WO2022130457A1 - Power control device, thermoelectric power generation system, and power control method - Google Patents

Power control device, thermoelectric power generation system, and power control method Download PDF

Info

Publication number
WO2022130457A1
WO2022130457A1 PCT/JP2020/046537 JP2020046537W WO2022130457A1 WO 2022130457 A1 WO2022130457 A1 WO 2022130457A1 JP 2020046537 W JP2020046537 W JP 2020046537W WO 2022130457 A1 WO2022130457 A1 WO 2022130457A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
thermoelectric conversion
conversion device
output
thermoelectric
Prior art date
Application number
PCT/JP2020/046537
Other languages
French (fr)
Japanese (ja)
Inventor
孝之 森岡
彰 山下
一大 日永田
勝己 池田
Original Assignee
三菱電機株式会社
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機エンジニアリング株式会社 filed Critical 三菱電機株式会社
Priority to DE112020007861.2T priority Critical patent/DE112020007861T5/en
Priority to CN202080107821.9A priority patent/CN116615858A/en
Priority to JP2021536259A priority patent/JP6952937B1/en
Priority to PCT/JP2020/046537 priority patent/WO2022130457A1/en
Publication of WO2022130457A1 publication Critical patent/WO2022130457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Definitions

  • thermoelectric power generation technique relates to a thermoelectric power generation technique.
  • thermoelectric converter As a control method of the conventional thermoelectric converter, in order to maximize the output from the thermoelectric converter, the output current of the thermoelectric converter is fluctuated at an arbitrary control cycle using the mountain climbing method to search for the optimum operating point. (For example, refer to Japanese Patent Application Laid-Open No. 2013-055769, which is Patent Document 1).
  • thermoelectric conversion device In such a control method of a thermoelectric conversion device, if the control cycle is shorter than the thermal time constant of the thermoelectric conversion device, it becomes difficult to obtain an accurate maximum power point of the thermoelectric conversion device. As a result, there is a problem that the extraction power is lower than the maximum output power of the thermoelectric conversion device.
  • the technique disclosed in the present specification has been made in view of the above-mentioned problems, and is a technique for increasing the extraction power of the thermoelectric conversion device.
  • the electric power control device is a power control device that controls the electric power of the thermoelectric conversion device that outputs the electric power generated based on heat, and is from the thermoelectric conversion device.
  • a power measuring unit for measuring the output power and a control unit for controlling the power output from the thermoelectric conversion device are provided, and the power measuring unit has a load on the output of the thermoelectric conversion device after the load is changed. Further, after the time corresponding to the thermal time constant of the thermoelectric conversion device has elapsed, the electric power output from the thermoelectric conversion device is measured.
  • thermoelectric conversion device According to at least the first aspect of the technique disclosed in the present specification, it is possible to increase the electric power (extracted electric power) output from the thermoelectric conversion device.
  • thermoelectric power generation system which concerns on embodiment. It is a flowchart which shows the example of the operation (maximum output control) of a power control device. It is a figure which shows the example of the value of the electric power (take-out electric power) output from a thermoelectric conversion apparatus in the electric power control apparatus which concerns on embodiment, when the control cycle which is the waiting time of control is changed. It is a figure which shows typically the thermal circuit of a thermoelectric conversion apparatus. It is a figure which shows the example of the transient characteristic of the electric power output from a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is increased by ⁇ I (when the current is perturbed by + ⁇ I by a hill climbing method).
  • thermoelectric conversion apparatus It is a figure which shows the example of the current-voltage characteristic at the time of thermal equilibrium of a thermoelectric conversion apparatus. It is a figure which shows the example of the voltage characteristic of a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is increased by ⁇ I (when the current is perturbed by + ⁇ I by a hill climbing method). It is a figure which shows the example of the transient characteristic of the electric power P output from a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is decreased by ⁇ I (when the current is perturbed by ⁇ I by a hill climbing method). It is a figure which shows the example of the current-voltage characteristic at the time of thermal equilibrium of a thermoelectric conversion apparatus.
  • thermoelectric conversion apparatus It is a figure which shows the example of the voltage characteristic of a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is decreased by ⁇ I (when the current is perturbed by ⁇ I by a hill climbing method). It is a figure which shows the example of the structure of the thermoelectric power generation system which concerns on embodiment. It is a flowchart which shows the example of the operation for acquiring the thermal time constant of a power control device. It is a figure which shows the example of the transient characteristic of the voltage of a thermoelectric conversion apparatus at the time of changing from a short circuit state to an open state. It is a flowchart which shows the example of the operation (maximum output control) of a power control device.
  • thermoelectric power generation system whose example is shown in FIGS. 1 and 11. It is a figure which schematically exemplifies the hardware configuration in the case of actually operating the thermoelectric power generation system whose example is shown in FIGS. 1 and 11.
  • ordinal numbers such as “first” or “second” may be used in the description described below, these terms facilitate the understanding of the content of the embodiments. It is used for convenience, and is not limited to the order that can be generated by these ordinal numbers.
  • FIG. 1 is a diagram showing an example of a configuration of a thermoelectric power generation system according to the present embodiment.
  • the thermoelectric power generation system 100 includes a thermoelectric conversion device 11, a power control device 12 for controlling electric power output from the thermoelectric conversion device 11, and a load 13.
  • the load 13 is composed of a constant voltage source such as a storage battery.
  • the thermoelectric conversion device 11 includes a thermoelectric conversion module 11a, a high temperature side heat exchanger 11b and a low temperature side heat exchanger 11c provided with the thermoelectric conversion module 11a interposed therebetween.
  • the thermoelectric conversion module 11a is composed of, for example, a thermoelectric conversion element. When a temperature difference is applied to both ends of the thermoelectric conversion module 11a, an electromotive force is generated by the Seebeck effect. When the thermoelectric conversion module 11a is composed of a thermoelectric conversion element, the thermoelectric conversion element is connected in series or in parallel in the thermoelectric conversion module 11a. Then, the electromotive force generated in the thermoelectric conversion module 11a is taken out from the positive electrode and the negative electrode of the thermoelectric conversion module 11a.
  • the high temperature side heat exchanger 11b has a fin structure made of, for example, aluminum or SUS.
  • the high temperature side heat exchanger 11b transfers the heat of a high temperature fluid such as exhaust gas to the surface on the high temperature side of the thermoelectric conversion module 11a.
  • the low temperature side heat exchanger 11c has a structure in which cooling water flows in a block made of, for example, aluminum or copper.
  • the low temperature side heat exchanger 11c takes heat transferred from the low temperature side surface of the thermoelectric conversion module 11a.
  • thermoelectric conversion module 11a heat is transferred (penetrated) from the surface on the high temperature side of the thermoelectric conversion module 11a to the surface on the low temperature side.
  • the power control device 12 includes a thermal time constant acquisition unit 12a, a power measurement unit 12b, a power conversion control unit 12c, and a power conversion unit 12d.
  • thermoelectric conversion device 11 The positive electrode and the negative electrode of the thermoelectric conversion device 11 are connected to the power control device 12. Then, the electric power generated by the thermoelectric conversion device 11 is input to the power control device 12.
  • the load 13 is also connected to the power control device 12. Then, the electric power converted by the electric power conversion unit 12d is output to the load 13.
  • the power conversion unit 12d is provided with a positive electrode and a negative electrode on the input side, and each is connected to the positive electrode and the negative electrode of the thermoelectric conversion device 11. Then, the electric power generated by the thermoelectric conversion device 11 is input to the electric power conversion unit 12d.
  • the power conversion unit 12d is provided with a positive electrode and a negative electrode on the output side, and each is connected to the positive electrode and the negative electrode of the load 13. Then, the electric power converted by the electric power conversion unit 12d is output to the load 13.
  • the power conversion unit 12d is composed of, for example, a step-up type, step-down type or buck-boost type DC-DC converter.
  • the load of the power conversion unit 12d as seen from the terminal on the input side of the power conversion unit 12d can be changed by controlling the time ratio (duty ratio) of opening and closing the switching element of the power conversion unit 12d.
  • a switching signal which is a periodic rectangular wave (for example, a PWM (Pulse Width Modulation) wave or a PFM (Pulse Frequency Modulation) wave) for opening and closing is a power conversion control unit. This is done by sending from 12c to the switching element.
  • a PWM Pulse Width Modulation
  • PFM Pulse Frequency Modulation
  • the thermal time constant acquisition unit 12a, the power measurement unit 12b, and the power conversion unit 12d are connected to the power conversion control unit 12c.
  • the thermal time constant acquisition unit 12a detects and acquires the temperature of the surface on the high temperature side and the temperature of the surface on the low temperature side of the thermoelectric conversion module 11a using a thermoelectric pair or the like. Then, the thermal time constant acquisition unit 12a calculates the thermal time constant based on the temperature of the surface on the high temperature side and the temperature of the surface on the low temperature side of the thermoelectric conversion module 11a, and transmits the thermal time constant to the power conversion control unit 12c. do.
  • the power measuring unit 12b measures the power output from the thermoelectric conversion device 11 by measuring the current and voltage output from the thermoelectric conversion device 11. Further, the internal resistance of the thermoelectric conversion device 11 is acquired based on the current value and the voltage value output from the thermoelectric conversion device 11. Then, the power measuring unit 12b transmits the measured power as power data to the power conversion control unit 12c.
  • the power conversion control unit 12c controls the maximum output of the power output from the thermoelectric conversion device 11 based on the input thermal time constant and the power data.
  • FIG. 2 is a flowchart showing an example of the operation of the power control device 12 (mainly, maximum output control by the power conversion control unit 12c).
  • the maximum power point search the maximum power point search algorithm by the mountain climbing method is used.
  • step ST10 the thermal time constant acquisition unit 12a calculates and acquires the thermal time constant T of the thermoelectric conversion device 11.
  • the thermal time constant T is obtained as follows.
  • thermoelectric conversion device 11 When the value of the current output from the thermoelectric conversion device 11 is changed from I to I + ⁇ I, the temperature Th on the high temperature side of the thermoelectric conversion module 11a changes to Th + ⁇ T h0 , and the temperature on the low temperature side of the thermoelectric conversion module 11a changes.
  • the temperature T c changes to T c + ⁇ T c 0 .
  • the temperature difference given to the thermoelectric conversion module 11a changes as shown in the following equation (1).
  • thermoelectric conversion module 11a After a certain period of time (t seconds), the temperature on the high temperature side of the thermoelectric conversion module 11a becomes Th + ⁇ T h1 , and the temperature on the low temperature side of the thermoelectric conversion module 11a becomes T c + ⁇ T c1 . Therefore, the change in the temperature difference of the thermoelectric conversion module 11a in t seconds is as shown in the following equation (2).
  • the thermal time constant T is calculated from the transient characteristics of the temperature difference obtained as described above with respect to the time t.
  • step ST11 the duty ratio of the switching signal input from the power conversion control unit 12c to the power conversion unit 12d is changed. Then, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I to I + ⁇ I.
  • step ST12 wait for a time corresponding to the thermal time constant T acquired in step ST10. Since the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d in step ST11 is changed from I to I + ⁇ I, a Pelche effect is generated in the thermoelectric conversion module 11a and the thermal resistance is lowered. Then, the heat balance of the thermoelectric conversion device 11 is temporarily lost.
  • the system is thermally stabilized by waiting for an arbitrary constant multiple time such as T or 3T with respect to the time T of the thermal time constant.
  • the power measuring unit 12b measures the power P (take-out power) output from the thermoelectric conversion device 11.
  • step ST14 the power P measured in step ST13 and the power P'similarly measured in step ST13 of the previous loop (that is, the power before the current value changes in step ST11) are combined. compare. When step ST14 is the first time in the loop, the comparison is performed with the power P'set to 0.
  • step ST15 the process proceeds to step ST15.
  • P> P' that is, if it corresponds to "NO” branching from step ST14 shown in FIG. 2
  • step ST16 the process proceeds to step ST16.
  • step ST15 it is determined that the current value ⁇ I to be changed in step ST11 in the next loop is ⁇ I, which is the same value as in the previous step ST11. Then, the process proceeds to step ST17.
  • step ST16 it is determined that the value ⁇ I of the current to be changed in step ST11 in the next loop is ⁇ I, which is the value of the opposite sign (the absolute value is the same) as in the case of the previous step ST11. Then, the process proceeds to step ST17.
  • step ST17 the power P measured in step ST13 is updated to the value used as the power P'in step ST14 of the next loop. Then, the process returns to step ST11.
  • the power control device 12 controls to repeat the loop near the current value at which the power output from the thermoelectric conversion device 11 is maximized. In this way, the power control device 12 searches for the maximum value of the power output from the thermoelectric conversion device 11.
  • FIG. 3 shows an example of the value of the power P (take-out power) output from the thermoelectric conversion device 11 when the control cycle t, which is the waiting time for control, is changed in the power control device 12 according to the present embodiment. It is a figure which shows.
  • the vertical axis shows the value of the electric power P
  • the horizontal axis shows the control cycle of the thermoelectric conversion device 11.
  • thermoelectric conversion device 11 As an example is shown in FIG. 3, there is a point X where the electric power P output from the thermoelectric conversion device 11 is maximized in the control cycle t.
  • the point X is near the thermal time constant T of the thermoelectric conversion device 11. The reason for this will be described below.
  • thermoelectric conversion is performed when measuring the power P output from the thermoelectric conversion device 11 after changing the current I output from the thermoelectric conversion device 11 in step ST11.
  • the temperature of the device 11 has not yet reached the equilibrium state. Therefore, the output has not reached the equilibrium state, and the true maximum power point cannot be obtained.
  • FIG. 4 is a diagram schematically showing a thermal circuit of the thermoelectric conversion device 11.
  • the thermal resistance R h and the heat capacity Ch mainly by the high temperature side heat exchanger 11b are formed between the surface Th of the high temperature side of the thermoelectric conversion module 11a and the temperature fixing point Th on the high temperature side. It exists in parallel.
  • the heat resistance R c mainly due to the low temperature side heat exchanger 11 c.
  • the heat capacity C c exists in parallel.
  • thermoelectric conversion module 11a by varying the flowing current I, the amount of heat transferred from the high temperature side to the low temperature side of the thermoelectric conversion element increases from Q to Q + ⁇ Q due to the Pelche effect, and the thermal resistance RTEG changes.
  • the thermal resistance of the thermoelectric conversion module 11a when the current is 0 is r TEG0 and the Perche coefficient is ⁇
  • the amount of heat Q flowing through the thermoelectric conversion module 11a is expressed by the following equation (3).
  • thermoelectric conversion module 11a the thermal resistance R TEG of the thermoelectric conversion module 11a is expressed by the following equation (4).
  • thermoelectric conversion module 11a changes due to the current fluctuation, and the high temperature side heat exchanger 11b and the low temperature side heat exchanger 11c each have a heat capacity, so that the thermoelectric conversion element There is a delay before the temperature difference between the two reaches the equilibrium state. Along with this, the response of the thermoelectromotive force of the thermoelectric conversion module 11a also becomes delayed.
  • FIG. 5 is a diagram showing an example of the transient characteristics of the electric power P output from the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is increased by ⁇ I (when the current is perturbed by + ⁇ I by the hill climbing method). ..
  • the vertical axis shows the value of electric power
  • the horizontal axis shows the value of current.
  • FIG. 6 is a diagram showing an example of the current-voltage characteristics of the thermoelectric conversion device 11 at the time of thermal equilibrium.
  • the vertical axis represents the voltage value and the horizontal axis represents the current value.
  • FIG. 7 is a diagram showing an example of the voltage characteristics of the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is increased by ⁇ I (when the current is perturbed by + ⁇ I by the mountain climbing method).
  • the vertical axis represents the voltage value and the horizontal axis represents time.
  • the power P max (see FIG. 5), which is the maximum power at the time of thermal equilibrium, is indicated by V pmax I pmax
  • the voltage V increases the current. From the moment of, it gradually approaches V pmax - ⁇ V according to the current-voltage characteristics at the time of thermal equilibrium of the thermoelectric conversion device 11 (see FIGS. 6 and 7).
  • the time constant at the time of asymptote is the thermal time constant T.
  • step ST12 of the flowchart shown in FIG. 2 when the time (control cycle t) to wait in step ST12 of the flowchart shown in FIG. 2 is shorter than the thermal time constant T, the voltage V measured in step ST13 of the flowchart shown in FIG. 2 is shown in FIG. It becomes V1 shown in 6 and FIG. 7, and becomes a value higher than the value V pmax ⁇ ⁇ V of the voltage V at the time of thermal equilibrium.
  • the value of the voltage V when the current I is increased from I pmax to I pmax + ⁇ I by ⁇ I can be expressed by the following equation (5) which approaches V pmax ⁇ ⁇ V with the thermal time constant T.
  • the voltage V becomes almost the same value as V pmax , and a value higher than V pmax ⁇ ⁇ V at the time of thermal equilibrium is measured as the voltage V.
  • the power P calculated in step ST13 of the flowchart shown in FIG. 2 is shown as follows.
  • step ST14 of the flowchart shown in FIG. 2 P>P'(that is, corresponding to “YES” branching from step ST14 shown in FIG. 2), and the step of the flowchart shown in FIG. Proceed to ST15.
  • step ST15 of the flowchart shown in FIG. 2 the value ⁇ I of the current to be changed in step ST11 in the next loop is ⁇ I, which is the same value as in the previous step ST11.
  • the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I pmax + ⁇ I to I pmax + 2 ⁇ I, which is higher than I pmax . Further, the current I becomes large.
  • step ST14 of the flowchart shown in FIG. 2 P> P'is no longer present (that is, corresponding to “NO” branching from step ST14 shown in FIG. 2), and the flowchart shown in FIG. 2 is shown. Proceed to step ST16.
  • step ST16 of the flowchart shown in FIG. 2 the value ⁇ I of the current to be changed in step ST11 in the next loop is a value having a sign opposite to that in the previous step ST11 (the absolute value is the same).
  • the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I pmax + ⁇ I to I pmax . It will change.
  • the power P measured in is smaller than the power P max , which is the maximum power at the time of thermal equilibrium.
  • thermoelectric conversion device 11 the case where the current of the thermoelectric conversion device 11 is reduced by ⁇ I will also be described below.
  • FIG. 8 is a diagram showing an example of the transient characteristics of the power P output from the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is reduced by ⁇ I (when the current is perturbed by ⁇ I by the hill climbing method). be.
  • the vertical axis shows the value of electric power
  • the horizontal axis shows the value of current.
  • FIG. 9 is a diagram showing an example of the current-voltage characteristics of the thermoelectric conversion device 11 at the time of thermal equilibrium.
  • the vertical axis shows the voltage value and the horizontal axis shows the current value.
  • FIG. 10 is a diagram showing an example of the voltage characteristics of the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is reduced by ⁇ I (when the current is perturbed by ⁇ I by the hill climbing method).
  • the vertical axis represents the voltage value and the horizontal axis represents time.
  • the power P max (see FIG. 8), which is the maximum power at the time of thermal equilibrium, is indicated by V pmax I pmax
  • the voltage V decreases. From the moment of, the voltage gradually approaches V pmax according to the current-voltage characteristics (see FIG. 9) at the time of thermal equilibrium of the thermoelectric conversion device 11.
  • the time constant at the time of asymptote is the thermal time constant T.
  • step ST12 of the flowchart shown in FIG. 2 when the time (control cycle t) to wait in step ST12 of the flowchart shown in FIG. 2 is shorter than the thermal time constant T, the voltage V measured in step ST13 of the flowchart shown in FIG. 2 is shown in FIG. It becomes V1 shown in 9 and FIG. 10, and becomes a value lower than the value V pmax of the voltage V at the time of thermal equilibrium.
  • the voltage V becomes almost the same value as V pmax ⁇ ⁇ V, and a value lower than V pmax at the time of thermal equilibrium is measured as the voltage V. ..
  • the power P calculated in step ST13 of the flowchart shown in FIG. 2 is shown as follows.
  • step ST14 of the flowchart shown in FIG. 2 P>P'is no longer present (that is, corresponding to “NO” branching from step ST14 shown in FIG. 2), and the flowchart shown in FIG. 2 is shown. Proceed to step ST16.
  • step ST16 of the flowchart shown in FIG. 2 the value ⁇ I of the current to be changed in step ST11 in the next loop is a value having a sign opposite to that in the previous step ST11 (absolute value is the same) + ⁇ I. Therefore, when returning to step ST11 of the flowchart shown in FIG. 2 in a later step, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I pmax to I pmax + ⁇ I. Will be made to.
  • thermoelectric conversion module 11a thermoelectric conversion element
  • the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d repeats the loop in the vicinity of a value ⁇ I larger than I pmax , so that it is measured in step ST13 of the flowchart shown in FIG.
  • the power P is smaller than the power P max , which is the maximum power at the time of thermal equilibrium.
  • thermoelectric conversion device 11 when the control cycle t is shorter than the thermal time constant T of the thermoelectric conversion device 11, the power P (take-out power) output from the thermoelectric conversion device 11 is higher than the maximum output during thermal equilibrium (steady state). Also declines.
  • thermoelectric conversion device 11 By setting the control cycle t to a value near the thermal time constant T, power characteristics close to those at the time of thermal equilibrium (steady state) of the thermoelectric conversion device 11 can be obtained, and the power P (extracted) output from the thermoelectric conversion device 11 can be obtained. Power) can be maximized.
  • the control cycle t is sufficiently larger than the thermal time constant T
  • the high temperature side heat source or the low temperature side heat source fluctuates in a cycle longer than the thermal time constant T and shorter than the control cycle t
  • the temperature fluctuation can be followed.
  • the power P output from the thermoelectric conversion device 11 may stay at a value deviating from the maximum power P max . Then, the electric power P output from the thermoelectric conversion device 11 becomes lower than the electric power P max .
  • the control cycle t is a value near the thermal time constant T of the thermoelectric conversion device 11.
  • FIG. 11 is a diagram showing an example of the configuration of the thermoelectric power generation system according to the present embodiment.
  • the thermoelectric power generation system 101 includes a thermoelectric conversion device 11, a power control device 22 for controlling electric power output from the thermoelectric conversion device 11, and a load 13.
  • the load 13 is composed of a constant voltage source such as a storage battery.
  • the power control device 22 includes a thermal time constant acquisition unit 22a, a power measurement unit 22b, a power conversion control unit 22c, and a power conversion unit 22d.
  • thermoelectric conversion device 11 The positive electrode and the negative electrode of the thermoelectric conversion device 11 are connected to the power control device 22. Then, the electric power generated by the thermoelectric conversion device 11 is input to the power control device 22.
  • the load 13 is also connected to the power control device 22. Then, the electric power converted by the electric power conversion unit 22d is output to the load 13.
  • the power conversion unit 22d is provided with a positive electrode and a negative electrode on the input side, and each is connected to the positive electrode and the negative electrode of the thermoelectric conversion device 11. Then, the electric power generated by the thermoelectric conversion device 11 is input to the electric power conversion unit 22d.
  • the power conversion unit 22d is provided with a positive electrode and a negative electrode on the output side, and each is connected to the positive electrode and the negative electrode of the load 13. Then, the electric power converted by the electric power conversion unit 22d is output to the load 13.
  • the load of the power conversion unit 22d as seen from the terminal on the input side of the power conversion unit 22d can be changed by controlling the time ratio (duty ratio) of opening and closing the switching element of the power conversion unit 22d.
  • the thermal time constant acquisition unit 22a, the power measurement unit 22b, and the power conversion unit 22d are connected to the power conversion control unit 22c.
  • the thermal time constant acquisition unit 12a shown in FIG. 1 directly detects the temperature of the surface on the high temperature side and the temperature of the surface on the low temperature side of the thermoelectric conversion module 11a using a thermoelectric pair or the like.
  • the thermal time constant acquisition unit 22a in the present embodiment is connected to the power measurement unit 22b, and the thermal time constant T is calculated only from the power measurement result (power data) transmitted from the power measurement unit 22b. do. Then, the thermal time constant acquisition unit 22a transmits the calculated thermal time constant T to the power conversion control unit 22c.
  • the power measuring unit 22b measures the power output from the thermoelectric conversion device 11 by measuring the current and voltage output from the thermoelectric conversion device 11. Then, the power measuring unit 22b transmits the measured power as power data to the heat time constant acquisition unit 22a and the power conversion control unit 22c.
  • the power conversion control unit 22c controls the maximum output of the power output from the thermoelectric conversion device 11 based on the input thermal time constant T and the power data.
  • the operation of the power control device 22 (mainly the maximum output control by the power conversion control unit 22c) according to the present embodiment is the same as the operation shown in FIG. 2.
  • the power control device 22 acquires the thermal time constant in the following flow.
  • FIG. 12 is a flowchart showing an example of an operation for acquiring the thermal time constant of the power control device 22.
  • step ST120 the positive electrode and the negative electrode of the thermoelectric conversion device 11 are short-circuited and wait for a certain period of time.
  • This time may be an arbitrary value set in advance, but it is desirable that the time is longer than or equal to the thermal time constant T in order to obtain an accurate thermal time constant T. If there is a previously measured thermal time constant T, about three times that time may be set as the waiting time in step ST120.
  • thermoelectric conversion device 11 is instantly opened and the transient characteristic of the voltage V between the positive electrode and the negative electrode of the thermoelectric conversion device 11 is acquired for a certain period of time.
  • step ST122 a time constant is acquired based on the time change of the voltage V of the thermoelectric conversion device 11 after a certain period of time has passed immediately after the thermoelectric conversion device 11 is opened.
  • FIG. 13 is a diagram showing an example of the transient characteristics of the voltage of the thermoelectric converter 11 when the short-circuited state is changed to the open state.
  • the vertical axis represents the voltage value and the horizontal axis represents time.
  • the voltage V immediately after the open state is set as V oc1
  • the voltage V when the temperature of the thermoelectric converter 11 stabilizes after a sufficient time has passed after the open state is set.
  • V oc2 the theoretical curve of the voltage V with respect to the time t can be expressed by the following equation (6).
  • thermoelectric conversion device 11 can be obtained by fitting the time constant to the measured transient characteristic of V by the above equation (6) using the least squares method or the like. ..
  • thermoelectric conversion device 11 The electromotive force of the thermoelectric conversion device 11 is proportional to the temperature difference ⁇ T between the surface on the high temperature side and the surface on the low temperature side of the thermoelectric conversion device 11 due to the Seebeck effect. Therefore, the time response of the voltage value shows the same behavior as the time response of the temperature difference ⁇ T.
  • the thermal time constant T can be obtained only by the voltage measurement.
  • thermoelectric conversion device 11 can be acquired only by the power measurement in the power measurement unit 22b without newly adding hardware for heat measurement such as a thermocouple. Therefore, the electric power output from the thermoelectric conversion device 11 can be maximized inexpensively and easily.
  • the thermal time constant T is acquired as a result by changing the thermoelectric conversion device 11 from the short-circuited state to the open state, but the voltage value at that time is changed by changing the current value by ⁇ I.
  • the thermal time constant T may be acquired based on the transient characteristics.
  • thermoelectric power generation system thermoelectric power generation system
  • power control method a power control method according to the present embodiment.
  • components similar to the components described in the above-described embodiments will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
  • the power control device 12 (or the power control device 22) in the embodiment described above may perform maximum output control by controlling the load 13.
  • FIG. 14 is a flowchart showing an example of the operation of the power control device (mainly, the maximum output control by the power conversion control unit 12c). Although the control performed by the power control device 12 is described in FIG. 14, it may be replaced with the control performed by the power control device 22.
  • step ST310 the thermal time constant acquisition unit 12a calculates and acquires the thermal time constant T of the thermoelectric conversion device 11.
  • step ST311 the value of the load 13 is changed from R to R + ⁇ R.
  • step ST312 wait for a time corresponding to the thermal time constant T acquired in step ST310. Since the value of the load 13 was changed from R to R + ⁇ R in step ST311, the thermal balance of the thermoelectric conversion device 11 is temporarily lost.
  • the system is thermally stabilized by waiting for an arbitrary constant multiple time such as T or 3T with respect to the time T of the thermal time constant.
  • the power measuring unit 12b measures the power P (take-out power) output from the thermoelectric conversion device 11.
  • step ST314 the power P measured in step ST313 is compared with the power P'similarly measured in step ST313 of the previous loop.
  • step ST314 is the first time in the loop, the comparison is performed with the power P'set to 0.
  • step ST316 the process proceeds to step ST316.
  • step ST315 it is determined that the load value ⁇ R to be changed in step ST311 in the next loop is ⁇ R, which is the same value as in the previous step ST311. Then, the process proceeds to step ST317.
  • step ST316 it is determined that the load value ⁇ R to be changed in step ST311 in the next loop is ⁇ R having the opposite sign value (absolute value is the same) as in the previous step ST311. Then, the process proceeds to step ST317.
  • step ST317 the power P measured in step ST313 is updated to the value used as the power P'in step ST314 of the next loop. Then, the process returns to step ST311.
  • the power control device 12 controls to repeat the loop near the current value at which the power output from the thermoelectric conversion device 11 is maximized.
  • thermoelectric conversion is performed as compared with the case where the current value as in the loop after step ST11 in FIG. 2 is kept constant.
  • the power output from the device 11 can be kept near the maximum power.
  • thermoelectric conversion device 11 changes.
  • thermoelectric conversion device 11 the internal resistance tends to increase as the temperature of the thermoelectric conversion element rises, but this effect is generally small. Therefore, the power output from the thermoelectric conversion device 11 is larger in the control that keeps the value of the load 13 constant than in the control that keeps the current value constant. As a result, the electric power output from the thermoelectric conversion device 11 can be increased as compared with the case where the current value is kept constant during the control cycle t.
  • thermoelectric power generation system ⁇ Hardware configuration of power control device in thermoelectric power generation system> 15 and 16 are diagrams schematically illustrating a hardware configuration in the case of actually operating a thermoelectric power generation system (particularly, a power control device) whose example is shown in FIGS. 1 and 11.
  • FIGS. 15 and 16 may not match the configurations illustrated in FIGS. 1 and 11, but this may be inconsistent with the configurations illustrated in FIGS. 1 and 11. Is due to the fact that is a conceptual unit.
  • At least one configuration exemplified in FIGS. 1 and 11 comprises a plurality of hardware configurations exemplified in FIGS. 15 and 16, and one configuration exemplified in FIGS. 1 and 11 includes.
  • the case corresponding to a part of the hardware configurations exemplified in FIGS. 15 and 16, and further, the plurality of configurations exemplified in FIGS. 1 and 11 are one exemplified in FIGS. 15 and 16. It can be assumed that it is prepared for a hardware configuration.
  • FIG. 15 the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, and the power conversion in FIGS. 1 and 11 are shown.
  • a processing circuit 1102A for performing an operation and a storage device 1103 capable of storing information are shown. These configurations are the same in other embodiments.
  • FIG. 16 the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, and the power conversion unit in FIGS. 1 and 11 are shown.
  • a processing circuit 1102B for performing an operation is shown. The configuration is the same in other embodiments.
  • the heat time constant is stored in the heat time constant acquisition unit 12a, the heat time constant is stored in the heat time constant acquisition unit 22a, the power is stored in the power measurement unit 12b, or the power is measured in the power measurement unit 22b.
  • Storage and the like are realized by storage device 1103 or another storage device (not shown here).
  • the storage device 1103 is, for example, a hard disk drive (Hard disk drive, that is, HDD), a random access memory (random access memory, that is, RAM), a read-only memory (read only memory, that is, ROM), a flash memory, and an erase program.
  • Hard disk drive that is, HDD
  • random access memory random access memory
  • read-only memory read only memory
  • flash memory and an erase program.
  • Memory storage including volatile or non-volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD such as read only memory (EPROM) and electricalally erasable program read-only memory (EEPROM). It may be a medium) or any storage medium that will be used in the future.
  • the processing circuit 1102A may execute a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like. That is, for example, it may be a central processing unit (CPU), a microprocessor, a microcomputer, or a digital signal processor (DSP).
  • CPU central processing unit
  • DSP digital signal processor
  • the processing circuit 1102A executes a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like, the thermal time constant acquisition unit 12a, the thermal time constant In the acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d and the power conversion unit 22d, the program stored in the storage device 1103 is stored in the storage device 1103 by the processing circuit 1102A. It is realized by the software to be executed, the firmware, or the combination of the software and the firmware.
  • the functions of the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d, and the power conversion unit 22d are For example, it may be realized by coordinating a plurality of processing circuits.
  • the software and firmware may be described as a program and stored in the storage device 1103.
  • the processing circuit 1102A realizes the above function by reading and executing the program stored in the storage device 1103. That is, the storage device 1103 may store a program in which the above functions are eventually realized by being executed by the processing circuit 1102A.
  • processing circuit 1102B may be dedicated hardware. That is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an integrated circuit (application specific integrated circuit, that is, an ASIC), a field-programmable gate array (FPGA), or a combination thereof. It may be a circuit.
  • the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, and the power conversion The unit 12d and the power conversion unit 22d are realized by operating the processing circuit 1102B.
  • the functions of the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d, and the power conversion unit 22d are , It may be realized by a separate circuit, or it may be realized by a single circuit.
  • thermal time constant acquisition unit 12a The functions of the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d, and the power conversion unit 22d are , A part may be realized in the processing circuit 1102A which executes the program stored in the storage device 1103, and a part may be realized in the processing circuit 1102B which is the dedicated hardware.
  • the replacement may be made across a plurality of embodiments. That is, it may be the case that the respective configurations shown in the examples in different embodiments are combined to produce the same effect.
  • the power control device is output from the power measuring unit 12b (or the power measuring unit 22b) for measuring the power output from the thermoelectric conversion device 11 and the thermoelectric conversion device 11. It is provided with a control unit that controls the electric power.
  • the control unit corresponds to at least one of, for example, a power conversion control unit 12c, a power conversion control unit 22c, and the like.
  • the thermoelectric conversion device 11 generates electricity based on heat. Then, the thermoelectric conversion device 11 outputs electric power.
  • the power measuring unit 12b is output from the thermoelectric conversion device 11 after the load on the output of the thermoelectric conversion device 11 is changed and after a time corresponding to the thermal time constant of the thermoelectric conversion device 11 has elapsed. Measure the power.
  • the power control device includes a processing circuit 1102A for executing a program and a storage device 1103 for storing the program to be executed. Then, when the processing circuit 1102A executes the program, the following operations are realized.
  • thermoelectric conversion device 11 After the load on the output of the thermoelectric conversion device 11 fluctuates, and after the time corresponding to the thermal time constant of the thermoelectric conversion device 11 elapses, the power output from the thermoelectric conversion device 11 is measured.
  • the power control device includes a processing circuit 1102B which is dedicated hardware. Then, the processing circuit 1102B, which is dedicated hardware, performs the following operations.
  • the processing circuit 1102B which is dedicated hardware, is a thermoelectric conversion device after the load on the output of the thermoelectric conversion device 11 is changed and after a time corresponding to the thermal time constant of the thermoelectric conversion device 11 has elapsed. The power output from 11 is measured.
  • the power conversion control unit 12c searches for the maximum value of the power output from the thermoelectric conversion device 11 based on the measured power of the thermoelectric conversion device 11. According to such a configuration, the maximum power output from the thermoelectric conversion device 11 can be found by repeating the search for varying the load on the output of the thermoelectric conversion device 11 such as how to climb a mountain.
  • the power conversion control unit 12c fluctuates the current value output from the thermoelectric conversion device 11 by varying the load on the output of the thermoelectric conversion device 11.
  • the current value output from the thermoelectric conversion device 11 is kept constant for the time corresponding to the thermal time constant of the thermoelectric conversion device 11.
  • the power P (take-out power) output from the thermoelectric conversion device 11 is measured by measuring the power output from the thermoelectric conversion device 11 after the time corresponding to the thermal time constant T has elapsed. ) Can be maximized.
  • the power conversion control unit 12c fluctuates the load on the output of the thermoelectric conversion device 11, and the load corresponds to the thermal time constant of the thermoelectric conversion device 11. Keep it constant. According to such a configuration, even if the temperature of the heat source or the cooling source fluctuates, the electric power output from the thermoelectric conversion device 11 can be kept near the maximum electric power. Then, after the time corresponding to the thermal time constant T has elapsed, the electric power P (extracted electric power) output from the thermoelectric conversion device 11 is maximized by measuring the electric power output from the thermoelectric conversion device 11. Can be done.
  • the power control device 22 changes the current value output from the thermoelectric conversion device 11 and changes the voltage value output from the thermoelectric conversion device 11 over time.
  • a thermal time constant acquisition unit 22a for acquiring the thermal time constant of the thermoelectric conversion device 11 is provided.
  • the positive electrode and the negative electrode of the thermoelectric conversion device 11 are short-circuited, wait for a certain period of time, and then the thermoelectric conversion device 11 is opened again to output from the thermoelectric conversion device 11.
  • the thermal time constant T is not acquired by the thermal measurement of the thermoelectric converter 11. Both can acquire the thermal time constant T.
  • the power measuring unit 12b acquires the internal resistance of the thermoelectric conversion device 11 based on the current value and the voltage value output from the thermoelectric conversion device 11.
  • the thermoelectric conversion device 11 (including the thermal resistance between the high temperature side (or low temperature side) surface and the high temperature side (or low temperature side) temperature fixing point of the thermoelectric conversion module 11a) is accurate. Since it is possible to measure the internal resistance, it can be utilized for the maximum power control of the thermoelectric conversion device 11.
  • the material when the material name or the like is described without being specified, the material contains other additives, for example, an alloy or the like, as long as there is no contradiction. It shall be included.
  • each component in the above-described embodiment is a conceptual unit, and within the scope of the technique disclosed in the present specification, one component is composed of a plurality of structures. It is assumed that one component corresponds to a part of a structure, and further, a case where a plurality of components are provided in one structure is included.
  • each component in the above-described embodiment shall include a structure having another structure or shape as long as it exhibits the same function.
  • each component described in the above-described embodiment is assumed to be software or firmware and corresponding hardware, and in both concepts, each component is a "part". Alternatively, it is referred to as a "processing circuit” or the like.
  • the heat time constant is stored in the heat time constant acquisition unit 12a
  • the heat time constant is stored in the heat time constant acquisition unit 22a
  • the power is stored in the power measurement unit 12b
  • the power is measured in the power measurement unit 22b.
  • the storage of electric power and the like are shown in FIGS. 1 and 11 as being mounted in the thermoelectric power generation system, but at least one of them may be an external functional unit. In that case, it suffices as long as the other functional parts in the thermoelectric power generation system and the external functional parts interact with each other to fulfill the function of the thermoelectric power generation system as a whole.
  • thermoelectric conversion device 11 thermoelectric conversion device, 11a thermoelectric conversion module, 11b high temperature side heat exchanger, 11c low temperature side heat exchanger, 12, 22 power control device, 12a, 22a thermal time constant acquisition unit, 12b, 22b power measurement unit, 12c, 22c Power conversion control unit, 12d, 22d power conversion unit, 13 loads, 100, 101 thermoelectric power generation system, 1102A, 1102B processing circuit, 1103 storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Electromechanical Clocks (AREA)

Abstract

The purpose of the present invention is to increase the power extracted from a thermoelectric conversion device. This power control device is provided with a power measurement unit which measures power outputted from the thermoelectric conversion device, and a control unit which controls the power outputted from the thermoelectric conversion device. The power measurement unit measures the power outputted from the thermoelectric conversion device after the load relative to the output of the thermoelectric conversion device has fluctuated and further after a time corresponding to the thermal time constant of the thermoelectric conversion device has elapsed.

Description

電力制御装置、熱電発電システム、および、電力制御方法Power control device, thermoelectric power generation system, and power control method
 本願明細書に開示される技術は、熱電発電技術に関するものである。 The technique disclosed in the specification of the present application relates to a thermoelectric power generation technique.
 従来の熱電変換装置の制御方法としては、熱電変換装置からの出力を最大化させるために、山登り法を用いて任意の制御周期で熱電変換装置の出力電流を変動させて、最適動作点を探索するものがある(たとえば、特許文献1である特開2013-055769号公報を参照)。 As a control method of the conventional thermoelectric converter, in order to maximize the output from the thermoelectric converter, the output current of the thermoelectric converter is fluctuated at an arbitrary control cycle using the mountain climbing method to search for the optimum operating point. (For example, refer to Japanese Patent Application Laid-Open No. 2013-055769, which is Patent Document 1).
特開2013-055769号公報Japanese Unexamined Patent Publication No. 2013-055769
 このような熱電変換装置の制御方法においては、制御周期が熱電変換装置の熱時定数よりも短い場合、正確な熱電変換装置の最大電力点を取得することが困難となる。その結果、熱電変換装置の最大出力電力よりも取り出し電力が低下するという問題があった。 In such a control method of a thermoelectric conversion device, if the control cycle is shorter than the thermal time constant of the thermoelectric conversion device, it becomes difficult to obtain an accurate maximum power point of the thermoelectric conversion device. As a result, there is a problem that the extraction power is lower than the maximum output power of the thermoelectric conversion device.
 本願明細書に開示される技術は、以上に記載されたような問題を鑑みてなされたものであり、熱電変換装置の取り出し電力を増大させるための技術である。 The technique disclosed in the present specification has been made in view of the above-mentioned problems, and is a technique for increasing the extraction power of the thermoelectric conversion device.
 本願明細書に開示される技術の第1の態様である電力制御装置は、熱に基づいて発電された電力を出力する熱電変換装置の電力を制御する電力制御装置であり、前記熱電変換装置から出力される電力を測定する電力測定部と、前記熱電変換装置から出力される電力を制御する制御部とを備え、前記電力測定部は、前記熱電変換装置の出力に対する負荷が変動された後、さらに、前記熱電変換装置の熱時定数に対応する時間が経過した後で、前記熱電変換装置から出力される電力を測定する。 The electric power control device according to the first aspect of the technique disclosed in the present specification is a power control device that controls the electric power of the thermoelectric conversion device that outputs the electric power generated based on heat, and is from the thermoelectric conversion device. A power measuring unit for measuring the output power and a control unit for controlling the power output from the thermoelectric conversion device are provided, and the power measuring unit has a load on the output of the thermoelectric conversion device after the load is changed. Further, after the time corresponding to the thermal time constant of the thermoelectric conversion device has elapsed, the electric power output from the thermoelectric conversion device is measured.
 本願明細書に開示される技術の少なくとも第1の態様によれば、熱電変換装置から出力される電力(取り出し電力)を増大させることができる。 According to at least the first aspect of the technique disclosed in the present specification, it is possible to increase the electric power (extracted electric power) output from the thermoelectric conversion device.
 また、本願明細書に開示される技術に関連する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。 Further, the objectives, features, aspects, and advantages associated with the techniques disclosed herein will be further clarified by the detailed description and accompanying drawings shown below.
実施の形態に関する、熱電発電システムの構成の例を示す図である。It is a figure which shows the example of the structure of the thermoelectric power generation system which concerns on embodiment. 電力制御装置の動作(最大出力制御)の例を示すフローチャートである。It is a flowchart which shows the example of the operation (maximum output control) of a power control device. 実施の形態に関する電力制御装置で、制御の待ち時間である制御周期を変化させた場合の、熱電変換装置から出力される電力(取り出し電力)の値の例を示す図である。It is a figure which shows the example of the value of the electric power (take-out electric power) output from a thermoelectric conversion apparatus in the electric power control apparatus which concerns on embodiment, when the control cycle which is the waiting time of control is changed. 熱電変換装置の熱回路を模式的に示す図である。It is a figure which shows typically the thermal circuit of a thermoelectric conversion apparatus. 熱電変換装置の電流をΔI増加させた場合(山登り法によって電流を+ΔI摂動させた場合)の、熱電変換装置から出力される電力の過渡特性の例を示す図である。It is a figure which shows the example of the transient characteristic of the electric power output from a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is increased by ΔI (when the current is perturbed by + ΔI by a hill climbing method). 熱電変換装置の熱平衡時の電流-電圧特性の例を示す図である。It is a figure which shows the example of the current-voltage characteristic at the time of thermal equilibrium of a thermoelectric conversion apparatus. 熱電変換装置の電流をΔI増加させた場合(山登り法によって電流を+ΔI摂動させた場合)の、熱電変換装置の電圧特性の例を示す図である。It is a figure which shows the example of the voltage characteristic of a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is increased by ΔI (when the current is perturbed by + ΔI by a hill climbing method). 熱電変換装置の電流をΔI減少させた場合(山登り法によって電流を-ΔI摂動させた場合)の、熱電変換装置から出力される電力Pの過渡特性の例を示す図である。It is a figure which shows the example of the transient characteristic of the electric power P output from a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is decreased by ΔI (when the current is perturbed by −ΔI by a hill climbing method). 熱電変換装置の熱平衡時の電流-電圧特性の例を示す図である。It is a figure which shows the example of the current-voltage characteristic at the time of thermal equilibrium of a thermoelectric conversion apparatus. 熱電変換装置の電流をΔI減少させた場合(山登り法によって電流を-ΔI摂動させた場合)の、熱電変換装置の電圧特性の例を示す図である。It is a figure which shows the example of the voltage characteristic of a thermoelectric conversion apparatus when the current of a thermoelectric conversion apparatus is decreased by ΔI (when the current is perturbed by −ΔI by a hill climbing method). 実施の形態に関する、熱電発電システムの構成の例を示す図である。It is a figure which shows the example of the structure of the thermoelectric power generation system which concerns on embodiment. 電力制御装置の熱時定数を取得するための動作の例を示すフローチャートである。It is a flowchart which shows the example of the operation for acquiring the thermal time constant of a power control device. 短絡状態から開放状態となった場合の、熱電変換装置の電圧の過渡特性の例を示す図である。It is a figure which shows the example of the transient characteristic of the voltage of a thermoelectric conversion apparatus at the time of changing from a short circuit state to an open state. 電力制御装置の動作(最大出力制御)の例を示すフローチャートである。It is a flowchart which shows the example of the operation (maximum output control) of a power control device. 図1および図11に例が示される熱電発電システムを実際に運用する場合のハードウェア構成を概略的に例示する図である。It is a figure which schematically exemplifies the hardware configuration in the case of actually operating the thermoelectric power generation system whose example is shown in FIGS. 1 and 11. 図1および図11に例が示される熱電発電システムを実際に運用する場合のハードウェア構成を概略的に例示する図である。It is a figure which schematically exemplifies the hardware configuration in the case of actually operating the thermoelectric power generation system whose example is shown in FIGS. 1 and 11.
 以下、添付される図面を参照しながら実施の形態について説明する。以下の実施の形態では、技術の説明のために詳細な特徴なども示されるが、それらは例示であり、実施の形態が実施可能となるためにそれらすべてが必ずしも必須の特徴ではない。 Hereinafter, embodiments will be described with reference to the attached drawings. In the following embodiments, detailed features and the like are also shown for illustration purposes, but they are exemplary and not all of them are essential features for the embodiments to be feasible.
 なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、または、構成の簡略化が図面においてなされるものである。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、断面図ではない平面図などの図面においても、実施の形態の内容を理解することを容易にするために、ハッチングが付される場合がある。 It should be noted that the drawings are shown schematically, and for convenience of explanation, the configuration is omitted or the configuration is simplified as appropriate in the drawings. Further, the interrelationship between the sizes and positions of the configurations and the like shown in different drawings is not always accurately described and can be changed as appropriate. Further, even in a drawing such as a plan view which is not a sectional view, hatching may be added to facilitate understanding of the contents of the embodiment.
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。 Further, in the explanation shown below, similar components are illustrated with the same reference numerals, and their names and functions are the same. Therefore, detailed description of them may be omitted to avoid duplication.
 また、以下に記載される説明において、ある構成要素を「備える」、「含む」または「有する」などと記載される場合、特に断らない限りは、他の構成要素の存在を除外する排他的な表現ではない。 Further, in the description described below, when a certain component is described as "providing", "including", "having", etc., the existence of the other component is excluded unless otherwise specified. Not an expression.
 また、以下に記載される説明において、「第1の」または「第2の」などの序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序などに限定されるものではない。 Also, even if ordinal numbers such as "first" or "second" may be used in the description described below, these terms facilitate the understanding of the content of the embodiments. It is used for convenience, and is not limited to the order that can be generated by these ordinal numbers.
 また、以下に記載される説明において、等しい状態であることを示す表現、たとえば、「同一」、「等しい」、「均一」または「均質」などは、特に断らない限りは、厳密に等しい状態であることを示す場合、および、公差または同程度の機能が得られる範囲において差が生じている場合を含むものとする。 Further, in the description described below, expressions indicating equality, such as "same", "equal", "uniform" or "homogeneous", are strictly equal unless otherwise specified. It shall include the case where it indicates that there is, and the case where there is a difference within the range where tolerance or similar function can be obtained.
 <第1の実施の形態>
 以下、本実施の形態に関する電力制御装置、熱電発電システム、および、電力制御方法について説明する。
<First Embodiment>
Hereinafter, the electric power control device, the thermoelectric power generation system, and the electric power control method according to the present embodiment will be described.
 <熱電発電システムの構成について>
 図1は、本実施の形態に関する熱電発電システムの構成の例を示す図である。図1に例が示されるように、熱電発電システム100は、熱電変換装置11と、熱電変換装置11から出力される電力を制御する電力制御装置12と、負荷13とを備える。負荷13は、たとえば蓄電池などの定電圧源から構成される。
<About the configuration of the thermoelectric power generation system>
FIG. 1 is a diagram showing an example of a configuration of a thermoelectric power generation system according to the present embodiment. As an example shown in FIG. 1, the thermoelectric power generation system 100 includes a thermoelectric conversion device 11, a power control device 12 for controlling electric power output from the thermoelectric conversion device 11, and a load 13. The load 13 is composed of a constant voltage source such as a storage battery.
 熱電変換装置11は、熱電変換モジュール11aと、熱電変換モジュール11aを挟んで設けられる高温側熱交換器11bおよび低温側熱交換器11cとを備える。 The thermoelectric conversion device 11 includes a thermoelectric conversion module 11a, a high temperature side heat exchanger 11b and a low temperature side heat exchanger 11c provided with the thermoelectric conversion module 11a interposed therebetween.
 熱電変換モジュール11aは、たとえば熱電変換素子によって構成される。熱電変換モジュール11aは、当該素子の両端に温度差を与えると、ゼーベック効果によって起電力が生じる。熱電変換モジュール11aが熱電変換素子によって構成される場合、熱電変換素子は、熱電変換モジュール11a内で直列または並列に接続される。そして、熱電変換モジュール11aにおいて生じた起電力は、熱電変換モジュール11aの正極および負極から取り出される。 The thermoelectric conversion module 11a is composed of, for example, a thermoelectric conversion element. When a temperature difference is applied to both ends of the thermoelectric conversion module 11a, an electromotive force is generated by the Seebeck effect. When the thermoelectric conversion module 11a is composed of a thermoelectric conversion element, the thermoelectric conversion element is connected in series or in parallel in the thermoelectric conversion module 11a. Then, the electromotive force generated in the thermoelectric conversion module 11a is taken out from the positive electrode and the negative electrode of the thermoelectric conversion module 11a.
 高温側熱交換器11bは、たとえばアルミまたはSUS製のフィン構造である。高温側熱交換器11bは、排気ガスなどの高温流体の熱を、熱電変換モジュール11aの高温側の面に伝達する。 The high temperature side heat exchanger 11b has a fin structure made of, for example, aluminum or SUS. The high temperature side heat exchanger 11b transfers the heat of a high temperature fluid such as exhaust gas to the surface on the high temperature side of the thermoelectric conversion module 11a.
 一方で、低温側熱交換器11cは、たとえばアルミまたは銅製のブロック中に冷却水が流れる構造である。低温側熱交換器11cは、熱電変換モジュール11aの低温側の面から伝達する熱を奪う。 On the other hand, the low temperature side heat exchanger 11c has a structure in which cooling water flows in a block made of, for example, aluminum or copper. The low temperature side heat exchanger 11c takes heat transferred from the low temperature side surface of the thermoelectric conversion module 11a.
 これらの構成によって、熱電変換モジュール11aの高温側の面から低温側の面へ熱が伝達(貫通)する。 With these configurations, heat is transferred (penetrated) from the surface on the high temperature side of the thermoelectric conversion module 11a to the surface on the low temperature side.
 電力制御装置12は、熱時定数取得部12aと、電力測定部12bと、電力変換制御部12cと、電力変換部12dとを備える。 The power control device 12 includes a thermal time constant acquisition unit 12a, a power measurement unit 12b, a power conversion control unit 12c, and a power conversion unit 12d.
 電力制御装置12には熱電変換装置11の正極と負極とが接続される。そして、熱電変換装置11で発電された電力は、電力制御装置12に入力される。 The positive electrode and the negative electrode of the thermoelectric conversion device 11 are connected to the power control device 12. Then, the electric power generated by the thermoelectric conversion device 11 is input to the power control device 12.
 また、電力制御装置12には負荷13も接続される。そして、電力変換部12dで変換された電力が負荷13へ出力される。 The load 13 is also connected to the power control device 12. Then, the electric power converted by the electric power conversion unit 12d is output to the load 13.
 電力変換部12dは、入力側に正極と負極とが設けられ、それぞれが熱電変換装置11の正極と負極とに接続される。そして、電力変換部12dには、熱電変換装置11で発電された電力が入力される。 The power conversion unit 12d is provided with a positive electrode and a negative electrode on the input side, and each is connected to the positive electrode and the negative electrode of the thermoelectric conversion device 11. Then, the electric power generated by the thermoelectric conversion device 11 is input to the electric power conversion unit 12d.
 同様に、電力変換部12dは、出力側にも正極と負極とが設けられ、それぞれが負荷13の正極と負極とに接続される。そして、電力変換部12dで変換された電力が、負荷13に出力される。 Similarly, the power conversion unit 12d is provided with a positive electrode and a negative electrode on the output side, and each is connected to the positive electrode and the negative electrode of the load 13. Then, the electric power converted by the electric power conversion unit 12d is output to the load 13.
 電力変換部12dは、たとえば昇圧型、降圧型または昇降圧型のDC-DCコンバータによって構成される。電力変換部12dの入力側の端子からみた電力変換部12dの負荷は、電力変換部12dのスイッチング素子の開閉の時間割合(デューティ比)の制御によって変化させることができる。 The power conversion unit 12d is composed of, for example, a step-up type, step-down type or buck-boost type DC-DC converter. The load of the power conversion unit 12d as seen from the terminal on the input side of the power conversion unit 12d can be changed by controlling the time ratio (duty ratio) of opening and closing the switching element of the power conversion unit 12d.
 スイッチング素子の開閉による制御は、開閉を行うための周期的な矩形波(たとえば、PWM(Pulse Width Modulation)波、または、PFM(Pulse Frequency Modulation)波など)であるスイッチング信号が、電力変換制御部12cからスイッチング素子へ送られることによって行われる。 In the control by opening and closing of the switching element, a switching signal which is a periodic rectangular wave (for example, a PWM (Pulse Width Modulation) wave or a PFM (Pulse Frequency Modulation) wave) for opening and closing is a power conversion control unit. This is done by sending from 12c to the switching element.
 電力変換制御部12cには、熱時定数取得部12aと電力測定部12bと電力変換部12dとが接続される。 The thermal time constant acquisition unit 12a, the power measurement unit 12b, and the power conversion unit 12d are connected to the power conversion control unit 12c.
 熱時定数取得部12aは、熱電変換モジュール11aの高温側の面の温度と低温側の面の温度とを熱電対等を用いて検出し取得する。そして、熱時定数取得部12aは、熱電変換モジュール11aの高温側の面の温度と低温側の面の温度とに基づいて熱時定数を算出し、熱時定数を電力変換制御部12cへ送信する。 The thermal time constant acquisition unit 12a detects and acquires the temperature of the surface on the high temperature side and the temperature of the surface on the low temperature side of the thermoelectric conversion module 11a using a thermoelectric pair or the like. Then, the thermal time constant acquisition unit 12a calculates the thermal time constant based on the temperature of the surface on the high temperature side and the temperature of the surface on the low temperature side of the thermoelectric conversion module 11a, and transmits the thermal time constant to the power conversion control unit 12c. do.
 電力測定部12bは、熱電変換装置11から出力される電流と電圧とを測定することで、熱電変換装置11から出力される電力を測定する。また、熱電変換装置11から出力される電流値および電圧値に基づいて、熱電変換装置11の内部抵抗を取得する。そして、電力測定部12bは、測定した電力を電力データとして電力変換制御部12cに送信する。 The power measuring unit 12b measures the power output from the thermoelectric conversion device 11 by measuring the current and voltage output from the thermoelectric conversion device 11. Further, the internal resistance of the thermoelectric conversion device 11 is acquired based on the current value and the voltage value output from the thermoelectric conversion device 11. Then, the power measuring unit 12b transmits the measured power as power data to the power conversion control unit 12c.
 電力変換制御部12cは、入力された熱時定数と電力データとに基づいて、熱電変換装置11から出力される電力の最大出力制御を行う。 The power conversion control unit 12c controls the maximum output of the power output from the thermoelectric conversion device 11 based on the input thermal time constant and the power data.
 <熱電発電システムにおける電力制御装置の動作について>
 図2は、電力制御装置12の動作(主に、電力変換制御部12cによる最大出力制御)の例を示すフローチャートである。ここでは、最大電力点探索の一例として、山登り法による最大電力点探索アルゴリズムを用いる。
<About the operation of the power control device in the thermoelectric power generation system>
FIG. 2 is a flowchart showing an example of the operation of the power control device 12 (mainly, maximum output control by the power conversion control unit 12c). Here, as an example of the maximum power point search, the maximum power point search algorithm by the mountain climbing method is used.
 まず、ステップST10において、熱時定数取得部12aは熱電変換装置11の熱時定数Tを算出および取得する。熱時定数Tは、以下のようにして取得する。 First, in step ST10, the thermal time constant acquisition unit 12a calculates and acquires the thermal time constant T of the thermoelectric conversion device 11. The thermal time constant T is obtained as follows.
 熱電変換装置11から出力される電流の値をIからI+ΔIに変化させた際に、熱電変換モジュール11aの高温側の温度TはT+ΔTh0に変化し、熱電変換モジュール11aの低温側の温度TはT+ΔTc0に変化する。この時、熱電変換モジュール11aに与えられる温度差は、以下の式(1)のように変化する。 When the value of the current output from the thermoelectric conversion device 11 is changed from I to I + ΔI, the temperature Th on the high temperature side of the thermoelectric conversion module 11a changes to Th + ΔT h0 , and the temperature on the low temperature side of the thermoelectric conversion module 11a changes. The temperature T c changes to T c + ΔT c 0 . At this time, the temperature difference given to the thermoelectric conversion module 11a changes as shown in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 その後、一定時間(t秒)後に熱電変換モジュール11aの高温側の温度はT+ΔTh1になり、熱電変換モジュール11aの低温側の温度はT+ΔTc1になる。そのため、t秒間での熱電変換モジュール11aの温度差の変化は、以下の式(2)のようになる。 Then, after a certain period of time (t seconds), the temperature on the high temperature side of the thermoelectric conversion module 11a becomes Th + ΔT h1 , and the temperature on the low temperature side of the thermoelectric conversion module 11a becomes T c + ΔT c1 . Therefore, the change in the temperature difference of the thermoelectric conversion module 11a in t seconds is as shown in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記のように得られた温度差の時間tに対する過渡特性から、熱時定数Tを算出する。 The thermal time constant T is calculated from the transient characteristics of the temperature difference obtained as described above with respect to the time t.
 次に、ステップST11において、電力変換制御部12cから電力変換部12dに入力するスイッチング信号のデューティ比を変化させる。そして、熱電変換装置11から電力変換部12dに出力される電流の値をIからI+ΔIに変化させる。 Next, in step ST11, the duty ratio of the switching signal input from the power conversion control unit 12c to the power conversion unit 12d is changed. Then, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I to I + ΔI.
 次に、ステップST12において、ステップST10で取得された熱時定数Tに応じた時間だけ待つ。ステップST11において熱電変換装置11から電力変換部12dに出力される電流の値がIからI+ΔIに変化させられたため、熱電変換モジュール11aにペルチェ効果が生じて熱抵抗が低下する。そして、熱電変換装置11の熱バランスが一時的に崩れる。 Next, in step ST12, wait for a time corresponding to the thermal time constant T acquired in step ST10. Since the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d in step ST11 is changed from I to I + ΔI, a Pelche effect is generated in the thermoelectric conversion module 11a and the thermal resistance is lowered. Then, the heat balance of the thermoelectric conversion device 11 is temporarily lost.
 そこで、系に応じて熱時定数の時間Tに対して、たとえばTまたは3Tなど任意の定数倍時間だけ待ち、系を熱的に安定させる。 Therefore, depending on the system, the system is thermally stabilized by waiting for an arbitrary constant multiple time such as T or 3T with respect to the time T of the thermal time constant.
 次に、ステップST13において、電力測定部12bで熱電変換装置11から出力される電力P(取り出し電力)を測定する。電力測定部12bは、熱電変換装置11から出力される電圧Vと熱電変換装置11から出力される電流Iとをそれぞれ測定し、電力P=電圧V×電流Iとして電力を算出する。 Next, in step ST13, the power measuring unit 12b measures the power P (take-out power) output from the thermoelectric conversion device 11. The power measuring unit 12b measures the voltage V output from the thermoelectric conversion device 11 and the current I output from the thermoelectric conversion device 11, respectively, and calculates the power as power P = voltage V × current I.
 次に、ステップST14において、ステップST13で測定された電力Pと、前のループのステップST13で同様に測定された電力P’(すなわち、ステップST11において電流の値が変化する前の電力)とを比較する。なお、ステップST14がループの初回である場合は、電力P’を0として当該比較を行う。 Next, in step ST14, the power P measured in step ST13 and the power P'similarly measured in step ST13 of the previous loop (that is, the power before the current value changes in step ST11) are combined. compare. When step ST14 is the first time in the loop, the comparison is performed with the power P'set to 0.
 そして、P>P’である場合、すなわち、図2に例が示されるステップST14から分岐する「YES」に対応する場合には、ステップST15に進む。一方で、P>P’でない場合、すなわち、図2に例が示されるステップST14から分岐する「NO」に対応する場合には、ステップST16に進む。 Then, if P> P', that is, if it corresponds to "YES" branching from step ST14 shown in FIG. 2, the process proceeds to step ST15. On the other hand, if P> P', that is, if it corresponds to "NO" branching from step ST14 shown in FIG. 2, the process proceeds to step ST16.
 ステップST15では、次回のループにおいてステップST11で変動させる電流の値ΔIは、先のステップST11における場合と同じ値であるΔIとすることを決定する。そして、ステップST17に進む。 In step ST15, it is determined that the current value ΔI to be changed in step ST11 in the next loop is ΔI, which is the same value as in the previous step ST11. Then, the process proceeds to step ST17.
 ステップST16では、次回のループにおいてステップST11で変動させる電流の値ΔIは、先のステップST11における場合と反対の符号の値(絶対値は同じ)である-ΔIにすることを決定する。そして、ステップST17に進む。 In step ST16, it is determined that the value ΔI of the current to be changed in step ST11 in the next loop is −ΔI, which is the value of the opposite sign (the absolute value is the same) as in the case of the previous step ST11. Then, the process proceeds to step ST17.
 次に、ステップST17において、ステップST13において測定された電力Pを、次のループのステップST14において電力P’として用いられる値に更新する。そして、ステップST11に戻る。 Next, in step ST17, the power P measured in step ST13 is updated to the value used as the power P'in step ST14 of the next loop. Then, the process returns to step ST11.
 これらの処理によって、電力制御装置12は、熱電変換装置11から出力される電力が最大となる電流値付近でループを繰り返す制御を行うこととなる。このようにして、電力制御装置12は、熱電変換装置11から出力される電力の最大値を探索する。 By these processes, the power control device 12 controls to repeat the loop near the current value at which the power output from the thermoelectric conversion device 11 is maximized. In this way, the power control device 12 searches for the maximum value of the power output from the thermoelectric conversion device 11.
 なお、本実施の形態では山登り法による最大電力点探索が示されたが、電流の値を変動させて最大電力点を探索させるものであれば、他の電力探索方法が採用されてもよい。 Although the maximum power point search by the mountain climbing method is shown in the present embodiment, another power search method may be adopted as long as the maximum power point is searched by changing the current value.
 次に、熱電変換装置11の制御周期の最適値について検討する。図3は、本実施の形態に関する電力制御装置12で、制御の待ち時間である制御周期tを変化させた場合の、熱電変換装置11から出力される電力P(取り出し電力)の値の例を示す図である。図3において、縦軸は電力Pの値を示し、横軸は熱電変換装置11の制御周期を示す。 Next, the optimum value of the control cycle of the thermoelectric conversion device 11 will be examined. FIG. 3 shows an example of the value of the power P (take-out power) output from the thermoelectric conversion device 11 when the control cycle t, which is the waiting time for control, is changed in the power control device 12 according to the present embodiment. It is a figure which shows. In FIG. 3, the vertical axis shows the value of the electric power P, and the horizontal axis shows the control cycle of the thermoelectric conversion device 11.
 図3に例が示されるように、制御周期tにおいて熱電変換装置11から出力される電力Pが最大となる点Xが存在する。点Xは、熱電変換装置11の熱時定数Tの付近となる。この理由について、以下説明する。 As an example is shown in FIG. 3, there is a point X where the electric power P output from the thermoelectric conversion device 11 is maximized in the control cycle t. The point X is near the thermal time constant T of the thermoelectric conversion device 11. The reason for this will be described below.
 制御周期tが熱時定数Tよりも短い場合は、ステップST11で熱電変換装置11から出力される電流Iを変動させた後に熱電変換装置11から出力される電力Pを測定する際に、熱電変換装置11の温度が平衡状態に未だ達していない。そのため、出力も平衡状態に達しておらず、真の最大電力点を取得することができない。 When the control cycle t is shorter than the thermal time constant T, the thermoelectric conversion is performed when measuring the power P output from the thermoelectric conversion device 11 after changing the current I output from the thermoelectric conversion device 11 in step ST11. The temperature of the device 11 has not yet reached the equilibrium state. Therefore, the output has not reached the equilibrium state, and the true maximum power point cannot be obtained.
 図4は、熱電変換装置11の熱回路を模式的に示す図である。熱電変換装置11は、熱電変換モジュール11aの高温側の面Thsと高温側の温度固定点Tとの間に、主に高温側熱交換器11bによる熱抵抗Rと熱容量Cとが並列して存在する。同様に、熱電変換モジュール11aの低温側の面Tcsと低温側の温度固定点T(ここでは冷却水の温度)との間に、主に低温側熱交換器11cによる熱抵抗Rと熱容量Cとが並列して存在する。 FIG. 4 is a diagram schematically showing a thermal circuit of the thermoelectric conversion device 11. In the thermoelectric conversion device 11, the thermal resistance R h and the heat capacity Ch mainly by the high temperature side heat exchanger 11b are formed between the surface Th of the high temperature side of the thermoelectric conversion module 11a and the temperature fixing point Th on the high temperature side. It exists in parallel. Similarly, between the surface T cs on the low temperature side of the thermoelectric conversion module 11a and the temperature fixing point T c on the low temperature side (here, the temperature of the cooling water), the heat resistance R c mainly due to the low temperature side heat exchanger 11 c. The heat capacity C c exists in parallel.
 熱電変換モジュール11aは、流れる電流Iを変動させることで、ペルチェ効果により熱電変換素子の高温側から低温側に輸送される熱量がQからQ+ΔQに増加し、熱抵抗RTEGが変化する。このとき電流0の時の熱電変換モジュール11aの熱抵抗をrTEG0、ペルチェ係数をΠとすると、熱電変換モジュール11aを流れる熱量Qは、以下の式(3)のように表される。 In the thermoelectric conversion module 11a, by varying the flowing current I, the amount of heat transferred from the high temperature side to the low temperature side of the thermoelectric conversion element increases from Q to Q + ΔQ due to the Pelche effect, and the thermal resistance RTEG changes. At this time, assuming that the thermal resistance of the thermoelectric conversion module 11a when the current is 0 is r TEG0 and the Perche coefficient is Π, the amount of heat Q flowing through the thermoelectric conversion module 11a is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そのため、熱電変換モジュール11aの熱抵抗RTEGは、以下の式(4)のように表される。 Therefore, the thermal resistance R TEG of the thermoelectric conversion module 11a is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、電流をΔI増加させた際には、熱抵抗RTEGは上記の式(4)にしたがい減少する。 That is, when the current is increased by ΔI, the thermal resistance R TEG decreases according to the above equation (4).
 このように、熱電変換モジュール11aの熱抵抗RTEGが電流変動によって変化することと、高温側熱交換器11bおよび低温側熱交換器11cがそれぞれ熱容量を有することとに起因して、熱電変換素子にかかる温度差が平衡状態に達するまでに遅れが生じる。それに伴って熱電変換モジュール11aの熱起電力の応答にも遅れが生じる。 As described above, the thermal resistance RTEG of the thermoelectric conversion module 11a changes due to the current fluctuation, and the high temperature side heat exchanger 11b and the low temperature side heat exchanger 11c each have a heat capacity, so that the thermoelectric conversion element There is a delay before the temperature difference between the two reaches the equilibrium state. Along with this, the response of the thermoelectromotive force of the thermoelectric conversion module 11a also becomes delayed.
 図5は、熱電変換装置11の電流をΔI増加させた場合(山登り法によって電流を+ΔI摂動させた場合)の、熱電変換装置11から出力される電力Pの過渡特性の例を示す図である。図5において、縦軸は電力の値を示し、横軸は電流の値を示す。 FIG. 5 is a diagram showing an example of the transient characteristics of the electric power P output from the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is increased by ΔI (when the current is perturbed by + ΔI by the hill climbing method). .. In FIG. 5, the vertical axis shows the value of electric power, and the horizontal axis shows the value of current.
 また、図6は、熱電変換装置11の熱平衡時の電流-電圧特性の例を示す図である。図6においては、縦軸は電圧の値を示し、横軸は電流の値を示す。 Further, FIG. 6 is a diagram showing an example of the current-voltage characteristics of the thermoelectric conversion device 11 at the time of thermal equilibrium. In FIG. 6, the vertical axis represents the voltage value and the horizontal axis represents the current value.
 また、図7は、熱電変換装置11の電流をΔI増加させた場合(山登り法によって電流を+ΔI摂動させた場合)の、熱電変換装置11の電圧特性の例を示す図である。図7においては、縦軸は電圧の値を示し、横軸は時間を示す。 Further, FIG. 7 is a diagram showing an example of the voltage characteristics of the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is increased by ΔI (when the current is perturbed by + ΔI by the mountain climbing method). In FIG. 7, the vertical axis represents the voltage value and the horizontal axis represents time.
 熱平衡時の最大電力である電力Pmax(図5を参照)がVpmaxpmaxで示されるものとして、電流IをIpmaxからIpmax+ΔIへΔIだけ増加させた場合、電圧Vは、電流増加の瞬間から熱電変換装置11の熱平衡時の電流-電圧特性にしたがってVpmax-ΔVに漸近する(図6および図7を参照)。ここで、漸近する際の時定数は熱時定数Tになる。 Assuming that the power P max (see FIG. 5), which is the maximum power at the time of thermal equilibrium, is indicated by V pmax I pmax , when the current I is increased by ΔI from I pmax to I pmax + ΔI, the voltage V increases the current. From the moment of, it gradually approaches V pmax -ΔV according to the current-voltage characteristics at the time of thermal equilibrium of the thermoelectric conversion device 11 (see FIGS. 6 and 7). Here, the time constant at the time of asymptote is the thermal time constant T.
 この場合、図2に示されたフローチャートのステップST12で待つ時間(制御周期t)が熱時定数Tよりも短い場合、図2に示されたフローチャートのステップST13で測定される電圧Vは、図6および図7で示されるV1となり、熱平衡時の電圧Vの値Vpmax-ΔVよりも高い値となる。 In this case, when the time (control cycle t) to wait in step ST12 of the flowchart shown in FIG. 2 is shorter than the thermal time constant T, the voltage V measured in step ST13 of the flowchart shown in FIG. 2 is shown in FIG. It becomes V1 shown in 6 and FIG. 7, and becomes a value higher than the value V pmax − ΔV of the voltage V at the time of thermal equilibrium.
 電流IをIpmaxからIpmax+ΔIへΔIだけ増加させた場合の電圧Vの値は、Vpmax-ΔVに熱時定数Tで漸近する以下の式(5)で表すことができる。 The value of the voltage V when the current I is increased from I pmax to I pmax + ΔI by ΔI can be expressed by the following equation (5) which approaches V pmax − ΔV with the thermal time constant T.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 たとえば、制御周期tが熱時定数Tの1/100である場合、式(5)のt/Tに1/100を代入すると、電圧Vは以下のように示される。 For example, when the control cycle t is 1/100 of the thermal time constant T, substituting 1/100 for t / T in the equation (5), the voltage V is shown as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 そのため、電圧VはほぼVpmaxと同じ値となり、熱平衡時のVpmax-ΔVよりも高い値が電圧Vとして測定されることとなる。この場合、図2に示されたフローチャートのステップST13で算出される電力Pは、以下のように示される。 Therefore, the voltage V becomes almost the same value as V pmax , and a value higher than V pmax − ΔV at the time of thermal equilibrium is measured as the voltage V. In this case, the power P calculated in step ST13 of the flowchart shown in FIG. 2 is shown as follows.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記のように、算出される電力Pは熱平衡時の最大電力であるVpmaxpmaxよりも高くなる。そうすると、図2に示されたフローチャートのステップST14においてP>P’となり(すなわち、図2に例が示されるステップST14から分岐する「YES」に対応し)、図2に示されたフローチャートのステップST15に進む。 As described above, the calculated power P is higher than V pmax I pmax , which is the maximum power at the time of thermal equilibrium. Then, in step ST14 of the flowchart shown in FIG. 2, P>P'(that is, corresponding to “YES” branching from step ST14 shown in FIG. 2), and the step of the flowchart shown in FIG. Proceed to ST15.
 そして、図2に示されたフローチャートのステップST15では、次回のループにおいてステップST11で変動させる電流の値ΔIは、先のステップST11における場合と同じ値であるΔIとするため、後の工程で図2に示されたフローチャートのステップST11に戻った際には、熱電変換装置11から電力変換部12dに出力される電流の値をIpmax+ΔIからIpmax+2ΔIに変化させることとなり、Ipmaxよりもさらに電流Iが大きくなる。 Then, in step ST15 of the flowchart shown in FIG. 2, the value ΔI of the current to be changed in step ST11 in the next loop is ΔI, which is the same value as in the previous step ST11. When returning to step ST11 of the flowchart shown in 2, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I pmax + ΔI to I pmax + 2ΔI, which is higher than I pmax . Further, the current I becomes large.
 さらに、図2に示されたフローチャートのステップST11からステップST17までのループを繰り返す中で、いずれは、時間経過によって熱電変換モジュール11a(熱電変換素子)にかかる温度差が小さくなって起電力が低下する。そうすると、図2に示されたフローチャートのステップST14においてP>P’ではなくなり(すなわち、図2に例が示されるステップST14から分岐する「NO」に対応し)、図2に示されたフローチャートのステップST16に進む。 Further, while repeating the loop from step ST11 to step ST17 in the flowchart shown in FIG. 2, the temperature difference applied to the thermoelectric conversion module 11a (thermoelectric conversion element) becomes smaller with the passage of time, and the electromotive force decreases. do. Then, in step ST14 of the flowchart shown in FIG. 2, P> P'is no longer present (that is, corresponding to “NO” branching from step ST14 shown in FIG. 2), and the flowchart shown in FIG. 2 is shown. Proceed to step ST16.
 そして、図2に示されたフローチャートのステップST16では、次回のループにおいてステップST11で変動させる電流の値ΔIは、先のステップST11における場合と反対の符号の値(絶対値は同じ)である-ΔIとするため、後の工程で図2に示されたフローチャートのステップST11に戻った際には、熱電変換装置11から電力変換部12dに出力される電流の値をIpmax+ΔIからIpmaxに変化させることとなる。 Then, in step ST16 of the flowchart shown in FIG. 2, the value ΔI of the current to be changed in step ST11 in the next loop is a value having a sign opposite to that in the previous step ST11 (the absolute value is the same). In order to set ΔI, when returning to step ST11 of the flowchart shown in FIG. 2 in a later step, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I pmax + ΔI to I pmax . It will change.
 上記のように、熱電変換装置11から電力変換部12dに出力される電流の値はIpmaxよりもΔI大きい値の付近でループを繰り返すことになるため、図2に示されたフローチャートのステップST13で測定される電力Pは、熱平衡時の最大電力である電力Pmaxよりも小さくなる。 As described above, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d repeats the loop in the vicinity of a value that is ΔI larger than I pmax . Therefore, step ST13 of the flowchart shown in FIG. The power P measured in is smaller than the power P max , which is the maximum power at the time of thermal equilibrium.
 他方で、熱電変換装置11の電流をΔI減少させた場合についても、以下に説明する。 On the other hand, the case where the current of the thermoelectric conversion device 11 is reduced by ΔI will also be described below.
 図8は、熱電変換装置11の電流をΔI減少させた場合(山登り法によって電流を-ΔI摂動させた場合)の、熱電変換装置11から出力される電力Pの過渡特性の例を示す図である。図8において、縦軸は電力の値を示し、横軸は電流の値を示す。 FIG. 8 is a diagram showing an example of the transient characteristics of the power P output from the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is reduced by ΔI (when the current is perturbed by −ΔI by the hill climbing method). be. In FIG. 8, the vertical axis shows the value of electric power, and the horizontal axis shows the value of current.
 また、図9は、熱電変換装置11の熱平衡時の電流-電圧特性の例を示す図である。図9においては、縦軸は電圧の値を示し、横軸は電流の値を示す。 Further, FIG. 9 is a diagram showing an example of the current-voltage characteristics of the thermoelectric conversion device 11 at the time of thermal equilibrium. In FIG. 9, the vertical axis shows the voltage value and the horizontal axis shows the current value.
 また、図10は、熱電変換装置11の電流をΔI減少させた場合(山登り法によって電流を-ΔI摂動させた場合)の、熱電変換装置11の電圧特性の例を示す図である。図10においては、縦軸は電圧の値を示し、横軸は時間を示す。 Further, FIG. 10 is a diagram showing an example of the voltage characteristics of the thermoelectric conversion device 11 when the current of the thermoelectric conversion device 11 is reduced by ΔI (when the current is perturbed by −ΔI by the hill climbing method). In FIG. 10, the vertical axis represents the voltage value and the horizontal axis represents time.
 熱平衡時の最大電力である電力Pmax(図8を参照)がVpmaxpmaxで示されるものとして、電流IをIpmax+ΔIからIpmaxへΔIだけ減少させた場合、電圧Vは、電流減少の瞬間から熱電変換装置11の熱平衡時の電流-電圧特性(図9を参照)にしたがってVpmaxに漸近する。ここで、漸近する際の時定数は熱時定数Tになる。 Assuming that the power P max (see FIG. 8), which is the maximum power at the time of thermal equilibrium, is indicated by V pmax I pmax , when the current I is reduced by ΔI from I pmax + ΔI to I pmax , the voltage V decreases. From the moment of, the voltage gradually approaches V pmax according to the current-voltage characteristics (see FIG. 9) at the time of thermal equilibrium of the thermoelectric conversion device 11. Here, the time constant at the time of asymptote is the thermal time constant T.
 この場合、図2に示されたフローチャートのステップST12で待つ時間(制御周期t)が熱時定数Tよりも短い場合、図2に示されたフローチャートのステップST13で測定される電圧Vは、図9および図10で示されるV1となり、熱平衡時の電圧Vの値Vpmaxよりも低い値となる。 In this case, when the time (control cycle t) to wait in step ST12 of the flowchart shown in FIG. 2 is shorter than the thermal time constant T, the voltage V measured in step ST13 of the flowchart shown in FIG. 2 is shown in FIG. It becomes V1 shown in 9 and FIG. 10, and becomes a value lower than the value V pmax of the voltage V at the time of thermal equilibrium.
 たとえば、制御周期tが熱時定数Tの1/100である場合、電圧VはほぼVpmax-ΔVと同じ値となり、熱平衡時のVpmaxよりも低い値が電圧Vとして測定されることとなる。この場合、図2に示されたフローチャートのステップST13で算出される電力Pは、以下のように示される。 For example, when the control cycle t is 1/100 of the thermal time constant T, the voltage V becomes almost the same value as V pmax − ΔV, and a value lower than V pmax at the time of thermal equilibrium is measured as the voltage V. .. In this case, the power P calculated in step ST13 of the flowchart shown in FIG. 2 is shown as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記のように、算出される電力Pは熱平衡時の最大電力であるVpmaxpmaxよりも低くなる。そうすると、図2に示されたフローチャートのステップST14においてP>P’ではなくなり(すなわち、図2に例が示されるステップST14から分岐する「NO」に対応し)、図2に示されたフローチャートのステップST16に進む。 As described above, the calculated power P is lower than V pmax I pmax , which is the maximum power at the time of thermal equilibrium. Then, in step ST14 of the flowchart shown in FIG. 2, P>P'is no longer present (that is, corresponding to “NO” branching from step ST14 shown in FIG. 2), and the flowchart shown in FIG. 2 is shown. Proceed to step ST16.
 そして、図2に示されたフローチャートのステップST16では、次回のループにおいてステップST11で変動させる電流の値ΔIは、先のステップST11における場合と反対の符号の値(絶対値は同じ)である+ΔIとするため、後の工程で図2に示されたフローチャートのステップST11に戻った際には、熱電変換装置11から電力変換部12dに出力される電流の値をIpmaxからIpmax+ΔIに変化させることとなる。 Then, in step ST16 of the flowchart shown in FIG. 2, the value ΔI of the current to be changed in step ST11 in the next loop is a value having a sign opposite to that in the previous step ST11 (absolute value is the same) + ΔI. Therefore, when returning to step ST11 of the flowchart shown in FIG. 2 in a later step, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d is changed from I pmax to I pmax + ΔI. Will be made to.
 さらに、図2に示されたフローチャートのステップST11からステップST17までのループを繰り返す中で、いずれは、時間経過によって熱電変換モジュール11a(熱電変換素子)にかかる温度差が小さくなって起電力が低下する。 Further, while repeating the loop from step ST11 to step ST17 in the flowchart shown in FIG. 2, the temperature difference applied to the thermoelectric conversion module 11a (thermoelectric conversion element) becomes smaller with the passage of time, and the electromotive force decreases. do.
 そうすると、熱電変換装置11から電力変換部12dに出力される電流の値はIpmaxよりもΔI大きい値の付近でループを繰り返すことになるため、図2に示されたフローチャートのステップST13で測定される電力Pは、熱平衡時の最大電力である電力Pmaxよりも小さくなる。 Then, the value of the current output from the thermoelectric conversion device 11 to the power conversion unit 12d repeats the loop in the vicinity of a value ΔI larger than I pmax , so that it is measured in step ST13 of the flowchart shown in FIG. The power P is smaller than the power P max , which is the maximum power at the time of thermal equilibrium.
 以上のように、制御周期tが熱電変換装置11の熱時定数Tに対して短い場合は、熱電変換装置11から出力される電力P(取り出し電力)が熱平衡時(定常時)の最大出力よりも低下する。 As described above, when the control cycle t is shorter than the thermal time constant T of the thermoelectric conversion device 11, the power P (take-out power) output from the thermoelectric conversion device 11 is higher than the maximum output during thermal equilibrium (steady state). Also declines.
 このため、制御周期tを熱時定数T近傍の値にすることによって、熱電変換装置11の熱平衡時(定常時)に近い電力特性が得られ、熱電変換装置11から出力される電力P(取り出し電力)を最大化することができる。 Therefore, by setting the control cycle t to a value near the thermal time constant T, power characteristics close to those at the time of thermal equilibrium (steady state) of the thermoelectric conversion device 11 can be obtained, and the power P (extracted) output from the thermoelectric conversion device 11 can be obtained. Power) can be maximized.
 他方で、制御周期tが熱時定数Tよりも十分に大きい場合、熱時定数Tよりも長く制御周期tよりも短い周期で高温側熱源または低温側熱源が変動すると、当該温度変動に追従できずに熱電変換装置11から出力される電力Pが最大電力である電力Pmaxから外れた値に留まる場合がある。そうすると、熱電変換装置11から出力される電力Pが電力Pmaxよりも低下してしまう。 On the other hand, when the control cycle t is sufficiently larger than the thermal time constant T, if the high temperature side heat source or the low temperature side heat source fluctuates in a cycle longer than the thermal time constant T and shorter than the control cycle t, the temperature fluctuation can be followed. Instead, the power P output from the thermoelectric conversion device 11 may stay at a value deviating from the maximum power P max . Then, the electric power P output from the thermoelectric conversion device 11 becomes lower than the electric power P max .
 このため、熱電変換装置11から出力される電力Pを最大化するためには、制御周期tは熱電変換装置11の熱時定数T近傍の値であることが望ましい。制御周期tを熱時定数T近傍の値に設定することによって、温度差が変動する熱源に対しても、熱電変換装置11から出力される電力Pを最大化することができる。 Therefore, in order to maximize the electric power P output from the thermoelectric conversion device 11, it is desirable that the control cycle t is a value near the thermal time constant T of the thermoelectric conversion device 11. By setting the control cycle t to a value near the thermal time constant T, the electric power P output from the thermoelectric conversion device 11 can be maximized even for a heat source in which the temperature difference fluctuates.
 <第2の実施の形態>
 本実施の形態に関する電力制御装置、熱電発電システム、および、電力制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Second embodiment>
A power control device, a thermoelectric power generation system, and a power control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiments will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <熱電発電システムの構成について>
 図11は、本実施の形態に関する熱電発電システムの構成の例を示す図である。図11に例が示されるように、熱電発電システム101は、熱電変換装置11と、熱電変換装置11から出力される電力を制御する電力制御装置22と、負荷13とを備える。負荷13は、たとえば蓄電池などの定電圧源から構成される。
<About the configuration of the thermoelectric power generation system>
FIG. 11 is a diagram showing an example of the configuration of the thermoelectric power generation system according to the present embodiment. As an example shown in FIG. 11, the thermoelectric power generation system 101 includes a thermoelectric conversion device 11, a power control device 22 for controlling electric power output from the thermoelectric conversion device 11, and a load 13. The load 13 is composed of a constant voltage source such as a storage battery.
 電力制御装置22は、熱時定数取得部22aと、電力測定部22bと、電力変換制御部22cと、電力変換部22dとを備える。 The power control device 22 includes a thermal time constant acquisition unit 22a, a power measurement unit 22b, a power conversion control unit 22c, and a power conversion unit 22d.
 電力制御装置22には熱電変換装置11の正極と負極とが接続される。そして、熱電変換装置11で発電された電力は、電力制御装置22に入力される。 The positive electrode and the negative electrode of the thermoelectric conversion device 11 are connected to the power control device 22. Then, the electric power generated by the thermoelectric conversion device 11 is input to the power control device 22.
 また、電力制御装置22には負荷13も接続される。そして、電力変換部22dで変換された電力が負荷13へ出力される。 The load 13 is also connected to the power control device 22. Then, the electric power converted by the electric power conversion unit 22d is output to the load 13.
 電力変換部22dは、入力側に正極と負極とが設けられ、それぞれが熱電変換装置11の正極と負極とに接続される。そして、電力変換部22dには、熱電変換装置11で発電された電力が入力される。 The power conversion unit 22d is provided with a positive electrode and a negative electrode on the input side, and each is connected to the positive electrode and the negative electrode of the thermoelectric conversion device 11. Then, the electric power generated by the thermoelectric conversion device 11 is input to the electric power conversion unit 22d.
 同様に、電力変換部22dは、出力側にも正極と負極とが設けられ、それぞれが負荷13の正極と負極とに接続される。そして、電力変換部22dで変換された電力が、負荷13に出力される。 Similarly, the power conversion unit 22d is provided with a positive electrode and a negative electrode on the output side, and each is connected to the positive electrode and the negative electrode of the load 13. Then, the electric power converted by the electric power conversion unit 22d is output to the load 13.
 電力変換部22dの入力側の端子からみた電力変換部22dの負荷は、電力変換部22dのスイッチング素子の開閉の時間割合(デューティ比)の制御によって変化させることができる。 The load of the power conversion unit 22d as seen from the terminal on the input side of the power conversion unit 22d can be changed by controlling the time ratio (duty ratio) of opening and closing the switching element of the power conversion unit 22d.
 電力変換制御部22cには、熱時定数取得部22aと電力測定部22bと電力変換部22dとが接続される。 The thermal time constant acquisition unit 22a, the power measurement unit 22b, and the power conversion unit 22d are connected to the power conversion control unit 22c.
 図1に例が示された熱時定数取得部12aは、熱電変換モジュール11aの高温側の面の温度と低温側の面の温度とを熱電対等を用いて直接検出するものであった。これに対し、本実施の形態における熱時定数取得部22aは、電力測定部22bに接続されており、電力測定部22bから送信される電力測定結果(電力データ)のみから熱時定数Tを算出する。そして、熱時定数取得部22aは、算出した熱時定数Tを電力変換制御部22cへ送信する。 The thermal time constant acquisition unit 12a shown in FIG. 1 directly detects the temperature of the surface on the high temperature side and the temperature of the surface on the low temperature side of the thermoelectric conversion module 11a using a thermoelectric pair or the like. On the other hand, the thermal time constant acquisition unit 22a in the present embodiment is connected to the power measurement unit 22b, and the thermal time constant T is calculated only from the power measurement result (power data) transmitted from the power measurement unit 22b. do. Then, the thermal time constant acquisition unit 22a transmits the calculated thermal time constant T to the power conversion control unit 22c.
 電力測定部22bは、熱電変換装置11から出力される電流と電圧とを測定することで、熱電変換装置11から出力される電力を測定する。そして、電力測定部22bは、測定した電力を電力データとして熱時定数取得部22aおよび電力変換制御部22cに送信する。 The power measuring unit 22b measures the power output from the thermoelectric conversion device 11 by measuring the current and voltage output from the thermoelectric conversion device 11. Then, the power measuring unit 22b transmits the measured power as power data to the heat time constant acquisition unit 22a and the power conversion control unit 22c.
 電力変換制御部22cは、入力された熱時定数Tと電力データとに基づいて、熱電変換装置11から出力される電力の最大出力制御を行う。 The power conversion control unit 22c controls the maximum output of the power output from the thermoelectric conversion device 11 based on the input thermal time constant T and the power data.
 <熱電発電システムにおける電力制御装置の動作について>
 本実施の形態に関する電力制御装置22の動作(主に、電力変換制御部22cによる最大出力制御)は、図2に例が示された動作と同様である。
<About the operation of the power control device in the thermoelectric power generation system>
The operation of the power control device 22 (mainly the maximum output control by the power conversion control unit 22c) according to the present embodiment is the same as the operation shown in FIG. 2.
 ただし、ステップST10において熱時定数を取得する際に、電力制御装置22は、以下のようなフローで、熱時定数を取得する。 However, when acquiring the thermal time constant in step ST10, the power control device 22 acquires the thermal time constant in the following flow.
 図12は、電力制御装置22の熱時定数を取得するための動作の例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of an operation for acquiring the thermal time constant of the power control device 22.
 まず、ステップST120において、熱電変換装置11の正極と負極との間を短絡状態にして一定の時間だけ待つ。この時間は事前に設定された任意の値とするが、正確な熱時定数Tを取得するために、熱時定数T以上の長さであることが望ましい。先に測定された熱時定数Tがある場合には、その時間の3倍程度をステップST120において待つ時間としてもよい。 First, in step ST120, the positive electrode and the negative electrode of the thermoelectric conversion device 11 are short-circuited and wait for a certain period of time. This time may be an arbitrary value set in advance, but it is desirable that the time is longer than or equal to the thermal time constant T in order to obtain an accurate thermal time constant T. If there is a previously measured thermal time constant T, about three times that time may be set as the waiting time in step ST120.
 次に、ステップST121において、瞬時に熱電変換装置11を開放状態にして熱電変換装置11の正極と負極との間の電圧Vの過渡特性を一定の時間だけ取得する。 Next, in step ST121, the thermoelectric conversion device 11 is instantly opened and the transient characteristic of the voltage V between the positive electrode and the negative electrode of the thermoelectric conversion device 11 is acquired for a certain period of time.
 次に、ステップST122において、熱電変換装置11を開放状態とした直後から一定時間経った後の、熱電変換装置11の電圧Vの時間変化に基づいて時定数を取得する。 Next, in step ST122, a time constant is acquired based on the time change of the voltage V of the thermoelectric conversion device 11 after a certain period of time has passed immediately after the thermoelectric conversion device 11 is opened.
 図13は、短絡状態から開放状態となった場合の、熱電変換装置11の電圧の過渡特性の例を示す図である。図13において、縦軸は電圧の値を示し、横軸は時間を示す。 FIG. 13 is a diagram showing an example of the transient characteristics of the voltage of the thermoelectric converter 11 when the short-circuited state is changed to the open state. In FIG. 13, the vertical axis represents the voltage value and the horizontal axis represents time.
 図13に例が示されるように、開放状態となった直後の電圧VをVoc1とし、開放状態となった後十分に時間が経って熱電変換装置11の温度が安定した際の電圧VをVoc2とすると、電圧Vの時間tに対する理論曲線は、以下の式(6)で表すことができる。 As an example is shown in FIG. 13, the voltage V immediately after the open state is set as V oc1 , and the voltage V when the temperature of the thermoelectric converter 11 stabilizes after a sufficient time has passed after the open state is set. Assuming V oc2 , the theoretical curve of the voltage V with respect to the time t can be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 そして、測定されたVの過渡特性に対して、時定数を最小二乗法などを用いて上記の式(6)でフィッティングすることによって、熱電変換装置11の熱時定数Tを取得することができる。 Then, the thermal time constant T of the thermoelectric conversion device 11 can be obtained by fitting the time constant to the measured transient characteristic of V by the above equation (6) using the least squares method or the like. ..
 熱電変換装置11の起電力は、ゼーベック効果によって熱電変換装置11の高温側の面と低温側の面との間の温度差ΔTに比例する。このため、電圧値の時間応答は温度差ΔTの時間応答と同じふるまいを示すことになる。 The electromotive force of the thermoelectric conversion device 11 is proportional to the temperature difference ΔT between the surface on the high temperature side and the surface on the low temperature side of the thermoelectric conversion device 11 due to the Seebeck effect. Therefore, the time response of the voltage value shows the same behavior as the time response of the temperature difference ΔT.
 このことから、電圧値の時定数をそのまま熱時定数Tとしてみなすことができるため、電圧測定のみで熱時定数Tを取得することができる。 From this, since the time constant of the voltage value can be regarded as the thermal time constant T as it is, the thermal time constant T can be obtained only by the voltage measurement.
 これによって、新たに熱電対などの熱測定のためのハードウェアを追加せずに、電力測定部22bにおける電力測定のみで熱電変換装置11の熱時定数Tを取得することができる。そのため、安価、かつ、簡便に熱電変換装置11から出力される電力を最大化することができる。 As a result, the thermal time constant T of the thermoelectric conversion device 11 can be acquired only by the power measurement in the power measurement unit 22b without newly adding hardware for heat measurement such as a thermocouple. Therefore, the electric power output from the thermoelectric conversion device 11 can be maximized inexpensively and easily.
 なお、本実施の形態では、熱電変換装置11を短絡状態から開放状態に変化させることで結果として熱時定数Tを取得しているが、電流値をΔI変動させることでその際の電圧値の過渡特性に基づいて熱時定数Tを取得してもよい。 In the present embodiment, the thermal time constant T is acquired as a result by changing the thermoelectric conversion device 11 from the short-circuited state to the open state, but the voltage value at that time is changed by changing the current value by ΔI. The thermal time constant T may be acquired based on the transient characteristics.
 <第3の実施の形態>
 本実施の形態に関する電力制御装置、熱電発電システム、および、電力制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Third embodiment>
A power control device, a thermoelectric power generation system, and a power control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiments will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 以上に記載された実施の形態における電力制御装置12(または、電力制御装置22)は、負荷13を変動させる制御によって、最大出力制御を行ってもよい。 The power control device 12 (or the power control device 22) in the embodiment described above may perform maximum output control by controlling the load 13.
 図14は、電力制御装置の動作(主に、電力変換制御部12cによる最大出力制御)の例を示すフローチャートである。なお、図14では、電力制御装置12が行う制御について記載されるが、電力制御装置22が行う制御として置き換えられてもよい。 FIG. 14 is a flowchart showing an example of the operation of the power control device (mainly, the maximum output control by the power conversion control unit 12c). Although the control performed by the power control device 12 is described in FIG. 14, it may be replaced with the control performed by the power control device 22.
 まず、ステップST310において、熱時定数取得部12aは熱電変換装置11の熱時定数Tを算出および取得する。 First, in step ST310, the thermal time constant acquisition unit 12a calculates and acquires the thermal time constant T of the thermoelectric conversion device 11.
 次に、ステップST311において、負荷13の値をRからR+ΔRに変化させる。 Next, in step ST311, the value of the load 13 is changed from R to R + ΔR.
 次に、ステップST312において、ステップST310で取得された熱時定数Tに応じた時間だけ待つ。ステップST311において負荷13の値をRからR+ΔRに変化させられたため、熱電変換装置11の熱バランスが一時的に崩れる。 Next, in step ST312, wait for a time corresponding to the thermal time constant T acquired in step ST310. Since the value of the load 13 was changed from R to R + ΔR in step ST311, the thermal balance of the thermoelectric conversion device 11 is temporarily lost.
 そこで、系に応じて熱時定数の時間Tに対して、たとえばTまたは3Tなど任意の定数倍時間だけ待ち、系を熱的に安定させる。 Therefore, depending on the system, the system is thermally stabilized by waiting for an arbitrary constant multiple time such as T or 3T with respect to the time T of the thermal time constant.
 次に、ステップST313において、電力測定部12bで熱電変換装置11から出力される電力P(取り出し電力)を測定する。電力測定部12bは、熱電変換装置11から出力される電圧Vと熱電変換装置11から出力される電流Iとをそれぞれ測定し、電力P=電圧V×電流Iとして電力を算出する。 Next, in step ST313, the power measuring unit 12b measures the power P (take-out power) output from the thermoelectric conversion device 11. The power measuring unit 12b measures the voltage V output from the thermoelectric conversion device 11 and the current I output from the thermoelectric conversion device 11, respectively, and calculates the power as power P = voltage V × current I.
 次に、ステップST314において、ステップST313で測定された電力Pと、前のループのステップST313で同様に測定された電力P’とを比較する。なお、ステップST314がループの初回である場合は、電力P’を0として当該比較を行う。 Next, in step ST314, the power P measured in step ST313 is compared with the power P'similarly measured in step ST313 of the previous loop. When step ST314 is the first time in the loop, the comparison is performed with the power P'set to 0.
 そして、P>P’である場合、すなわち、図14に例が示されるステップST314から分岐する「YES」に対応する場合には、ステップST315に進む。一方で、P>P’でない場合、すなわち、図14に例が示されるステップST314から分岐する「NO」に対応する場合には、ステップST316に進む。 Then, if P> P', that is, if it corresponds to "YES" branching from step ST314 shown in FIG. 14, the process proceeds to step ST315. On the other hand, if P> P', that is, if it corresponds to "NO" branching from step ST314 shown in FIG. 14, the process proceeds to step ST316.
 ステップST315では、次回のループにおいてステップST311で変動させる負荷の値ΔRは、先のステップST311における場合と同じ値であるΔRとすることを決定する。そして、ステップST317に進む。 In step ST315, it is determined that the load value ΔR to be changed in step ST311 in the next loop is ΔR, which is the same value as in the previous step ST311. Then, the process proceeds to step ST317.
 ステップST316では、次回のループにおいてステップST311で変動させる負荷の値ΔRは、先のステップST311における場合と反対の符号の値(絶対値は同じ)である-ΔRにすることを決定する。そして、ステップST317に進む。 In step ST316, it is determined that the load value ΔR to be changed in step ST311 in the next loop is −ΔR having the opposite sign value (absolute value is the same) as in the previous step ST311. Then, the process proceeds to step ST317.
 次に、ステップST317において、ステップST313において測定された電力Pを、次のループのステップST314において電力P’として用いられる値に更新する。そして、ステップST311に戻る。 Next, in step ST317, the power P measured in step ST313 is updated to the value used as the power P'in step ST314 of the next loop. Then, the process returns to step ST311.
 これらの処理によって、電力制御装置12は、熱電変換装置11から出力される電力が最大となる電流値付近でループを繰り返す制御を行うこととなる。 By these processes, the power control device 12 controls to repeat the loop near the current value at which the power output from the thermoelectric conversion device 11 is maximized.
 負荷13の値を一定に保つ場合は、熱源または冷却源の温度が変動しても、図2のステップST11以降のループでされたような電流値を一定に保つ場合と比較して、熱電変換装置11から出力される電力を最大電力付近に保つことができる。 When the value of the load 13 is kept constant, even if the temperature of the heat source or the cooling source fluctuates, the thermoelectric conversion is performed as compared with the case where the current value as in the loop after step ST11 in FIG. 2 is kept constant. The power output from the device 11 can be kept near the maximum power.
 熱源または冷却源の温度が変動する際に電流値を一定に保つと、温度差に起電力が比例して変化するため、温度変動による最大電力点からのずれが大きくなる。 If the current value is kept constant when the temperature of the heat source or cooling source fluctuates, the electromotive force changes in proportion to the temperature difference, so the deviation from the maximum power point due to the temperature fluctuation becomes large.
 これに対し、負荷13の値を一定に保つと、熱電変換装置11の内部抵抗が変化しなければ最大電力点からのずれは生じない。 On the other hand, if the value of the load 13 is kept constant, the deviation from the maximum power point does not occur unless the internal resistance of the thermoelectric conversion device 11 changes.
 実際には、熱電変換素子の温度上昇によって内部抵抗は増加する傾向にあるが、一般的にこの効果は小さい。そのため、負荷13の値を一定に保つ制御のほうが、電流値を一定に保つ制御よりも熱電変換装置11から出力される電力は大きくなる。これにより、制御周期tの間電流値を一定に保つ場合と比較して、熱電変換装置11から出力される電力を大きくすることができる。 Actually, the internal resistance tends to increase as the temperature of the thermoelectric conversion element rises, but this effect is generally small. Therefore, the power output from the thermoelectric conversion device 11 is larger in the control that keeps the value of the load 13 constant than in the control that keeps the current value constant. As a result, the electric power output from the thermoelectric conversion device 11 can be increased as compared with the case where the current value is kept constant during the control cycle t.
 <熱電発電システムにおける電力制御装置のハードウェア構成について>
 図15および図16は、図1および図11に例が示される熱電発電システム(特に、電力制御装置)を実際に運用する場合のハードウェア構成を概略的に例示する図である。
<Hardware configuration of power control device in thermoelectric power generation system>
15 and 16 are diagrams schematically illustrating a hardware configuration in the case of actually operating a thermoelectric power generation system (particularly, a power control device) whose example is shown in FIGS. 1 and 11.
 なお、図15および図16に例示されるハードウェア構成は、図1および図11に例示される構成とは数などが整合しない場合があるが、これは図1および図11に例示される構成が概念的な単位を示すものであることに起因する。 The hardware configurations exemplified in FIGS. 15 and 16 may not match the configurations illustrated in FIGS. 1 and 11, but this may be inconsistent with the configurations illustrated in FIGS. 1 and 11. Is due to the fact that is a conceptual unit.
 よって、少なくとも、図1および図11に例示される1つの構成が、図15および図16に例示される複数のハードウェア構成から成る場合と、図1および図11に例示される1つの構成が、図15および図16に例示されるハードウェア構成の一部に対応する場合と、さらには、図1および図11に例示される複数の構成が、図15および図16に例示される1つのハードウェア構成に備えられる場合とが想定され得る。 Thus, at least one configuration exemplified in FIGS. 1 and 11 comprises a plurality of hardware configurations exemplified in FIGS. 15 and 16, and one configuration exemplified in FIGS. 1 and 11 includes. , The case corresponding to a part of the hardware configurations exemplified in FIGS. 15 and 16, and further, the plurality of configurations exemplified in FIGS. 1 and 11 are one exemplified in FIGS. 15 and 16. It can be assumed that it is prepared for a hardware configuration.
 図15では、図1中および図11中の熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dを実現するためのハードウェア構成として、演算を行う処理回路1102Aと、情報を記憶することができる記憶装置1103とが示される。これらの構成は、他の実施の形態においても同様である。 In FIG. 15, the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, and the power conversion in FIGS. 1 and 11 are shown. As a hardware configuration for realizing the unit 12d and the power conversion unit 22d, a processing circuit 1102A for performing an operation and a storage device 1103 capable of storing information are shown. These configurations are the same in other embodiments.
 図16では、図1および図11中の熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dを実現するためのハードウェア構成として、演算を行う処理回路1102Bが示される。当該構成は、他の実施の形態においても同様である。 In FIG. 16, the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, and the power conversion unit in FIGS. 1 and 11 are shown. As a hardware configuration for realizing the 12d and the power conversion unit 22d, a processing circuit 1102B for performing an operation is shown. The configuration is the same in other embodiments.
 熱時定数取得部12aにおける熱時定数の記憶、熱時定数取得部22aにおける熱時定数の記憶、電力測定部12bにおいて測定された電力の記憶、または、電力測定部22bにおいて測定された電力の記憶などは、記憶装置1103または別の記憶装置(ここでは、図示しない)によって実現される。 The heat time constant is stored in the heat time constant acquisition unit 12a, the heat time constant is stored in the heat time constant acquisition unit 22a, the power is stored in the power measurement unit 12b, or the power is measured in the power measurement unit 22b. Storage and the like are realized by storage device 1103 or another storage device (not shown here).
 記憶装置1103は、たとえば、ハードディスクドライブ(Hard disk drive、すなわち、HDD)、ランダムアクセスメモリ(random access memory、すなわち、RAM)、リードオンリーメモリ(read only memory、すなわち、ROM)、フラッシュメモリ、erasable programmable read only memory(EPROM)およびelectrically erasable programmable read-only memory(EEPROM)などの、揮発性または不揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVDなどを含むメモリ(記憶媒体)、または、今後使用されるあらゆる記憶媒体であってもよい。 The storage device 1103 is, for example, a hard disk drive (Hard disk drive, that is, HDD), a random access memory (random access memory, that is, RAM), a read-only memory (read only memory, that is, ROM), a flash memory, and an erase program. Memory (storage) including volatile or non-volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD such as read only memory (EPROM) and electricalally erasable program read-only memory (EEPROM). It may be a medium) or any storage medium that will be used in the future.
 処理回路1102Aは、記憶装置1103、外部のCD-ROM、外部のDVD-ROM、または、外部のフラッシュメモリなどに格納されたプログラムを実行するものであってもよい。すなわち、たとえば、中央演算処理装置(central processing unit、すなわち、CPU)、マイクロプロセッサ、マイクロコンピュータ、デジタルシグナルプロセッサ(digital signal processor、すなわち、DSP)であってもよい。 The processing circuit 1102A may execute a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like. That is, for example, it may be a central processing unit (CPU), a microprocessor, a microcomputer, or a digital signal processor (DSP).
 処理回路1102Aが記憶装置1103、外部のCD-ROM、外部のDVD-ROM、または、外部のフラッシュメモリなどに格納されたプログラムを実行するものである場合、熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dは、記憶装置1103に格納されたプログラムが処理回路1102Aによって実行されるソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせにより実現される。なお、熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dの機能は、たとえば、複数の処理回路が連携することによって実現されてもよい。 When the processing circuit 1102A executes a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like, the thermal time constant acquisition unit 12a, the thermal time constant In the acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d and the power conversion unit 22d, the program stored in the storage device 1103 is stored in the storage device 1103 by the processing circuit 1102A. It is realized by the software to be executed, the firmware, or the combination of the software and the firmware. The functions of the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d, and the power conversion unit 22d are For example, it may be realized by coordinating a plurality of processing circuits.
 ソフトウェアおよびファームウェアはプログラムとして記述され、記憶装置1103に記憶されるものであってもよい。その場合、処理回路1102Aは、記憶装置1103に格納されたプログラムを読み出して実行することによって、上記の機能を実現する。すなわち、記憶装置1103は、処理回路1102Aに実行されることによって、上記の機能が結果的に実現されるプログラムを記憶するものであってもよい。 The software and firmware may be described as a program and stored in the storage device 1103. In that case, the processing circuit 1102A realizes the above function by reading and executing the program stored in the storage device 1103. That is, the storage device 1103 may store a program in which the above functions are eventually realized by being executed by the processing circuit 1102A.
 また、処理回路1102Bは、専用のハードウェアであってもよい。すなわち、たとえば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、集積回路(application specific integrated circuit、すなわち、ASIC)、field-programmable gate array(FPGA)またはこれらを組み合わせた回路であってもよい。 Further, the processing circuit 1102B may be dedicated hardware. That is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an integrated circuit (application specific integrated circuit, that is, an ASIC), a field-programmable gate array (FPGA), or a combination thereof. It may be a circuit.
 処理回路1102Bが専用のハードウェアである場合、熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dは、処理回路1102Bが動作することにより実現される。なお、熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dの機能は、別々の回路で実現されてもよいし、単一の回路で実現されてもよい。 When the processing circuit 1102B is dedicated hardware, the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, and the power conversion The unit 12d and the power conversion unit 22d are realized by operating the processing circuit 1102B. The functions of the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d, and the power conversion unit 22d are , It may be realized by a separate circuit, or it may be realized by a single circuit.
 なお、熱時定数取得部12a、熱時定数取得部22a、電力測定部12b、電力測定部22b、電力変換制御部12c、電力変換制御部22c、電力変換部12dおよび電力変換部22dの機能は、一部が記憶装置1103に格納されたプログラムを実行するものである処理回路1102Aにおいて実現され、一部が専用のハードウェアである処理回路1102Bにおいて実現されてもよい。 The functions of the thermal time constant acquisition unit 12a, the thermal time constant acquisition unit 22a, the power measurement unit 12b, the power measurement unit 22b, the power conversion control unit 12c, the power conversion control unit 22c, the power conversion unit 12d, and the power conversion unit 22d are , A part may be realized in the processing circuit 1102A which executes the program stored in the storage device 1103, and a part may be realized in the processing circuit 1102B which is the dedicated hardware.
 <以上に記載された実施の形態によって生じる効果について>
 次に、以上に記載された実施の形態によって生じる効果の例を示す。なお、以下の説明においては、以上に記載された実施の形態に例が示された具体的な構成に基づいて当該効果が記載されるが、同様の効果が生じる範囲で、本願明細書に例が示される他の具体的な構成と置き換えられてもよい。すなわち、以下では便宜上、対応づけられる具体的な構成のうちのいずれか1つのみが記載される場合があるが、記載された1つの具体的な構成が対応づけられる他の具体的な構成に置き換えられてもよい。
<Effects caused by the above-described embodiments>
Next, an example of the effect caused by the above-described embodiment will be shown. In the following description, the effect is described based on the specific configuration shown in the embodiment described above, but to the extent that the same effect occurs, the examples are described in the present specification. May be replaced with other specific configurations indicated by. That is, in the following, for convenience, only one of the specific configurations to be associated may be described, but one specific configuration described may be described as another specific configuration to which the specific configuration is associated. May be replaced.
 また、当該置き換えは、複数の実施の形態に跨ってなされてもよい。すなわち、異なる実施の形態において例が示されたそれぞれの構成が組み合わされて、同様の効果が生じる場合であってもよい。 Further, the replacement may be made across a plurality of embodiments. That is, it may be the case that the respective configurations shown in the examples in different embodiments are combined to produce the same effect.
 以上に記載された実施の形態によれば、電力制御装置は、熱電変換装置11から出力される電力を測定する電力測定部12b(または、電力測定部22b)と、熱電変換装置11から出力される電力を制御する制御部とを備える。ここで、制御部は、たとえば、電力変換制御部12c、電力変換制御部22cなどのうちの少なくとも1つに対応するものである。熱電変換装置11は、熱に基づいて発電する。そして、熱電変換装置11は、電力を出力する。ここで、電力測定部12bは、熱電変換装置11の出力に対する負荷が変動された後、さらに、熱電変換装置11の熱時定数に対応する時間が経過した後で、熱電変換装置11から出力される電力を測定する。 According to the embodiment described above, the power control device is output from the power measuring unit 12b (or the power measuring unit 22b) for measuring the power output from the thermoelectric conversion device 11 and the thermoelectric conversion device 11. It is provided with a control unit that controls the electric power. Here, the control unit corresponds to at least one of, for example, a power conversion control unit 12c, a power conversion control unit 22c, and the like. The thermoelectric conversion device 11 generates electricity based on heat. Then, the thermoelectric conversion device 11 outputs electric power. Here, the power measuring unit 12b is output from the thermoelectric conversion device 11 after the load on the output of the thermoelectric conversion device 11 is changed and after a time corresponding to the thermal time constant of the thermoelectric conversion device 11 has elapsed. Measure the power.
 また、以上に記載された実施の形態によれば、電力制御装置は、プログラムを実行する処理回路1102Aと、実行されるプログラムを記憶する記憶装置1103とを備える。そして、処理回路1102Aがプログラムを実行することによって、以下の動作が実現される。 Further, according to the embodiment described above, the power control device includes a processing circuit 1102A for executing a program and a storage device 1103 for storing the program to be executed. Then, when the processing circuit 1102A executes the program, the following operations are realized.
 すなわち、熱電変換装置11の出力に対する負荷が変動した後、さらに、熱電変換装置11の熱時定数に対応する時間が経過した後で、熱電変換装置11から出力される電力が測定される。 That is, after the load on the output of the thermoelectric conversion device 11 fluctuates, and after the time corresponding to the thermal time constant of the thermoelectric conversion device 11 elapses, the power output from the thermoelectric conversion device 11 is measured.
 また、以上に記載された実施の形態によれば、電力制御装置は、専用のハードウェアである処理回路1102Bを備える。そして、専用のハードウェアである処理回路1102Bは、以下の動作を行う。 Further, according to the embodiment described above, the power control device includes a processing circuit 1102B which is dedicated hardware. Then, the processing circuit 1102B, which is dedicated hardware, performs the following operations.
 すなわち、専用のハードウェアである処理回路1102Bは、熱電変換装置11の出力に対する負荷が変動された後、さらに、熱電変換装置11の熱時定数に対応する時間が経過した後で、熱電変換装置11から出力される電力を測定する。 That is, the processing circuit 1102B, which is dedicated hardware, is a thermoelectric conversion device after the load on the output of the thermoelectric conversion device 11 is changed and after a time corresponding to the thermal time constant of the thermoelectric conversion device 11 has elapsed. The power output from 11 is measured.
 このような構成によれば、熱時定数Tに対応する時間が経過した後で、熱電変換装置11から出力される電力を測定することによって、熱電変換装置11から出力される電力P(取り出し電力)を増大させることができる。 According to such a configuration, the power P (take-out power) output from the thermoelectric conversion device 11 is measured by measuring the power output from the thermoelectric conversion device 11 after the time corresponding to the thermal time constant T has elapsed. ) Can be increased.
 なお、上記の構成に本願明細書に例が示された他の構成を適宜追加した場合、すなわち、上記の構成としては言及されなかった本願明細書中の他の構成が適宜追加された場合であっても、同様の効果を生じさせることができる。 In addition, when other configurations shown in the present specification are appropriately added to the above configurations, that is, when other configurations in the present specification not mentioned as the above configurations are appropriately added. Even if there is, the same effect can be produced.
 また、以上に記載された実施の形態によれば、電力変換制御部12cは、測定された熱電変換装置11の電力に基づいて、熱電変換装置11から出力される電力の最大値を探索する。このような構成によれば、山登り方などの熱電変換装置11の出力に対する負荷を変動させる探索を繰り返すことによって、熱電変換装置11から出力される最大電力を見つけることができる。 Further, according to the embodiment described above, the power conversion control unit 12c searches for the maximum value of the power output from the thermoelectric conversion device 11 based on the measured power of the thermoelectric conversion device 11. According to such a configuration, the maximum power output from the thermoelectric conversion device 11 can be found by repeating the search for varying the load on the output of the thermoelectric conversion device 11 such as how to climb a mountain.
 また、以上に記載された実施の形態によれば、電力変換制御部12cは、熱電変換装置11の出力に対する負荷を変動させることによって熱電変換装置11から出力される電流値を変動させ、かつ、熱電変換装置11の熱時定数に対応する時間は熱電変換装置11から出力される電流値を一定に保つ。このような構成によれば、熱時定数Tに対応する時間が経過した後で、熱電変換装置11から出力される電力を測定することによって、熱電変換装置11から出力される電力P(取り出し電力)を最大化することができる。 Further, according to the embodiment described above, the power conversion control unit 12c fluctuates the current value output from the thermoelectric conversion device 11 by varying the load on the output of the thermoelectric conversion device 11. The current value output from the thermoelectric conversion device 11 is kept constant for the time corresponding to the thermal time constant of the thermoelectric conversion device 11. According to such a configuration, the power P (take-out power) output from the thermoelectric conversion device 11 is measured by measuring the power output from the thermoelectric conversion device 11 after the time corresponding to the thermal time constant T has elapsed. ) Can be maximized.
 また、以上に記載された実施の形態によれば、電力変換制御部12cは、熱電変換装置11の出力に対する負荷を変動させ、かつ、熱電変換装置11の熱時定数に対応する時間は負荷を一定に保つ。このような構成によれば、熱源または冷却源の温度が変動しても、熱電変換装置11から出力される電力を最大電力付近に保つことができる。そして、熱時定数Tに対応する時間が経過した後で、熱電変換装置11から出力される電力を測定することによって、熱電変換装置11から出力される電力P(取り出し電力)を最大化することができる。 Further, according to the embodiment described above, the power conversion control unit 12c fluctuates the load on the output of the thermoelectric conversion device 11, and the load corresponds to the thermal time constant of the thermoelectric conversion device 11. Keep it constant. According to such a configuration, even if the temperature of the heat source or the cooling source fluctuates, the electric power output from the thermoelectric conversion device 11 can be kept near the maximum electric power. Then, after the time corresponding to the thermal time constant T has elapsed, the electric power P (extracted electric power) output from the thermoelectric conversion device 11 is maximized by measuring the electric power output from the thermoelectric conversion device 11. Can be done.
 また、以上に記載された実施の形態によれば、電力制御装置22は、熱電変換装置11から出力される電流値を変動させ、かつ、熱電変換装置11から出力される電圧値の時間変化に基づいて熱電変換装置11の熱時定数を取得する熱時定数取得部22aを備える。このような構成によれば、熱電変換装置11の正極と負極との間を短絡状態にして一定の時間だけ待った後、再び熱電変換装置11を開放状態にするなどして熱電変換装置11から出力される電圧値の時間変化を測定することによって、温度差ΔTの時間応答と電圧値の時間応答とが同じふるまいになることから、熱電変換装置11の熱測定によって熱時定数Tを取得しなくとも熱時定数Tを取得することができる。 Further, according to the embodiment described above, the power control device 22 changes the current value output from the thermoelectric conversion device 11 and changes the voltage value output from the thermoelectric conversion device 11 over time. A thermal time constant acquisition unit 22a for acquiring the thermal time constant of the thermoelectric conversion device 11 is provided. According to such a configuration, the positive electrode and the negative electrode of the thermoelectric conversion device 11 are short-circuited, wait for a certain period of time, and then the thermoelectric conversion device 11 is opened again to output from the thermoelectric conversion device 11. By measuring the time change of the voltage value, the time response of the temperature difference ΔT and the time response of the voltage value have the same behavior. Therefore, the thermal time constant T is not acquired by the thermal measurement of the thermoelectric converter 11. Both can acquire the thermal time constant T.
 また、以上に記載された実施の形態によれば、電力測定部12bは、熱電変換装置11から出力される電流値および電圧値に基づいて、熱電変換装置11の内部抵抗を取得する。このような構成によれば、熱電変換装置11の(熱電変換モジュール11aの高温側(または低温側)の面と高温側(または低温側)の温度固定点との間の熱抵抗を含む)正確な内部抵抗を測定することができるため、熱電変換装置11の最大電力制御に活用することができる。 Further, according to the embodiment described above, the power measuring unit 12b acquires the internal resistance of the thermoelectric conversion device 11 based on the current value and the voltage value output from the thermoelectric conversion device 11. According to such a configuration, the thermoelectric conversion device 11 (including the thermal resistance between the high temperature side (or low temperature side) surface and the high temperature side (or low temperature side) temperature fixing point of the thermoelectric conversion module 11a) is accurate. Since it is possible to measure the internal resistance, it can be utilized for the maximum power control of the thermoelectric conversion device 11.
 <以上に記載された実施の形態の変形例について>
 以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面においてひとつの例であって、限定的なものではないものとする。
<About the modified example of the embodiment described above>
In the embodiments described above, the materials, materials, dimensions, shapes, relative arrangement relationships, implementation conditions, etc. of each component may also be described, but these are one example in all aspects. However, it shall not be limited.
 したがって、例が示されていない無数の変形例、および、均等物が、本願明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの実施の形態における少なくとも1つの構成要素を抽出し、他の実施の形態における構成要素と組み合わせる場合が含まれるものとする。 Therefore, innumerable variants and equivalents for which examples are not shown are envisioned within the scope of the art disclosed herein. For example, when transforming, adding or omitting at least one component, or when extracting at least one component in at least one embodiment and combining it with the component in another embodiment. Shall be included.
 また、以上に記載された実施の形態において、特に指定されずに材料名などが記載された場合は、矛盾が生じない限り、当該材料に他の添加物が含まれた、たとえば、合金などが含まれるものとする。 Further, in the above-described embodiment, when the material name or the like is described without being specified, the material contains other additives, for example, an alloy or the like, as long as there is no contradiction. It shall be included.
 また、矛盾が生じない限り、以上に記載された実施の形態において「1つ」備えられるものとして記載された構成要素は、「1つ以上」備えられていてもよいものとする。 Further, as long as there is no contradiction, "one or more" components described as being provided in the above-described embodiment may be provided.
 さらに、以上に記載された実施の形態におけるそれぞれの構成要素は概念的な単位であって、本願明細書に開示される技術の範囲内には、1つの構成要素が複数の構造物から成る場合と、1つの構成要素がある構造物の一部に対応する場合と、さらには、複数の構成要素が1つの構造物に備えられる場合とを含むものとする。 Further, each component in the above-described embodiment is a conceptual unit, and within the scope of the technique disclosed in the present specification, one component is composed of a plurality of structures. It is assumed that one component corresponds to a part of a structure, and further, a case where a plurality of components are provided in one structure is included.
 また、以上に記載された実施の形態におけるそれぞれの構成要素には、同一の機能を発揮する限り、他の構造または形状を有する構造物が含まれるものとする。 Further, each component in the above-described embodiment shall include a structure having another structure or shape as long as it exhibits the same function.
 また、本願明細書における説明は、本技術に関連するすべての目的のために参照され、いずれも、従来技術であると認めるものではない。 Further, the description in the present specification is referred to for all purposes related to the present art, and none of them is recognized as the prior art.
 また、以上に記載された実施の形態で記載されたそれぞれの構成要素は、ソフトウェアまたはファームウェアとしても、それと対応するハードウェアとしても想定され、その双方の概念において、それぞれの構成要素は「部」または「処理回路」(circuitry)などと称される。 Further, each component described in the above-described embodiment is assumed to be software or firmware and corresponding hardware, and in both concepts, each component is a "part". Alternatively, it is referred to as a "processing circuit" or the like.
 また、熱時定数取得部12aにおける熱時定数の記憶、熱時定数取得部22aにおける熱時定数の記憶、電力測定部12bにおいて測定された電力の記憶、または、電力測定部22bにおいて測定された電力の記憶などは、図1および図11においては熱電発電システム内に搭載されるものとして示されたが、これらのうちの少なくとも1つは、外部の機能部であってもよいものとする。その場合、熱電発電システム内の他の機能部と外部の機能部とが互いに作用しあうことによって、全体として熱電発電システムの機能を果たすものであればよい。 Further, the heat time constant is stored in the heat time constant acquisition unit 12a, the heat time constant is stored in the heat time constant acquisition unit 22a, the power is stored in the power measurement unit 12b, or the power is measured in the power measurement unit 22b. The storage of electric power and the like are shown in FIGS. 1 and 11 as being mounted in the thermoelectric power generation system, but at least one of them may be an external functional unit. In that case, it suffices as long as the other functional parts in the thermoelectric power generation system and the external functional parts interact with each other to fulfill the function of the thermoelectric power generation system as a whole.
 11 熱電変換装置、11a 熱電変換モジュール、11b 高温側熱交換器、11c 低温側熱交換器、12,22 電力制御装置、12a,22a 熱時定数取得部、12b,22b 電力測定部、12c,22c 電力変換制御部、12d,22d 電力変換部、13 負荷、100,101 熱電発電システム、1102A,1102B 処理回路、1103 記憶装置。 11 thermoelectric conversion device, 11a thermoelectric conversion module, 11b high temperature side heat exchanger, 11c low temperature side heat exchanger, 12, 22 power control device, 12a, 22a thermal time constant acquisition unit, 12b, 22b power measurement unit, 12c, 22c Power conversion control unit, 12d, 22d power conversion unit, 13 loads, 100, 101 thermoelectric power generation system, 1102A, 1102B processing circuit, 1103 storage device.

Claims (8)

  1.  熱に基づいて発電された電力を出力する熱電変換装置の電力を制御する電力制御装置であり、
     前記熱電変換装置から出力される電力を測定する電力測定部と、
     前記熱電変換装置から出力される電力を制御する制御部とを備え、
     前記電力測定部は、前記熱電変換装置の出力に対する負荷が変動された後、さらに、前記熱電変換装置の熱時定数に対応する時間が経過した後で、前記熱電変換装置から出力される電力を測定する、
     電力制御装置。
    It is a power control device that controls the power of a thermoelectric conversion device that outputs the power generated based on heat.
    A power measuring unit that measures the power output from the thermoelectric conversion device, and
    It is provided with a control unit that controls the electric power output from the thermoelectric conversion device.
    The power measuring unit measures the power output from the thermoelectric conversion device after the load on the output of the thermoelectric conversion device is changed and after a time corresponding to the thermal time constant of the thermoelectric conversion device has elapsed. Measure,
    Power control device.
  2.  請求項1に記載の電力制御装置であり、
     前記制御部は、測定された前記熱電変換装置の電力に基づいて、前記熱電変換装置から出力される電力の最大値を探索する、
     電力制御装置。
    The power control device according to claim 1.
    The control unit searches for the maximum value of the electric power output from the thermoelectric conversion device based on the measured electric power of the thermoelectric conversion device.
    Power control device.
  3.  請求項1または2に記載の電力制御装置であり、
     前記制御部は、前記熱電変換装置の出力に対する前記負荷を変動させることによって前記熱電変換装置から出力される電流値を変動させ、かつ、前記熱電変換装置の前記熱時定数に対応する時間は前記熱電変換装置から出力される電流値を一定に保つ、
     電力制御装置。
    The power control device according to claim 1 or 2.
    The control unit fluctuates the current value output from the thermoelectric conversion device by fluctuating the load on the output of the thermoelectric conversion device, and the time corresponding to the thermal time constant of the thermoelectric conversion device is the time. Keeping the current value output from the thermoelectric converter constant,
    Power control device.
  4.  請求項1または2に記載の電力制御装置であり、
     前記制御部は、前記熱電変換装置の出力に対する前記負荷を変動させ、かつ、前記熱電変換装置の前記熱時定数に対応する時間は前記負荷を一定に保つ、
     電力制御装置。
    The power control device according to claim 1 or 2.
    The control unit varies the load on the output of the thermoelectric conversion device, and keeps the load constant for a time corresponding to the thermal time constant of the thermoelectric conversion device.
    Power control device.
  5.  請求項1から4のうちのいずれか1つに記載の電力制御装置であり、
     前記熱電変換装置から出力される電流値を変動させ、かつ、前記熱電変換装置から出力される電圧値の時間変化に基づいて前記熱電変換装置の前記熱時定数を取得する熱時定数取得部をさらに備える、
     電力制御装置。
    The power control device according to any one of claims 1 to 4.
    A thermal time constant acquisition unit that fluctuates the current value output from the thermoelectric conversion device and acquires the thermal time constant of the thermoelectric conversion device based on the time change of the voltage value output from the thermoelectric conversion device. Further prepare
    Power control device.
  6.  請求項1から5のうちのいずれか1つに記載の電力制御装置であり、
     前記電力測定部は、前記熱電変換装置から出力される電流値および電圧値に基づいて、前記熱電変換装置の内部抵抗を取得する、
     電力制御装置。
    The power control device according to any one of claims 1 to 5.
    The power measuring unit acquires the internal resistance of the thermoelectric conversion device based on the current value and the voltage value output from the thermoelectric conversion device.
    Power control device.
  7.  熱に基づいて発電し、かつ、電力を出力する熱電変換装置と、
     前記熱電変換装置から出力される電力を測定し、かつ、前記熱電変換装置から出力される電力を制御する電力制御装置とを備え、
     前記電力制御装置は、前記熱電変換装置の出力に対する負荷を変動させた後、さらに、前記熱電変換装置の熱時定数に対応する時間が経過した後で、前記熱電変換装置から出力される電力を測定する、
     熱電発電システム。
    A thermoelectric converter that generates electricity based on heat and outputs electric power,
    It is provided with a power control device that measures the electric power output from the thermoelectric conversion device and controls the electric power output from the thermoelectric conversion device.
    The power control device changes the load on the output of the thermoelectric conversion device, and after a time corresponding to the thermal time constant of the thermoelectric conversion device has elapsed, the power output from the thermoelectric conversion device is output. Measure,
    Thermoelectric power generation system.
  8.  熱に基づいて発電された電力を出力する熱電変換装置の電力を制御する電力制御方法であり、
     前記熱電変換装置から出力される電力を測定し、
     前記熱電変換装置から出力される電力を制御し、
     前記熱電変換装置から出力される電力を測定することは、前記熱電変換装置の出力に対する負荷が変動された後、さらに、前記熱電変換装置の熱時定数に対応する時間が経過した後で、前記熱電変換装置から出力される電力を測定することである、
     電力制御方法。
    It is a power control method that controls the power of a thermoelectric converter that outputs the power generated based on heat.
    The power output from the thermoelectric converter is measured and
    By controlling the power output from the thermoelectric conversion device,
    The measurement of the electric power output from the thermoelectric conversion device is performed after the load on the output of the thermoelectric conversion device is changed and after a time corresponding to the thermal time constant of the thermoelectric conversion device has elapsed. It is to measure the power output from the thermoelectric converter,
    Power control method.
PCT/JP2020/046537 2020-12-14 2020-12-14 Power control device, thermoelectric power generation system, and power control method WO2022130457A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020007861.2T DE112020007861T5 (en) 2020-12-14 2020-12-14 POWER CONTROL DEVICE, THERMOELECTRIC POWER GENERATION SYSTEM, AND POWER CONTROL METHOD
CN202080107821.9A CN116615858A (en) 2020-12-14 2020-12-14 Power control device, thermoelectric power generation system, and power control method
JP2021536259A JP6952937B1 (en) 2020-12-14 2020-12-14 Power control device, thermoelectric power generation system, and power control method
PCT/JP2020/046537 WO2022130457A1 (en) 2020-12-14 2020-12-14 Power control device, thermoelectric power generation system, and power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046537 WO2022130457A1 (en) 2020-12-14 2020-12-14 Power control device, thermoelectric power generation system, and power control method

Publications (1)

Publication Number Publication Date
WO2022130457A1 true WO2022130457A1 (en) 2022-06-23

Family

ID=78150256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046537 WO2022130457A1 (en) 2020-12-14 2020-12-14 Power control device, thermoelectric power generation system, and power control method

Country Status (4)

Country Link
JP (1) JP6952937B1 (en)
CN (1) CN116615858A (en)
DE (1) DE112020007861T5 (en)
WO (1) WO2022130457A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190309A1 (en) 2021-03-11 2022-09-15 三菱電機株式会社 Thermoelectric conversion control device and thermoelectric conversion device control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151661A (en) * 2003-11-13 2005-06-09 Toyota Motor Corp Thermoelectric generator
JP2007012768A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Thermoelectric power generator
JP2013055769A (en) * 2011-09-02 2013-03-21 Institute Of National Colleges Of Technology Japan Output control device for thermoelectric transducer
JP2015050372A (en) * 2013-09-03 2015-03-16 学校法人明星学苑 Method for manufacturing thermoelectric conversion module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151661A (en) * 2003-11-13 2005-06-09 Toyota Motor Corp Thermoelectric generator
JP2007012768A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Thermoelectric power generator
JP2013055769A (en) * 2011-09-02 2013-03-21 Institute Of National Colleges Of Technology Japan Output control device for thermoelectric transducer
JP2015050372A (en) * 2013-09-03 2015-03-16 学校法人明星学苑 Method for manufacturing thermoelectric conversion module

Also Published As

Publication number Publication date
JP6952937B1 (en) 2021-10-27
CN116615858A (en) 2023-08-18
DE112020007861T5 (en) 2023-11-02
JPWO2022130457A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
EP1564822B1 (en) Electric power generating apparatus and its control method
US10298026B2 (en) Model predictive control and optimization for battery charging and discharging
US9490698B2 (en) Low input voltage boost converter with peak inductor current control and offset compensated zero detection
US11374425B2 (en) Battery energy storage system, battery management system, and control method for controlling battery temperature
US10193046B2 (en) Thermoelectric generating device and thermoelectric generating method
US7394264B2 (en) Device for non-dissipative measurement of the current in an inductor
WO2022130457A1 (en) Power control device, thermoelectric power generation system, and power control method
KR101755793B1 (en) Method of estimating converter junction temperature for vehicle
US20190317155A1 (en) Energy storage device managing apparatus, energy storage apparatus, photovoltaic power generating system, degradation amount estimating method, and computer program
Aly et al. A MPPT based on optimized FLC using manta ray foraging optimization algorithm for thermo‐electric generation systems
JP5864962B2 (en) Thermoelectric conversion element output control device
Joey et al. Preisach-model-based position control of a shape-memory alloy linear actuator in the presence of time-varying stress
US11616181B2 (en) Thermoelectric generator
JP2012252887A (en) Temperature adjusting control system considering heat amount from external environment
JP2005295725A (en) Thermoelectric generator
US20210036205A1 (en) Thermoelectric generation apparatus
US7482080B2 (en) Fuel cell system with a cooling device
EP3379691A1 (en) Thermo-electric generator system, monitoring system therefor, and methods of designing and constructing them
JP7550955B2 (en) Thermoelectric conversion control device and method for controlling a thermoelectric conversion device
Nadeem Performance evaluation of online open-circuit voltage estimation method for photovoltaic system
Pollak et al. Cold-Starting Switched-Inductor Bipolar Power Management for Dynamic Thermoelectric Harvesting
Prajapati et al. Fractional-Order PI-Lead Controller Design of DC–DC Power Converter for Renewable Energy Applications
Ošlaj et al. Synchronous Buck-Boost Converter for Energy Harvesting Application
Turner et al. On energy harvesting module for scalable cognitive autonomous nondestructive sensing network (SCANSn) system for bridge health monitoring
Raja et al. Electro-thermal peltier cooling system for internal combustion engine waste heat recovery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021536259

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107821.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112020007861

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965845

Country of ref document: EP

Kind code of ref document: A1