JP2015045314A - 圧縮機および空気調和機 - Google Patents

圧縮機および空気調和機 Download PDF

Info

Publication number
JP2015045314A
JP2015045314A JP2013178188A JP2013178188A JP2015045314A JP 2015045314 A JP2015045314 A JP 2015045314A JP 2013178188 A JP2013178188 A JP 2013178188A JP 2013178188 A JP2013178188 A JP 2013178188A JP 2015045314 A JP2015045314 A JP 2015045314A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
flow path
lubricating oil
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013178188A
Other languages
English (en)
Inventor
将彬 足立
Masaaki Adachi
将彬 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013178188A priority Critical patent/JP2015045314A/ja
Publication of JP2015045314A publication Critical patent/JP2015045314A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】潤滑油と液冷媒とが二層分離することを防止するためにヒータ等の加熱源を設けた従来の圧縮機では、運転コストや設置コストがかかる。
【解決手段】この圧縮機は、圧縮室31、51を有する圧縮機構9と、圧縮機構9が内部に配置されるとともに、潤滑油Lが溜められる油溜まり部2aが底部に設けられた密閉容器2と、圧縮室31、51で圧縮された冷媒を密閉容器2内の吐出空間2bに吐出する第1分岐管82(第1流路)と、圧縮室31、51で圧縮された冷媒を油溜まり部2aに吐出する第2分岐管83(第2流路)と、第1分岐管82と第2分岐管83をそれぞれ流れる冷媒量を調整する流量調整弁81とを備えている。
【選択図】図3

Description

本発明は、R32冷媒を主成分とする冷媒を用いた圧縮機、およびこれを備えた空気調和機に関する。
従来から、R32冷媒を主成分とする冷媒を用いた圧縮機が知られている(例えば、特許文献1参照)。この圧縮機は、冷媒を圧縮する圧縮機構と、圧縮機構を駆動するシャフトと、圧縮機構およびシャフトが内部に配置された密閉容器とを備えている。この密閉容器の底部には、圧縮機構に供給される潤滑油が溜められる油溜まり部が設けられている。そして、シャフトの下端に設けられたポンプ部材によって、油溜まり部から潤滑油が吸い上げられ、圧縮機構に供給される。その結果、圧縮機構の摺動部の焼付き等が防止される。
特開2001−295762号公報 特開2012−97638号公報
ところで、R32冷媒を主成分とする冷媒を用いる上記の圧縮機では、圧縮機の運転停止中に外気温度が所定の温度よりも低くなると、油溜まり部において潤滑油と液化した液冷媒とが二層分離する場合がある。その結果、ポンプ部材が液冷媒のみを吸い上げて潤滑油が圧縮機構に供給されなくなり、圧縮機構の摺動部の焼付きが生じる問題がある。
そこで、特許文献2に記載の圧縮機では、油溜まり部の周囲にヒータ等の加熱源を設け、圧縮機の運転開始前に油溜まり部を加熱することで、上記の問題を解消している。しかしながら、この圧縮機では、ヒータ等の加熱源を設けなければないため、設置コストや運転コストがかかる問題がある。
そこで、本発明の目的は、ヒータ等の加熱源を設けることなく、圧縮機構の摺動部の焼付きを防止できる圧縮機を提供することである。
第1の発明にかかる圧縮機は、R32冷媒を主成分とする冷媒を圧縮する圧縮室を有する圧縮機構と、前記圧縮機構が内部に配置されるとともに、潤滑油が溜められる油溜まり部が底部に設けられた密閉容器と、前記圧縮室で圧縮された冷媒を前記密閉容器内の吐出空間に吐出する第1流路と、前記圧縮室で圧縮された冷媒を前記油溜まり部に吐出する第2流路と、前記第1流路と前記第2流路をそれぞれ流れる冷媒量を調整する流量調整弁とを備えることを特徴とする。
この圧縮機では、圧縮室で圧縮された冷媒を油溜まり部に吐出する第2流路を備えるので、圧縮機の運転開始時において、圧縮された高温の冷媒を油溜まり部に吐出することができる。その結果、二層分離した潤滑油および液冷媒の温度が上昇して、液冷媒が気化したり潤滑油に溶け込むので、二層分離を解消できる。したがって、ヒータ等の加熱源を設けることなく、圧縮機構の摺動部の焼付きを防止できる。
また、第1流路と第2流路をそれぞれ流れる冷媒量を調整する流量調整弁を備えるので、二層分離が解消するなどして冷媒を油溜まり部に吐出する必要がなくなったときに、油溜まり部に吐出する冷媒量を低減したり、油溜まり部に冷媒が吐出されるのを停止させることができる。
第2の発明にかかる圧縮機では、第1の発明にかかる圧縮機において、前記圧縮機構を駆動するシャフトと、前記シャフトの下端に設けられ、前記油溜まり部に溜められた潤滑油を前記圧縮機構に供給する油供給機構とを備え、前記第2流路の出口部が、前記シャフトの下端よりも上方にあることを特徴とする。
この圧縮機では、第2流路の出口部がシャフトの下端よりも上方にあるので、二層分離して油溜まり部の上側に溜まった潤滑油層に冷媒を吐出できる。その結果、潤滑油の温度を十分に高くすることができ、潤滑油に液冷媒を多く溶け込ませることができる。したがって、効率よく二層分離を解消できる。
第3の発明にかかる圧縮機では、第1または第2の発明にかかる圧縮機において、前記第2流路の出口部が、上向きに傾斜していることを特徴とする。
この圧縮機では、第2流路の出口部が上向きに傾斜しているので、二層分離して油溜まり部の上側に溜まった潤滑油層に向かって冷媒を吐出できる。その結果、潤滑油の温度を十分に高くすることができ、潤滑油に液冷媒を多く溶け込ませることができる。したがって、効率よく二層分離を解消できる。
第4の発明にかかる圧縮機では、第1〜第3のいずれかの発明にかかる圧縮機において、前記第2流路の出口部が、平面視において、前記密閉容器の中心を向いていないことを特徴とする。
この圧縮機では、第2流路の出口部が、平面視において、密閉容器の中心を向いていないので、密閉容器の内周面に沿って冷媒を吐出できる。その結果、潤滑油および液冷媒が攪拌されるので、潤滑油と液冷媒とがよく混合し、潤滑油に液冷媒が溶け込みやすい。したがって、効率よく二層分離を解消できる。
第5の発明にかかる圧縮機では、第1〜第4のいずれかの発明にかかる圧縮機において、前記圧縮機構は、前記圧縮室が形成されたシリンダの端面に配置される端板部材と、前記端板部材に取り付けられ、前記端板部材との間にマフラ空間を形成するマフラ部材とを備え、前記第2流路が、前記マフラ空間を含むことを特徴とする。
この圧縮機では、第2流路がマフラ空間を含むので、圧縮室で圧縮された冷媒が一旦マフラ空間に吐出される。したがって、圧縮室から冷媒が吐出される際に発生する騒音を低減できる。
第6の発明にかかる圧縮機では、第1〜第5のいずれかの発明にかかる圧縮機において、前記第2流路が、前記密閉容器の内部に配置されることを特徴とする。
この圧縮機では、第2流路が密閉容器の内部に配置されるので、圧縮機が大型化するのを抑制できる。また、第2流路を形成する配管の長さを短くできる。
第7の発明にかかる空気調和機では、第1〜第6のいずれかに記載の圧縮機と、温度センサと、前記流量調整弁を制御する制御手段とを備え、前記制御手段は、前記温度センサで検出された温度に基づいて前記第2流路の冷媒量を調整することを特徴とする。
この空気調和機では、潤滑油と液冷媒とが二層分離しやすい場合に、油溜まり部に冷媒を吐出できる。
第8の発明にかかる空気調和機では、第7の発明にかかる空気調和機において、前記制御手段は、前記温度センサで検出された温度が所定温度よりも低い場合に、前記温度センサで検出された温度が所定温度以上の場合よりも、前記第2流路の冷媒量を多くすることを特徴とする。
この空気調和機では、温度センサで検出された温度と所定温度とを比較することで第2流路の冷媒量を調整しているので、第2流路の冷媒量を容易に調整できる。
第9の発明にかかる空気調和機では、第8の発明にかかる空気調和機において、前記制御手段は、前記温度センサで検出された温度が所定温度よりも低い場合にのみ、前記第2流路に冷媒を供給することを特徴とする。
この空気調和機では、潤滑油と液冷媒とが二層分離しやすいときだけ、油溜まり部に冷媒を吐出できる。
第10の発明にかかる空気調和機では、第8または第9の発明にかかる空気調和機において、前記制御手段は、前記温度センサで検出された温度が低くなるにつれて、前記第2流路の冷媒量を増加させることを特徴とする。
この空気調和機では、油溜まり部に吐出される冷媒量を適正量とできる。
第11の発明にかかる空気調和機では、第7〜第10のいずれかの発明にかかる空気調和機において、前記温度センサが、前記油溜まり部に溜められた潤滑油の温度を検出する温度センサまたは前記油溜まり部に溜められた潤滑油に対応した位置における前記密閉容器の温度を検出する温度センサであることを特徴とする。
この空気調和機では、油溜まり部に溜められた潤滑油の温度に基づいて、油溜まり部に吐出される冷媒量を調整できる。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1の発明では、圧縮室で圧縮された冷媒を油溜まり部に吐出する第2流路を備えるので、圧縮機の運転開始時において、圧縮された高温の冷媒を油溜まり部に吐出することができる。その結果、二層分離した潤滑油および液冷媒の温度が上昇して、液冷媒が気化したり潤滑油に溶け込むので、二層分離を解消できる。したがって、ヒータ等の加熱源を設けることなく、圧縮機構の摺動部の焼付きを防止できる。
また、第1流路と第2流路をそれぞれ流れる冷媒量を調整する流量調整弁を備えるので、二層分離が解消するなどして冷媒を油溜まり部に吐出する必要がなくなったときに、油溜まり部に吐出する冷媒量を低減したり、油溜まり部に冷媒が吐出されるのを停止させることができる。
第2の発明では、第2流路の出口部がシャフトの下端よりも上方にあるので、二層分離して油溜まり部の上側に溜まった潤滑油層に冷媒を吐出できる。その結果、潤滑油の温度を十分に高くすることができ、潤滑油に液冷媒を多く溶け込ませることができる。したがって、効率よく二層分離を解消できる。
第3の発明では、第2流路の出口部が上向きに傾斜しているので、二層分離して油溜まり部の上側に溜まった潤滑油層に向かって冷媒を吐出できる。その結果、潤滑油の温度を十分に高くすることができ、潤滑油に液冷媒を多く溶け込ませることができる。したがって、効率よく二層分離を解消できる。
第4の発明では、第2流路の出口部が、平面視において、密閉容器の中心を向いていないので、密閉容器の内周面に沿って冷媒を吐出できる。その結果、潤滑油および液冷媒が攪拌されるので、潤滑油と液冷媒とがよく混合し、潤滑油に液冷媒が溶け込みやすい。したがって、効率よく二層分離を解消できる。
第5の発明では、第2流路がマフラ空間を含むので、圧縮室で圧縮された冷媒が一旦マフラ空間に吐出される。したがって、圧縮室から冷媒が吐出される際に発生する騒音を低減できる。
第6の発明では、第2流路が密閉容器の内部に配置されるので、圧縮機が大型化するのを抑制できる。また、第2流路を形成する配管の長さを短くできる。
第7の発明では、潤滑油と液冷媒とが二層分離しやすい場合に、油溜まり部に冷媒を吐出できる。
第8の発明では、温度センサで検出された温度と所定温度とを比較することで第2流路の冷媒量を調整しているので、第2流路の冷媒量を容易に調整できる。
第9の発明では、潤滑油と液冷媒とが二層分離しやすいときだけ油溜まり部に冷媒を吐出できる。
第10の発明では、油溜まり部に吐出される冷媒量を適正量とできる。
第11の発明では、油溜まり部に溜められた潤滑油の温度に基づいて、油溜まり部に吐出される冷媒量を調整できる。
本発明の第1実施形態に係る圧縮機を示す断面図である。 図1に示す圧縮機のII−II線断面図であって、シリンダ内でのピストンの動作を示す図である。 図1に示す圧縮機の一部拡大図である。 図1に示す圧縮機のIV-IV線断面図である。 本発明の第3実施形態に係る空気調和機の圧縮機を示す断面図である。 本発明の第4実施形態に係る空気調和機の圧縮機を示す断面図である。
以下、図面を参照しつつ本発明に係る空気調和機の実施の形態について説明する。
[第1実施形態]
第1実施形態に係る空気調和機は、圧縮機1と、制御部90(制御手段)とを有している。
[圧縮機の全体構成]
図1に示すように、本実施形態に係る圧縮機1は、2シリンダ型のロータリ圧縮機であって、密閉容器2と、この密閉容器2内に収容された圧縮機構9、駆動機構6および吐出機構80と、温度センサ1aとを有している。圧縮機1は、例えば空調装置などの冷凍サイクルに組み込まれて使用され、吸入管3a、3bから供給される冷媒を圧縮して排出管4から排出する。この圧縮機1では、R32冷媒を主成分とする冷媒を使用している。R32は、例えばR410Aなどの従来の冷媒に比べて地球温暖化係数(GWP)の低い冷媒である。なお、この圧縮機1は、図1に示す向き、即ち、シャフト8の向きが上下方向となる向きに設置される。
ここで「R32冷媒を主成分とする冷媒」とは、例えばR32冷媒の単一冷媒であってもよいし、R32冷媒と他の冷媒とを混合冷媒として使用する場合においてR32冷媒の比率が最も高い冷媒(例えばR32冷媒と他の冷媒との2種類の混合冷媒においてR32冷媒の比率が50%より大きい場合や、例えばR32冷媒と他の2つの冷媒との3種類の混合冷媒においてR32冷媒の比率が最も大きい場合など)であってもよい。なお、この圧縮機1では、「R32冷媒を主成分とする冷媒」の中でも特にR32冷媒の単一冷媒を使用している。
密閉容器2は、上下両端が塞がれた円筒状の容器である。密閉容器2の側部には、圧縮機構9に冷媒を導入するための2本の吸入管3a、3bが設けられている。密閉容器2の上部には、圧縮機構9で圧縮された冷媒を排出するための排出管4と、駆動機構6の後述する固定子7bのコイルに電流を供給するためのターミナル端子5が設けられている。なお、図1では、このコイルとターミナル端子5とを接続する配線を省略している。また、密閉容器2内の底部には、潤滑油Lが溜められる油溜まり部2aが設けられている。潤滑油Lは、圧縮機構9の摺動部の動作を滑らかにするためのものである。この潤滑油Lの液面高さは、圧縮機構9の後述するシャフト8の下端8dよりも上方である。油溜まり部2aに溜められている潤滑油Lの温度は、圧縮機構9から吐出された気化冷媒の温度よりも例えば20℃〜50℃低い。
[駆動機構]
駆動機構6は、圧縮機構9を駆動するために設けられており、駆動源となるモータ7と、このモータ7に取り付けられたシャフト8とで構成される。なお、図1では、モータ7の断面を示すハッチングを省略している。
<モータ>
モータ7は、密閉容器2の内周面に固定される略円環状の固定子7bと、この固定子7bの径方向内側にエアギャップを介して配置される略円環状の回転子7aとから構成される。回転子7aは磁石(図示省略)を有し、固定子7bはコイルを有している。固定子7bのコイルに電流を流すことで生じる電磁力によって、回転子7aは回転する。固定子7bの外周面には、上下方向に延び且つモータ7の上下の空間を連通させる複数の凹溝(図示省略)が、周方向に並んで形成されている。したがって、固定子7bの外周面は、全周にわたって密閉容器2の内周面に密着しているわけではない。
<シャフト>
シャフト8は、回転子7aの内周面に固定されており、回転子7aと一体的に回転して圧縮機構9を駆動する。シャフト8は、後述する圧縮室31内と、圧縮室51内とに、偏心部8a、8bをそれぞれ有している。この偏心部8a、8bは、いずれも円柱状に形成されており、その中心軸がシャフト8の回転中心に対して偏心している。偏心部8a、8bには、圧縮機構9のピストン34、54がそれぞれ装着される。
また、シャフト8の下側略半分の内部には、給油路8cが形成されている。この給油路8cは、上下方向に延在していると共に数箇所でシャフト8の径方向に枝分かれしている。シャフト8の下端8dには、シャフト8の回転に伴って潤滑油Lを給油路8c内に吸い上げる螺旋羽根形状のポンプ部材8e(油供給機構)が取り付けられている。ポンプ部材8eによってシャフト8の下端8dから吸い上げられた潤滑油Lは、シャフト8の側面から排出されて、圧縮機構9の各摺動部に供給される。
[圧縮機構]
圧縮機構9は、リアマフラ10と、リアヘッド20と、リアシリンダ30およびピストン34と、ミドルプレート40と、フロントシリンダ50およびピストン54と、フロントヘッド60(端板部材)と、フロントマフラ70(マフラ部材)とを有する。これらは下から上に向かって順に配置されている。
<リアシリンダ>
図2に示すように、リアシリンダ30は、略円形板状の部材であって、その中央部に円形孔である圧縮室31が形成されている。また、リアシリンダ30には、圧縮室31に冷媒を導入するための吸入路32と、圧縮室31の周壁面から径方向外側に凹んだ形状であって、ブレード(分断部材)が収容されるブレード収容部(凹部)33が形成されている。この吸入路32には、吸入管3aの先端が内嵌されている。
図2に示すように、ピストン34は、円環状のローラ35と、このローラ35の外周面から径方向外側に延在するブレード36とから構成される。ローラ35は、偏心部8aに装着されており、圧縮室31内において公転運動する。ブレード36は、ブレード収容部33に配置された一対のブッシュ37の間に進退可能に配置されている。図2(b)〜図2(d)に示すように、圧縮室31はピストン34によって低圧室31aと高圧室31bに分断される。
<リアヘッド>
図1に示すように、リアヘッド20は、リアシリンダ30の下端面に配置されており、リアシリンダ30の圧縮室31の下端を閉塞している。図1に示すように、リアヘッド20は、円形板状の本体部21と、本体部21の中央部から下方に突出する円筒状のボス部22とを有する。
本体部21およびボス部22には、シャフト8が回転可能に挿通されている。この本体部21には、リアシリンダ30の圧縮室31で圧縮された冷媒を吐出するための吐出孔(図示省略)が形成されている。また、本体部21の下面には、圧縮室31内の圧力に応じて上述の吐出孔の出口を開閉する弁機構(図示省略)が取り付けられている。
<リアマフラ>
リアヘッド20の下側には、リアマフラ10が取り付けられている。リアマフラ10とリアヘッド20との間には、第1マフラ空間11が形成されている。第1マフラ空間11は、リアヘッド20の吐出孔(図示省略)を介して圧縮室31(高圧室31b)に連通している。第1マフラ空間11は、冷媒の吐出に伴う騒音を低減するために設けられている。
<ミドルプレート>
ミドルプレート40は、円形板状の部材であって、リアシリンダ30の上端面かつフロントシリンダ50の下端面に配置されている。このミドルプレート40は、リアシリンダ30の圧縮室31の上端を閉塞すると共に、フロントシリンダ50の圧縮室31の下端を閉塞している。
<フロントシリンダ>
フロントシリンダ50は、略円形板状の部材であって、その中央部に円形孔である圧縮室51が形成されている。また、フロントシリンダ50には、圧縮室51に冷媒を導入するための吸入路52と、圧縮室51の周壁面から径方向外側に凹んだ形状であって、ブレード(図示省略)が収容されるブレード収容部(図示省略)が形成されている。この吸入路52には、吸入管3bの先端が内嵌されている。
<フロントヘッド>
フロントヘッド60(端板部材)は、フロントシリンダ50の上端面に配置されており、フロントシリンダ50の圧縮室51の上端を閉塞している。このフロントヘッド60は、円形板状の本体部61と、本体部61の中央部から上方に突出する円筒状のボス部62とを有している。
本体部61およびボス部62には、シャフト8が回転可能に挿通されている。この本体部61には、フロントシリンダ50の圧縮室51で圧縮された冷媒を吐出するための吐出孔(図示省略)が形成されている。また、フロントヘッド60の上面には、圧縮室51内の圧力に応じて上述の吐出孔の出口を開閉する弁機構(図示省略)が取り付けられている。
また、フロントヘッド60は、密閉容器2の内周面に固定されている。フロントヘッド60は、上下方向から見て、圧縮室51の径方向外側の領域に、冷媒と潤滑油Lと後述する第2分岐管83を通過させるための油戻し通路(図示省略)を有している。
<フロントマフラ>
フロントマフラ70(マフラ部材)は、フロントヘッド60の上面に取り付けられている。フロントマフラ70とフロントヘッド60との間には、第2マフラ空間71(マフラ空間)が形成されている。第2マフラ空間71は、フロントヘッド60に形成された吐出孔(図示省略)を介してフロントシリンダ50の圧縮室51と連通している。
図3に示すように、フロントマフラ70は、ボス部62の外周面と対向するように延在した筒状の側面部72と、側面部72の端部から本体部61と対向するように延在した平面部73とを有している。
なお、第1マフラ空間11と第2マフラ空間71とは、図示しない貫通孔によって連通している。したがって、リアシリンダ30の圧縮室31で圧縮され、第1マフラ空間11に吐出された冷媒は、上記貫通孔を通って第2マフラ空間71に吐出される。そして、フロントシリンダ50の圧縮室51で圧縮された冷媒と合流する。
[吐出機構]
吐出機構80は、第2マフラ空間71に吐出された冷媒を密閉容器2内の油溜まり部2aと吐出空間2bに吐出するものである。この吐出機構80は、フロントマフラ70に接続されている。この吐出機構80は、図3に示すように、流量調整弁81と、第1分岐管82と、第2分岐管83とを有している。
<流量調整弁>
流量調整弁81は、例えば電磁弁(電磁切換弁)であって、接続配管84を介してフロントマフラ70の側面部72に接続されている。第2マフラ空間71に吐出された冷媒、すなわち圧縮室31、51で圧縮された冷媒は、全て接続配管84を通ってこの流量調整弁81に流入する。この流量調整弁81は、後述する制御部90と電気的に接続されており、第1分岐管82と第2分岐管83をそれぞれ流れる冷媒量を調整することが可能である。
<第1流路>
第1分岐管82は、一端が流量調整弁81に接続され、流量調整弁81から上方に向かって延びている。この第1分岐管82は、圧縮室31、51で圧縮された冷媒を密閉容器2内の吐出空間2bに吐出する第1流路の一構成部分である。第1分岐管82の他端である出口82aは、吐出空間2b内に開口している。
なお、第1流路とは、圧縮室31、51で圧縮された冷媒が第1分岐管82の出口82aから吐出されるまでの間に通過する流路を言う。したがって、第1流路は、第1マフラ空間11、第2マフラ空間71、接続配管84、流量調整弁81、第1分岐管82等を含む。
<第2流路>
第2分岐管83は、一端が流量調整弁81に接続され、流量調整弁81から下方に向かって延びている。この第2分岐管83は、圧縮室31、51で圧縮された冷媒を密閉容器2内の油溜まり部2aに吐出する第2流路の一構成部分である。
この第2分岐管83は、流量調整弁81から略鉛直方向下向きに向かって延び、下部が潤滑油Lに浸漬する鉛直部分85と、鉛直部分85の下端から略水平方向に向かって延びる水平部分86とを有している。水平部分86の先端近傍には、出口部87が設けられている。この出口部87の先端には、冷媒が吐出される出口87aが形成されている。第2分岐管83の出口87aは、油溜まり部2a内に開口している。
図3に示すように、第2分岐管83の出口部87は、シャフト8の下端8dよりも上方に配置されている。この出口部87は、潤滑油と液冷媒とが二層分離した状態において、通常、潤滑油層内に位置する。また、第2分岐管83の出口部87は、上向きに傾斜している。
また、図4に示すように、第2分岐管83の出口部87は、平面視において、密閉容器2の中心を向いていない。したがって、第2分岐管83から吐出される冷媒は、図4に矢印で示すように、密閉容器2の内周面に沿って吐出される。なお、密閉容器2の中心は、シャフト8の軸中心と略一致する。
なお、第2流路とは、圧縮室31、51で圧縮された冷媒が第2分岐管83の出口87aから吐出されるまでの間に通過する流路を言う。したがって、第2流路は、第1マフラ空間11、第2マフラ空間71、接続配管84、流量調整弁81、第2分岐管83等を含む。
[油溜まり部]
油溜まり部2aに溜められる潤滑油Lは、例えばエーテル油である。潤滑油Lは、R32との相溶性がよく、R32は潤滑油にある程度溶解する。
ところで、圧縮機1の運転停止中に外気温度が予め測定しておいた所定温度(二層分離開始温度)よりも低くなると、密閉容器2内の気化冷媒が液化して液冷媒となり、密閉容器2の底部の油溜まり部2aに溜まる。その結果、油溜まり部2aにおいて潤滑油Lと液化した液冷媒とが二層分離する。なお、R32冷媒を主成分とする冷媒では、従来の冷媒であるR410Aに比べて二層分離開始温度が高く、例えばR32単一冷媒の二層分離開始温度は、およそ8℃であり、従来の冷媒であるR410Aは、およそ−50℃である。
また、R32の液密度(液冷媒の密度)は、温度が低いほど大きくなり、温度が高いほど小さくなる。そのため、潤滑油Lおよび液冷媒の温度が、所定温度(二層分離開始温度)未満の場合では、液冷媒の密度が潤滑油Lの密度よりも大きくなり、図3に示すように、液冷媒が下側に溜まり、潤滑油Lが上側に溜まる。そして、圧縮機1の運転を開始したときに、潤滑油Lと液冷媒との境界面がシャフト8の下端8dよりも上方に位置する場合には、ポンプ部材8e(油供給機構)が油溜まり部2aの下側に溜まった液冷媒を吸い上げてしまう。その結果、圧縮機構9の摺動部の焼付き等の問題が生じる。
なお、外気温度が所定温度(二層分離開始温度)以上の場合には、液冷媒が潤滑油Lに溶け込みやすく、また気化冷媒が液化しにくいため、二層分離が生じにくい。また、外気温度が所定温度未満であっても、圧縮機の運転が開始されてから所定時間が経過した場合には、密閉容器2内が圧縮された高温の冷媒で満たされるため、潤滑油と液冷媒とが二層分離することはない。
[温度センサ]
温度センサ1aは、潤滑油Lの温度を検出する温度センサであって、図3に示すように、油溜まり部2aに溜められた潤滑油L内に配置されている。この温度センサ1aは、例えば熱電対であって、密閉容器2の側面から潤滑油L内に差し込まれることによって、潤滑油L内に配置される。
[制御部]
制御部90(制御手段)は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などの複数のハードウェアから構成されている。ROMには、制御部90の動作を制御する制御プログラムなどが格納されている。そして、この制御部90は、流量調整弁81、および温度センサ1aと電気的に接続されている。
この制御部90(制御手段)は、温度センサ1aで検出された潤滑油Lの温度に基づいて流量調整弁81を制御して、第2流路を流れる冷媒量を調整する。具体的には、潤滑油Lの温度が所定温度(二層分離開始温度)よりも低い場合には、第2マフラ空間71と第1分岐管82とを連通させずに閉状態とし、第2マフラ空間71と第2分岐管83とを連通させて開状態とする。すなわち、第1分岐管82(第1流路)には冷媒を供給せずに、第2分岐管83(第2流路)にのみ冷媒を供給する。
したがって、この制御部90は、温度センサ1aで検出された潤滑油Lの温度が所定温度よりも低い場合に、温度センサ1aで検出された潤滑油Lの温度が所定温度以上の場合よりも、第2分岐管83(第2流路)を流れる冷媒量を多くしている。また、温度センサ1aで検出された潤滑油Lの温度が所定温度よりも低い場合にのみ、第2分岐管83(第2流路)に冷媒を供給している。
また、この制御部90(制御手段)は、潤滑油Lの温度が所定温度以上の場合には、第2マフラ空間71と第1分岐管82とを連通させて開状態とし、第2マフラ空間71と第2分岐管83とを連通させずに閉状態とする。すなわち、第1分岐管82(第1流路)にのみ冷媒を供給して、第2分岐管83(第2流路)には冷媒を供給しない。
また、この制御部90(制御手段)は、圧縮機1の運転を開始してから所定時間が経過した場合、第2マフラ空間71と第1分岐管82とを連通させて開状態とし、第2マフラ空間71と第2分岐管83とを連通させずに閉状態とする。すなわち、圧縮機1の運転を開始してから所定時間が経過した場合には、密閉容器2内が圧縮された高温の冷媒で満たされて、二層分離が生じないので、第2分岐管83(第2流路)には冷媒を供給しない。その結果、例えば温度センサ1aが故障した場合において、油溜まり部に冷媒が吐出させる必要がないときに、油溜まり部に冷媒が吐出されるのが防止される。
[圧縮機の動作]
次に、本実施形態の圧縮機1の動作について説明する。圧縮機1の運転が開始されると、吸入管3a、3bからリアシリンダ30およびフロントシリンダ50の圧縮室31、51内にR32冷媒が供給される。また、モータ7の駆動によりシャフト8が回転する。図2(a)〜図2(d)に示すように、リアシリンダ30の圧縮室31では、偏心部8aに装着されたローラ35が圧縮室31の周壁面に沿って公転運動する。これにより、高圧室31bと低圧室31aの容積が変化して、高圧室31bで冷媒が圧縮される。そして、圧縮室31(高圧室31b)内の圧力が所定圧力以上になると、リアヘッド20に設けられた弁機構(図示省略)が開弁して、圧縮室31内の冷媒が第1マフラ空間11に吐出される。冷媒は、第1マフラ空間11に吐出された後、第2マフラ空間71に吐出される。
また、フロントシリンダ50においても、リアシリンダ30と同様に、圧縮室51で冷媒が圧縮されて、圧縮室51内の圧力が所定圧力以上になると、フロントヘッド60に設けられた弁機構(図示省略)が開弁して、圧縮室51内の冷媒が第2マフラ空間71に吐出される。
ここで、温度センサ1aで検出された潤滑油Lの温度が所定温度よりも低い場合には、第2マフラ空間71に吐出された冷媒は、流量調整弁81を通過して、第2分岐管83に流れる。そして、その冷媒は、第2分岐管83の出口87aから油溜まり部2aの潤滑油層に吐出される。潤滑油層に吐出された冷媒は、潤滑油層内を上昇して吐出空間2bに吐出される。その際に、二層分離した潤滑油Lおよび液冷媒を温める。潤滑油層内を上昇して吐出空間2bに吐出された冷媒は、固定子7bと回転子7aとの間のエアギャップなどを通過して、最終的に、排出管4から密閉容器2の外に排出される。
一方、温度センサ1aで検出された潤滑油Lの温度が所定温度以上の場合には、第2マフラ空間71に吐出された冷媒は、流量調整弁81を通過して、第1分岐管82に流れる。その後、冷媒は、第1分岐管82の出口82aから吐出空間2bに吐出される。吐出空間2bに吐出された冷媒は、固定子7bと回転子7aとの間のエアギャップなどを通過して、最終的に、排出管4から密閉容器2の外に排出される。
また、ポンプ部材8eによって吸い上げられ、給油路8cから圧縮室31、51内に排出された潤滑油Lの一部は、冷媒と共に圧縮機構9の外に吐出される。圧縮機構9の外に吐出された潤滑油Lは、第2分岐管83や、フロントヘッド60の油戻し孔(図示省略)や、固定子7bの外周面に形成された凹溝(図示省略)を通って、密閉容器2の底部に戻される。
<本実施形態の圧縮機および空気調和機の特徴>
本実施形態の圧縮機1および空気調和機には、以下の特徴がある。
本実施形態の圧縮機1では、図3に示すように、圧縮室31、51で圧縮されたR32冷媒を油溜まり部2aに吐出する第2流路を備えるので、圧縮室31、51で圧縮された高温の冷媒を油溜まり部2aに吐出することができる。その結果、油溜まり部2aに吐出された冷媒によって、二層分離した潤滑油Lおよび液冷媒の温度が上昇して、液冷媒が気化したり潤滑油Lに溶け込むので、二層分離を解消できる。したがって、ヒータ等の加熱源を設けることなく、圧縮機構9の摺動部の焼付きを防止できる。
また、第1流路(第1分岐管82)と第2流路(第2分岐管83)をそれぞれ流れる冷媒量を調整する流量調整弁81を備えるので、二層分離が解消するなどして冷媒を油溜まり部2aに吐出する必要がなくなったときに、油溜まり部2aに吐出する冷媒量を低減したり、油溜まり部2aに冷媒が吐出されるのを停止させることができる。
また、本実施形態の圧縮機1では、第2分岐管83の出口部87がシャフト8の下端8dよりも上方にあるので、二層分離して油溜まり部2aの上側に溜まった潤滑油層に冷媒を吐出できる。その結果、潤滑油Lの温度を十分に高くすることができ、潤滑油Lに液冷媒を多く溶け込ませることができる。したがって、効率よく二層分離を解消できる。
また、本実施形態の圧縮機1では、第2分岐管83の出口部87が上向きに傾斜しているので、二層分離して油溜まり部2aの上側に溜まった潤滑油層に向かって冷媒を吐出できる。その結果、潤滑油Lの温度を十分に高くすることができ、潤滑油Lに液冷媒を多く溶け込ませることができる。したがって、効率よく二層分離を解消できる。
また、本実施形態の圧縮機1では、第2分岐管83の出口部87が、平面視において、密閉容器2の中心を向いていないので、密閉容器2の内周面に沿って冷媒を吐出できる。その結果、二層分離した潤滑油Lおよび液冷媒が攪拌されるので、潤滑油Lと液冷媒とがよく混合し、潤滑油Lに液冷媒が溶け込みやすい。したがって、効率よく二層分離を解消できる。
また、本実施形態の圧縮機1では、第2流路が第2マフラ空間71(マフラ空間)を含むので、圧縮室31、51で圧縮された冷媒が一旦、第2マフラ空間71(マフラ空間)に吐出される。したがって、圧縮室31、51から冷媒が吐出される際に発生する騒音を低減できる。
また、本実施形態の圧縮機1では、第2流路が密閉容器2の内部に配置されるので、圧縮機1が大型化するのを抑制できる。また、第2流路を形成する第2分岐管83および接続配管84の長さを短くできる。
また、本実施形態の空気調和機では、温度センサ1aで検出された潤滑油Lの温度に基づいて第2流路の冷媒量が調整される。したがって、潤滑油Lと液冷媒とが二層分離しやすい場合に、油溜まり部2aに冷媒を吐出できる。
また、本実施形態の空気調和機では、温度センサ1aで検出された潤滑油Lの温度が所定温度(二層分離開始温度)よりも低い場合に、温度センサ1aで検出された潤滑油Lの温度が所定温度以上の場合よりも、油溜まり部2aに吐出される冷媒量が多い。したがって、温度センサ1aで検出された潤滑油Lの温度と所定温度(二層分離開始温度)とを比較することで第2流路の冷媒量が調整されるので、第2流路の冷媒量を容易に調整できる。
また、本実施形態の空気調和機では、温度センサ1aで検出された潤滑油Lの温度が所定温度よりも低い場合にのみ、冷媒を油溜まり部2aに吐出されている。したがって、潤滑油Lと液冷媒とが二層分離しやすいときだけ油溜まり部2aに冷媒を吐出できる。
また、本実施形態の空気調和機では、温度センサ1aが、油溜まり部2aに溜められた潤滑油Lの温度を検出する温度センサであるので、油溜まり部2aに溜められた潤滑油Lの温度に基づいて、油溜まり部2aに吐出される冷媒量を調整できる。したがって、二層分離が生じているか否かを適切に判断した上で、油溜まり部2aに冷媒を吐出するか否かを判断できる。そのため、例えば、圧縮機1の運転が開始されて、潤滑油Lの温度が温められ、二層分離が解消した場合に、油溜まり部2aに冷媒が吐出されるのを防止できる。
[第2実施形態]
第2実施形態に係る空気調和機は、制御部による流量調整弁81の制御方法が第1実施形態と異なり、その他の点で第1実施形態と同じである。
本実施形態の制御部(制御手段)は、温度センサ1aで検出された潤滑油Lの温度が低くなるのにつれて、第2分岐管83を流れる冷媒量が増加するように、流量調整弁81の開度を調整する。具体的には、潤滑油Lの温度が低くなるのに比例するように、第2分岐管83を流れる冷媒量を増加させる。
<本実施形態の圧縮機および空気調和機の特徴>
本実施形態の圧縮機および空気調和機には、以下の特徴がある。
本実施形態の空気調和機では、温度センサ1aで検出された潤滑油Lの温度が低くなるのにつれて、第2分岐管83を流れる冷媒量が増加するので、油溜まり部2aに吐出される冷媒量を適正量とできる。
[第3実施形態]
第3実施形態に係る空気調和機は、図5に示すように、吐出機構の一部が圧縮機の外部に配置されている点で、第1実施形態と異なり、その他の点で第1実施形態と同じである。なお、圧縮機の動作については、第1実施形態と略同じであるため、その説明を割愛する。
[吐出機構]
第3実施形態に係る吐出機構180は、第2マフラ空間71に吐出された冷媒を密閉容器2内の油溜まり部2aと吐出空間2bに吐出するものである。この吐出機構180は、フロントマフラ70に接続されている。この吐出機構180は、図5に示すように、流量調整弁181と、第1分岐管182と、第2分岐管183とを有している。
<流量調整弁>
流量調整弁181は、接続配管184を介してフロントマフラ70の側面部72に接続されている。第2マフラ空間71に吐出された冷媒、すなわち圧縮室31、51で圧縮された冷媒は、全て接続配管184を通過してこの流量調整弁181に流入する。この流量調整弁181は、制御部90と電気的に接続されており、第1分岐管182と第2分岐管183をそれぞれ流れる冷媒量を調整することが可能である。また、この流量調整弁181は、圧縮機1の外部に配置されている。なお、接続配管184は、密閉容器2を貫通している。
<第1流路>
第1分岐管182は、一端が流量調整弁181に接続され、流量調整弁181から上方に向かって延びている。また、この第1分岐管182は、密閉容器2を貫通しており、第1分岐管182の他端である出口182aは、吐出空間2b内に開口している。この第1分岐管182は、圧縮室31、51で圧縮された冷媒を密閉容器2内の吐出空間2bに吐出する第1流路の一構成部分である。
なお、第1流路とは、圧縮室31、51で圧縮された冷媒が第1分岐管182の出口82aから吐出されるまでの間に通過する流路を言う。したがって、第1流路は、第1マフラ空間11、第2マフラ空間71、接続配管184、流量調整弁181、第1分岐管182等を含む。
<第2流路>
第2分岐管183は、一端が流量調整弁181に接続され、流量調整弁181から下方に向かって延びている。この第2分岐管183は、圧縮室31、51で圧縮された冷媒を密閉容器2内の油溜まり部2aに吐出する第2流路の一構成部分である。
この第2分岐管183は、流量調整弁181から略鉛直方向下向きに向かって延びる鉛直部分185と、鉛直部分185の下端から略水平方向に向かって延び、密閉容器2を貫通する水平部分186とを有している。水平部分186の先端近傍には、出口部187が設けられている。出口部187は、潤滑油Lに浸漬している。この出口部187の先端には、冷媒が吐出される出口187aが形成されている。第2分岐管183の出口187aは、油溜まり部2a内に開口している。
図5に示すように、第2分岐管183の出口部187は、シャフト8の下端8dよりも上方に配置されている。この出口部187は、潤滑油と液冷媒とが二層分離した状態において、通常、潤滑油層内に位置する。
また、第2分岐管183の出口部187は、平面視において、密閉容器2の中心を向いていない。したがって、第2分岐管183から吐出される冷媒は、密閉容器2の内周面に沿って吐出される。なお、密閉容器2の中心は、シャフト8の軸中心と略一致する。
なお、第2流路とは、圧縮室31、51で圧縮された冷媒が第2分岐管183の出口187aから吐出されるまでの間に通過する流路を言う。したがって、第2流路は、第1マフラ空間11、第2マフラ空間71、接続配管184、流量調整弁181、第2分岐管183等を含む。
<本実施形態の圧縮機および空気調和機の特徴>
本実施形態の圧縮機および空気調和機には、以下の特徴がある。
本実施形態の圧縮機では、吐出機構180(第2流路)が圧縮機の外側に突出した突出部分を有している。また、この突出部分に吐出機構180の流量調整弁181が配置されている。そのため、第2流路を圧縮機に設置しやすい。
[第4実施形態]
第4実施形態に係る空気調和機は、図6に示すように、吐出機構がフロントヘッド(端板部材)に接続されている点で、第3実施形態と異なり、その他の点で第3実施形態と同じである。なお、圧縮機の動作については、第3実施形態と略同じであるため、その説明を割愛する。
<フロントヘッド>
フロントヘッド260(端板部材)は、フロントシリンダ50の上端面に配置されており、フロントシリンダ50の圧縮室51の上端を閉塞している。このフロントヘッド260は、円形板状の本体部261と、本体部261の中央部から上方に突出する円筒状の第1突出部262(ボス部)と、本体部261の外周部から上方に突出する円筒状の第2突出部263とを有している。
本体部261および第1突出部262には、シャフト8が回転可能に挿通されている。この本体部261には、フロントシリンダ50の圧縮室51で圧縮された冷媒を吐出するための吐出孔(図示省略)が形成されている。また、本体部261の上面には、圧縮室51内の圧力に応じて上述の吐出孔の出口を開閉する弁機構(図示省略)が取り付けられている。
また、フロントヘッド260は、密閉容器2の内周面に固定されている。フロントヘッド260は、上下方向から見て、圧縮室51の径方向外側の領域に、冷媒と潤滑油Lと第2分岐管283を通過させるための油戻し通路(図示省略)を有している。
<フロントマフラ>
フロントマフラ270(マフラ部材)は、フロントヘッド260の上面に取り付けられており、フロントヘッド260との間に第2マフラ空間271(マフラ空間)を形成している。第2マフラ空間271は、フロントヘッド260に形成された吐出孔(図示省略)を介してフロントシリンダ50の圧縮室51と連通している。
図6に示すように、フロントマフラ70は、円形板状の部材である。なお、第1マフラ空間11と第2マフラ空間271とは、図示しない貫通孔によって連通している。したがって、リアシリンダ30の圧縮室31で圧縮され、第1マフラ空間11に吐出された冷媒は、上記貫通孔を通って第2マフラ空間271に吐出される。そして、フロントシリンダ50の圧縮室51で圧縮された冷媒と合流する。
[吐出機構]
吐出機構280は、第2マフラ空間271に吐出された冷媒を密閉容器2内の油溜まり部2aと吐出空間2bに吐出するものであって、フロントヘッド260に接続されている。この吐出機構280は、図6に示すように、流量調整弁281と、第1分岐管282と、第2分岐管283とを有している。なお、第1分岐管282および第2分岐管283の構成は、第3実施形態で説明した第1分岐管182および第2分岐管183の構成と略同じであるため、その説明は割愛する。
<流量調整弁>
流量調整弁281は、接続配管284を介してフロントヘッド260の側面に接続されている。第2マフラ空間271に吐出された冷媒、すなわち圧縮室31、51で圧縮された冷媒は、全て接続配管284を通過してこの流量調整弁281に流入する。この流量調整弁281は、後述する制御部90と電気的に接続されており、第1分岐管282と第2分岐管283をそれぞれ流れる冷媒量を調整することが可能である。また、この流量調整弁281は、圧縮機の外部に配置されている。なお、接続配管284は、密閉容器2を貫通している。
<本実施形態の圧縮機および空気調和機の特徴>
本実施形態の圧縮機および空気調和機には、以下の特徴がある。
本実施形態の圧縮機では、吐出機構280(第2流路)がフロントヘッド260の側面に接続されるので、図3に示すように、吐出機構280(第2流路)がフロントマフラ70の側面部72に接続される場合に比べて、吐出機構280(第2流路)を設置しやすい。
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
(変形例1)
上記第1〜第4実施形態では、温度センサ1aで検出された潤滑油Lの温度と所定温度(二層分離開始温度)とに基づいて第2流路の冷媒量を調整した。しかし、温度センサが、潤滑油Lの温度を検出する潤滑油温度センサと、外気温度を検出する外気温度センサとからなり、潤滑油温度センサで検出された潤滑油Lの温度と外気温度センサで検出された外気温度とに基づいて第2流路の冷媒量を調整してもよい。
潤滑油Lの温度は、外気温度が低い場合(例えば所定温度未満の場合)において、外気温度よりも低くなり、外気温度が高い場合(例えば所定温度以上の場合)において、外気温度との温度差が小さくなる。したがって、潤滑油Lの温度と外気温度との温度差が所定以上の場合に、潤滑油Lの温度と外気温度との温度差が所定未満の場合よりも、第2流路の冷媒量を多くすることで、潤滑油Lと液冷媒とが二層分離しやすい場合に、油溜まり部2aに冷媒を吐出できる。
なお、その場合において、潤滑油Lの温度と外気温度との温度差が所定よりも低い場合にのみ、第2流路に冷媒を供給してもよい。それにより、潤滑油Lと液冷媒とが二層分離しやすいときだけ、油溜まり部2aに冷媒を吐出できる。また、潤滑油Lの温度と外気温度との温度差が大きくなるにつれて(潤滑油Lの温度が外気温度に比べて低くなるにつれて)、第2流路の冷媒量を増加させてもよい。それにより、油溜まり部2aに吐出される冷媒量を適正量とできる。
(変形例2)
上記第1〜第4実施形態では、温度センサ1aで検出された潤滑油Lの温度と所定温度(二層分離開始温度)とに基づいて第2流路の冷媒量を調整した。しかし、温度センサが、潤滑油Lの温度を検出する潤滑油温度センサと、吐出管4(図1温度)の外周に設けられ吐出管4の温度を検出する吐出管温度センサとからなり、潤滑油温度センサで検出された潤滑油Lの温度と吐出管温度センサで検出された吐出管温度とに基づいて第2流路の冷媒量を調整してもよい。
具体的には、潤滑油Lの温度が吐出管温度に比べて所定よりも低い場合に、潤滑油Lの温度が冷媒の飽和温度よりも低い(油溜まり部2aにおいて潤滑油Lと液冷媒とが二層分離しやすい)と判断して、潤滑油Lの温度が吐出管温度に比べて所定以上の場合よりも、第2流路の冷媒量を多くする。それにより、潤滑油Lと液冷媒とが二層分離しやすい場合に、油溜まり部2aに冷媒を吐出できる。
なお、その場合において、潤滑油Lの温度が吐出管温度に比べて所定よりも低い場合にのみ、第2流路に冷媒を供給してもよい。それにより、潤滑油Lと液冷媒とが二層分離しやすいときだけ、油溜まり部2aに冷媒を吐出できる。また、潤滑油Lの温度と吐出管温度との温度差が大きくなるにつれて(潤滑油Lの温度が吐出管温度に比べて所定よりも低くなるにつれて)、第2流路の冷媒量を増加させてもよい。それにより、油溜まり部2aに吐出される冷媒量を適正量とできる。
(その他変形例)
上記第1、第3及び第4実施形態では、制御部90(制御手段)は、潤滑油Lの温度が所定温度(二層分離開始温度)よりも低い場合には、第1流路(第1分岐管82)には冷媒を供給せずに、第2流路(第2分岐管83)にのみ冷媒を供給するようにした。しかし、潤滑油Lの温度が所定温度よりも低い場合であっても、第1流路(第1分岐管82)に冷媒を供給してもよい。
また、上記第1、第3及び第4実施形態では、制御部90は、潤滑油Lの温度が所定温度以上の場合には、第2流路には冷媒を供給せずに、第1流路にのみ冷媒を供給するようにした。しかし、潤滑油Lの温度が所定温度以上の場合であっても、第2流路に冷媒を供給してもよい。
また、上記第2実施形態では、制御部は、潤滑油Lの温度が低くなるのに比例して、第2流路(第2分岐管83)に供給する冷媒量を増加させた。しかし、必ずしも比例される必要はなく、潤滑油Lの温度が低くなるのにつれて、第2流路(第2分岐管83)に供給する冷媒量を増加させてもよい。例えば、第2流路に供給する冷媒量を段階的に増加させてもよい。
また、上記第1〜第4実施形態では、温度センサ1aで検出された潤滑油Lの温度が所定温度よりも低い場合に、潤滑油Lの温度が所定温度以上の場合よりも、第2流路の冷媒量を多くした。しかし、その場合に第2流路の冷媒量を少なくしてもよいし、潤滑油Lの温度にかかわらず冷媒量が一定であってもよい。
また、上記第1〜第4実施形態では、圧縮機の運転を開始してから所定時間が経過した場合には、第2流路(第2分岐管)には冷媒を供給しないこととした。しかし、所定時間が経過したあとも、第2流路(第2分岐管)に冷媒を供給してもよい。
また、上記第1〜第4実施形態では、流量調整弁が制御部と電気的に接続されているが、流量調整弁が制御部と電気的に接続されていないものであってもよい。例えば、流量調整弁は、温度感知弁であってもよいし、ボールバルブであってもよいし、その他2方向に流量を調整できる弁であってもよい。
また、上記第1〜第4実施形態では、温度センサ1aは、潤滑油Lの温度を検出する温度センサであるが、温度センサが、潤滑油Lに対応した位置(例えば、密閉容器2の底面や密閉容器2の側面のうち潤滑油Lの径方向外側)に設けられ、潤滑油Lに対応した位置における密閉容器2の温度を検出する温度センサであってもよい。潤滑油Lに対応した位置における密閉容器2の温度を検出することによって、潤滑油Lに対応した位置の密閉容器2の温度を潤滑油Lの温度とみなすことができるので、二層分離が生じているか否かを適切に判断した上で、油溜まり部2aに冷媒を吐出するか否かを判断できる。そのため、例えば、圧縮機1の運転が開始されて、潤滑油Lの温度が温められ、二層分離が解消した場合に、油溜まり部2aに冷媒が吐出されるのを防止できる。
また、上記第1〜第4実施形態では、温度センサ1aは、潤滑油Lの温度を検出する温度センサであり、温度センサ1aで検出された潤滑油Lの温度と所定温度(二層分離開始温度)とに基づいて第2流路の冷媒量を調整した。しかし、温度センサが外気温度を検出する外気温度センサであり、外気温度センサで検出された温度と所定温度(二層分離開始温度)とに基づいて第2流路の冷媒量を調整してもよい。なお、その場合においても、外気温度が所定温度よりも低い場合にのみ第2流路に冷媒を供給してもよいし、外気温度が低くなるにつれて第2流路の冷媒量を増加させてもよい。
また、上記第1〜第4実施形態では、圧縮機1が温度センサを有しているが、圧縮機1と温度センサが離れていてもよい。すなわち、圧縮機1が温度センサを有していなくてもよい。
また、上記第1〜第4実施形態では、第2分岐管(第2流路)の出口部が、シャフト8の下端8dよりも上方にあるが、シャフト8の下端8dよりも下方にあってもよい。
また、上記第1及び第2実施形態では、第2分岐管(第2流路)の出口部が、上向きに傾斜しているが、上向きに傾斜していなくてもよい。
また、上記第1〜第4実施形態では、第2分岐管(第2流路)の出口部が、平面視において、密閉容器2の中心を向いていないが、平面視において、密閉容器2の中心を向いていてもよい。
また、上記第1〜第4実施形態では、第2分岐管は、鉛直部分の下端から略水平方向に向かって延びた水平部分を有しているが、水平部分を有していなくてもよい。
また、上記第1〜第4実施形態では、流量調整弁が圧縮機構9の外部に配置されているが、圧縮機構9の内部に配置されていてもよい。
また、上記第1〜第4実施形態では、吐出機構が第2マフラ空間と接続されているが、吐出機構が第1マフラ空間と接続されていてもよいし、吐出機構が第1マフラ空間および第2マフラ空間にそれぞれ接続されていてもよい。なお、その場合において、第1マフラ空間と第2マフラ空間とは連通していなくてもよい。
また、上記第1〜第4実施形態では、フロントヘッド(端板部材)との間に第2マフラ空間(マフラ空間)を形成するフロントマフラ(マフラ部材)が設けられているが、フロントマフラはなくてもよい。したがって、吐出機構がフロントヘッドの上面に接続されており、フロントヘッドの上面に設けられた吐出孔(図示省略)から吐出機構に直接冷媒が吐出されてもよい。
また、上記第1〜第4実施形態では、ピストン34は、円環状のローラ35と、このローラ35の外周面から径方向外側に延在するブレード36とから構成されるが、ピストンが、円環状のローラと、ローラと別体であって且つローラの外周面に押圧される先端を有するベーンとから構成されてもよい。
また、上記第1〜第4実施形態では、2シリンダ型のロータリ圧縮機について説明したが、1シリンダ型のロータリ圧縮機にも適用できる。また、スクロール圧縮機など、ロータリ圧縮機以外の圧縮機にも適用できる。
また、上記第1〜第4実施形態では、圧縮室31、51で圧縮された冷媒全てが流量調整弁に流入するが、必ずしもそうする必要はない。例えば、フロントマフラに吐出空間2bに開口する孔が設けられていてもよい。
また、上記第1〜第4実施形態では、R32冷媒を主成分とする冷媒を使用した圧縮機について説明したが、その他の冷媒(例えばR32を主成分としない冷媒、R32を含まない冷媒)を使用した圧縮機にも本発明を適用できる。
本発明を利用すれば、ヒータ等の加熱源を設けることなく、潤滑油と液冷媒とが二層分離するのを解消でき、圧縮機構の摺動部の焼付きを防止できる。
1 圧縮機
1a 温度センサ
2 密閉容器
2a 油溜まり部
2b 吐出空間
8 シャフト
8d 下端
8e 油供給機構
9 圧縮機構
30、50 シリンダ
31、51 圧縮室
60 フロントヘッド(端板部材)
70 フロントマフラ(マフラ部材)
71 第2マフラ空間(マフラ空間)
81、181、281 流量調整弁
82、182、183 第1分岐管(第1流路の一部)
83、183、283 第2分岐管(第2流路の一部)
87、187 出口部
90 制御部(制御手段)
L 潤滑油

Claims (11)

  1. R32冷媒を主成分とする冷媒を圧縮する圧縮室を有する圧縮機構と、
    前記圧縮機構が内部に配置されるとともに、潤滑油が溜められる油溜まり部が底部に設けられた密閉容器と、
    前記圧縮室で圧縮された冷媒を前記密閉容器内の吐出空間に吐出する第1流路と、
    前記圧縮室で圧縮された冷媒を前記油溜まり部に吐出する第2流路と、
    前記第1流路と前記第2流路をそれぞれ流れる冷媒量を調整する流量調整弁とを備えることを特徴とする圧縮機。
  2. 前記圧縮機構を駆動するシャフトと、
    前記シャフトの下端に設けられ、前記油溜まり部に溜められた潤滑油を前記圧縮機構に供給する油供給機構とを備え、
    前記第2流路の出口部が、前記シャフトの下端よりも上方にあることを特徴とする請求項1に記載の圧縮機。
  3. 前記第2流路の出口部が、上向きに傾斜していることを特徴とする請求項1または2に記載の圧縮機。
  4. 前記第2流路の出口部が、平面視において、前記密閉容器の中心を向いていないことを特徴とする請求項1〜3のいずれかに記載の圧縮機。
  5. 前記圧縮機構は、
    前記圧縮室が形成されたシリンダの端面に配置される端板部材と、
    前記端板部材に取り付けられ、前記端板部材との間にマフラ空間を形成するマフラ部材とを備え、
    前記第2流路が、前記マフラ空間を含むことを特徴とする請求項1〜4のいずれかに記載の圧縮機。
  6. 前記第2流路が、前記密閉容器の内部に配置されることを特徴とする請求項1〜5のいずれかに記載の圧縮機。
  7. 請求項1〜6のいずれかに記載の圧縮機と、
    温度センサと、
    前記流量調整弁を制御する制御手段とを備え、
    前記制御手段は、
    前記温度センサで検出された温度に基づいて前記第2流路の冷媒量を調整することを特徴とする空気調和機。
  8. 前記制御手段は、
    前記温度センサで検出された温度が所定温度よりも低い場合に、前記温度センサで検出された温度が所定温度以上の場合よりも、前記第2流路の冷媒量を多くすることを特徴とする請求項7に記載の空気調和機。
  9. 前記制御手段は、
    前記温度センサで検出された温度が所定温度よりも低い場合にのみ、前記第2流路に冷媒を供給することを特徴とする請求項8に記載に空気調和機。
  10. 前記制御手段は、
    前記温度センサで検出された温度が低くなるにつれて、前記第2流路の冷媒量を増加させることを特徴とする請求項8または9に記載の空気調和機。
  11. 前記温度センサが、前記油溜まり部に溜められた潤滑油の温度を検出する温度センサまたは前記油溜まり部に溜められた潤滑油に対応した位置における前記密閉容器の温度を検出する温度センサであることを特徴とする請求項7〜10のいずれかに記載の空気調和機。
JP2013178188A 2013-08-29 2013-08-29 圧縮機および空気調和機 Pending JP2015045314A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013178188A JP2015045314A (ja) 2013-08-29 2013-08-29 圧縮機および空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013178188A JP2015045314A (ja) 2013-08-29 2013-08-29 圧縮機および空気調和機

Publications (1)

Publication Number Publication Date
JP2015045314A true JP2015045314A (ja) 2015-03-12

Family

ID=52670984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013178188A Pending JP2015045314A (ja) 2013-08-29 2013-08-29 圧縮機および空気調和機

Country Status (1)

Country Link
JP (1) JP2015045314A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217247A (ja) * 2015-05-20 2016-12-22 三菱電機株式会社 圧縮機、及びその圧縮機を備えたヒートポンプ装置
CN107084115A (zh) * 2017-06-02 2017-08-22 四川瑞晟石油设备开发有限公司 一种转盘式润滑油加热装置
CN107289661A (zh) * 2017-06-30 2017-10-24 美的集团武汉制冷设备有限公司 空调系统及空调系统的控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217247A (ja) * 2015-05-20 2016-12-22 三菱電機株式会社 圧縮機、及びその圧縮機を備えたヒートポンプ装置
CN107084115A (zh) * 2017-06-02 2017-08-22 四川瑞晟石油设备开发有限公司 一种转盘式润滑油加热装置
CN107289661A (zh) * 2017-06-30 2017-10-24 美的集团武汉制冷设备有限公司 空调系统及空调系统的控制方法
CN107289661B (zh) * 2017-06-30 2019-12-27 美的集团武汉制冷设备有限公司 空调系统及空调系统的控制方法

Similar Documents

Publication Publication Date Title
US8689581B2 (en) Rotary-type fluid machine and refrigeration cycle apparatus
JP5206891B2 (ja) スクロール圧縮機
RU2600206C1 (ru) Спиральный компрессор
KR101971819B1 (ko) 스크롤 압축기
WO2015025514A1 (ja) 冷凍装置
JP5014346B2 (ja) 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
WO2015025515A1 (ja) 冷凍装置
JP2015045314A (ja) 圧縮機および空気調和機
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
JP6618663B1 (ja) すべり軸受構造及びスクロール圧縮機
JP6680594B2 (ja) 密閉型二段圧縮機、及び圧縮機システム
EP1954944B1 (en) A compressor
JP2009174460A (ja) スクリュー圧縮機
JP5493958B2 (ja) 圧縮機
JP2014105692A (ja) スクロール圧縮機
JP6376038B2 (ja) 油分離器
JP2014202133A (ja) 圧縮機
JPWO2015059833A1 (ja) スクロール流体機械
JP5304679B2 (ja) 圧縮機
JP2013108453A (ja) スクリュー圧縮機
JP2012097574A (ja) 回転式圧縮機
JP2009092031A (ja) スクロール型流体機械
KR100629870B1 (ko) 횡형 압축기의 윤활 시스템
JP6075283B2 (ja) スクロール圧縮機
JP2015227632A (ja) 圧縮機