JP2015043644A - 自動車の電池駆動システム - Google Patents

自動車の電池駆動システム Download PDF

Info

Publication number
JP2015043644A
JP2015043644A JP2013174127A JP2013174127A JP2015043644A JP 2015043644 A JP2015043644 A JP 2015043644A JP 2013174127 A JP2013174127 A JP 2013174127A JP 2013174127 A JP2013174127 A JP 2013174127A JP 2015043644 A JP2015043644 A JP 2015043644A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode
charge amount
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013174127A
Other languages
English (en)
Inventor
聡 工藤
Satoshi Kudo
聡 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2013174127A priority Critical patent/JP2015043644A/ja
Publication of JP2015043644A publication Critical patent/JP2015043644A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】動車のスイッチのオン及び/又はオフの際における走行への悪影響が防止される自動車の電池駆動システムを提供すること。
【解決手段】活物質貯蔵部に貯蔵された活物質が活物質供給手段により電極に供給される電池を搭載し、当該電池により駆動電力を得て走行する自動車の電池駆動システムにおいて、
上記活物質供給手段は、上記自動車のスイッチのオン及び/又はオフに連動して作動するように構成されたことを特徴とする自動車の電池駆動システム。
【選択図】図4

Description

本発明は、自動車の電池駆動システムに関し、特に、活物質貯蔵部に貯蔵された活物質が活物質供給手段により電極に供給される電池を搭載し、当該電池により駆動電力を得て走行する自動車の電池駆動システムに関する。
従来より、電気自動車やハイブリッド自動車等の電力を駆動エネルギーとして走行する自動車において、リチウムイオン二次電池や燃料電池等の電池が用いられている。そして、このように自動車の走行駆動用に用いられることが試みられている電池の一種として、液体の活物質が用いられるいわゆるレドックスフロー型の二次電池が知られている。レッドクスフロー型二次電池では、イオンの酸化還元反応を活物質の溶液のポンプ循環によって進行させて、充電と放電を行う。このレッドクスフロー型二次電池は、燃焼性又は爆発性の物質を使用する必要が無く安全性に優れていること、イオン種によっては化学反応を伴わないため溶液の組成が変化しにくく安定性も高いこと、電池容量を増すには、ほぼ溶液のタンクを増設するだけですむという利点がある。なお、特許文献1〜3には、このようなレドックスフロー型の二次電池の例が示されている。
一方、近年、レッドクスフロー型電池の一種としてLi−Sフロー二次電池が開発されている。このLi−Sフロー二次電池は、レドックスフロー型ではない従来のLi−S電池における長所である高サイクル特性や高容量を維持しつつ、従来のLi−S電池の欠点であった硫黄溶解問題を防止することができるので、次世代の蓄電デバイスとして有望視されている。また、当該Li−Sフロー二次電池では、正極活物質としてSやポリスルフィドを所定の溶媒に溶解させてなる液体を用いて、負極には金属Li系材料等の固体活物質を用いるため、バナジウム系材料を用いた、正極及び負極にともに液体活物質が用いられている従来のレドックスフロー電池と比較すると、メイン液体活物質タンクを一つとすることができる分、設備全体の小型化が図られる。
昭59−86163号公報 昭59−86164号公報 特開平9−283169号公報
上述のLi−Sフロー二次電池のようなレドックスフロー型の電池を電気自動車に搭載する場合、液体活物質貯蔵タンクと電池の電極との間で液体活物質を循環供給させることとなる。しかし、例えば、電気自動車のスイッチがオフ状態となるなど電池の電力供給が停止されると、上記液体活物質を循環供給させるためのポンプ等のアクチュエータの作動も停止することとなるので、液体活物質の循環供給も停止することとなる。ところが、このように、液体活物質の循環供給が停止された時点で、電極の活物質の充電量が比較的低い状態となることも考えられる。
そして、このように電極活物質の充電量が低い状態で、電気自動車のスイッチがオンとされて走行始動されると、当該始動にともない生じる大きな負荷に耐え得る十分な放電出力を電池から得ることができず、電気自動車のスムーズな走り出しが阻害されることが考えられる。
本発明は、このような事情に鑑みてなされたものであり、その目的は、電気自動車の良好な走行始動を可能とする電池駆動システムを提供することにある。
上記課題を解決するための本願発明に係る自動車の電池駆動システムは、活物質貯蔵部に貯蔵された活物質が活物質供給手段により電極に供給される電池を搭載し、当該電池により駆動電力を得て走行する自動車の電池駆動システムにおいて、上記活物質供給手段は、上記自動車のスイッチのオン及び/又はオフに連動して作動するように構成されたことを特徴とする。
ここで、電気自動車の「スイッチオン」とは、電気自動車のモータが駆動可能となっている状態であり、すなわち、電気自動車の操作者がアクセルペダル等を操作することで上記モータが駆動されて電気自動車が始動することのできる状態になっていることを言う。
一方、電気自動車の「スイッチオフ」とは、上記スイッチオン状態以外の状態であり、例えば車体のドアに搭載されたキーレスエントリシステムなどの低負荷装置のみを作動可能な状態(OFF状態)や、オーディオ機器又はパワーウインド等の車体装備品等の中負荷装置を作動可能なACC状態になっており、アクセルペダル等を操作して即座にモータが駆動されない状態となっていることを言う。
本発明にかかる自動車の電池駆動システムによれば、上記活物質供給手段が上記自動車のスイッチのオン及び/又はオフに連動して作動して活物質貯蔵部から電池の電極に充電状態の活物質が供給されるので、当該自動車のスイッチのオン及び/又はオフに合わせて電池電極の活物質の充電量を調整することができる。従って、自動車のスイッチのオン及び/又はオフの際に、電池電極の活物質の充電量を所望の充電量とすることができるので、例えば走行始動時等に要求される高い負荷に耐え得る十分な放電出力を得ることができ、自動車のスムーズな走り出しの阻害等の走行への悪影響を防止することができる。
特に、本発明では、上記活物質供給手段は、上記自動車のスイッチオフ信号の検知に基づいて作動するか、及び/又は上記自動車のスイッチオン信号の検知に基づいて作動して上記活物質貯蔵部から上記電極に活物質を供給するようにすることが好ましい。これにより、例えば、走行始動時に電極の活物質の充電量が低くて所望の放電特性が得られない場合に、活物質貯蔵部から充電状態の活物質を電池の電極に供給することができるので、当該電池が所望の放電出力を得ることができるようにすることができる。
さらに、好ましくは、上記電極の活物質の充電量を測定する電極充電量測定手段を有し、上記活物質供給手段は、上記電極充電量測定手段により測定された充電量の値に基づいて活物質の上記電極への供給を行う。
このように、電極の活物質の充電量の値と活物質貯蔵部の活物質の充電量の値に基づいて活物質供給手段による活物質の電極への供給・非供給を制御することにより、電池の電極の活物質の充電状態に合わせて確実に、活物質貯蔵部から電池に充電状態の活物質を供給して当該電極の活物質の充電量をコントロールし、所望の放電出力を得て自動車のスムーズな走行に資することとなる。
特に、この場合、上記活物質供給手段は、上記測定された充電容量が予め設定された充電量閾値より高いときに活物質の上記電極への供給を行わず、測定された充電容量が上記充電量閾値より低いときに活物質の上記電極への供給を行うことが好ましい。
そして、上記電池としてLi−Sフロー二次電池を用いることが好ましい。Li−Sフロー二次電池は、電池の容量及びサイクル特性についても従来のレドックスフロー電池より優れているところ、本願発明に係る自動車の電池駆動システムの電池としてこれを用いることで、もともと電池特性の優れているLi−Sフロー二次電池のパフォーマンスをより効率的に利用することができる。
この場合、上記電極充電量測定手段は、上記電池の電位差を測定する電位差測定手段と、当該電位差測定手段により測定された電位差に基づいて上記電極の活物質の硫黄含有率を推定する硫黄含有率推定手段と、当該硫黄含有率推定手段により推定された硫黄含有率に基づいて上記電極の充電容量を算出する充電量算出手段と、を有することが好ましい。
これにより、電圧計等を用いて電池の電位差を図るという簡易な方法で、電極の活物質の充電量を知ることができるので、上記活物質貯蔵部から電極への活物質の供給の的確に行うことに資することとなる。
本発明にかかる自動車の電池駆動システムによれば、上記活物質供給手段が上記自動車のスイッチのオン及び/又はオフに連動して作動して活物質貯蔵部から電池の電極に充電状態の活物質が供給されるので、当該自動車のスイッチのオン及び/又はオフに合わせて電池電極の活物質の充電量を調整することができる。従って、自動車のスイッチのオン及び/又はオフの際に、電池電極上の活物質の充電量を所望の充電量とすることができるので、例えば走行始動時等に要求される高い負荷に耐え得る十分な放電出力を得ることができ、自動車のスムーズな走り出しの阻害等の走行への悪影響を防止することができる。
本発明にかかる自動車の電池駆動システムに搭載されたLi−Sフロー二次電池駆動システムの構成を説明する図である。 本発明にかかる自動車の電池駆動システムの構成を説明する図である。 活物質流動制御装置の構成を説明する図である。 本発明にかかる自動車の電池駆動システムの一の実施の形態について説明するフローチャートである。 本発明にかかる自動車の電池駆動システムの他の実施の形態について説明するフローチャートである。
以下、本発明にかかる実施の形態について、図面を参照して詳細に説明する。図1は、本実施の形態にかかる自動車のLi−Sフロー二次電池駆動システムの構成を概略的に説明する図である。また、図2は、自動車のLi−Sフロー二次電池駆動システムを当該自動車に搭載した場合の概念的な構成を示すものである。なお、図2においては、電気の送受を行う部分を破線で示し、液体活物質の送受を行う部分を実線で示している。なお、Li−Sフロー二次電池駆動システム10は一点鎖線で示している。
Li−Sフロー二次電池駆動システム10は、Li−Sフロー二次電池12と、液体活物質タンク14と、を有しており、電気自動車1は、このLi−Sフロー二次電池駆動システム10を搭載し、この電気自動車の駆動モータ102は、当該Li−Sフロー二次電池12により駆動電力を得て走行するように構成されている。
Li−Sフロー二次電池12は、主として、金属リチウム等の材料で構成される負極22と、上記硫黄含有の液体正極活物質を内部に貯蔵する正極容器24とが、固体電解質26を介して外装容器内に配置されることで構成されている。なお、Li−Sフロー二次電池12には、他の要素も含まれても良いが、図においては本発明に直接関連する主要な部分のみを図示している。以下、電池12の詳細な構成の一例について説明する。
[負極]
本実施の形態では、負極22の負極活物質として箔状又は板体状の金属リチウム、又はリチウムとアルミニウム等との合金を用いることができる。
また、Li−Sフロー二次電池として機能する限り、金属リチウムの他に、負極活物質として、リチウムを脱挿入可能な材料を用いることも可能である。例えば、グラファイトやシリコン・スズの合金系等が挙げられる。この場合、負極22は、通常の負極の成形方法に準じて作製されるが、例えばグラファイトと、結合剤とを含む混合物を、負極合材として負極集電体に塗布して成形することにより、負極合材層と負極集電体とから成る負極22が形成される。
具体的には、まず、本発明の負極活物質を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合してペーストないしスラリー状の負極合材とし、これを負極集電体の片面または両面に塗布、成形し、乾燥させる。これにより、負極合剤層が均一かつ強固に接着した負極22が得られる。
負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmであり、これを乾燥させることにより負極22が得られる。
負極活物質が、平均粒径0.5〜30μm、及び比表面積0.1〜1000m/gの粒子状とされると負極の表が均一化されて、負極表面近傍でのリチウムイオンの移動が円滑化される。この結果、電池の充放電性も安定化する。
負極合材の製造に用いられる溶剤としては、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミド等が挙げられ、負極活物質の総質量に対して、10〜70質量%の範囲で使用することができる。
負極活物質に添加可能な結合剤としては、例えばポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができ、これらの中でもフッ素系バインダを用いることが好ましい。フッ素系バインダとしては、例えばポリフッ化ビニリデン、フッ化ビニリデン−3フッ化エチレン共重合体、エチレン−4フッ化エチレン共重合体、プロピレン−4フッ化エチレン共重合体等が挙げられる。結合剤は負極活物質の総質量に対して、5〜10質量%の範囲で使用することができる。
このほか、負極合材層は、本発明の負極活物質と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成形して作製することもできる。負極合材層の成形後にプレス加圧などの処理を行うことにより、負極集電体との接着強度をさらに高めることができる。
また、負極合材層に対して、カーボンブラック、アセチレンブラック、グラファイト、金属粉末等の導電性材料を適宜加えるようにしても良い。
[正極]
正極は硫黄(好ましくはS等の単体粒子、又は可溶のポリスルフィド)を含む液体の正極活物質、硫黄を溶解可能な溶媒、及び導電助剤を含む液体状の正極材料を含む正極容器24として構成されている。また、負極にリチウムを含まない材料を用いる場合は、Li2S等のリチウム含有活物質を硫黄の代わりに用いることで、同様の効果を得られる。
上記溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニルカーボネート、及びトリフルオロメチルプロピレンカーボネート等のカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、及びジエチルエーテル等のエーテル、スルホラン、及びメチルスルホラン等のスルホン、アセトニトリル、及びプロピオニトリル等のニトリル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアルデヒド(DMF)、ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)、テトラ(エチレングリコール)ジメチルエーテル、塩基性溶媒(pH>13)、及びこれら2種類以上の混合溶媒を用いるようにしてもよい。
また、溶媒に混合する電解質塩としては、リチウムビス(トリフルオロメタン)スルホンイミドを用いることができる。
また、公知の導電助剤、例えばカーボンブラック、アセチレンブラック、グラファイト、カーボンナノチューブ、金属粉末等を添加することができる。この他、レドックスフロー電池に一般的に用いられる各種添加剤を適宜に使用することができる。
[固体電解質]
固体電解質としては、ガラス、セラミック、ガラス−セラミック、及びこれら以外の他のケイ素含有各種結晶等の無機物等による、リチウムイオンの透過可能な膜が用いられる。
なお、本実施の形態では、固体電解質26は、負極22と正極容器24内の正極活物質との間における導電を防ぐために、電気抵抗の高い材料を選択し、セパレータとしての機能を発揮するものであることが好ましい。
そして、上記構成を有するLi−Sフロー二次電池12は、正極端子70及び負極端子72を介して自動車のモータ等(具体的にはインバータ100)の負荷に接続されており、これにより当該負荷に駆動電力が供給されることとなる。
また、Li−Sフロー二次電池駆動システム10においては、Li−Sフロー二次電池12に第1放電活物質管30及び第1充電活物質管32を介して液体活物質タンク14が設けられており、正極容器24と液体活物質タンク14との間で液体正極活物質の交換が可能となっている。
更に、本実施の形態では、Li−Sフロー二次電池12において正極容器24と負極22との間の電位差を測定する電圧計40が設けられており、液体活物質タンク14には、その内部の液体正極活物質の充電量を検知する充電量検知手段42が設けられている。そして、Li−Sフロー二次電池駆動システム10は、電圧計40及び充電量検知手段42からの検知信号並びに自動車のスイッチへの操作信号を受信して、正極容器24と液体活物質タンク14との間で液体正極活物質の交換の制御、及び液体活物質タンク14内の液体正極活物質の入れ替えを促す報知を行う制御機構90を有している。
図3においては、制御機構90による液体正極活物質の交換の管理について説明する図である。図示のように、制御機構90は、電圧計40及び充電量検知手段42の検知信号、並びに自動車の車両始動スイッチ50への操作信号を受信し制御指令信号を生成するECU90aと、このECU90aが生成した制御指令信号を受けて第1放電活物質管30及び第1充電活物質管32において液体正極活物質を流通又は停止させるポンプやバルブ等のアクチュエータ90bと、ECU90aにより指令を受けて液体活物質タンク14内の液体正極活物質の交換を促す報知器90cと、を有している。
電圧計40は、正極端子70と負極端子72との間の電位差を測定する周知の電圧計である。すなわち、負極と正極の電位差Vを測定することができる。本実施の形態では、この電位差に基づいて正極容器24内の正極活物質の硫黄含有率Sを求めることができる。更に、この正極活物質の硫黄含有率Sと当該正極活物質の充電量Cとは、ほぼ比例関係にあるので、硫黄含有率Sを求めることにより電極上の正極活物質充電量Cを算出することができる。
一方、充電量検知器42は、それぞれ、液体活物質タンク14内の正極液体活物質の充電量を、当該液体活物質の電位、粘度、温度、及び又はpHに基づいて求めるものである。なお、液体活物質の電位、粘度、温度及び又はpHは、図示しない周知の電圧計、粘度計、温度計、又はpH測定器を用いて測定することができる。また、液体活物質タンク14の充電量が低下し、充電(例えば、当該タンク内の活物質を外部から交換すること)の必要が生じた場合には、ECU90aにより報知器90cから充電を促す旨の報知がなされる。
この粘度、温度、電位、又はpHは、正極活物質の充電量と正の相関関係があるので、予め回帰分析等の手法で求めた粘度、温度、電位、又はpHと該充電量との間の関係式を用いて、実際に測定した粘度、温度、電位、及び又はpHをこの関係式に当てはめて上記充電量の値を得る。しかし、正極液体活物質の充電量の値を得る方法はこの方法に限られるものではない。
更に、電気自動車1には車両始動スイッチ50が設けられており、この車両始動スイッチ50は、内燃機関を備えた自動車に設置されるイグニッションスイッチと同様に、キーが挿入される差し込み口を備えたキーシリンダ51を有し、運転者によるキーの挿入と取り外しが行われるOFF位置から差し込み口39にキーを挿入した状態で2段階に回動自在となっている。
車両始動スイッチ50がOFF位置のもとでは、例えば、後述するサブバッテリー106から電力を供給した状態とする必要がある常時作動機器に対して常時電力が供給されるようになっている。サブバッテリー106の常時電力を供給した状態とする常時作動機器としては、車体のドアに搭載されたキーレスエントリシステムなどがある。
車両始動スイッチ50の差し込み口にキーを挿入した状態で、運転者のキー操作により車両始動スイッチ50がOFF位置から1段階回動させたアクセサリ位置つまりACC位置に回動操作されると、サブバッテリー106から常時電源に加えてACC電源として電圧が供給される。ACC電源ラインは車体に搭載されるオーディオ機器やエアコンの送風機等の車体装備品の作動用電力を供給するものであり、運転者により車両始動スイッチがACC位置に回動操作されると車体装備品などは可動状態となる。
車両始動スイッチ50を2段階目のON位置つまりSTART位置に回動させると、ECU90aからは図示しないメインリレーのソレノイドにリレー電源ラインから電力が供給され、メインリレーは電池12とモータ102を導通するように閉位置に切り換えられ、モータ100がインバータ102を介して駆動可能状態となる。
そして、ECU90aは、本実施の形態では車両始動スイッチ50が、START位置であるか又は他の位置にあるかに応じて所定の処理をしたがいアクチュエータ90bを制御できるようになっている。この点については後に詳細に説明する。
一方、図2からも理解されるように、Li−Sフロー二次電池駆動システム10におけるLi−Sフロー二次電池12は、AC/DCインバータ100を介して交流モータ102に接続されている。また、本自動車1においては、Li−Sフロー二次電池駆動システム10以外にサブバッテリー106が搭載されている。このサブバッテリー106は、主として自動車の走行に係る駆動電力以外の電力負荷(エアコンやいわゆるパワーウインド等)に用いることを目的とするものである。このサブバッテリー106からの供給電力量は、当該サブバッテリー106とAC/DCインバータ100との間に設けたサブバッテリー制御機構104により調節される。なお、このサブバッテリー制御機構104は、ポンプやバルブ等の種々のアクチュエータ、サブバッテリー106の充電状態等の種々の状態を検知する検知手段、当該状態に基づいてアクチュエータを制御する制御手段を有しているものである。また、サブバッテリー106について、本実施の形態では、ECU90aは上記算出された正極活物質の充電量Cの値が所定のサブバッテリー使用充電容量C0よりも低い場合に、サブバッテリー106を電源としてアクチュエータ90bを駆動するように制御を行う。
上記構成を有する電気自動車1に搭載したLi−Sフロー二次電池駆動システム10の特徴的動作について説明する。
図4は、電気自動車1のスイッチがオンとされた状態であり、例えば自動車1の走行状態から停車状態に移行した時にスイッチをオフにしようとしている場合における処理の流れを示すフローチャートである。
図4に示すように、ステップS101において、車両始動スイッチ50がスイッチオン状態(すなわち、START位置)からスイッチオフ状態(すなわち、OFF位置又はACC位置)に操作されたことを示す信号を検知する。例えば、ECU90aが、上述のメインリレーのソレノイドへの導電を確認している場合には、車両始動スイッチ50がSTART位置にあると判定され、当該導電が確認されない場合には車両始動スイッチ50がSTART位置以外のOFF位置やACC位置にあると判定される。
そして、車両始動スイッチ50への操作がされたこと、すなわち、START位置以外の位置にあると判定されると、ステップS102において、正極容器24内の充電量Cを検出する。この充電量Cの値の検出方法は上述の通りである。
ステップS103において、ECU90aは、検出された正極容器24内の充電量Cと、充電量閾値Cminとの間の大小判定を行う。なお、充電量閾値Cminとは、正極容器24内の正極活物質の充電量が不十分であり、電気自動車1の始動による高負荷に対して耐え得る放電出力を得ることができないと判断する基準となる充電量の値である。ここで、C<Cminであると判定されると、ステップS104において、液体活物質タンク14から正極容器24内へ活物質を供給する活物質供給制御が行われる。
以上により、電気自動車1のスイッチオフ時において、次回のスイッチオン時に電気自動車1の走行始動をさせるために正極容器24内の充電量が十分ではない場合(すなわち、充電量C<充電量閾値Cminの場合)には、予め、液体活物質タンク14から充電状態の液体活物質を正極容器24内に供給して、当該正極容器24内の液体活物質の充電量を向上させることができ、電池12が走行開始時の高負荷に耐え得る充電量を確保することができるので、当該電池12を電気自動車1の次回のスイッチオン後に直ぐに走行始動可能な状態とすることができる。
他の実施の形態として、図5には、電気自動車1のスイッチがオフ以外の状態、すなわち、車両始動スイッチ50がOFF位置以外のSTART位置又はACC位置である場合の電池駆動システムの動作の流れを示すフローチャートである。
図5に示すように、ステップS´101において、車両始動スイッチ50に操作がなされことを示す信号を検知する。具体的には、ECU90aが、上記メインリレーとの信号の送受を検知することで車両始動スイッチ50がOFF位置以外のSTART位置やACC位置にあると判定される。
ステップS´102において、正極容器24の充電量Cを検出する。この充電量Cの値の検出方法は上述の通りである。
そして、ステップS´103において、ECU90aは、検出された正極容器24内の充電量Cと、充電量閾値Cminとの間の大小判定を行う。ここで、C<Cminであると判定されると、ステップS´104において、液体活物質タンク14から正極容器24内への活物質の供給制御が行われる。
以上により、スイッチOFF状態に於ける暗電流等により正極容器24内の液体活物質の充電量が低下した場合でも、スイッチONの状態で活物質の供給制御が行われ、必要な電力を確保することが可能となる。
これにより、電気自動車1のスイッチオン時において、充電量C<充電量閾値Cminの場合、すなわち正極容器内の充電量が十分ではない場合には、液体活物質タンク14から充電状態の液体活物質を正極容器24内に供給して、当該正極容器24内の液体活物質の充電量を向上させることができ、電池12が走行開始時の高負荷に耐え得る充電量を確保することができるので、当該電池12を電気自動車1のスイッチオン後に直ぐに走行始動可能な状態とすることができる。
以上により、本実施の形態にかかる自動車の電池駆動システム10によれば、ECU90aが、アクチュエータ90bを電気自動車1のスイッチのオン及び/又はオフに連動して作動することで、液体活物質タンク14から電池12の正極容器24内に液体活物質が供給されるので、当該電気自動車1のスイッチのオン及び/又はオフに合わせて正極容器24内の液体活物質の充電量を調整することができる。従って、電気自動車1のスイッチのオン及び/又はオフの際に、電池12の正極容器24内の正極活物質の充電量を所望の充電量とすることができるので、放電出力の低下によるスムーズな走り出しの阻害等の走行への悪影響を防止することができる。
そして、本実施の形態では、電池12としてLi−Sフロー二次電池が用いられている。Li−Sフロー二次電池は、電池の容量及びサイクル特性についても従来のレドックスフロー電池より優れているところ、本願発明の電池駆動システム10の電池としてこれを用いることで、そもそも電池特性の優れているLi−Sフロー二次電池のパフォーマンスをより強く引き出すことができる。
更に、電池12の正極容器24内の充電量を測定する手段(電極充電量測定手段)として電圧計Vが用いられ、該電圧計Vにより測定された電位差に基づいて上記正極容器24内の活物質の硫黄含有率を推定し、推定された硫黄含有率に基づいて正極容器24内の充電容量が算出されている。これにより、電池12の電位差を図るという容易な方法で、電極の充電容量を知ることができるので、上記活物質の供給の的確に行うことに資することとなる。
なお、本発明は、上記実施の形態に限定されるものではなく、発明の要旨の範囲内で種々の変更が可能である。例えば、本実施の形態では、用いられる電池12としてLi−Sフロー二次電池の場合を説明したが、使用可能な二次電池はこれに限られるものではなく、正極又は負極の少なくとも何れか一方の活物質を、電池外部のタンク等の貯蔵部から補給・交換可能な二次電池であれば、例えばバナジウム系の液体活物質を用いたレッドクスフロー電池等の種々のタイプのものに使用することができる。
1 電気自動車
10 Li−Sフロー二次電池駆動システム
12 Li−Sフロー二次電池(電池)
14 液体活物質タンク(活物質貯蔵部)
22 負極(電極)
24 正極容器(電極)
26 固体電解質
40 電圧計(電極充電量測定手段)
90 制御機構(活物質供給手段、硫黄含有率推定手段、充電量算出手段)

Claims (8)

  1. 活物質貯蔵部に貯蔵された活物質が活物質供給手段により電極に供給される電池を搭載し、当該電池により駆動電力を得て走行する自動車の電池駆動システムにおいて、
    上記活物質供給手段は、上記自動車のスイッチのオン及び/又はオフに連動して作動するように構成されたことを特徴とする自動車の電池駆動システム。
  2. 上記活物質供給手段は、上記自動車のスイッチオフ信号の検知に基づいて作動する請求項1に記載の自動車の電池駆動システム。
  3. 上記活物質供給手段は、上記自動車のスイッチオン信号の検知に基づいて作動する請求項1又は2に記載の自動車の電池駆動システム。
  4. 上記電極の活物質の充電量を測定する電極充電量測定手段を有し、
    上記活物質供給手段は、上記電極充電量測定手段により測定された充電量の値に基づいて活物質の上記電極への供給を行う請求項1〜3の何れか1項に記載の自動車の電池駆動システム。
  5. 上記活物質供給手段は、上記測定された充電容量が予め設定された充電量閾値より高いときに活物質の上記電極への供給を行わず、測定された充電容量が上記充電量閾値より低いときに活物質の上記電極への供給を行う請求項4に記載の自動車の電池駆動システム。
  6. 上記電池は、Li−Sフロー二次電池である請求項3〜5の何れか1項に記載の自動車の電池駆動システム。
  7. 上記電極充電量測定手段は、
    上記電池の電位差を測定する電位差測定手段と、
    該電位差測定手段により測定された電位差に基づいて上記電極の活物質の硫黄含有率を推定する硫黄含有率推定手段と、
    該硫黄含有率推定手段により推定された硫黄含有率に基づいて上記電極の充電容量を算出する充電量算出手段と、
    を有する請求項6に記載の自動車の電池駆動システム。
  8. 請求項1〜7に記載の電池、及び上記活物質供給手段を有する電池システム。
JP2013174127A 2013-08-26 2013-08-26 自動車の電池駆動システム Pending JP2015043644A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013174127A JP2015043644A (ja) 2013-08-26 2013-08-26 自動車の電池駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013174127A JP2015043644A (ja) 2013-08-26 2013-08-26 自動車の電池駆動システム

Publications (1)

Publication Number Publication Date
JP2015043644A true JP2015043644A (ja) 2015-03-05

Family

ID=52696918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013174127A Pending JP2015043644A (ja) 2013-08-26 2013-08-26 自動車の電池駆動システム

Country Status (1)

Country Link
JP (1) JP2015043644A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852083A (zh) * 2015-05-14 2015-08-19 珠海泰坦储能科技有限公司 一种液流形式的锂硫电池储能系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852083A (zh) * 2015-05-14 2015-08-19 珠海泰坦储能科技有限公司 一种液流形式的锂硫电池储能系统

Similar Documents

Publication Publication Date Title
US10374212B2 (en) Electrolyte fluid metering device for lithium cells
EP3076478B1 (en) Battery module and assembled battery
KR102010989B1 (ko) 이차 전지 수명 평가 방법 및 장치
US8305085B2 (en) Lithium-ion battery controlling apparatus and electric vehicle
JP5057156B2 (ja) リチウムイオン二次電池の充電方法及び充電システム
US20140080024A1 (en) Electric power supply system
US20170104347A1 (en) Secondary battery apparatus
CN103891040A (zh) 二次电池的控制装置及soc检测方法
CN101005148A (zh) 混合电源装置
JP2017133870A (ja) リチウムイオン二次電池の異常劣化検知装置および異常劣化検知方法
WO2011074169A1 (ja) リチウムイオン二次電池の充電完了の判定方法及び放電終了の判定方法、充電制御回路、放電制御回路、並びに電源
JP6898585B2 (ja) 二次電池の状態推定方法および状態推定システム
JP4714229B2 (ja) リチウム二次電池
JP2013243010A (ja) 非水二次電池の製造方法
CN113853706B (zh) 使用电极的相对劣化程度控制二次电池操作的设备和方法
CN106169604A (zh) 非水电解质二次电池
US10122047B2 (en) Nonaqueous electrolyte secondary battery
JP5841827B2 (ja) 二次電池システムおよび二次電池システムの制御方法
JP5704409B2 (ja) 密閉型リチウム二次電池
JP2015049969A (ja) フロー蓄電デバイスの再生方法
JP6164157B2 (ja) 硫化物系全固体二次電池システム
JP5553169B2 (ja) リチウムイオン二次電池
JP2015043644A (ja) 自動車の電池駆動システム
JP2011134557A (ja) 電気化学デバイス、電気機器、及びイオン液体の分離回収方法
WO2020179126A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池