JPH0974227A - Assembling method of thermoelectric module - Google Patents

Assembling method of thermoelectric module

Info

Publication number
JPH0974227A
JPH0974227A JP7230078A JP23007895A JPH0974227A JP H0974227 A JPH0974227 A JP H0974227A JP 7230078 A JP7230078 A JP 7230078A JP 23007895 A JP23007895 A JP 23007895A JP H0974227 A JPH0974227 A JP H0974227A
Authority
JP
Japan
Prior art keywords
thermoelectric
laminated
terminal electrodes
elements
thermoelectric module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7230078A
Other languages
Japanese (ja)
Inventor
Takuya Yamazaki
琢也 山崎
Hiroyuki Iizuka
博之 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7230078A priority Critical patent/JPH0974227A/en
Publication of JPH0974227A publication Critical patent/JPH0974227A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the assembly of thermoelectric module by a method wherein the space between terminal electrodes is filled with solder in the state juxtaposed closely opposing to the terminal electrodes of adjacent laminated thermoelectric element to make the terminal electrodes directly junctioned with each other. SOLUTION: P-type and n-type semiconductors 2A and 2B are arranged to be positioned alternately so that necessary numbers may be arranged in series, that is, mutual terminal electrodes 3 of adjacent laminated thermoelectric elements may be closely opposed to each other at a specific interval D, also arranged to be alternately positioned. Next, the end part of the terminal electrode 3 side of the laminated thermoelectric element 1 in such a state is immersed in a solder bath. Through these procedures, the space between the terminal electrodes 3, 3 of the adjacent laminated thermoelectric elements 1, 1 is filled with a solvent so as to form a thermoelectric module 10 by conduction and connection of said elements 1, 1. Accordingly, the thermoelectric module 10 can be easily assembled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱電モジュールの組
み立て方法に係り、特に、熱エネルギーを電気エネルギ
ーに変換する発電装置として有用な、複数個の積層型熱
電素子を直列に接続してなる熱電モジュールを組み立て
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric module assembling method, and more particularly to a thermoelectric module having a plurality of stacked thermoelectric elements connected in series, which is useful as a power generator for converting heat energy into electric energy. On how to assemble.

【0002】[0002]

【従来の技術】従来の熱電モジュールは、より大きな出
力を取り出すために、複数個のp型熱電素子とn型熱電
素子とを交互に接続して構成されている。即ち、このよ
うな熱電モジュールの最小単位は、p型熱電素子とn型
熱電素子を各1個ずつ直列接続した対(つい)である
が、従来においては、これらの対を更に直列又は並列に
接続してモジュール化することにより、モジュール全体
として高電圧又は高出力を得ている。
2. Description of the Related Art A conventional thermoelectric module is constructed by alternately connecting a plurality of p-type thermoelectric elements and n-type thermoelectric elements in order to obtain a larger output. That is, the minimum unit of such a thermoelectric module is a pair (a) in which one p-type thermoelectric element and one n-type thermoelectric element are connected in series, but in the past, these pairs were further connected in series or in parallel. By connecting and modularizing, a high voltage or high output is obtained as a whole module.

【0003】従来の熱電モジュールでは、p型熱電素子
とn型熱電素子とが別体となっているため、例えば、5
0対のモジュールを作製するためには、p型熱電素子と
n型熱電素子とを各50個、即ち、合計100個の熱電
素子が必要である。そして、更に、これらの熱電素子の
両端部を電気的に接続するための配線が必要となる。
In the conventional thermoelectric module, since the p-type thermoelectric element and the n-type thermoelectric element are separate bodies, for example, 5
In order to manufacture 0 pairs of modules, 50 p-type thermoelectric elements and 50 n-type thermoelectric elements, that is, 100 thermoelectric elements in total are required. Further, wiring for electrically connecting both ends of these thermoelectric elements is required.

【0004】これに対して、p型半導体とn型半導体と
を交互に積層し、積層界面において、p型半導体とn型
半導体とを直接接合する接合部を形成し、この積層界面
の接合部以外の領域は絶縁セラミックス層により絶縁し
た積層型熱電素子によれば、p型熱電素子とn型熱電素
子との接続スペースが不要であることから、省スペース
化が可能となる。
On the other hand, a p-type semiconductor and an n-type semiconductor are alternately laminated, and a joint portion for directly joining the p-type semiconductor and the n-type semiconductor is formed at the laminated interface, and the joint portion at the laminated interface is formed. According to the laminated thermoelectric element insulated by the insulating ceramic layer in the other regions, the space for connecting the p-type thermoelectric element and the n-type thermoelectric element is not required, so that the space can be saved.

【0005】しかし、この積層型熱電素子1個だけでは
十分な出力が得られないことから、このような積層型熱
電素子を用いる場合であっても、更に大きな出力を得る
ために、これを複数個直列又は並列に接続してモジュー
ル化することが行われている。
However, since a sufficient output cannot be obtained with only one laminated thermoelectric element, even if such a laminated thermoelectric element is used, a plurality of such laminated thermoelectric elements are required to obtain a larger output. Modules are made by connecting them in series or in parallel.

【0006】積層型熱電素子をモジュール化する場合に
は、絶縁基板上に積層型熱電素子を配列し、積層型熱電
素子の端子電極同志を接続する。具体的には、配列のた
めの配線としての銅と素子を配線に接続させるための半
田ペーストがスクリーン印刷法等で形成された絶縁基板
を用い、この絶縁基板上に素子を並べ絶縁基板を加熱し
半田ペーストを軟化させて接続することによりモジュー
ル化する。
When the laminated thermoelectric element is modularized, the laminated thermoelectric elements are arranged on an insulating substrate and the terminal electrodes of the laminated thermoelectric element are connected to each other. Specifically, copper is used as the wiring for arrangement and an insulating substrate on which a solder paste for connecting the elements to the wiring is formed by a screen printing method, etc., the elements are arranged on this insulating substrate and the insulating substrate is heated. Then, the solder paste is softened and connected to form a module.

【0007】[0007]

【発明が解決しようとする課題】このようにして複数の
積層型熱電素子をモジュール化すると、配線部分がロス
になり、基板面積当りの素子の占有率に限界が生じ(占
有率は、最大でも60%程度である。)、基板単位面積
当りの出力が十分に得られない。しかも、配線による抵
抗増加や断線の可能性の問題もある。
When a plurality of laminated thermoelectric elements are modularized in this way, the wiring portion becomes a loss and the element occupancy rate per substrate area is limited (the occupancy rate is at maximum). The output per unit area of the substrate cannot be sufficiently obtained. In addition, there is a problem that the resistance may increase due to the wiring or the wire may break.

【0008】これに対して、本出願人は、先に、絶縁基
板を使わずにモジュール化する方法として、端子電極間
に共晶クリーム半田を充填し、リフロー炉で接合する方
法を提案したが(特願平6−198386号)、この方
法は、リフロー炉等の設備を必要とし、作業も煩雑であ
る。
On the other hand, the present applicant has previously proposed a method of filling a eutectic cream solder between the terminal electrodes and joining them in a reflow furnace as a method of modularizing without using an insulating substrate. (Japanese Patent Application No. 6-198386), this method requires facilities such as a reflow furnace and the work is complicated.

【0009】本発明は上記従来の問題点を解決し、積層
型熱電素子の端子電極同士を直接接合して容易に熱電モ
ジュールを組み立てる方法を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for easily assembling a thermoelectric module by directly joining terminal electrodes of a laminated thermoelectric element.

【0010】[0010]

【課題を解決するための手段】本発明の熱電モジュール
の組み立て方法は、積層型熱電素子の外面に形成された
端子電極を該積層型熱電素子に隣接する積層型熱電素子
の外面に形成された端子電極に直接接合して導通させる
ことにより、複数個の積層型熱電素子を直列に接続して
なる熱電モジュールを組み立てる方法であって、複数個
の積層型熱電素子を、その外面に形成された端子電極
が、隣接する積層型熱電素子の端子電極と近接して対面
するように並列させた状態で、該積層型熱電素子の端子
電極が形成された側を溶融半田中に浸漬し、隣接する積
層型熱電素子の端子電極間に半田を充填することを特徴
とする。
According to the method of assembling a thermoelectric module of the present invention, the terminal electrode formed on the outer surface of the laminated thermoelectric element is formed on the outer surface of the laminated thermoelectric element adjacent to the laminated thermoelectric element. A method for assembling a thermoelectric module in which a plurality of laminated thermoelectric elements are connected in series by directly joining and conducting the terminal electrodes, wherein a plurality of laminated thermoelectric elements are formed on an outer surface thereof. In a state where the terminal electrodes are arranged in parallel so as to closely face and face the terminal electrodes of the adjacent laminated thermoelectric elements, the side of the laminated thermoelectric elements on which the terminal electrodes are formed is immersed in molten solder to be adjacent to each other. It is characterized in that solder is filled between the terminal electrodes of the laminated thermoelectric element.

【0011】本発明では、積層型熱電素子の端子電極同
志を直接接合することにより、積層型熱電素子同志の導
通を図るため、端子電極をつなぐ配線が不要となる。こ
のため、配線による抵抗増加や断線の可能性は解消され
る。また、配線のためのスペースも不要となり、モジュ
ール内の素子占有率を高めることができることから、よ
り一層の省スペース化、高出力化を図ることができる。
According to the present invention, since the terminal electrodes of the laminated thermoelectric element are directly joined to each other so that the laminated thermoelectric elements are electrically connected to each other, the wiring for connecting the terminal electrodes is not required. Therefore, the possibility of resistance increase and disconnection due to wiring is eliminated. In addition, a space for wiring is not required, and the element occupancy rate in the module can be increased. Therefore, further space saving and higher output can be achieved.

【0012】しかも、複数の積層型熱電素子を配列した
状態で、積層型熱電素子の端子電極が形成された側を溶
融半田浴に浸漬するのみで、積層型熱電素子同志を導通
することができ、特別な設備を必要とすることなく、容
易にモジュール化することができる。
In addition, the plurality of laminated thermoelectric elements can be electrically connected by simply immersing the side of the laminated thermoelectric elements on which the terminal electrodes are formed in a molten solder bath in a state where a plurality of laminated thermoelectric elements are arranged. , Can be easily modularized without requiring special equipment.

【0013】本発明においては、積層型熱電素子の端子
電極はその少なくとも表面が半田めっき又は半田ペース
トで形成されていることが重要であり、また、直列に配
列された積層型熱電素子の間隔は100〜200μmで
あることが好ましい。更に、配列された積層型熱電素子
間にアルミナセメントを充填しておくことにより、積層
型熱電素子同志の間隔や位置ずれを防止して、浸漬作業
性を高めることができる。
In the present invention, it is important that at least the surface of the terminal electrode of the laminated thermoelectric element is formed by solder plating or solder paste, and the distance between the laminated thermoelectric elements arranged in series is small. It is preferably 100 to 200 μm. Furthermore, by filling alumina cement between the arranged laminated thermoelectric elements, it is possible to prevent gaps and positional deviations between the laminated thermoelectric elements and to improve dipping workability.

【0014】[0014]

【発明の実施の形態】以下に図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明の熱電モジュールの組み立て
方法の一実施例方法を示す斜視図である。図2は図1に
示す方法で用いられる積層型熱電素子を示す図であっ
て、(a)は斜視図、(b)は(a)のB−B線に沿う
断面図である。
FIG. 1 is a perspective view showing a method of assembling a thermoelectric module according to an embodiment of the present invention. 2A and 2B are views showing a laminated thermoelectric element used in the method shown in FIG. 1, in which FIG. 2A is a perspective view and FIG. 2B is a sectional view taken along line BB of FIG.

【0016】図2に示す積層型熱電素子1は、p型半導
体2Aとn型半導体2Bとが積層、接合され、接合部以
外の層間部に絶縁セラミックス層2Cが形成され、かつ
外面に端子電極3,3が形成された1対品の積層型熱電
素子である。なお、この端子電極3は、ニッケルめっき
膜3A上に半田めっき膜3Bを形成したものである。
In the laminated thermoelectric element 1 shown in FIG. 2, a p-type semiconductor 2A and an n-type semiconductor 2B are laminated and joined, an insulating ceramics layer 2C is formed in an interlayer portion other than the joined portion, and a terminal electrode is formed on the outer surface. It is a one-to-one laminated thermoelectric element in which 3, 3 are formed. The terminal electrode 3 is formed by forming the solder plating film 3B on the nickel plating film 3A.

【0017】積層型熱電素子は、コールドプレス法やホ
ットプレス法などのいわゆる粉末冶金的な手法及びグリ
ーンシートを用いたシート積層法により作製されるのが
一般的である。本発明は、このような手法で作製された
積層型熱電素子のうち、図2に示す如く、端子電極の少
なくとも表面が半田めっき又は半田ペーストで形成さ
れ、かつp型半導体とn型半導体とが一体となっている
ものに適用できる。
The laminated thermoelectric element is generally produced by a so-called powder metallurgical method such as a cold pressing method or a hot pressing method and a sheet laminating method using a green sheet. In the laminated thermoelectric element manufactured by such a method, at least the surface of the terminal electrode is formed by solder plating or solder paste and the p-type semiconductor and the n-type semiconductor are formed as shown in FIG. It can be applied to one that is integrated.

【0018】本発明においては、このような積層型熱電
素子1を図1(a)に示す如く、必要個数直列配置とな
るように、即ち、隣接する積層型熱電素子1の端子電極
3同志が所定の間隔Dをおいて近接して対面するよう
に、また、p型半導体2Aとn型半導体2Bとが交互に
位置するように配列する。
In the present invention, as shown in FIG. 1A, such a laminated type thermoelectric element 1 is arranged in a required number in series, that is, the terminal electrodes 3 of adjacent laminated type thermoelectric elements 1 are arranged in the same manner. The p-type semiconductors 2A and the n-type semiconductors 2B are arranged so as to closely face each other with a predetermined space D therebetween and to be alternately located.

【0019】そして、この状態で、積層型熱電素子1の
端子電極3側の端部を溶融半田浴に浸漬するが、その
際、積層型熱電素子同志の間隔ずれ及び位置ずれを防止
するために、隣接する積層型熱電素子1,1間にアルミ
ナセメントを充填するのが望ましい。
In this state, the end portion of the laminated thermoelectric element 1 on the side of the terminal electrode 3 is immersed in a molten solder bath. At this time, in order to prevent gaps and positional deviations between the laminated thermoelectric elements. It is desirable that alumina cement is filled between the adjacent laminated thermoelectric elements 1 and 1.

【0020】この場合、まず、積層型熱電素子1,1間
に、ポリイミドフィルム等の樹脂フィルムよりなる適当
なスペーサ4を介在させ(図1(b))、端子電極3の
上縁からスペーサ4の下面までの間にアルミナセメント
5を充填する(図1(c))。
In this case, first, an appropriate spacer 4 made of a resin film such as a polyimide film is interposed between the laminated thermoelectric elements 1 and 1 (FIG. 1B), and the spacer 4 is inserted from the upper edge of the terminal electrode 3. Alumina cement 5 is filled up to the lower surface of the (Fig. 1 (c)).

【0021】このアルミナセメントが乾燥固化した後、
スペーサ4を取り去り(図1(d))、この状態で、積
層型熱電素子1の端子電極3形成側の端部を溶融半田浴
に浸漬する。これにより、端子電極3表面が半田である
ため、溶融半田が、積層型熱電素子1の端子電極3,3
の隙間に吸い上げられ、半田6で隣接する積層型熱電素
子1,1の端子電極3,3間が充填されることにより、
積層型熱電素子1,1同志が導通及び接続され(図1
(e))、熱電モジュール10が得られる。
After the alumina cement is dried and solidified,
The spacer 4 is removed (FIG. 1D), and in this state, the end of the laminated thermoelectric element 1 on the side where the terminal electrode 3 is formed is immersed in a molten solder bath. As a result, since the surface of the terminal electrode 3 is solder, the molten solder will not melt into the terminal electrodes 3, 3 of the laminated thermoelectric element 1.
By being sucked up into the gap of and being filled with the solder 6 between the terminal electrodes 3 and 3 of the adjacent laminated type thermoelectric elements 1 and 1,
The laminated thermoelectric elements 1 and 1 are electrically connected and connected (see FIG. 1).
(E)), the thermoelectric module 10 is obtained.

【0022】この溶融半田の吸い上げを良好に行って、
十分な導通ないし接続を行うために、積層型熱電素子
1,1間の間隔Dは100〜200μmとするのが好ま
しい。この間隔Dが100μmより小さい場合、半田が
うまく吸い込まれないことがあり、端子電極間の導通が
得られなくなる。逆に、この間隔Dが200μmより大
きい場合、溶融半田は電極部を濡らすだけで、積層型熱
電素子同志の導通及び接続は起こらない。
The molten solder is sucked up well,
In order to perform sufficient conduction or connection, the distance D between the laminated thermoelectric elements 1 and 1 is preferably 100 to 200 μm. If the distance D is less than 100 μm, the solder may not be sucked in properly, and conduction between the terminal electrodes may not be obtained. On the contrary, when the distance D is larger than 200 μm, the molten solder only wets the electrode portion, and conduction and connection between the laminated thermoelectric elements do not occur.

【0023】なお、積層型熱電素子1,1同志の間隙の
充填材料として、アルミナセメント5を用いるのは、熱
電モジュールの使用環境が、場合によっては500℃以
上の高温になるため、このような高温にも十分に耐え得
る耐熱性を確保するためである。
Alumina cement 5 is used as a filling material for the gap between the laminated thermoelectric elements 1 and 1 because the environment in which the thermoelectric module is used may reach a high temperature of 500 ° C. or higher. This is to ensure heat resistance that can sufficiently withstand high temperatures.

【0024】このような本発明の熱電モジュールの組み
立て方法によれば、積層型熱電素子1の集合体を単に溶
融半田浴に浸漬するのみで、所望の個数の積層型熱電素
子1を接続した熱電モジュール10を容易に組み立てる
ことができる。しかも、この熱電モジュール10は、積
層型熱電素子1,1間の配線が不要であるため、積層型
熱電素子1,1間の間隙を従来のものに比べて大幅に低
減することができる。この結果、熱電モジュール内の素
子占有率を90%以上にまで高めることができ、より一
層の省スペース・高出力化が可能である。
According to the method for assembling the thermoelectric module of the present invention as described above, the thermoelectric module in which a desired number of the laminated thermoelectric elements 1 are connected can be obtained by simply immersing the assembly of the laminated thermoelectric elements 1 in the molten solder bath. The module 10 can be easily assembled. Moreover, since the thermoelectric module 10 does not require wiring between the laminated thermoelectric elements 1 and 1, the gap between the laminated thermoelectric elements 1 and 1 can be significantly reduced as compared with the conventional one. As a result, the element occupancy in the thermoelectric module can be increased to 90% or more, and further space saving and high output can be achieved.

【0025】[0025]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0026】実施例1 図1(a)〜(e)に示す方法に従って、図2に示す積
層型熱電素子を組み立てて熱電モジュールを製造した。
Example 1 According to the method shown in FIGS. 1A to 1E, the laminated thermoelectric element shown in FIG. 2 was assembled to manufacture a thermoelectric module.

【0027】まず、FeSi2 系熱電素子をシート積層
法により作製した。p型熱電半導体材料としてFeSi
2 にCrSi2 を2mol%添加したものを、n型熱電
半導体材料としてFeSi2 にCoSi2 を2mol%
添加したものを用い、また、絶縁材料としてZrO2
ガラスを40重量%加えたものを用い、上記3種類の材
料に各々、バインダーとしてポリビニルブチラール(P
VB)、可塑剤としてフタル酸ジブチル、分散剤として
GAFAC(東邦化学製)、溶剤としてエタノール及び
トルエンを加えスラリー化し、ドクターブレード法によ
りグリーンシート化した。これらをp型、絶縁体、n型
の順に一端のみがp−n接合するように熱圧着した。こ
れを、所望の素子形状に切断後、大気中、400℃で2
時間の脱脂工程によりバインダー及び溶剤を除去し、真
空中、1200℃で4時間の焼結工程、大気中、850
℃で50時間の熱処理工程を行った。次に、p−n接合
部の反対側に、電極部として電気めっき法によりニッケ
ル膜を厚さ0.5〜1μm程度に形成した後、同様に電
気めっき法で半田膜を厚さ0.5〜1μm程度に形成し
た。
First, a FeSi 2 type thermoelectric element was produced by a sheet laminating method. FeSi as p-type thermoelectric semiconductor material
2 mol% of CrSi 2 added to FeSi 2 as an n-type thermoelectric semiconductor material to 2 mol% of CoSi 2
The added material was used, and 40% by weight of glass was added to ZrO 2 as an insulating material, and polyvinyl butyral (P
VB), dibutyl phthalate as a plasticizer, GAFAC (manufactured by Toho Kagaku Co., Ltd.) as a dispersant, and ethanol and toluene as a solvent were added to form a slurry, and a green sheet was formed by a doctor blade method. These were thermocompression-bonded in the order of p-type, insulator, and n-type so that only one end was a pn junction. After cutting this into the desired element shape, it is 2
The binder and the solvent are removed by the degreasing process for 4 hours, and the sintering process is performed in vacuum at 1200 ° C. for 4 hours, in the air at 850
A heat treatment process was performed at 50 ° C. for 50 hours. Next, a nickel film having a thickness of about 0.5 to 1 μm is formed as an electrode portion on the opposite side of the pn junction portion by an electroplating method, and then a solder film is formed by an electroplating method to a thickness of 0.5 μm. The thickness is about 1 μm.

【0028】上記手法で作製した積層型熱電素子を、図
1(a)のように必要個数直列になるように並べ、次
に、素子同志の間隔が100μmになるように該当する
厚さのポリイミドフィルムをスペーサとして挟んだ後
(図1(b))、端子電極部からスペーサまでの間にア
ルミナセメントを充填した(図1(c))。アルミナセ
メントが乾燥固化した後、スペーサを取り去り(図1
(d))、溶融半田浴槽に5秒間浸漬した。その結果、
積層型熱電素子の端子電極間が半田で安定に導通、接続
された熱電モジュールが得られた。
The laminated thermoelectric elements manufactured by the above method are arranged in a required number in series as shown in FIG. 1 (a), and then a polyimide having a corresponding thickness so that the distance between the elements is 100 μm. After sandwiching the film as a spacer (FIG. 1 (b)), alumina cement was filled between the terminal electrode portion and the spacer (FIG. 1 (c)). After the alumina cement has dried and solidified, the spacer is removed (Fig. 1
(D)), it was immersed in the molten solder bath for 5 seconds. as a result,
A thermoelectric module was obtained in which the terminal electrodes of the laminated thermoelectric element were stably conducted and connected with solder.

【0029】[0029]

【発明の効果】以上詳述した通り、本発明の熱電モジュ
ールの組み立て方法によれば、複数の積層型熱電素子を
接続してなる、省スペース化が可能な高電圧、高出力熱
電モジュールであって、配線による抵抗増加や断線のお
それがない上に、モジュール内の素子占有率を大幅に高
めることができ、それにより単位面積当りの出力を大き
くすることができることから、より一層の省スペース・
高出力化が可能な熱電モジュールを、特別な設備を要す
ることなく極めて容易かつ効率的に組み立てることがで
きる。
As described in detail above, according to the thermoelectric module assembling method of the present invention, a space-saving high-voltage, high-output thermoelectric module is formed by connecting a plurality of laminated thermoelectric elements. As a result, there is no risk of resistance increase or disconnection due to wiring, and the element occupancy rate in the module can be greatly increased, which allows the output per unit area to be increased.
A thermoelectric module capable of high output can be assembled extremely easily and efficiently without requiring special equipment.

【0030】従って、本発明によれば、信頼性が高く、
小型で高電圧、高出力かつ高生産性で安価な熱電モジュ
ールが提供される。
Therefore, according to the present invention, the reliability is high,
Provided is a thermoelectric module that is small in size, high in voltage, high in output, high in productivity, and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電モジュールの組み立て方法の一実
施例方法を示す斜視図である。
FIG. 1 is a perspective view showing a method of an embodiment of a method for assembling a thermoelectric module of the present invention.

【図2】図1の熱電モジュールに適用されている積層型
熱電素子を示し、(a)は斜視図、(b)は(a)のB
−B線に沿う断面図である。
2 shows a laminated thermoelectric element applied to the thermoelectric module of FIG. 1, (a) is a perspective view, (b) is B of (a).
It is sectional drawing which follows the -B line.

【符号の説明】[Explanation of symbols]

1 積層型熱電素子 2A p型半導体 2B n型半導体 2C 絶縁セラミックス層 3 端子電極 4 スペーサ 5 アルミナセメント 6 半田 10 熱電モジュール DESCRIPTION OF SYMBOLS 1 Multilayer thermoelectric element 2A p-type semiconductor 2B n-type semiconductor 2C Insulating ceramics layer 3 Terminal electrode 4 Spacer 5 Alumina cement 6 Solder 10 Thermoelectric module

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 積層型熱電素子の外面に形成された端子
電極を該積層型熱電素子に隣接する積層型熱電素子の外
面に形成された端子電極に直接接合して導通させること
により、複数個の積層型熱電素子を直列に接続してなる
熱電モジュールを組み立てる方法であって、 複数個の積層型熱電素子を、その外面に形成された端子
電極が、隣接する積層型熱電素子の端子電極と近接して
対面するように並列させた状態で、該積層型熱電素子の
端子電極が形成された側を溶融半田中に浸漬し、隣接す
る積層型熱電素子の端子電極間に半田を充填することを
特徴とする熱電モジュールの組み立て方法。
1. A plurality of terminal electrodes formed on the outer surface of a laminated thermoelectric element are directly joined to a terminal electrode formed on the outer surface of the laminated thermoelectric element adjacent to the laminated thermoelectric element to make them conductive. A method of assembling a thermoelectric module comprising connecting the stacked thermoelectric elements in series to each other, wherein a plurality of laminated thermoelectric elements have terminal electrodes formed on the outer surface thereof and terminal electrodes of adjacent laminated thermoelectric elements. Immersing the side of the laminated type thermoelectric element on which the terminal electrode is formed in molten solder in a state of being juxtaposed so as to closely face each other and filling the solder between the terminal electrodes of the adjacent laminated type thermoelectric elements. And a method for assembling a thermoelectric module.
【請求項2】 請求項1の方法において、端子電極は、
その少なくとも表面が半田めっき又は半田ペーストで形
成されていることを特徴とする熱電モジュールの組み立
て方法。
2. The method of claim 1, wherein the terminal electrode is
A method of assembling a thermoelectric module, characterized in that at least its surface is formed by solder plating or solder paste.
【請求項3】 請求項1又は2の方法において、並列さ
れた積層型熱電素子同志の間隔が100〜200μmで
あることを特徴とする熱電モジュールの組み立て方法。
3. The method for assembling a thermoelectric module according to claim 1, wherein the distance between the stacked thermoelectric elements arranged in parallel is 100 to 200 μm.
【請求項4】 請求項1ないし3のいずれか1項の方法
において、並列された積層型熱電素子同志の間隙に、ア
ルミナセメントを充填して溶融半田中に浸漬することを
特徴とする熱電モジュールの組み立て方法。
4. The thermoelectric module according to any one of claims 1 to 3, wherein alumina cement is filled in the gap between the stacked thermoelectric elements arranged in parallel and immersed in molten solder. How to assemble.
JP7230078A 1995-09-07 1995-09-07 Assembling method of thermoelectric module Withdrawn JPH0974227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230078A JPH0974227A (en) 1995-09-07 1995-09-07 Assembling method of thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230078A JPH0974227A (en) 1995-09-07 1995-09-07 Assembling method of thermoelectric module

Publications (1)

Publication Number Publication Date
JPH0974227A true JPH0974227A (en) 1997-03-18

Family

ID=16902210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230078A Withdrawn JPH0974227A (en) 1995-09-07 1995-09-07 Assembling method of thermoelectric module

Country Status (1)

Country Link
JP (1) JPH0974227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124883A1 (en) * 2004-06-22 2005-12-29 Aruze Corp. Thermoelectric device
JP2013539599A (en) * 2010-08-23 2013-10-24 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Semiconductor device for thermoelectric module and production method thereof
WO2019003581A1 (en) * 2017-06-27 2019-01-03 株式会社村田製作所 Thermoelectric conversion module and electronic component module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124883A1 (en) * 2004-06-22 2005-12-29 Aruze Corp. Thermoelectric device
US8013235B2 (en) 2004-06-22 2011-09-06 Universal Entertainment Corporation Thermoelectric device
JP2013539599A (en) * 2010-08-23 2013-10-24 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Semiconductor device for thermoelectric module and production method thereof
WO2019003581A1 (en) * 2017-06-27 2019-01-03 株式会社村田製作所 Thermoelectric conversion module and electronic component module

Similar Documents

Publication Publication Date Title
US8575469B2 (en) Thermoelectric conversion module and method for manufacturing the same
TWI649013B (en) A conductive board, including a conductive substrate, especially for power electronic modules.
US10510940B2 (en) Thermoelectric generator
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
CN103703580B (en) The application of electrothermal module, the method for manufacturing electrothermal module and glassy metal or agglomerated material
US20130284229A1 (en) Method of manufacturing thermoelectric conversion element and thermoelectric conversion element
CN110637366A (en) Semiconductor device and method for manufacturing the same
US20130269744A1 (en) Thermoelectric conversion module
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP2009049165A (en) Thermoelectric conversion module, and thermoelectric conversion module assembly
JP5537202B2 (en) Thermoelectric conversion module
JPH0992891A (en) Thermoelectric element and thermoelectric module
JP2018093152A (en) Thermoelectric power generation device
JPH0974227A (en) Assembling method of thermoelectric module
EP0685893A1 (en) Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JPH02178958A (en) Electronic cooling element and manufacture thereof
JP5404025B2 (en) Production method of thermoelectric conversion module
JP7281715B2 (en) Thermoelectric conversion module
JP2003234515A (en) Thermoelectric module
JPH0864877A (en) Thermoelectric module
JPH08321636A (en) Peltier module and manufacture thereof
JPS6392068A (en) Green sheet lamination type piezoelectric lamination body
CN114556600A (en) Thermoelectric conversion element module and method for manufacturing thermoelectric conversion element module
WO2023006640A1 (en) Solar cell module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203