素子とn型素子が接合された熱電変換モジュールであって、
前記p型素子と前記n型素子は、焼結ダイに、(1)金属層、(2)FeSi2粉末、(3)金属層を、前記(1)〜(3)の順に充填し、放電プラズマ焼結法にて焼結を行うことにより、それぞれ個別に作製され、
作製された前記p型素子と前記n型素子について、前記(1)金属層および/または前記(3)金属層を切削することにより、前記p型素子と前記n型素子の高さが揃えられ、
高さが揃えられた前記p型素子と前記n型素子の両端面に金属材が塗布され、前記金属材を介して前記p型素子と前記n型素子の両端面が金属電極に接合され、
前記p型素子と前記n型素子をそれぞれ個別に作製する工程において、前記(1)金属層および/または前記(3)金属層の厚さが0.05mm以上であることを特徴とする熱電変換モジュール。
A thermoelectric conversion module in which a plurality of p-type elements and n-type elements are joined,
In the p-type element and the n-type element, a sintered die is filled with (1) a metal layer, (2) FeSi 2 powder, and (3) a metal layer in the order of (1) to (3). By sintering by plasma sintering method, each is produced individually,
By cutting the (1) metal layer and / or the (3) metal layer for the produced p-type element and the n-type element, the heights of the p-type element and the n-type element are aligned. ,
Metal materials are applied to both end faces of the p-type element and the n-type element whose heights are aligned, and both end faces of the p-type element and the n-type element are joined to metal electrodes via the metal material,
In the step of individually producing the p-type element and the n-type element, the thickness of the (1) metal layer and / or the (3) metal layer is 0.05 mm or more, module.
JP2013182043A 2013-09-03 2013-09-03 Method for manufacturing thermoelectric conversion module Pending JP2015050372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182043A JP2015050372A (en) 2013-09-03 2013-09-03 Method for manufacturing thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182043A JP2015050372A (en) 2013-09-03 2013-09-03 Method for manufacturing thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2015050372A true JP2015050372A (en) 2015-03-16

Family

ID=52700125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182043A Pending JP2015050372A (en) 2013-09-03 2013-09-03 Method for manufacturing thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2015050372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952937B1 (en) * 2020-12-14 2021-10-27 三菱電機株式会社 Power control device, thermoelectric power generation system, and power control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091649A (en) * 1998-09-14 2000-03-31 Ngk Insulators Ltd Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture
WO2012073946A1 (en) * 2010-11-30 2012-06-07 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091649A (en) * 1998-09-14 2000-03-31 Ngk Insulators Ltd Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture
WO2012073946A1 (en) * 2010-11-30 2012-06-07 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952937B1 (en) * 2020-12-14 2021-10-27 三菱電機株式会社 Power control device, thermoelectric power generation system, and power control method
WO2022130457A1 (en) * 2020-12-14 2022-06-23 三菱電機株式会社 Power control device, thermoelectric power generation system, and power control method

Similar Documents

Publication Publication Date Title
CA2754081C (en) Method for producing thermoelectric module
JP5515721B2 (en) Method for manufacturing thermoelectric conversion module
JP5427462B2 (en) Thermoelectric conversion module
KR102009446B1 (en) Thermoelectric module and method for manufacturing the same
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
JPH1074986A (en) Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JP5598138B2 (en) Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate
JP2014143328A (en) Method of manufacturing thermoelectric conversion device
JP2013201382A (en) Thermoelectric conversion module and method for manufacturing the same
CN103928605A (en) Manufacturing method of thermoelectric device
JP2015050372A (en) Method for manufacturing thermoelectric conversion module
JP2016157843A (en) Thermoelectric conversion device
CN105081508A (en) Positioning and clamping device applied to thermoelectric module preparation process
JP2008109054A (en) Thermoelectric conversion module and method for manufacturing the same
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP2014165194A (en) Chip resistor and method of manufacturing chip resistor
US9543494B2 (en) Thermoelectric conversion module and method of manufacturing the same
JP6471241B2 (en) Thermoelectric module
JP5525173B2 (en) Method and apparatus for manufacturing thermoelectric conversion element
JP2018037485A (en) Manufacturing method of thermoelectric conversion module
JP6708339B2 (en) Thermoelectric conversion element, thermoelectric conversion module
KR101207300B1 (en) Method for manufacturing thermoelectric element
JP2017050519A (en) Fesi2-based lamination type thermoelectric conversion module
JP2004319944A (en) Cylindrical multilayer thermoelectric transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171114