JP2017050519A - Fesi2-based lamination type thermoelectric conversion module - Google Patents

Fesi2-based lamination type thermoelectric conversion module Download PDF

Info

Publication number
JP2017050519A
JP2017050519A JP2015187396A JP2015187396A JP2017050519A JP 2017050519 A JP2017050519 A JP 2017050519A JP 2015187396 A JP2015187396 A JP 2015187396A JP 2015187396 A JP2015187396 A JP 2015187396A JP 2017050519 A JP2017050519 A JP 2017050519A
Authority
JP
Japan
Prior art keywords
type
type element
fesi
powder
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015187396A
Other languages
Japanese (ja)
Inventor
裕宣 鈴木
Hironobu Suzuki
裕宣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Gakuen
Original Assignee
Meisei Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Gakuen filed Critical Meisei Gakuen
Priority to JP2015187396A priority Critical patent/JP2017050519A/en
Publication of JP2017050519A publication Critical patent/JP2017050519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a FeSi-based lamination type thermoelectric conversion module that can be produced with reduced man-hours and has highly reliable bonding part between a p-type FeSisemiconductor and an n-type FeSisemiconductor.SOLUTION: By alternately filling a p-type FeSipowder 6 and an n-type FeSipowder in a sintering die and sintering to simultaneously perform sintering of the powder and bonding of a p-type FeSielement 12 and an n-type FeSielement 13 during the sintering of the FeSi, an efficient and highly reliable lamination type module can be obtained.SELECTED DRAWING: Figure 6

Description

本発明は温度差を利用して発電する熱電発電モジュールに関する。  The present invention relates to a thermoelectric power generation module that generates power using a temperature difference.

ゼーベック効果を利用した熱電変換モジュールが知られており、熱電変換モジュールは一般的にセラミックス基板上にp型半導体からなる熱電変換素子(p型素子)とn型半導体からなる熱電変換素子(n型素子)を交互配置し、それらのp型素子とn型素子を電極で直列に接続した構造を有している。A thermoelectric conversion module using the Seebeck effect is known. The thermoelectric conversion module is generally a thermoelectric conversion element (p-type element) made of a p-type semiconductor and a thermoelectric conversion element (n-type semiconductor) made of an n-type semiconductor on a ceramic substrate. Element) are alternately arranged, and the p-type element and the n-type element are connected in series by electrodes.

FeSi系熱電変換素子は、環境負荷の小さい材料として知られている。The FeSi 2 -based thermoelectric conversion element is known as a material having a small environmental load.

素子間の接続を極力電気抵抗の小さい状態で行うための方法が提案されている。There has been proposed a method for connecting elements in a state where electric resistance is as low as possible.

通常p型素子とn型素子は、導電ペーストやろう付けなどにより金属製の電極を介して、接合されている。  Usually, the p-type element and the n-type element are joined via a metal electrode by means of conductive paste or brazing.

しかし熱電換材料は半導体である場合が多く、モジュールを構成するための金属電極と半導体素子の接合は一般的に困難である。  However, in many cases, the thermoelectric material is a semiconductor, and it is generally difficult to join a metal electrode and a semiconductor element for constituting a module.

p型素子とn型素子をそれぞれ作製した後、接合しているため、作製に要する工数が大きい問題がある。  Since each of the p-type element and the n-type element is produced and then joined, there is a problem that the number of man-hours required for production is large.

また導電ペーストやロウ付けによる接合は、接合部の信頼性が低い問題がある。特に高温にさらされる側の接合部には高い信頼性が要求される。  In addition, bonding by conductive paste or brazing has a problem that the reliability of the bonded portion is low. In particular, a high reliability is required for a joint portion exposed to a high temperature.

p型素子およびn型素子の創成と、p型素子とn型素子の接合を同時に行い積層構造のモジュールを作製することにより、接合工程を削除し、また接合部の信頼性を向上させる。The creation of the p-type element and the n-type element and the joining of the p-type element and the n-type element are performed simultaneously to produce a module having a laminated structure, thereby eliminating the joining process and improving the reliability of the joint.

グラファイト型にp型FeSi粉末と、n型FeSi粉末を交互に充填し、放電プラズマ焼結装置にて焼結する。
p型FeSi粉末はFeSiにCrを添加した粉末であり、n型FeSi粉末はFeSiにCoCrを添加した粉末である。
A graphite mold is alternately filled with p-type FeSi 2 powder and n-type FeSi 2 powder, and sintered by a discharge plasma sintering apparatus.
The p-type FeSi 2 powder is a powder obtained by adding Cr to FeSi 2 , and the n-type FeSi 2 powder is a powder obtained by adding CoCr to FeSi 2 .

焼結後得られた焼結体を六面体形状に加工した後、効率的に温度をつける目的で溝加工を行う。After the sintered body obtained after sintering is processed into a hexahedral shape, grooving is performed for the purpose of efficiently increasing the temperature.

素子と電極(あるいは導線)の接合を容易にするために、粉末の最上面と最下面に金属板を挿入して焼結した。In order to facilitate the joining of the element and the electrode (or conductive wire), a metal plate was inserted into the uppermost surface and the lowermost surface of the powder and sintered.

p型粉末とn型粉末の間に、それぞれの添加元素の相互拡散を防ぐ目的で金属板を挿入しても良い。A metal plate may be inserted between the p-type powder and the n-type powder for the purpose of preventing mutual diffusion of each additive element.

本発明によれば、従来p型素子とn型素子を個別に加工し、その後金属ペーストや半田などで接合していたものが、素子の焼結と同時に接合が完了するので、接合工程が不要になり、製作工程の短縮が可能になる。  According to the present invention, a conventional p-type element and n-type element are separately processed and then joined with a metal paste or solder, and the joining is completed simultaneously with the sintering of the element, so a joining process is unnecessary. Thus, the manufacturing process can be shortened.

また金属ペーストや半田は信頼性に問題がある。特に半田は例えば600℃などの高温には耐えられないなどの問題もあるが、本発明によれば、接合部の耐熱性は素子の耐熱性と同等であることが期待できる。  Metal paste and solder have a problem in reliability. In particular, solder has a problem that it cannot withstand high temperatures such as 600 ° C., but according to the present invention, it can be expected that the heat resistance of the joint is equal to the heat resistance of the element.

従来の方法による発電モジュール(2対の例)Conventional power generation module (two pairs) 本発明の実施形態における熱電変換モジュールの製造方法(粉末充填時の断面図)Manufacturing method of thermoelectric conversion module in embodiment of this invention (sectional drawing at the time of powder filling) 本発明の実施形態における熱電変換モジュールの製造方法(焼結体)Manufacturing method (sintered body) of thermoelectric conversion module in embodiment of this invention 本発明の実施形態における熱電変換モジュールの製造方法(6面体加工工程)Method for manufacturing thermoelectric conversion module in embodiment of the present invention (hexahedral processing step) 本発明の実施形態における熱電変換モジュールの製造方法(溝加工)Method for manufacturing thermoelectric conversion module in embodiment of the present invention (grooving)

以下本発明の実施の形態の熱電発電モジュールについて、図面を用いて説明する。比較として従来の方法によるモジュールの例を図1に示す。Hereinafter, thermoelectric power generation modules according to embodiments of the present invention will be described with reference to the drawings. For comparison, an example of a module according to a conventional method is shown in FIG.

p型素子1およびn型素子2は、それぞれ焼結した後、所定の形状に加工したものである。加工されたp型素子1およびn型素子は金属ペースト3により銅製の電極4と接合する。この図は2対の例を示している。その後上下をセラミックスの絶縁板5により挟み込み熱電発電モジュールとして使用される。The p-type element 1 and the n-type element 2 are each sintered and then processed into a predetermined shape. The processed p-type element 1 and n-type element are joined to the copper electrode 4 by the metal paste 3. This figure shows two pairs of examples. Thereafter, the upper and lower sides are sandwiched between ceramic insulating plates 5 and used as a thermoelectric power generation module.

図2は本発明での、素子の焼結と接合を同時に行うための粉末充填状態を断面図で示したものである。p型FeSi粉末6とn型FeSi粉末7を、交互に5層ずつ、内径φ20のグラファイト製のダイ8とグラファイト製下パンチ9で構成される空間に充填した。粉末量は各層が焼結後およそ3.5mmとなると推測される量とした。FIG. 2 is a cross-sectional view showing a powder filling state for simultaneous sintering and joining of elements in the present invention. The p-type FeSi 2 powder 6 and the n-type FeSi 2 powder 7 were alternately filled into a space composed of a graphite die 8 and a graphite lower punch 9 having an inner diameter of φ20 in five layers. The amount of powder was estimated to be about 3.5 mm after each layer was sintered.

この時p型素子およびn型素子と電力を取り出すための導線などを接合しやすくするための、金属層を設ける目的で最上面と最下面に銀板10を充填した。At this time, the silver plate 10 was filled in the uppermost surface and the lowermost surface for the purpose of providing a metal layer for facilitating the joining of the p-type element and the n-type element to the lead wire for taking out electric power.

その後上パンチ11を挿入して、放電プラズマ焼結機により焼結した。焼結を行なうときの温度は、たとえば750℃で、上下パンチへの加圧は、たとえば70MPaである。Thereafter, the upper punch 11 was inserted and sintered by a discharge plasma sintering machine. The temperature at which the sintering is performed is, for example, 750 ° C., and the pressure applied to the upper and lower punches is, for example, 70 MPa.

焼結体を図3に示す。直径が20mm、高さが約35mmの焼結体が得られた。The sintered body is shown in FIG. A sintered body having a diameter of 20 mm and a height of about 35 mm was obtained.

図3に示す焼結体を、φ20の面を15mm×11mmに寸法に加工を行ったものを図4に示す。15mm×11mm×35mmの6面体を得た。FIG. 4 shows the sintered body shown in FIG. 3 which has been processed into a size of 15 mm × 11 mm on the surface of φ20. A hexahedron of 15 mm × 11 mm × 35 mm was obtained.

図4の6面体に図5に示すように、15mm方向に交互に、p型素子とn型素子の界面にそって幅1mm、深さ10mmの溝加工14を行った。As shown in FIG. 5, groove processing 14 having a width of 1 mm and a depth of 10 mm was performed on the hexahedron of FIG. 4 along the interface between the p-type element and the n-type element alternately in the 15 mm direction.

図5で得られた加工体に導線15を半田接合して、セラミックス製絶縁板5で挟み込み、図6に示すモジュールとした。この時導線とAg層は容易に半田付可能であり、低温側で接合するため耐熱性の問題はない。The lead wire 15 was soldered to the processed body obtained in FIG. 5 and sandwiched between the ceramic insulating plates 5 to obtain the module shown in FIG. At this time, the conducting wire and the Ag layer can be easily soldered and joined at the low temperature side, so there is no problem of heat resistance.

1 p型素子
2 n型素子
3 導電ペースト、ろう材など
4 電極
5 絶縁用セラミックス
6 p型FeSi粉末
7 n型FeSi粉末
8 グラファイト製ダイ
9 グラファイト製下パンチ
10 銀板
11 グラファイト製上パンチ
12 p型FeSi素子
13 n型FeSi素子
14 溝加工
15 導線
DESCRIPTION OF SYMBOLS 1 p-type element 2 n-type element 3 Conductive paste, brazing material, etc. 4 Electrode 5 Insulating ceramics 6 p-type FeSi 2 powder 7 n-type FeSi 2 powder 8 Graphite die 9 Graphite lower punch 10 Silver plate 11 Graphite upper punch 12 p-type FeSi 2 element 13 n-type FeSi 2 element 14 Groove machining 15 Conductor

本発明は温度差を利用して発電する熱電発電モジュールに関する。  The present invention relates to a thermoelectric power generation module that generates power using a temperature difference.

ゼーベック効果を利用した熱電変換モジュールが知られており、熱電変換モジュールは一般的にセラミックス基板上にp型半導体からなる熱電変換素子(p型素子)とn型半導体からなる熱電変換素子(n型素子)を交互配置し、それらのp型素子とn型素子を電極で直列に接続した構造を有している。A thermoelectric conversion module using the Seebeck effect is known. The thermoelectric conversion module is generally a thermoelectric conversion element (p-type element) made of a p-type semiconductor and a thermoelectric conversion element (n-type semiconductor) made of an n-type semiconductor on a ceramic substrate. Element) are alternately arranged, and the p-type element and the n-type element are connected in series by electrodes.

FeSi系熱電変換素子は、環境負荷の小さい材料として知られている。The FeSi 2 -based thermoelectric conversion element is known as a material having a small environmental load.

素子間の接続を極力電気抵抗の小さい状態で行うための方法が提案されている。There has been proposed a method for connecting elements in a state where electric resistance is as low as possible.

通常p型素子とn型素子は、導電ペーストやろう付けなどにより金属製の電極を介して、接合されている。  Usually, the p-type element and the n-type element are joined via a metal electrode by means of conductive paste or brazing.

しかし熱電換材料は半導体である場合が多く、モジュールを構成するための金属電極と半導体素子の接合は一般的に困難である。  However, in many cases, the thermoelectric material is a semiconductor, and it is generally difficult to join a metal electrode and a semiconductor element for constituting a module.

p型素子とn型素子をそれぞれ作製した後、接合しているため、作製に要する工数が大きい問題がある。  Since each of the p-type element and the n-type element is produced and then joined, there is a problem that the number of man-hours required for production is large.

また導電ペーストやロウ付けによる接合は、接合部の信頼性が低い問題がある。特に高温にさらされる側の接合部には高い信頼性が要求される。  In addition, bonding by conductive paste or brazing has a problem that the reliability of the bonded portion is low. In particular, a high reliability is required for a joint portion exposed to a high temperature.

p型素子およびn型素子の創成と、p型素子とn型素子の接合を同時に行い積層構造のモジュールを作製することにより、接合工程を削除し、また接合部の信頼性を向上させる。The creation of the p-type element and the n-type element and the joining of the p-type element and the n-type element are performed simultaneously to produce a module having a laminated structure, thereby eliminating the joining process and improving the reliability of the joint.

グラファイト型にp型FeSi粉末と、n型FeSi粉末を交互に充填し、放電プラズマ焼結装置にて焼結する。
p型FeSi粉末はFeSiにCrを添加した粉末であり、n型FeSi粉末はFeSiにCoCrを添加した粉末である。
A graphite mold is alternately filled with p-type FeSi 2 powder and n-type FeSi 2 powder, and sintered by a discharge plasma sintering apparatus.
The p-type FeSi 2 powder is a powder obtained by adding Cr to FeSi 2 , and the n-type FeSi 2 powder is a powder obtained by adding CoCr to FeSi 2 .

焼結後得られた焼結体を六面体形状に加工した後、効率的に温度をつける目的で溝加工を行う。After the sintered body obtained after sintering is processed into a hexahedral shape, grooving is performed for the purpose of efficiently increasing the temperature.

素子と電極(あるいは導線)の接合を容易にするために、粉末の最上面と最下面に金属板を挿入して焼結した。In order to facilitate the joining of the element and the electrode (or conductive wire), a metal plate was inserted into the uppermost surface and the lowermost surface of the powder and sintered.

p型粉末とn型粉末の間に、それぞれの添加元素の相互拡散を防ぐ目的で金属板を挿入しても良い。A metal plate may be inserted between the p-type powder and the n-type powder for the purpose of preventing mutual diffusion of each additive element.

本発明によれば、従来p型素子とn型素子を個別に加工し、その後金属ペーストや半田などで接合していたものが、素子の焼結と同時に接合が完了するので、接合工程が不要になり、製作工程の短縮が可能になる。  According to the present invention, a conventional p-type element and n-type element are separately processed and then joined with a metal paste or solder, and the joining is completed simultaneously with the sintering of the element, so a joining process is unnecessary. Thus, the manufacturing process can be shortened.

また金属ペーストや半田は信頼性に問題がある。特に半田は例えば600℃などの高温には耐えられないなどの問題もあるが、本発明によれば、接合部の耐熱性は素子の耐熱性と同等であることが期待できる。  Metal paste and solder have a problem in reliability. In particular, solder has a problem that it cannot withstand high temperatures such as 600 ° C., but according to the present invention, it can be expected that the heat resistance of the joint is equal to the heat resistance of the element.

従来の方法による発電モジュール(2対の例)Conventional power generation module (two pairs) 本発明の実施形態における熱電変換モジュールの製造方法(粉末充填時の断面図)Manufacturing method of thermoelectric conversion module in embodiment of this invention (sectional drawing at the time of powder filling) 本発明の実施形態における熱電変換モジュールの製造方法(焼結体)Manufacturing method (sintered body) of thermoelectric conversion module in embodiment of this invention 本発明の実施形態における熱電変換モジュールの製造方法(6面体加工工程)Method for manufacturing thermoelectric conversion module in embodiment of the present invention (hexahedral processing step) 本発明の実施形態における熱電変換モジュールの製造方法(溝加工)Method for manufacturing thermoelectric conversion module in embodiment of the present invention (grooving) 本発明の実施形態における熱電変換モジュールの製造方法(完成図)Manufacturing method of thermoelectric conversion module in embodiment of the present invention (complete drawing)

以下本発明の実施の形態の熱電発電モジュールについて、図面を用いて説明する。比較として従来の方法によるモジュールの例を図1に示す。Hereinafter, thermoelectric power generation modules according to embodiments of the present invention will be described with reference to the drawings. For comparison, an example of a module according to a conventional method is shown in FIG.

p型素子1およびn型素子2は、それぞれ焼結した後、所定の形状に加工したものである。加工されたp型素子1およびn型素子は金属ペースト3により銅製の電極4と接合する。この図は2対の例を示している。その後上下をセラミックスの絶縁板5により挟み込み熱電発電モジュールとして使用される。The p-type element 1 and the n-type element 2 are each sintered and then processed into a predetermined shape. The processed p-type element 1 and n-type element are joined to the copper electrode 4 by the metal paste 3. This figure shows two pairs of examples. Thereafter, the upper and lower sides are sandwiched between ceramic insulating plates 5 and used as a thermoelectric power generation module.

図2は本発明での、素子の焼結と接合を同時に行うための粉末充填状態を断面図で示したものである。p型FeSi粉末6とn型FeSi粉末7を、交互に5層ずつ、内径φ20のグラファイト製のダイ8とグラファイト製下パンチ9で構成される空間に充填した。粉末量は各層が焼結後およそ3.5mmとなると推測される量とした。FIG. 2 is a cross-sectional view showing a powder filling state for simultaneous sintering and joining of elements in the present invention. The p-type FeSi 2 powder 6 and the n-type FeSi 2 powder 7 were alternately filled into a space composed of a graphite die 8 and a graphite lower punch 9 having an inner diameter of φ20 in five layers. The amount of powder was estimated to be about 3.5 mm after each layer was sintered.

この時p型素子およびn型素子と電力を取り出すための導線などを接合しやすくするための、金属層を設ける目的で最上面と最下面に銀板10を充填した。At this time, the silver plate 10 was filled in the uppermost surface and the lowermost surface for the purpose of providing a metal layer for facilitating the joining of the p-type element and the n-type element to the lead wire for taking out electric power.

その後上パンチ11を挿入して、放電プラズマ焼結機により焼結した。焼結を行なうときの温度は、たとえば750℃で、上下パンチへの加圧は、たとえば70MPaである。Thereafter, the upper punch 11 was inserted and sintered by a discharge plasma sintering machine. The temperature at which the sintering is performed is, for example, 750 ° C., and the pressure applied to the upper and lower punches is, for example, 70 MPa.

焼結体を図3に示す。直径が20mm、高さが約35mmの焼結体が得られた。The sintered body is shown in FIG. A sintered body having a diameter of 20 mm and a height of about 35 mm was obtained.

図3に示す焼結体を、φ20の面を15mm×11mmに寸法に加工を行ったものを図4に示す。15mm×11mm×35mmの6面体を得た。FIG. 4 shows the sintered body shown in FIG. 3 which has been processed into a size of 15 mm × 11 mm on the surface of φ20. A hexahedron of 15 mm × 11 mm × 35 mm was obtained.

図4の6面体に図5に示すように、15mm方向に交互に、p型素子とn型素子の界面にそって幅1mm、深さ10mmの溝加工14を行った。As shown in FIG. 5, groove processing 14 having a width of 1 mm and a depth of 10 mm was performed on the hexahedron of FIG. 4 along the interface between the p-type element and the n-type element alternately in the 15 mm direction.

図5で得られた加工体に導線15を半田接合して、セラミックス製絶縁板5で挟み込み、図6に示すモジュールとした。この時導線とAg層は容易に半田付可能であり、低温側で接合するため耐熱性の問題はない。The lead wire 15 was soldered to the processed body obtained in FIG. 5 and sandwiched between the ceramic insulating plates 5 to obtain the module shown in FIG. At this time, the conducting wire and the Ag layer can be easily soldered and joined at the low temperature side, so there is no problem of heat resistance.

1 p型素子
2 n型素子
3 導電ペースト、ろう材など
4 電極
5 絶縁用セラミックス
6 p型FeSi粉末
7 n型FeSi粉末
8 グラファイト製ダイ
9 グラファイト製下パンチ
10 銀板
11 グラファイト製上パンチ
12 p型FeSi素子
13 n型FeSi素子
14 溝加工
15 導線
DESCRIPTION OF SYMBOLS 1 p-type element 2 n-type element 3 Conductive paste, brazing material, etc. 4 Electrode 5 Insulating ceramics 6 p-type FeSi 2 powder 7 n-type FeSi 2 powder 8 Graphite die 9 Graphite lower punch 10 Silver plate 11 Graphite upper punch 12 p-type FeSi 2 element 13 n-type FeSi 2 element 14 Groove machining 15 Conductor

Claims (5)

FeSi系熱電発電モジュールにおいて、p型素子とn型素子が積層構造をもつもの。In a FeSi 2 -based thermoelectric power generation module, a p-type element and an n-type element have a laminated structure. 請求項1においてp型素子とn型素子の接合を放電プラズマ焼結法により行うもの。2. The method according to claim 1, wherein the p-type element and the n-type element are joined by a discharge plasma sintering method. 請求項1において放電プラズマ焼結法によりp型素子とn型素子それぞれの焼結と素子同士の接合を同時に行うもの。2. The method according to claim 1, wherein each of the p-type element and the n-type element is sintered and the elements are joined together by a discharge plasma sintering method. 請求項1において、p型素子とn型素子の界面部にスリット構造を持つもの。2. The structure according to claim 1, wherein the p-type element and the n-type element have a slit structure at the interface. 請求項1において、両端面に電極(銅線)を接合しやすくするための、金属層を持つもの。In Claim 1, it has a metal layer for making it easy to join an electrode (copper wire) to both end faces.
JP2015187396A 2015-09-04 2015-09-04 Fesi2-based lamination type thermoelectric conversion module Pending JP2017050519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187396A JP2017050519A (en) 2015-09-04 2015-09-04 Fesi2-based lamination type thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187396A JP2017050519A (en) 2015-09-04 2015-09-04 Fesi2-based lamination type thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2017050519A true JP2017050519A (en) 2017-03-09

Family

ID=58280274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187396A Pending JP2017050519A (en) 2015-09-04 2015-09-04 Fesi2-based lamination type thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2017050519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175528A1 (en) * 2016-04-05 2017-10-12 株式会社日立製作所 Thermoelectric conversion material and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175528A1 (en) * 2016-04-05 2017-10-12 株式会社日立製作所 Thermoelectric conversion material and production method therefor

Similar Documents

Publication Publication Date Title
JP5515721B2 (en) Method for manufacturing thermoelectric conversion module
CA2754081C (en) Method for producing thermoelectric module
WO2015186328A1 (en) Thermoelectric conversion element sheet, method for manufacturing same, and method for manufacturing thermoelectric conversion device
JP5360072B2 (en) Method for manufacturing thermoelectric conversion element
JP2013258414A (en) Thermoelectric module
JP2017050519A (en) Fesi2-based lamination type thermoelectric conversion module
US9543494B2 (en) Thermoelectric conversion module and method of manufacturing the same
JP2008109054A (en) Thermoelectric conversion module and method for manufacturing the same
JP2016507899A (en) Semiconductor chip assembly and manufacturing method thereof
JP2018137374A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
JP2009049165A (en) Thermoelectric conversion module, and thermoelectric conversion module assembly
JPH0992891A (en) Thermoelectric element and thermoelectric module
KR101207300B1 (en) Method for manufacturing thermoelectric element
JP2015050372A (en) Method for manufacturing thermoelectric conversion module
JP2012238737A (en) Semiconductor module and manufacturing method therefor
WO2018163958A1 (en) Thermoelectric conversion module and method for manufacturing same
JP6933441B2 (en) Thermoelectric conversion module
JP6240525B2 (en) Thermoelectric conversion element manufacturing method and thermoelectric conversion element
JPH02178958A (en) Electronic cooling element and manufacture thereof
WO2020110850A1 (en) Ceramic structure and method of manufacturing ceramic structure
JPH0974227A (en) Assembling method of thermoelectric module
JP2018148196A (en) Thermoelectric conversion module and manufacturing method thereof
JP2015095610A (en) Peltier element
JP5480762B2 (en) Stack device manufacturing method
JP5418080B2 (en) Method for manufacturing thermoelectric conversion element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170711