JP5525173B2 - Method and apparatus for manufacturing thermoelectric conversion element - Google Patents

Method and apparatus for manufacturing thermoelectric conversion element Download PDF

Info

Publication number
JP5525173B2
JP5525173B2 JP2009082303A JP2009082303A JP5525173B2 JP 5525173 B2 JP5525173 B2 JP 5525173B2 JP 2009082303 A JP2009082303 A JP 2009082303A JP 2009082303 A JP2009082303 A JP 2009082303A JP 5525173 B2 JP5525173 B2 JP 5525173B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
heat
electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009082303A
Other languages
Japanese (ja)
Other versions
JP2010238741A (en
Inventor
直樹 内山
和哉 久保
哲也 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsumitec Co Ltd
Original Assignee
Atsumitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsumitec Co Ltd filed Critical Atsumitec Co Ltd
Priority to JP2009082303A priority Critical patent/JP5525173B2/en
Publication of JP2010238741A publication Critical patent/JP2010238741A/en
Application granted granted Critical
Publication of JP5525173B2 publication Critical patent/JP5525173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱電変換素子の製造方法に関し、より詳しくは、熱電特性の安定した熱電変換素子の製造に適した熱電変換素子の製造方法及び装置に関するものである。   The present invention relates to a method for manufacturing a thermoelectric conversion element, and more particularly to a method and apparatus for manufacturing a thermoelectric conversion element suitable for manufacturing a thermoelectric conversion element having stable thermoelectric characteristics.

ゼーベック効果を利用した熱電変換素子は、熱エネルギーを電気エネルギーに変換することが可能である。この性質を利用し、産業・民生用プロセスや移動体から排出される排熱を有効な電力に変換することができるため、熱電変換素子は、環境問題に配慮した省エネルギー技術として注目されている。
このような熱電変換素子は、一般的に、複数個の熱電変換材料(p型及びn型)を電極で接合して構成される。熱電変換材料は、焼結材料を左右のダイス、及び上下のパンチで形成される空間に充填し、これをパンチで上下からプレスしながら直接電流を加えること(パルス通電)により製造される。このように、焼結炉を温めるのではなく、電流を流すことによってジュール発熱させるので、狭い範囲のみの加熱で行うことができ、焼結時間が短くなり、温度ムラが少なくなる。
A thermoelectric conversion element using the Seebeck effect can convert heat energy into electric energy. Because this property can be used to convert exhaust heat discharged from industrial and consumer processes and mobile objects into effective power, thermoelectric conversion elements are attracting attention as energy-saving technologies that take environmental issues into consideration.
Such a thermoelectric conversion element is generally configured by joining a plurality of thermoelectric conversion materials (p-type and n-type) with electrodes. The thermoelectric conversion material is produced by filling a sintered material in a space formed by left and right dies and upper and lower punches, and applying a direct current (pulse current) while pressing the space from above and below with a punch. Thus, since the Joule heat is generated by flowing an electric current instead of warming the sintering furnace, the heating can be performed only in a narrow range, the sintering time is shortened, and the temperature unevenness is reduced.

このようなパルス通電焼結は、例えば特許文献1に開示されている。そして、熱電変換材料を電極で接合して製造する方法は、例えば特許文献2に開示されている(特に特許文献2の図14参照)。
しかしながら、p型及びn型の熱電変換材料を電極に接合して設ける場合に、熱電変換材料自体の形状が細いと通電時の抵抗値が大きくなる。あるいはその材質により、電気抵抗が大きい材料であると、やはり抵抗値が大きくなる。抵抗値が大きくなることは、ジュール発熱が大きくなることを意味する。本来、熱電変換材料と電極との間の界面抵抗の大きさを利用して、界面を発熱させ、拡散接合させているが、上記のように界面以外の部分である熱電変換材料自体の抵抗値が大きくなると、熱電変換材料が顕著に発熱されてしまう。このような熱電変換材料の過熱は、熱電変換材料の破損や破裂を招くことになる。
Such pulsed electric current sintering is disclosed in Patent Document 1, for example. And the method of joining and manufacturing a thermoelectric conversion material with an electrode is disclosed by patent document 2, for example (refer especially FIG. 14 of patent document 2).
However, when p-type and n-type thermoelectric conversion materials are provided bonded to electrodes, the resistance value when energized increases if the shape of the thermoelectric conversion material itself is thin. Alternatively, if the material has a large electric resistance, the resistance value is also increased. An increase in resistance means an increase in Joule heat generation. Originally, the interface generates heat and is diffusion-bonded using the magnitude of the interface resistance between the thermoelectric conversion material and the electrode, but the resistance value of the thermoelectric conversion material itself, which is a part other than the interface as described above When becomes large, the thermoelectric conversion material generates significant heat. Such overheating of the thermoelectric conversion material causes breakage or rupture of the thermoelectric conversion material.

特開2003−46149号公報JP 2003-46149 A 特開2004−221464号公報JP 2004-221464 A

本発明は、上記従来技術を考慮したものであって、熱電変換材料の形状や材質によって熱電変換材料自体の抵抗が熱電変換材料と電極との間の界面抵抗より大きくても、これに関係なく、熱電変換材料が過熱されることなく安定して確実に熱電変換材料と電極とを接合することができ、結果として熱電特性の安定した熱電変換素子を得ることができる熱電変換素子の製造方法及び装置を提供することを目的とする。   The present invention is based on the above-described prior art, regardless of whether the resistance of the thermoelectric conversion material itself is larger than the interface resistance between the thermoelectric conversion material and the electrode depending on the shape and material of the thermoelectric conversion material. A thermoelectric conversion element manufacturing method that can stably and reliably join the thermoelectric conversion material and the electrode without overheating the thermoelectric conversion material, and can obtain a thermoelectric conversion element with stable thermoelectric characteristics as a result, and An object is to provide an apparatus.

前記目的を達成するため、請求項1の発明では、対向して配された導電材料からなる加圧部材の互いに対向する内面のそれぞれに絶縁層を形成し、該絶縁層の内面に電極を配し、該電極間に複数個の熱電変換材料を介装し、前記加圧部材に通電して前記加圧部材を加熱しながら、前記加圧部材を内側方向に加圧して、前記絶縁層と前記電極との接合、及び前記熱電変換材料と前記電極との接合を同時に行う熱電変換素子の製造方法であって、前記加圧部材の外周部には、耐熱導電部材が加圧方向に摺接しながら挿通されていて、該耐熱導電部材に通電することにより前記加圧部材を加熱しながら、前記加圧部材は、前記耐熱導電部材に対して摺動させて内側方向に加圧されることを特徴とする熱電変換素子の製造方法を提供する。 In order to achieve the above object, according to the first aspect of the present invention, an insulating layer is formed on each of the mutually facing inner surfaces of the pressure members made of the conductive material arranged opposite to each other, and an electrode is arranged on the inner surface of the insulating layer. A plurality of thermoelectric conversion materials are interposed between the electrodes, while the pressure member is heated by energizing the pressure member and heating the pressure member, the insulating layer and A method of manufacturing a thermoelectric conversion element that performs bonding to the electrode and bonding of the thermoelectric conversion material and the electrode at the same time , wherein a heat-resistant conductive member is slidably contacted in a pressurizing direction on an outer peripheral portion of the pressing member. The pressure member is slid with respect to the heat-resistant conductive member and is pressed inward while heating the pressure member by energizing the heat-resistant conductive member. A method for manufacturing a thermoelectric conversion element is provided.

請求項2の発明では、請求項1の発明において、前記耐熱導電部材は、棒状であり、複数本挿通されることを特徴としている。 According to a second aspect of the present invention, in the first aspect of the present invention, the heat-resistant conductive member has a rod shape, and a plurality of the heat-resistant conductive members are inserted.

請求項の発明では、請求項1又は2の発明において、前記絶縁層として、弾性材を用いたことを特徴としている。
また、請求項の発明では、請求項1〜の発明において、前記絶縁層と電極との間に、変形可能な中間層を備えたことを特徴としている。
請求項の発明では、請求項の発明において、前記中間層は、Cu又はNiの金属粉体からなることを特徴としている。
The invention of claim 3 is characterized in that, in the invention of claim 1 or 2 , an elastic material is used as the insulating layer.
According to a fourth aspect of the present invention, in the first to third aspects of the present invention, a deformable intermediate layer is provided between the insulating layer and the electrode.
The invention of claim 5 is characterized in that, in the invention of claim 4 , the intermediate layer is made of a metal powder of Cu or Ni.

また、請求項の発明では、請求項1〜のいずれかに記載の熱電変換素子の製造方法に用いる熱電変換素子の製造装置であって、対向して配された加圧部材と、該加圧部材の外周部に摺動可能に挿通された耐熱導電部材とを備えたことを特徴とする熱電変換素子の製造装置を提供する。 Moreover, in invention of Claim 6 , it is a manufacturing apparatus of the thermoelectric conversion element used for the manufacturing method of the thermoelectric conversion element in any one of Claims 1-5 , Comprising: The pressurization member distribute | arranged facing, Provided is a thermoelectric conversion element manufacturing apparatus comprising a heat-resistant conductive member slidably inserted in an outer peripheral portion of a pressure member.

請求項1の発明によれば、加圧部材と電極との間に絶縁層が形成されるので、加圧部材を通電しても電流が電極方向に伝わることはない。このとき、加圧部材を通電することにより、加圧部材が加熱され、この熱を利用して絶縁層と前記電極との接合、及び熱電変換材料と電極との接合が同時に行われる。したがって、熱電変換材料自体の抵抗が高い場合に、これに関係なく、熱電変換材料が過熱されることなく安定して確実に絶縁層と熱電変換材料と電極とを接合することができ、結果として熱電特性の安定した熱電変換素子を得ることができる。 According to the first aspect of the present invention, since the insulating layer is formed between the pressure member and the electrode, no current is transmitted in the direction of the electrode even if the pressure member is energized. At this time, when the pressure member is energized, the pressure member is heated, and using this heat, the insulating layer and the electrode are bonded together, and the thermoelectric conversion material and the electrode are bonded simultaneously . Therefore, when the resistance of the thermoelectric conversion material itself is high, regardless of this, the insulating layer, the thermoelectric conversion material, and the electrode can be stably and reliably joined without overheating the thermoelectric conversion material. A thermoelectric conversion element having stable thermoelectric characteristics can be obtained.

また、加圧部材の外周部に耐熱導電部材を挿通し、これに摺動させて内側方向に加圧部材を加圧するので、耐熱導電部材に通電するとその電流は加圧部材にも伝わり、電極及び熱電変換材料を配した空間の周りを発熱させることができ、空間内の電極及び熱電変換材料を加熱・加圧して拡散接合することができる。このとき、加圧部材の内面には絶縁層が形成されているので、耐熱導電部材に通電してもこの電流が電極及び熱電変換材料に伝わることはない。したがって、熱電変換材料の形状や材質によって熱電変換材料自体の抵抗が熱電変換材料と電極との間の界面抵抗より大きくても、これに関係なく、通電によって熱電変換材料が過熱されることなく安定して確実に熱電変換材料と電極とを接合することができ、結果として熱電特性の安定した熱電変換素子を得ることができる。 Further , since the heat-resistant conductive member is inserted into the outer peripheral portion of the pressure member and slid therewith to pressurize the pressure member in the inner direction, when the heat-resistant conductive member is energized, the current is also transmitted to the pressure member, and the electrode In addition, heat can be generated around the space where the thermoelectric conversion material is arranged, and the electrodes and the thermoelectric conversion material in the space can be heated and pressurized to be diffusion bonded. At this time, since the insulating layer is formed on the inner surface of the pressurizing member, even if the heat-resistant conductive member is energized, this current is not transmitted to the electrode and the thermoelectric conversion material. Therefore, even if the resistance of the thermoelectric conversion material itself is larger than the interface resistance between the thermoelectric conversion material and the electrode depending on the shape and material of the thermoelectric conversion material, the thermoelectric conversion material is stable without being overheated due to energization. Thus, the thermoelectric conversion material and the electrode can be reliably bonded, and as a result, a thermoelectric conversion element having stable thermoelectric characteristics can be obtained.

請求項の発明によれば、耐熱導電部材を棒状とすることにより、加圧部材に対して挿通するための貫通孔形成加工が簡便になり、作業性が向上する。また、耐熱導電部材を複数本挿通することにより、加圧部材間の電極及び熱電変換材料が配された空間を周りから効率よく加熱することができ、拡散接合の際の接合効率が向上する。
請求項の発明によれば、複数個の熱電変換材料に高さバラツキがあっても、絶縁層がその隙間の大きさに応じて変形してこれを吸収する。したがって、全ての熱電変換材料に対し、均一に電極と加圧することができるので、安定した熱電特性を備えた熱電素子を得ることができる。
According to the second aspect of the present invention, by forming the heat-resistant conductive member in a rod shape, the through hole forming process for insertion through the pressure member is simplified, and the workability is improved. Further, by inserting a plurality of heat-resistant conductive members, the space where the electrodes between the pressure members and the thermoelectric conversion material are arranged can be efficiently heated from the surroundings, and the joining efficiency at the time of diffusion joining is improved.
According to the invention of claim 3 , even if the plurality of thermoelectric conversion materials vary in height, the insulating layer is deformed according to the size of the gap and absorbs this. Accordingly, since all the thermoelectric conversion materials can be uniformly pressed with the electrodes, a thermoelectric element having stable thermoelectric characteristics can be obtained.

請求項の発明によれば、絶縁層と電極との間に、変形可能な中間層が備わるため、複数個の熱電変換材料に高さバラツキがあっても、電極と絶縁層との間の隙間間隔に応じて中間層が変形してこれを補い、全ての熱電変換材料を電極に対して均一に接合させることができる。したがって、安定した熱電特性を備えた熱電素子を得ることができる。
請求項の発明によれば、中間層は、Cu(銅)又はNi(ニッケル)の金属粉体からなるため、これらの金属は拡散性が高く、したがって拡散接合による接合強度の向上を図ることができる。
According to the invention of claim 4 , since the deformable intermediate layer is provided between the insulating layer and the electrode, even if the plurality of thermoelectric conversion materials have height variations, there is no difference between the electrode and the insulating layer. The intermediate layer is deformed according to the gap interval to compensate for this, and all the thermoelectric conversion materials can be uniformly bonded to the electrodes. Therefore, a thermoelectric element having stable thermoelectric characteristics can be obtained.
According to the invention of claim 5 , since the intermediate layer is made of a metal powder of Cu (copper) or Ni (nickel), these metals are highly diffusive, and therefore, the bonding strength is improved by diffusion bonding. Can do.

請求項の発明によれば、熱電変換材料と電極との拡散接合の際、加圧部材の外周部に耐熱導電部材を挿通し、これに摺動させて内側方向に加圧部材を加圧するので、耐熱導電部材に通電するとその電流は加圧部材にも伝わり、電極及び熱電変換材料を配した空間の周りを発熱させることができ、空間内の電極及び熱電変換材料を加熱・加圧して拡散接合することができる。このとき、加圧部材の内面に絶縁層を設けて使用すれば、耐熱導電部材に通電してもこの電流が電極及び熱電変換材料に伝わることはない。したがって、熱電変換材料の形状や材質によって熱電変換材料自体の抵抗が熱電変換材料と電極との間の界面抵抗より大きくても、これに関係なく、通電によって熱電変換材料が過熱されることなく安定して確実に熱電変換材料と電極とを接合することができ、結果として熱電特性の安定した熱電変換素子を得ることができる。すなわち、耐熱導電部材を設けることにより、絶縁状態で電極と熱電変換材料を接合するのに適したものとなる。 According to the invention of claim 6 , when the thermoelectric conversion material and the electrode are diffusion-bonded, the heat-resistant conductive member is inserted into the outer peripheral portion of the pressurizing member and is slid to pressurize the pressurizing member in the inner direction. Therefore, when the heat-resistant conductive member is energized, the current is also transmitted to the pressurizing member, which can generate heat around the space where the electrode and the thermoelectric conversion material are arranged, and heat and pressurize the electrode and the thermoelectric conversion material in the space. Diffusion bonding can be performed. At this time, if an insulating layer is provided on the inner surface of the pressure member, this current will not be transmitted to the electrode and the thermoelectric conversion material even if the heat-resistant conductive member is energized. Therefore, even if the resistance of the thermoelectric conversion material itself is larger than the interface resistance between the thermoelectric conversion material and the electrode depending on the shape and material of the thermoelectric conversion material, the thermoelectric conversion material is stable without being overheated due to energization. Thus, the thermoelectric conversion material and the electrode can be reliably bonded, and as a result, a thermoelectric conversion element having stable thermoelectric characteristics can be obtained. That is, by providing the heat-resistant conductive member, it becomes suitable for joining the electrode and the thermoelectric conversion material in an insulated state.

本発明に係る熱電変換素子の製造方法に用いる熱電変換素子の製造装置の概略正面図である。It is a schematic front view of the manufacturing apparatus of the thermoelectric conversion element used for the manufacturing method of the thermoelectric conversion element which concerns on this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB部拡大図である。It is the B section enlarged view of FIG. 本発明に係る別の熱電変換素子の製造方法に用いる熱電変換素子の製造装置の要部拡大図である。It is a principal part enlarged view of the manufacturing apparatus of the thermoelectric conversion element used for the manufacturing method of another thermoelectric conversion element which concerns on this invention.

図1は本発明に係る熱電変換素子の製造方法に用いる熱電変換素子の製造装置の概略正面図であり、図2は図1のA−A断面図である。また、図3は図1のB部拡大図である。
図示したように、熱電変換素子の製造装置1は、上下に配設された加圧部材たるパンチ2を含む。パンチ2は、導電性を有する材料(例えば黒鉛)によって構成される。また、パンチ2は、例えば35mm角〜40mm角で、厚さが5mm〜6mmである。パンチ2の外周部には、複数本(図では8本)の棒状の耐熱導電部材7が挿通される。パンチ2は、この耐熱導電部材7に沿って摺動可能である。すなわち、パンチ2は、耐熱導電部材7に沿って内側方向に加圧される。
FIG. 1 is a schematic front view of a thermoelectric conversion element manufacturing apparatus used in the method for manufacturing a thermoelectric conversion element according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. FIG. 3 is an enlarged view of a portion B in FIG.
As shown in the drawing, the thermoelectric conversion element manufacturing apparatus 1 includes a punch 2 that is a pressurizing member disposed vertically. The punch 2 is made of a conductive material (for example, graphite). Moreover, the punch 2 is 35 mm square-40 mm square, for example, and thickness is 5 mm-6 mm. A plurality (eight in the figure) of rod-like heat-resistant conductive members 7 are inserted into the outer peripheral portion of the punch 2. The punch 2 can slide along the heat-resistant conductive member 7. That is, the punch 2 is pressed inward along the heat-resistant conductive member 7.

このパンチ2の間に、熱電変換材料3が複数個配設される(図1では6個の熱電変換材料3)。この際、熱電変換材料3はp型とn型が交互になるように配設される。なお、pn接合構造を有する熱電変換材料の場合は、電極4を介した熱電変換材料がpnの順番で、すなわち異なる熱電的性質が隣り合うように連結されるように配設される。熱電変換材料3は、例えば2φの長さが5mm〜10mmであり、これが5×5の計25個並べられて配設される(図2では6×6の計36個を表示)。   A plurality of thermoelectric conversion materials 3 are disposed between the punches 2 (six thermoelectric conversion materials 3 in FIG. 1). At this time, the thermoelectric conversion material 3 is disposed so that p-type and n-type are alternated. In the case of a thermoelectric conversion material having a pn junction structure, the thermoelectric conversion materials via the electrodes 4 are arranged in the order of pn, that is, so that different thermoelectric properties are adjacent to each other. The thermoelectric conversion material 3 has a length of 2φ of 5 mm to 10 mm, for example, and is arranged in a total of 25 rows of 5 × 5 (in FIG. 2, a total of 36 pieces of 6 × 6 are displayed).

これら複数個の熱電変換材料3は、それぞれ隣り合う熱電変換材料3と電極4を介して連結されている。この連結は、熱電変換材料3が直列に接続されるように、熱電変換材料3の上下で交互に連結される。電極4としては、例えば銅が用いられる。
パンチ2と電極4との間に絶縁層6が形成される。この絶縁層6は、耐熱性を有する絶縁材料(例えばアルミナ(酸化アルミ)、AlN(窒化アルミ)等)で構成される。
The plurality of thermoelectric conversion materials 3 are connected to the adjacent thermoelectric conversion materials 3 via electrodes 4. This connection is alternately connected above and below the thermoelectric conversion material 3 so that the thermoelectric conversion material 3 is connected in series. For example, copper is used as the electrode 4.
An insulating layer 6 is formed between the punch 2 and the electrode 4. The insulating layer 6 is made of an insulating material having heat resistance (for example, alumina (aluminum oxide), AlN (aluminum nitride), etc.).

以上のように、パンチ2の内面に絶縁層6を、その内面に電極4を、その内面に熱電変換材料3をセットして挟持して、本発明に係る熱電変換素子の製造方法の準備が完了する。この後、耐熱導電部材7に通電することによりパンチ2を加熱しながら、パンチ2を耐熱導電部材7に対して摺動させて内側方向に加圧して、電極4と前記熱電変換材料3とを拡散接合する。このように、パンチ2の外周部に耐熱導電部材7を挿通し、これに摺動させてパンチ2を内側方向に加圧するので、パンチ2で挟まれた空間全体に対して発熱させて加熱することができる。したがって、絶縁層6によって電極4が絶縁状態でも、電極4と熱電変換材料3を加熱・加圧して拡散接合することができる。これにより、熱電変換材料3の形状や材質によって熱電変換材料3自体の抵抗が熱電変換材料3と電極4との間の界面抵抗より大きくても、これに関係なく、通電によって熱電変換材料3が過熱されることなく安定して確実に熱電変換材料3と電極4とを接合することができ、結果として熱電特性の安定した熱電変換素子を得ることができる。この通電加圧は、真空、窒素ガス又は不活性ガス雰囲気のチャンバ(不図示)内で行われる。   As described above, the insulating layer 6 is disposed on the inner surface of the punch 2, the electrode 4 is disposed on the inner surface, and the thermoelectric conversion material 3 is disposed on the inner surface, thereby preparing the method for manufacturing the thermoelectric conversion element according to the present invention. Complete. Then, while heating the punch 2 by energizing the heat-resistant conductive member 7, the punch 2 is slid with respect to the heat-resistant conductive member 7 and pressed inward, so that the electrode 4 and the thermoelectric conversion material 3 are Diffusion bonding is performed. Thus, since the heat-resistant conductive member 7 is inserted into the outer peripheral portion of the punch 2 and is slid on the punch 2 to press the punch 2 inward, the entire space sandwiched between the punches 2 is heated and heated. be able to. Therefore, even if the electrode 4 is insulated by the insulating layer 6, the electrode 4 and the thermoelectric conversion material 3 can be diffusion bonded by heating and pressurizing. Thus, even if the resistance of the thermoelectric conversion material 3 itself is larger than the interface resistance between the thermoelectric conversion material 3 and the electrode 4 depending on the shape and material of the thermoelectric conversion material 3, the thermoelectric conversion material 3 is energized regardless of this. The thermoelectric conversion material 3 and the electrode 4 can be bonded stably and reliably without being overheated, and as a result, a thermoelectric conversion element having stable thermoelectric characteristics can be obtained. This energization and pressurization is performed in a chamber (not shown) in a vacuum, nitrogen gas or inert gas atmosphere.

なお、図では棒状の耐熱導電部材7を示したが、パンチ2の外周部を挿通してこれが摺動可能であれば特に棒状に限定されるものではない。棒状とすれば、パンチ2に対して挿通するための貫通孔形成加工が簡便になり、作業性が向上する。また、耐熱導電部材7を複数本挿通する構成とすれば、パンチ2間の電極4及び熱電変換材料3が配された空間を周りから効率よく加熱することができ、拡散接合の際の接合効率が向上する。すなわち、耐熱導電部材7としては、パンチ2間の空間を囲むような形状であれば、どのようなものでもよい。   Although the rod-shaped heat-resistant conductive member 7 is shown in the drawing, the rod-shaped heat-resistant conductive member 7 is not particularly limited to a rod-like shape as long as it can slide through the outer peripheral portion of the punch 2. If it is rod-shaped, the through hole forming process for inserting the punch 2 is simplified, and the workability is improved. Moreover, if it is set as the structure which penetrates the multiple heat-resistant electrically-conductive member 7, the space where the electrode 4 between the punches 2 and the thermoelectric conversion material 3 were distribute | arranged can be efficiently heated from the circumference, and the joining efficiency in the case of diffusion joining Will improve. That is, the heat-resistant conductive member 7 may be of any shape as long as it surrounds the space between the punches 2.

また、絶縁層6として弾性材を用いれば、複数個の熱電変換材料3に高さバラツキがあっても、絶縁層6がその隙間の大きさに応じて変形してこれを吸収する。したがって、全ての熱電変換材料3に対し、均一に電極と加圧することができるので、安定した熱電特性を備えた熱電素子を得ることができる。
図4は本発明に係る別の熱電変換素子の製造方法に用いる熱電変換素子の製造装置の要部拡大図である。
Moreover, if an elastic material is used as the insulating layer 6, even if the plurality of thermoelectric conversion materials 3 have height variations, the insulating layer 6 is deformed according to the size of the gap and absorbs this. Therefore, since all the thermoelectric conversion materials 3 can be uniformly pressed with an electrode, a thermoelectric element having stable thermoelectric characteristics can be obtained.
FIG. 4 is an enlarged view of a main part of a thermoelectric conversion element manufacturing apparatus used in another thermoelectric conversion element manufacturing method according to the present invention.

絶縁層6と電極4との間に、さらに中間層5が設けられる。中間層5は、変形可能な状態に形成される。したがって、パンチ2の加圧によりその形状がつぶれるように変化させることができる。なお、中間層5の厚さは10μm程度である。
この中間層5を形成した状態で、両側のパンチ2を熱電変換材料3方向に加圧しながら、耐熱導電部材7に電流を流すことにより、上記電極4と熱電変換材料3との接合とともに、絶縁層6と電極4とが拡散接合される。このように中間層5を設けても、熱電変換素子が製造される。中間層5を設けることにより、複数個の熱電変換材料3に高さバラツキがあったとしても、電極4と絶縁層6との間の隙間間隔に応じて中間層が変形してこれを補う。これにより、中間層5を介して熱電変換材料3の全てが均一に電極4に接合され、安定した熱電特性を有する熱電変換素子を得ることができる。なお、中間層5は熱電変換材料3の両側に配してもよいし、片側のみに配してもよい。
An intermediate layer 5 is further provided between the insulating layer 6 and the electrode 4. The intermediate layer 5 is formed in a deformable state. Therefore, the shape of the punch 2 can be changed so as to be crushed by pressurization. The intermediate layer 5 has a thickness of about 10 μm.
In a state where the intermediate layer 5 is formed, an electric current is passed through the heat-resistant conductive member 7 while pressurizing the punches 2 on both sides in the direction of the thermoelectric conversion material 3, thereby insulating the electrode 4 and the thermoelectric conversion material 3 together. Layer 6 and electrode 4 are diffusion bonded. Thus, even if the intermediate layer 5 is provided, a thermoelectric conversion element is manufactured. By providing the intermediate layer 5, even if the plurality of thermoelectric conversion materials 3 vary in height, the intermediate layer is deformed and compensated for according to the gap distance between the electrode 4 and the insulating layer 6. Thereby, all of the thermoelectric conversion material 3 is uniformly joined to the electrode 4 through the intermediate layer 5, and a thermoelectric conversion element having stable thermoelectric characteristics can be obtained. The intermediate layer 5 may be disposed on both sides of the thermoelectric conversion material 3 or may be disposed on only one side.

このように、中間層5を設けて電極4と絶縁層6を拡散接合して接合状態とすることにより、熱伝導率の観点から、熱電変換素子の高温部、低温部に熱が伝わることになり、温度差を大きくすることができる。
さらに、中間層5を、拡散性の高い金属粉体であるCu(銅)又はNi(ニッケル)で形成すれば、電極4と絶縁層6の接合強度を向上させることができる。すなわち、絶縁層6と電極4の界面で互いに成分拡散を起こさせて合金化して接合する際に、拡散性が高ければ高いほど、接合強度が向上することになる。
In this way, by providing the intermediate layer 5 and diffusion bonding the electrode 4 and the insulating layer 6 to obtain a bonded state, heat is transferred to the high temperature portion and the low temperature portion of the thermoelectric conversion element from the viewpoint of thermal conductivity. Thus, the temperature difference can be increased.
Furthermore, if the intermediate layer 5 is formed of Cu (copper) or Ni (nickel), which is a highly diffusible metal powder, the bonding strength between the electrode 4 and the insulating layer 6 can be improved. That is, when the components are diffused at the interface between the insulating layer 6 and the electrode 4 to form an alloy and are joined together, the higher the diffusibility, the better the joint strength.

この場合、中間層5を金属粉体で形成する方法としては、粉体のままで形成する方法と、ペースト状にして形成する方法がある。粉体のまま形成する場合は、任意の型の中に粉体を入れ、これを電極4と絶縁層6との間に挟持させる。これにより、拡散性が高く、且つ、変形可能な中間層5を形成できるので、熱電変換材料3の高さバラツキの吸収と拡散接合強度の向上の双方の効果を得ることができる。   In this case, as a method of forming the intermediate layer 5 with metal powder, there are a method of forming the powder as it is and a method of forming it in a paste form. In the case of forming the powder as it is, the powder is put in an arbitrary mold and is sandwiched between the electrode 4 and the insulating layer 6. Thereby, since the intermediate | middle layer 5 with high diffusibility and a deformation | transformation can be formed, the effect of both the absorption of the height variation of the thermoelectric conversion material 3, and the improvement of a diffusion joining intensity | strength can be acquired.

さらに、中間層5をペースト状にして形成する場合は、金属粉体に対してメチルカルビトールやブチルカルビトール等を溶媒とし、ペースト状とする。これによっても、粉体のまま中間層を形成したのと同様に、熱電変換材料3の高さバラツキの吸収と拡散接合強度の向上の双方の効果を得ることができる。また、ペースト状中間層5を塗布するだけですむので、取り扱い性が向上する。   Further, when forming the intermediate layer 5 in a paste form, the metal powder is made into a paste form using methyl carbitol, butyl carbitol or the like as a solvent. Also by this, the effect of both the absorption of the variation in the height of the thermoelectric conversion material 3 and the improvement of the diffusion bonding strength can be obtained as in the case where the intermediate layer is formed as a powder. Moreover, since it is only necessary to apply the paste-like intermediate layer 5, the handleability is improved.

なお、中間層5と同様の成分、構成からなる層を電極4と熱電変換材料3との間に設けてもよい。これにより、熱電変換材料3の高さバラツキを吸収することが可能になり、さらにCuやNiを加えれば、拡散性を高めてその接合を強固にすることができる。   A layer having the same components and configuration as the intermediate layer 5 may be provided between the electrode 4 and the thermoelectric conversion material 3. Thereby, it becomes possible to absorb the height variation of the thermoelectric conversion material 3, and if Cu and Ni are further added, diffusibility can be improved and the joining can be strengthened.

1 熱電変換素子の製造装置
2 パンチ
3 熱電変換材料
4 電極
5 中間層
6 絶縁層
7 耐熱導電部材
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element manufacturing apparatus 2 Punch 3 Thermoelectric conversion material 4 Electrode 5 Intermediate layer 6 Insulating layer 7 Heat-resistant conductive member

Claims (6)

対向して配された導電材料からなる加圧部材の互いに対向する内面のそれぞれに絶縁層を形成し、
該絶縁層の内面に電極を配し、
該電極間に複数個の熱電変換材料を介装し、
前記加圧部材に通電して前記加圧部材を加熱しながら、
前記加圧部材を内側方向に加圧して、前記絶縁層と前記電極との接合、及び前記熱電変換材料と前記電極との接合を同時に行う熱電変換素子の製造方法であって、
前記加圧部材の外周部には、耐熱導電部材が加圧方向に摺接しながら挿通されていて、
該耐熱導電部材に通電することにより前記加圧部材を加熱しながら、
前記加圧部材は、前記耐熱導電部材に対して摺動させて内側方向に加圧されることを特徴とする熱電変換素子の製造方法。
An insulating layer is formed on each of the mutually facing inner surfaces of the pressure member made of a conductive material arranged facing each other,
An electrode is disposed on the inner surface of the insulating layer,
A plurality of thermoelectric conversion materials are interposed between the electrodes,
While heating the pressure member by energizing the pressure member,
A method of manufacturing a thermoelectric conversion element that pressurizes the pressurizing member in an inward direction to simultaneously bond the insulating layer and the electrode and bond the thermoelectric conversion material and the electrode ,
A heat-resistant conductive member is inserted into the outer peripheral portion of the pressure member while being in sliding contact with the pressure direction,
While heating the pressure member by energizing the heat-resistant conductive member,
The said pressurization member is slid with respect to the said heat-resistant electrically-conductive member, and pressurizes inside , The manufacturing method of the thermoelectric conversion element characterized by the above-mentioned .
前記耐熱導電部材は、棒状であり、複数本挿通されることを特徴とする請求項に記載の熱電変換素子の製造方法。 The method of manufacturing a thermoelectric conversion element according to claim 1 , wherein the heat-resistant conductive member has a rod shape and a plurality of the heat-resistant conductive members are inserted. 前記絶縁層として、弾性材を用いたことを特徴とする請求項1又は2に記載の熱電変換素子の製造方法。 Method for manufacturing a thermoelectric conversion element according to claim 1 or 2, characterized in that said as an insulating layer, using an elastic material. 前記絶縁層と電極との間に、変形可能な中間層を備えたことを特徴とする請求項1〜のいずれかに記載の熱電変換素子の製造方法。 The method for producing a thermoelectric conversion element according to any one of claims 1 to 3 , further comprising a deformable intermediate layer between the insulating layer and the electrode. 前記中間層は、Cu又はNiの金属粉体からなることを特徴とする請求項に記載の熱電変換素子の製造方法。 The method of manufacturing a thermoelectric conversion element according to claim 4 , wherein the intermediate layer is made of a metal powder of Cu or Ni. 請求項1〜のいずれかに記載の熱電変換素子の製造方法に用いる熱電変換素子の製造装置であって、
対向して配された加圧部材と、
該加圧部材の外周部に摺動可能に挿通された耐熱導電部材とを備えたことを特徴とする熱電変換素子の製造装置。
It is the manufacturing apparatus of the thermoelectric conversion element used for the manufacturing method of the thermoelectric conversion element in any one of Claims 1-5 ,
A pressure member arranged oppositely,
A thermoelectric conversion element manufacturing apparatus comprising: a heat-resistant conductive member slidably inserted in an outer peripheral portion of the pressure member.
JP2009082303A 2009-03-30 2009-03-30 Method and apparatus for manufacturing thermoelectric conversion element Active JP5525173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082303A JP5525173B2 (en) 2009-03-30 2009-03-30 Method and apparatus for manufacturing thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082303A JP5525173B2 (en) 2009-03-30 2009-03-30 Method and apparatus for manufacturing thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2010238741A JP2010238741A (en) 2010-10-21
JP5525173B2 true JP5525173B2 (en) 2014-06-18

Family

ID=43092841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082303A Active JP5525173B2 (en) 2009-03-30 2009-03-30 Method and apparatus for manufacturing thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5525173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11844278B2 (en) 2019-01-23 2023-12-12 Lg Innotek Co., Ltd. Thermoelectric element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376087B1 (en) * 2012-05-30 2013-12-25 株式会社デンソー Method for manufacturing thermoelectric conversion device
KR101806677B1 (en) * 2016-03-29 2017-12-07 현대자동차주식회사 Apparatus for making the thermoelectric module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257389A (en) * 2000-03-10 2001-09-21 Morix Co Ltd Producing method for thermoelectric element
JP4599719B2 (en) * 2001-01-29 2010-12-15 アイシン精機株式会社 Thermoelectric semiconductor manufacturing method
JP2004273489A (en) * 2003-03-05 2004-09-30 Atsushi Suzuki Thermoelectric conversion module and its manufacturing method
JP2005166858A (en) * 2003-12-02 2005-06-23 Minowa Koa Inc Method for manufacturing thermoelement module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11844278B2 (en) 2019-01-23 2023-12-12 Lg Innotek Co., Ltd. Thermoelectric element

Also Published As

Publication number Publication date
JP2010238741A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
WO2010103949A1 (en) Method of producing thermoelectric conversion device
CN108140713B (en) Thermoelectric conversion module and thermoelectric conversion device
TWI505522B (en) Method for manufacturing thermoelectric conversion module
US20140102500A1 (en) Thermoelectric Device Assembly, Thermoelectric Module and its Manufacturing Method
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JPH1074986A (en) Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP5525173B2 (en) Method and apparatus for manufacturing thermoelectric conversion element
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
JP4584035B2 (en) Thermoelectric module
WO2006043402A1 (en) Thermoelectric conversion module
US20160293823A1 (en) Thermoelectric Conversion Module
JP2012033685A (en) Manufacturing method for pipe-like thermal power generation device and manufacturing method for laminate thereof
JP2008109054A (en) Thermoelectric conversion module and method for manufacturing the same
JP3880274B2 (en) Crimp joining method for both ends of flexible electrical conductors
JP2018037485A (en) Manufacturing method of thermoelectric conversion module
JPH11177156A (en) Machining method for thermoelectric conversion material and production of thermoelectric conversion element
JP6240525B2 (en) Thermoelectric conversion element manufacturing method and thermoelectric conversion element
JP2004319944A (en) Cylindrical multilayer thermoelectric transducer
JP2013191801A (en) Airtight case-enclosed thermoelectric conversion module
JP2015050372A (en) Method for manufacturing thermoelectric conversion module
JP2013214635A (en) Thermoelectric conversion module and manufacturing method therefor
KR102129964B1 (en) Thermoelectric conversion module and thermoelectric conversion element
CN114497339A (en) SiGe thermoelectric device for space reactor thermoelectric power supply and preparation thereof
JP2017050519A (en) Fesi2-based lamination type thermoelectric conversion module
JP2010206024A (en) Thermoelectric module, and manufacturing method of thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5525173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250