JP2004319944A - Cylindrical multilayer thermoelectric transducer - Google Patents

Cylindrical multilayer thermoelectric transducer Download PDF

Info

Publication number
JP2004319944A
JP2004319944A JP2003148379A JP2003148379A JP2004319944A JP 2004319944 A JP2004319944 A JP 2004319944A JP 2003148379 A JP2003148379 A JP 2003148379A JP 2003148379 A JP2003148379 A JP 2003148379A JP 2004319944 A JP2004319944 A JP 2004319944A
Authority
JP
Japan
Prior art keywords
type
conversion element
thermoelectric conversion
atomic
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003148379A
Other languages
Japanese (ja)
Inventor
Masatoshi Otake
正寿 大竹
Kenji Isobe
賢二 磯部
Kenji Sato
憲治 佐藤
Yoshinori Ito
芳典 伊藤
Tatsuya Hariyuki
達也 針幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Original Assignee
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture filed Critical Shizuoka Prefecture
Priority to JP2003148379A priority Critical patent/JP2004319944A/en
Publication of JP2004319944A publication Critical patent/JP2004319944A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in manufacturing a conventional p-type and n-type material integrated thermoelectric transducer, a processing is difficult, chips or cracks with the processing occur easily, and also a long time is required at a high cost. <P>SOLUTION: In a thermoelectric transducer, a shape of the device is set as a cylindrical shape, and a system of generation a power is taken by having a difference in a temperature between the inside and outside of the cylinder. For this reason, after sintering, the processing such as cutting or the like required in the prior art is unwanted and a cylindrical sintered body itself forms the thermoelectric transducer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は熱電変換素子に関する。より詳しくは粉末の焼結接合を利用して製造するp型およびn型材料一体型の熱電変換素子に関する。
【0002】
【従来の技術】熱電変換素子はp型およびn型熱電材料の一端を接合した構造をしており、素子の両端部に温度差を与えると起電力が生じ、回路で結ぶと電流が流れる。このように熱電変換素子は熱を直接電気に変換することが出来る。
【0003】熱電変換素子においてp型およびn型熱電材料の接合には、一般に金属電極板を介して半田付けやロウ付けなどが行われているが、高温での接合耐久性が低い欠点があった。そのためp型およびn型熱電材料粉末成形体を焼結接合した熱電変換素子も開発されている。
【0004】また難焼結性の熱電材料では、p型およびn型熱電材料粉末を黒鉛等の型内に積層充填し、ホットプレスあるいは放電焼結することにより積層焼結体を作製した後、一部接合部を残してp型およびn型材料境界部を切り離す切れ込み加工を行い電気的に絶縁した熱電変換素子が開発されている。
【0005】さらに(0004)において切れ込み加工の代わりに絶縁層としてセラミックス粉末やセラミックスシートをp型およびn型材料粉末層の間に挟んでホットプレスあるいは放電焼結することにより製作する熱電変換素子も開発されている。
【0006】
【発明が解決しようとする課題】(0005)に記載の熱電変換素子では、ホットプレスあるいは放電焼結に際し、加圧力を粉末に均一にかける、鋭い角は応力が集中し型が割れやすいので避けるなどの必要があり、焼結型は円柱形状が望ましい。そのため円柱状焼結体を焼結し、素子はこれを切断、研削加工して製造していた。しかしこれらの熱電材料は硬くまた脆いためこれらの加工が難しく、加工に伴い欠けや割れなどが生じやすい問題点があった。また、これらの加工には長時間を必要とし、高コストであるなどの問題点もあった。
【0007】
【課題を解決するための手段】本発明の熱電変換素子は、素子の形状を円筒形にし、円筒の内と外で温度差をつけ、発電する方式をとる。そのため円筒形の焼結体がそのまま熱電変換素子となるので、焼結後、(0004)および(0006)に記載の切断等の加工を必要としない。
【0008】(請求項1)に記載のp型およびn型材料一体型の円筒型多層熱電変換素子の横断面図を図1に、上から見た図を図2に示す。本発明の円筒型多層熱電変換素子は図中番号3の大きな外径と中心穴を持つ中心穴付き円形セラミックス繊維シートおよび番号4の小さな外径と中心穴を持つ中心穴付き円形セラミックス繊維シートの2種類のセラミックス繊維シートをp型熱電材料粉末層とn型熱電材料粉末層の間に交互に挿入する形で黒鉛等の円筒形の型内に複数積層充填した後、黒鉛等の上下パンチにより加圧しながら、ホットプレスあるいは放電焼結することにより製造する。番号3および4のセラミックス繊維シートは積層焼結後、充分な電気絶縁性を持つものでなければならない。番号1のp型熱電材料層と番号2のn型熱電材料層は、焼結により円筒の外側と内側で数mmの厚みで直接に接合する。円筒素子の頭部と底部にはニッケル板などにより番号6の電極をもうけることが望ましく、また番号7のリード線を繋ぎやすいよう突起等をもうける工夫も必要となる。
【0009】(請求項2)に記載の円筒型多層熱電変換素子は、水冷却により発電性能の向上が図れるSiが70〜100原子%、Geが0〜30原子%、Bが0〜1原子%およびPが0〜1原子%の化学組成を持つSiGe系熱電材料を用い、ステンレス鋼等の水冷パイプを素子の中心穴に通して、円筒内側を低温部とし、円筒の外周側を高温部とした発電用素子である。
【0010】
【発明の実施の形態】実施例を挙げ、実施の形態を説明する。p型熱電材料の原料粉末としてBを0.3原子%添加した平均粒径約30μmのガスアトマイズSi粉末、n型熱電材料の原料粉末としてPを0.3原子%添加した同様の粉末を1層につき6g用い、また厚さ2mmのセラミックス繊維シートから外径34mm、内径16mmと外径30mm、内径12mmの大小2種類の中心穴付き円形セラミックス繊維シートを切り出し、絶縁層とした。これらを順にp、n、大セ、小セと略して記すると、p/小セ/n/大セ/p/小セ/n/大セ/p/小セ/nの順番に計6層の熱電材料原料粉末を円筒形黒鉛型の中に積層した。
【0011】焼結は放電プラズマ焼結機を用い、黒鉛パンチで25MPaの圧力で加圧しながら1270℃まで昇温して行った。焼結した円筒素子の頭部と底部には突起をつけて、これにリード線を繋げた。また外径9mmのステンレス鋼の水冷パイプを素子の中心穴に通して、素子とステンレス鋼パイプとの間にはセラミックウールを詰めて電気絶縁した。
【0012】このようにして作製した円筒型多層熱電変換素子についてガスバーナーによる加熱実験を行った結果、加熱と冷却の繰り返しに伴う素子の割れ等の異状は観察されなかった。また加熱時には相当量の電力が得られることを電圧、電流測定にて確認した。
【0013】
【発明の効果】本発明のp型およびn型材料一体型の円筒型多層熱電変換素子では、ホットプレスあるいは放電焼結後の切れ込み加工や切断加工なしで直接、素子となるので、製造工程が短縮され、また加工に伴う欠けや割れがなくなり、製品歩留まりが大きく向上する。そのため製造コストは大幅に低減され、安価な熱電変換素子として提供される。
【図面の簡単な説明】
【図1】p型およびn型材料一体型の円筒型多層熱電変換素子の横断面の概略図である。
【図2】p型およびn型材料一体型の円筒型多層熱電変換素子を上から見た概略図である。
【符号の説明】
1 p型熱電材料
2 n型熱電材料
3 大きな中心穴と外径を持つ中心穴付き円形セラミックス繊維シート
4 小さな中心穴と外径を持つ中心穴付き円形セラミックス繊維シート
5 絶縁層
6 電極
7 リード線
8 水冷パイプ
9 冷却水
[0001]
[0001] The present invention relates to a thermoelectric conversion element. More specifically, the present invention relates to a thermoelectric conversion element integrated with p-type and n-type materials manufactured by using powder sintering.
[0002]
2. Description of the Related Art A thermoelectric conversion element has a structure in which one end of a p-type and n-type thermoelectric material is joined. When a temperature difference is applied to both ends of the element, an electromotive force is generated, and when connected in a circuit, a current flows. As described above, the thermoelectric conversion element can directly convert heat into electricity.
[0003] In the thermoelectric conversion element, the p-type and n-type thermoelectric materials are generally joined by soldering or brazing via a metal electrode plate, but have a drawback that the joining durability at high temperatures is low. Was. Therefore, thermoelectric conversion elements in which p-type and n-type thermoelectric material powder compacts are sintered and bonded have been developed.
[0004] In the case of a thermoelectric material which is difficult to sinter, p-type and n-type thermoelectric material powders are laminated and filled in a mold such as graphite, and hot-pressed or discharge-sintered to produce a laminated sintered body. 2. Description of the Related Art Thermoelectric conversion elements that have been cut and cut to separate a boundary between p-type and n-type materials and are electrically insulated while leaving a part of the junction have been developed.
Further, in (0004), there is also provided a thermoelectric conversion element manufactured by hot pressing or electric discharge sintering a ceramic powder or a ceramic sheet as an insulating layer between p-type and n-type material powder layers instead of cutting. Is being developed.
[0006]
In the thermoelectric conversion element described in (0005), during hot pressing or electric discharge sintering, a pressing force is uniformly applied to the powder. Sharp corners are concentrated because stress is concentrated and the mold is liable to be broken. It is necessary that the sintered mold has a cylindrical shape. Therefore, a columnar sintered body was sintered, and the element was cut and ground to produce the element. However, these thermoelectric materials are hard and brittle, so that their processing is difficult, and there has been a problem that chipping, cracking, and the like are apt to occur with the processing. In addition, there is a problem that these processes require a long time and are expensive.
[0007]
Means for Solving the Problems The thermoelectric conversion element of the present invention employs a method in which the element is formed into a cylindrical shape, and a temperature difference is generated between the inside and the outside of the cylinder to generate power. Therefore, since the cylindrical sintered body becomes the thermoelectric conversion element as it is, there is no need to perform processing such as cutting described in (0004) and (0006) after sintering.
FIG. 1 is a cross-sectional view of a cylindrical multilayer thermoelectric conversion element integrated with a p-type and n-type material according to claim 1, and FIG. 2 is a top view thereof. The cylindrical multilayer thermoelectric conversion element of the present invention is composed of a circular ceramic fiber sheet with a central hole having a large outer diameter and a central hole of No. 3 and a circular ceramic fiber sheet with a central hole having a small outer diameter and a central hole of No. 4 in the figure. Two types of ceramic fiber sheets are alternately inserted between a p-type thermoelectric material powder layer and an n-type thermoelectric material powder layer, and are filled in a plurality of layers in a cylindrical mold such as graphite. It is manufactured by hot pressing or electric discharge sintering while applying pressure. The ceramic fiber sheets of Nos. 3 and 4 must have sufficient electrical insulation after lamination and sintering. The p-type thermoelectric material layer of No. 1 and the n-type thermoelectric material layer of No. 2 are directly joined with a thickness of several mm on the outside and inside of the cylinder by sintering. It is desirable to provide the electrode No. 6 with a nickel plate or the like on the head and bottom of the cylindrical element, and it is also necessary to provide a projection or the like so that the lead wire No. 7 can be easily connected.
In the cylindrical multilayer thermoelectric conversion element according to the present invention, 70 to 100 atomic% of Si, 0 to 30 atomic% of Ge, and 0 to 1 atomic of B can improve power generation performance by water cooling. % And P are chemical elements having a chemical composition of 0 to 1 atomic%, and a water-cooled pipe such as stainless steel is passed through the center hole of the element to make the inside of the cylinder a low temperature part and the outside of the cylinder a high temperature part. This is a power generating element.
[0010]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described with reference to examples. One layer of a gas atomized Si powder having an average particle diameter of about 30 μm to which B is added as a raw material powder of a p-type thermoelectric material and about 0.3 μm of P as a raw material powder of an n-type thermoelectric material In addition, two types of large and small circular ceramic fiber sheets having a center hole having an outer diameter of 34 mm, an inner diameter of 16 mm, an outer diameter of 30 mm, and an inner diameter of 12 mm were cut out from a ceramic fiber sheet having a thickness of 2 mm. These are abbreviated as p, n, large size, and small size in this order, and a total of 6 layers in the order of p / small size / n / large size / p / small size / n / large size / p / small size / n The thermoelectric material raw material powder was laminated in a cylindrical graphite mold.
The sintering was performed by using a discharge plasma sintering machine and increasing the temperature to 1270 ° C. while applying a pressure of 25 MPa with a graphite punch. The head and the bottom of the sintered cylindrical element were provided with protrusions to which lead wires were connected. A stainless steel water-cooled pipe having an outer diameter of 9 mm was passed through the center hole of the element, and ceramic wool was filled between the element and the stainless steel pipe for electrical insulation.
As a result of conducting a heating experiment using a gas burner on the cylindrical multilayer thermoelectric conversion element manufactured as described above, no abnormality such as cracking of the element due to repeated heating and cooling was observed. Further, it was confirmed by voltage and current measurement that a considerable amount of electric power was obtained during heating.
[0013]
According to the present invention, the cylindrical multi-layer thermoelectric conversion element integrated with p-type and n-type materials is directly formed into an element without cutting or cutting after hot pressing or electric discharge sintering. It is shortened, chipping and cracking due to processing are eliminated, and the product yield is greatly improved. Therefore, the manufacturing cost is significantly reduced, and the thermoelectric conversion element is provided as an inexpensive thermoelectric conversion element.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a cylindrical multilayer thermoelectric conversion element integrated with p-type and n-type materials.
FIG. 2 is a schematic view of a cylindrical multilayer thermoelectric conversion element integrated with p-type and n-type materials as viewed from above.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 p-type thermoelectric material 2 n-type thermoelectric material 3 circular ceramic fiber sheet with large center hole and center hole with outer diameter 4 circular ceramic fiber sheet with center hole with small center hole and outer diameter 5 insulating layer 6 electrode 7 lead wire 8 Water cooling pipe 9 Cooling water

Claims (2)

大きな中心穴と外径を持つ中心穴付き円形セラミックス繊維シートおよび小さな中心穴と外径を持つ中心穴付き円形セラミックス繊維シートの2種類のセラミックス繊維シートをp型熱電材料粉末層とn型熱電材料粉末層の間に交互に挿入する形で黒鉛等の円筒形の型内に積層充填した後、黒鉛等の上下パンチにより加圧しながら、ホットプレスあるいは放電焼結することにより製造することを特徴とするp型およびn型材料一体型の円筒型多層熱電変換素子。Two types of ceramic fiber sheets, a central ceramic hole with a large hole and an outer diameter, and a circular ceramic fiber sheet with a small hole and a central hole, are used for p-type thermoelectric material powder layer and n-type thermoelectric material. It is manufactured by hot-pressing or electric discharge sintering while alternately inserting between powder layers into a cylindrical mold made of graphite or the like, and then pressurizing it with upper and lower punches made of graphite or the like. Cylindrical multilayer thermoelectric conversion element integrated with p-type and n-type materials. (請求項1)に記載の熱電変換素子において、使用される熱電材料が、Siが70〜100原子%、Geが0〜30原子%、Bが0〜1原子%およびPが0〜1原子%の化学組成を持ち、また電気絶縁された水冷パイプを素子の中心穴に通して、円筒内側を低温部とし、円筒の外周側を高温部としたことを特徴とする発電用のp型およびn型材料一体型の円筒型多層熱電変換素子。In the thermoelectric conversion element according to claim 1, the thermoelectric material used is 70 to 100 atomic% of Si, 0 to 30 atomic% of Ge, 0 to 1 atomic% of B, and 0 to 1 atomic%. % Of a p-type for power generation, characterized in that a water-cooled pipe having a chemical composition of 0.1% and electrically insulated was passed through the center hole of the element, and the inside of the cylinder was used as a low-temperature portion, and the outside of the cylinder was used as a high-temperature portion. Cylindrical multilayer thermoelectric conversion element integrated with n-type material.
JP2003148379A 2003-04-17 2003-04-17 Cylindrical multilayer thermoelectric transducer Pending JP2004319944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148379A JP2004319944A (en) 2003-04-17 2003-04-17 Cylindrical multilayer thermoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148379A JP2004319944A (en) 2003-04-17 2003-04-17 Cylindrical multilayer thermoelectric transducer

Publications (1)

Publication Number Publication Date
JP2004319944A true JP2004319944A (en) 2004-11-11

Family

ID=33475397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148379A Pending JP2004319944A (en) 2003-04-17 2003-04-17 Cylindrical multilayer thermoelectric transducer

Country Status (1)

Country Link
JP (1) JP2004319944A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150112A (en) * 2005-11-29 2007-06-14 National Institute Of Advanced Industrial & Technology Cogeneration system and its operating method
JP2012033685A (en) * 2010-07-30 2012-02-16 Panasonic Corp Manufacturing method for pipe-like thermal power generation device and manufacturing method for laminate thereof
WO2013150773A1 (en) * 2012-04-03 2013-10-10 パナソニック株式会社 Method for manufacturing pipe-shaped thermal power generation device
JP2014500618A (en) * 2010-11-03 2014-01-09 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for vehicle thermoelectric generator
KR101471036B1 (en) * 2013-10-22 2014-12-10 한국과학기술연구원 Tubular thermoelectric module and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150112A (en) * 2005-11-29 2007-06-14 National Institute Of Advanced Industrial & Technology Cogeneration system and its operating method
JP2012033685A (en) * 2010-07-30 2012-02-16 Panasonic Corp Manufacturing method for pipe-like thermal power generation device and manufacturing method for laminate thereof
JP2014500618A (en) * 2010-11-03 2014-01-09 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for vehicle thermoelectric generator
WO2013150773A1 (en) * 2012-04-03 2013-10-10 パナソニック株式会社 Method for manufacturing pipe-shaped thermal power generation device
JPWO2013150773A1 (en) * 2012-04-03 2015-12-17 パナソニック株式会社 Method for manufacturing a pipe-shaped thermoelectric power generation device
US9379301B2 (en) 2012-04-03 2016-06-28 Panasonic Corporation Method for manufacturing pipe-shaped thermal power generation device
KR101471036B1 (en) * 2013-10-22 2014-12-10 한국과학기술연구원 Tubular thermoelectric module and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP2003133600A (en) Thermoelectric conversion member and manufacturing method therefor
JP6094136B2 (en) Thermoelectric conversion element assembly, thermoelectric conversion module and manufacturing method thereof
JP2012514332A (en) Method for manufacturing thermoelectric conversion element
KR20140050390A (en) Thermoelectric module, thermoelectric device comprising the same, and process for preparing the thermoelectric element
EP2408032A1 (en) Method of producing thermoelectric conversion device
KR20170076358A (en) Thermoelectric module and method for fabricating the same
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
KR20160109658A (en) Thermoelectric module and method for manufacturing the same
JP4584035B2 (en) Thermoelectric module
JPH0555640A (en) Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JP5598138B2 (en) Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate
CN109065700B (en) Preparation method of annular thermoelectric power generation device
JP2004319944A (en) Cylindrical multilayer thermoelectric transducer
JP2000091649A (en) Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP4524383B2 (en) Thermoelectric element with integrated electrode and method for producing the same
JP2003298128A (en) Method of manufacturing thermoelectric conversion element
JPWO2005015649A1 (en) Thermoelectric conversion element and manufacturing method thereof
JP4164255B2 (en) Method for manufacturing ceramic component having internal electrode and ceramic component having internal electrode
JP2017189096A (en) Commutator, motor using the same, and method of manufacturing commutator
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JP2010016132A (en) Thermoelectric conversion module and method of producing the same