JP2015043054A - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP2015043054A
JP2015043054A JP2013233605A JP2013233605A JP2015043054A JP 2015043054 A JP2015043054 A JP 2015043054A JP 2013233605 A JP2013233605 A JP 2013233605A JP 2013233605 A JP2013233605 A JP 2013233605A JP 2015043054 A JP2015043054 A JP 2015043054A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
oxide semiconductor
film
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013233605A
Other languages
English (en)
Other versions
JP2015043054A5 (ja
JP6423586B2 (ja
Inventor
大介 久保田
Daisuke Kubota
大介 久保田
平形 吉晴
Yoshiharu Hirakata
吉晴 平形
亮 初見
Akira Hatsumi
亮 初見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2013233605A priority Critical patent/JP6423586B2/ja
Publication of JP2015043054A publication Critical patent/JP2015043054A/ja
Publication of JP2015043054A5 publication Critical patent/JP2015043054A5/ja
Application granted granted Critical
Publication of JP6423586B2 publication Critical patent/JP6423586B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/42Materials having a particular dielectric constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

【課題】表示品位を損なうことのない、新規な液晶表示装置を提供する。【解決手段】フレーム周波数を1Hz以下として静止画像を表示する画素を有し、誘電率の異方性が2以上5以下である液晶層を有する構成とする。該構成とすることで、一旦画素に書き込んだ電圧の変化を、同一画像における階調値のずれとして許容できる範囲に納めることができる。そのため、リフレッシュレートを低減した場合のフリッカーを抑制することができ、表示品位の向上を図ることができる。【選択図】図1

Description

本発明は、液晶表示装置に関する。
なお、液晶表示装置とは、液晶素子を有する装置のことをいう。なお、液晶表示装置は、複数の画素を駆動させる駆動回路等を含む。なお、液晶表示装置は、別の基板上に配置された制御回路、電源回路、信号生成回路等を含む。
液晶表示装置は、近年の技術革新の結果、コモディティ化が進んでいる。今後は、より付加価値の高い製品が求められており、未だ技術開発が活発である。
液晶表示装置に求められる付加価値としては、モバイル機器等における使用時間の延長を図ることを目的として、消費電力の低減が注目されている。
例えば特許文献1には、同一画像(静止画像)を連続して表示する場合、同一画像の信号を書き込む回数(リフレッシュするともいう)を低減することで、消費電力の低減を図る表示装置の構成について開示している。
また、リフレッシュ動作の前後に生じる画像の変化が、使用する者に弁別されないように、リフレッシュを行う必要がある。なお、リフレッシュを行う頻度をリフレッシュレートという。
特開2011−237760号公報
リフレッシュレートを低減する表示装置の駆動では、静止画像の経時的な変化が使用する者に認識されないようにする必要がある。
しかしながら画素に書き込んだ信号に対応する電圧は、経時的に変化する。一旦画素に書き込んだ電圧の変化が、同一静止画像における階調値のずれとして許容できる範囲よりも大きくなると、視認者が画像のちらつき(フリッカー)を知覚してしまい、結果として表示品位の低下を招くこととなる。
そこで、本発明の一態様では、表示品位を損なうことのない、新規な液晶表示装置を提供することを課題とする。
本発明の一態様は、フレーム周波数を1Hz以下として静止画像を表示する画素を有し、画素は誘電率の異方性が2以上5以下である液晶層を有することを特徴とする液晶表示装置である。
本発明の一態様は、フレーム周波数を1Hz以下として静止画像を表示する画素を有し、画素は、トランジスタと、液晶層を有する液晶素子とを有し、液晶層は、誘電率の異方性が2以上5以下であることを特徴とする液晶表示装置である。
本発明の一態様において、トランジスタは、半導体層を有し、半導体層は、酸化物半導体を有することを特徴とする液晶表示装置が好ましい。
本発明の一態様において、誘電率の異方性が2.6以上4.4以下である液晶層を有することを特徴とする液晶表示装置が好ましい。
本発明の一態様において、誘電率の異方性が3以上3.8以下である液晶層を有することを特徴とする液晶表示装置が好ましい。
本発明の一態様において、フレーム周波数は、0.2Hz以下であることを特徴とする液晶表示装置が好ましい。
本発明の一態様により、一旦画素に書き込んだ電圧の変化を、同一画像における階調値のずれとして許容できる範囲に収めることができる。そのため、リフレッシュレートを低減した場合のフリッカーを抑制することができ、表示品位の向上を図ることができる。
液晶層の電流―電圧特性を示すグラフ。 液晶層の透過率―電圧特性を示すグラフ、及び液晶層の断面模式図。 液晶層の透過率を観察するための液晶層の断面模式図。 液晶層の透過率の時間変化について示すグラフ(1Hz)。 液晶層の透過率の時間変化について示すグラフ(0.2Hz)。 液晶層の誘電率の異方性に対する階調値のずれ量を表すグラフ。 本発明の一態様に係る表示機能を有する液晶表示装置の構成を説明するブロック図。 本発明の一態様に係る表示機能を有する液晶表示装置の表示部の構成を説明する図。 本発明の一態様に係る表示機能を有する液晶表示装置の表示部の構成を説明する図。 本発明の一態様に係る表示機能を有する液晶表示装置を説明する回路図。 本発明の一態様に係る表示機能を有する液晶表示装置のソースライン反転駆動及びドット反転駆動を説明する図。 本発明の一態様に係る表示機能を有する液晶表示装置のソースライン反転駆動及びドット反転駆動を説明するタイミングチャート。 本発明の一態様に係る表示装置の構成を説明する図。 タッチパネルを説明する図。 タッチパネルを説明する図。 本発明の一態様に係る、トランジスタの構成例を説明する図。 本発明の一態様に係る、トランジスタの作製方法例を説明する図。 本発明の一態様に係る、トランジスタの構成例を説明する図。 本発明の一態様に係る、トランジスタの構成例を説明する図。 本発明の一態様に係る、電子機器を説明する図。 本発明の一態様に係る表示を説明するための図。 本発明の一態様に係る表示を説明するための図。 本発明の一態様の表示装置の構成例を説明する図。 バックライトの発光スペクトルを示す図。 誘電率の異方性の違いによる残留DCの変化を示す図。 液晶表示装置の透過率の時間変化について示すグラフ。 液晶表示装置の表示を表す図。 誘電率の異方性の違いによる電圧保持率の変化を示すグラフ。 配向膜材料により残留DC変化を示すグラフ。 配向膜材料による電圧保持率の変化を示すグラフ。 リフレッシュレートの違いによる透過率の変動を示すグラフ。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
また本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すことができるものである。
ここで、ソースとドレインとは、トランジスタの構造又は動作条件等によって変わるため、いずれがソースまたはドレインであるかを限定することが困難である。そこで、ソースとして機能する部分、及びドレインとして機能する部分を、ソース又はドレインと呼ばず、ソースとドレインとの一方を第1電極と表記し、ソースとドレインとの他方を第2電極と表記する場合がある。
なお本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではないことを付記する。
なお本明細書において、AとBとが接続されている、とは、AとBとが直接接続されているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在するとき、AとBとの電気信号の授受を可能とするものをいう。
なお本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
なお図面におけるブロック図の各回路ブロックの配置は、説明のため位置関係を特定するものであり、異なる回路ブロックで別々の機能を実現するよう示していても、実際の回路や領域では、同じ回路や同じ領域内で別々の機能を実現しうるように設けられている場合もある。また図面におけるブロック図の各回路ブロックの機能は、説明のため機能を特定するものであり、一つの回路ブロックとして示していても、実際の回路や領域では、一つの回路ブロックで行う処理を複数の回路ブロックで行うよう設けられている場合もある。
なお、画素とは、一つの色要素(例えばR(赤)G(緑)B(青)のいずれか1つ)の明るさを制御できる表示単位に相当するものとする。従って、カラー表示装置の場合には、カラー画像の最小表示単位は、Rの画素とGの画素とBの画素との三画素から構成されるものとする。ただし、カラー画像を表示するための色要素は、三色に限定されず、三色以上を用いても良いし、RGB以外の色を用いても良い。
なお以下では、本発明の実施の形態、及び実施例について図面を参照しながら説明する。なお各実施の形態、及び実施例での説明は、以下の順序で行う。
1.実施の形態1 (本発明の一態様に関する基本構成について)
2.実施の形態2 (液晶表示装置の構成)
3.実施の形態3 (駆動方法の一例)
4.実施の形態4 (その他の駆動方法の一例について)
5.実施の形態5 (その他の駆動方法の一例について)
6.実施の形態6 (パネルモジュールの構成)
7.実施の形態7 (タッチパネル機能付きパネルモジュールの構成)
8.実施の形態8 (トランジスタの構成)
9.実施の形態9 (半導体膜の構成)
10.実施の形態10 (電子機器)
11.実施の形態11 (リフレッシュレートを低減する意義について)
12.実施例 (パネルにした際の透過率の時間変化について)
(実施の形態1)
本実施の形態では、本発明の一態様に係る基本構成について説明する。本発明の一態様による基本的な作用については、図1乃至図6に示すグラフ及び模式図をもって説明することができる。
本発明の一態様の液晶表示装置は、フレーム周波数を1Hz以下として静止画像を表示する画素を有し、該画素が有する液晶層の誘電率の異方性(Δε)が2以上5以下であることを特徴とするものである。
まずは液晶層の誘電率の異方性を2以上5以下とすることによる作用について説明する。図1に示すグラフは、誘電率の異方性を2以上5以下とする液晶層の一例として、誘電率の異方性が3.8での電圧−電流特性を示している。また図1に示すグラフは、比較のため、誘電率の異方性が5を越えた液晶層の一例として、誘電率の異方性が5.2、及び9.9での電圧−電流特性を示している。
なお誘電率の異方性が3.8の液晶層の液晶材料としては、TNモードの液晶(メルク製MLC7030)を用いている。また誘電率の異方性が5.2の液晶層の液晶材料としては、TNモードの液晶(メルク製MLC4792)を用いている。また誘電率の異方性が9.9の液晶層の液晶材料としては、TNモードの液晶(メルク製MLC3019)を用いている。
なお誘電率の異方性が3.8の液晶層の液晶材料は、抵抗率が4.9×1014(Ω・cm)である。また、誘電率の異方性が5.2の液晶層の液晶材料は、抵抗率が8.1×1013(Ω・cm)である。また、誘電率の異方性が9.9の液晶層の液晶材料は、抵抗率が2.9×1013(Ω・cm)である。
図1に示す誘電率の異方性が3.8のグラフでは、電圧の上昇に伴って電流が急峻(図1中、領域10)に変化した後に、定常状態となる。同様に誘電率の異方性が5.2、9.9のグラフでは、電圧の上昇に伴って電流が急峻(図1中、領域10)に変化した後に、定常状態となる。
図1に示す誘電率の異方性の異なるグラフを比較すると、誘電率の異方性が大きい液晶層のほうが、電流の急峻な変化が大きいことがわかる。この電流の急峻な変化は、誘電率の異方性が大きいことで、液晶層に含まれる不純物(例えば、イオン性の不純物)の割合が大きくなり、抵抗率が小さくなることに起因する。
ここで、誘電率の異方性について説明する。誘電率の異方性は、誘電異方性ということもある。動画を表示するためには、誘電異方性は高い方がよい。
液晶層の誘電率の異方性が高いと、電界との相互作用が大きく、液晶層の挙動が速くなるため、液晶表示装置の高速動作が可能である。
しかしながら、上述したように液晶層の誘電率の異方性が5を超えると、液晶層に含まれる不純物の影響が顕著になる。液晶層中の不純物の精製は、液晶層の誘電率の異方性が5を超える場合、特に難しい。この不純物が液晶層に残留することで、液晶層の導電率が増大してしまい、リフレッシュレートを低減する場合に画素に書き込んだ電圧を保持することが困難になる。
あるいは、誘電率の異方性は低い方がよいとする考え方もある。
液晶層の誘電率の異方性が低いと、液晶層中の不純物の量を低減することができるため、液晶層の導電率を低減できる。そのため、液晶層の誘電率の異方性が低い方が、リフレッシュレートを低減する場合に画素に書き込んだ電圧をより長く保持することができる点で有利である。
しかしながら液晶層の誘電率の異方性が2未満であると、電界との相互作用が小さく、液晶層の挙動が遅いため、高速動作を促すために駆動電圧を高く設定する必要がある。そのために消費電力の低減を目的として、リフレッシュレートを低減する液晶層の構成としては、不適である。特に、リフレッシュレートを低減する駆動から動画表示を行うためにリフレッシュレートを増大する方に切り替えた場合に、駆動電圧が大きいと液晶表示装置全体で消費電力の増加が著しくなり、好ましくない。
従って本実施の形態における一態様として、液晶層の誘電率の異方性を2以上5以下とする構成が好適である。液晶層の誘電率の異方性を2以上5以下とする構成は、液晶層に含まれる不純物の割合を低減できるとともに、動画表示を行う際の消費電力の増大を伴うことなく、液晶層の駆動電圧を好ましい範囲に設定することが可能である。
なお液晶層の誘電率の異方性を2以上5以下とする場合、消費電力の増大を伴わない範囲において、液晶層の駆動電圧を高く設定することが好適である。液晶層の駆動電圧が高いと、階調値のずれに対する許容範囲が増える。つまり駆動電圧が高い分、電圧変化分に対する階調値のずれが少ない分だけフリッカーを低減できる。
なお液晶層の誘電率の異方性は、2以上5以下とする構成について説明したが、好ましくは、2.2以上4.8以下である。また、より好ましくは2.4以上4.6以下である。また、より好ましくは2.6以上4.4以下である。また、より好ましくは2.8以上4.2以下である。より好ましくは3以上4以下である。また、より好ましくは3以上3.8以下である。
なお本実施の形態で示す液晶層の説明は、一例としてTN(Twisted Nematic)モードの液晶層に基づく説明するが、他のモードであってもよい。
液晶層のTNモード以外の動作モードとして、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)などを用いることができる。なお液晶表示装置の各画素における画素電極は、各表示モードに従って、電極の構造等を適宜変更可能である。
以上説明したように、液晶層の誘電率の異方性を2以上5以下とする構成とすることで、同一静止画像における階調値のずれとして許容できる範囲に収めることができ、フリッカーを抑制することができる。その結果、表示品位の向上を図ることができる。
なお同一静止画像における階調値のずれとして許容できる範囲とは、例えば、256段階の透過率を制御して画像を表示する場合、0階調以上3階調以下のずれをいう。同一静止画像における階調値のずれとして0階調以上3階調以下の階調値のずれであれば、視認者がフリッカーを知覚しづらいものとなる。また別の例としては、1024段階と透過率を制御して画像を表示する場合、0階調以上12階調以下のずれをいう。すなわち、同一静止画像における階調値のずれとして許容できる範囲は、表示する最大階調数の1%乃至1.2%以内が好適である。
なお本発明の一形態である、液晶層の誘電率の異方性を2以上5以下とする構成に、リフレッシュレートを切り替えて動画表示及び静止画表示を切り替える駆動を組み合わせることが特に好適である。リフレッシュレートを切り替えて駆動を行う液晶表示装置は、動画表示から静止画表示に切り替える際、フレーム周波数60Hzから、1Hz以下好ましくは0.2Hz以下に切り替えて、消費電力を低減する。すなわち、静止画表示時において、リフレッシュレートを低減する構成において、本実施の形態の構成は特に好適である。
リフレッシュレートを切り替えて表示を行う液晶表示装置では、動画表示時及び静止画表示時において消費電力の低減及び表示品位の低下を防ぐことが望ましい。静止画表示時においてリフレッシュレートを低減すると、画素に電圧を書き込む間隔が開くことになる。言い換えれば、静止画表示時においてリフレッシュレートを低減すると、一定期間、画素に電圧を書き込まれない期間が存在することとなる。
そのため、静止画表示時におけるリフレッシュレートを低減する駆動の場合、一旦画素に書き込んだ電圧を一定の値で保持できるかが重要となる。加えて、動画表示時におけるリフレッシュレートを高くして駆動する場合、フレーム周波数が高くなることを考慮して、駆動電圧を低く設定し、消費電力の低減を図ることが重要となる。
上述したように本発明の一態様では、液晶層の誘電率の異方性が5を超えるものに比べて、液晶層に含まれる不純物を低減する構成としている。そのため、液晶層に含まれる不純物に起因したリーク電流が小さく、リフレッシュレートを低減する場合に画素に書き込んだ電圧を保持することができる。
また、本発明の一態様では、液晶層の誘電率の異方性が2未満であるものに比べて、駆動電圧を小さく設定することができる。駆動電圧を低減して動作する構成とすることで、動画表示に切り替えた際にフレーム周波数が高くなった際の、消費電力の増大を抑制することができる。
また本発明の一態様は、液晶層に含まれる不純物に起因したリーク電流が小さくできるため、画素の保持容量を予め大きくすることなく、フリッカーを低減する構成とすることができる。そのため、フリッカーを低減するために、保持容量を大きくして設計する必要がない。そのため、保持容量を小さくして設計することができ、画素の高精細化を図ることができる。画素を高精細化してリフレッシュレートを低減することで、目の疲労を軽減することができる。
なお本実施の形態の構成のように、リフレッシュレートを1Hz以下として静止画表示を行う場合には、以下の要件を有することで目に優しい液晶表示装置とすることができる。具体的な要件としては、静止画像を視認する際、液晶層を透過して視認者側に射出する光を、該光に含まれる波長が420nmより長い波長、好ましくは440nmより長い波長を有する光とし、且つ画素の精細度を150ppi以上、好ましくは200ppi以上の表示部を用いて表示される画像とすることである。
また、液晶層の誘電率の異方性を2以上5以下とすることによる、残留DCの時間変化について説明する。図25に示すグラフは、液晶層を挟持する電極に対して1時間、5Vの電圧を印加し、その後電極間を1秒間短絡してから該電極間を開放した状態における電圧の時間変化を示している。なお図25におけるグラフでは、電極間を開放状態としてからの残留DCの時間変化について示している。
なお残留DCとは、液晶層に電圧を印加することに伴い、電極間に滞留する電荷に起因した電圧のことをいう。この電圧によって、液晶層に電圧を印加する期間では、本来印加した電圧とは別に余分な電圧が電極間に印加されることになる。また液晶層に電圧を印加しない期間であっても、液晶層に滞留する電荷によって、電極間に電圧が残ることになる。なお液晶材料を電極で挟持する構成において電極上に配向膜を形成する場合、電極間とは配向膜間のことをいう。
図25に示すグラフでは、誘電率の異方性を2以上5以下とする液晶層の一例として、誘電率の異方性が3.8の液晶層を示し、比較例として誘電率の異方性が5.2、及び9.9の液晶層を併せて示している。各液晶層の液晶材料としては、図1で用いた液晶材料と同じである。
図25に示す誘電率の異方性が3.8のグラフでは、電極間を開放状態直後に電圧の上昇が見られるものの、時間の経過に伴い、液晶層に含まれる不純物に起因して残留する電圧が減少することがわかる。一方で、誘電率の異方性が5.2、9.9のグラフでは、電極間を開放状態直後に電圧の上昇が非常に大きく、時間の経過に伴い、液晶層に含まれる不純物に起因して残留する電圧が減少するものの、時間の経過を経ても残ることがわかる。
図25に示す誘電率の異方性の異なるグラフを比較すると、誘電率の異方性が大きい液晶層のほうが、電極間を開放状態とした直後の電圧が大きいことがわかる。この液晶材料による電圧の差は、誘電率の異方性が大きいことで、液晶層に含まれる不純物の割合が大きくなることに起因する。そのため、液晶層に含まれる不純物の割合の少ない、本発明の一態様における誘電率の異方性の取りうる範囲を2以上5以下とする構成の方が、電極間を開放後の残留DCの影響を低減できる。
次いで、図28に液晶層の誘電率の異方性の異なる液晶層(Δε=3.8,5.2,9.9)について、30℃における電圧保持率(Voltage Holding Ratio:VHR)の時間変化のグラフを示す。図28に示すグラフは、液晶層を挟持する電極に対して電圧を印加し、開放後の電圧変化の様子を測定している。測定の結果、抵抗率の増加に伴って電圧保持率が増加することが分かった。液晶層に電圧を印加しない期間であっても、階調値のずれを抑えるためには、電圧保持率が大きいことが好ましい。
次いで図2乃至図6では、図1で説明した液晶層の誘電率の異方性を2以上5以下とすることにより、画素に書き込まれる電圧の変化に応じた階調数のずれを許容できる範囲に収めることができる構成について説明をする。
まず図2では、後に説明する図3乃至図6において液晶層の具体例を説明するための液晶層の特性について説明する。
図2(A)は、液晶層に用いるTNモードの電圧−透過率についてのグラフである。
図2(A)に示すグラフは、所謂ノーマリーホワイト液晶素子のカーブを示すものである。液晶層は、液晶層を挟持する電極に印加される電圧に応じた電界により、液晶層を構成する液晶分子の配向の様子が変化し、偏向された光の透過量を制御する。図2(A)において、電圧Vmaxは、液晶層を通過する光の透過率を0とするための電圧である。また電圧Vminは、液晶層を通過する光の透過率を最大にするための電圧である。また電圧Vmidは、液晶層を通過する光の透過率を半分(50%)とするための電圧である。
また図2(B)に示すグラフは、液晶層に印加する電圧と、階調についてのグラフである。図2(B)で、例えば白か黒の画像を表示する場合は、電圧Vmax又はVminを印加することで、光の透過率が変化するため、階調値もGmaxと0とで切り替えて表示を行うことができる。
また図2(B)で、色の濃淡を表すために多階調で画像を表示する場合は、電圧Vmax、Vmid、Vminといった複数の電圧を印加することで、光の透過率が変化し、階調値もGmax、Gmid、0と切り替えて表示を行うことができる。つまりさらに多くの階調を表示するには、電圧Vmaxと電圧Vminとの間で複数の電圧レベルを設定し、その電圧レベルに応じて透過率が変化することを利用して、複数の階調値を表示可能な液晶表示装置を実現している。
この場合、液晶層に印加する電圧値が変化しなければ、光の透過率も変化しないため、所望の階調が得られることになる。一方で、アクティブマトリクス型の液晶表示装置における、画素の液晶層では該液晶層を流れる電流によって、液晶層に印加する電圧値が経時的に変化する。具体的には、一定期間経過することで、電圧値がΔVだけ変化すると、階調値もΔGだけ変化することになる。一旦画素に書き込んだ電圧値の変化が、同一静止画像における階調値のずれとして許容できる範囲よりも大きくなると、視認者がフリッカーを知覚してしまい、結果として表示品位の低下を招くこととなる。
次いで、図2(C)には、液晶層を挟持する電極についての断面模式図である。図2(C)では、図2(A)で説明した電圧Vminとする際の液晶層の配向の様子(初期配向状態)、及び電圧Vmaxとする際の液晶層の配向の様子(飽和配向状態)を表している。
なお初期配向状態は、電圧が印加されていない状態での液晶分子の状態を表すものであり、TN液晶でいえば、電極間で90°ねじれた関係の液晶の状態となる。また飽和配向状態は、電圧が印加されることで液晶分子が傾伏または立ち上がりの挙動がこれ以上電圧を印加してもほとんど挙動しない限界の状態である。
図2(C)では、第1の電極11、第2の電極12、配向膜13、配向膜14、及び液晶分子15の断面模式図を示している。なお第1の電極11は、画素電極に相当する電極である。第2の電極12は、対向電極に相当する電極である。
また初期配向状態の誘電率をε⊥、飽和配向状態の誘電率をε‖とする。初期配向状態の誘電率ε⊥と飽和配向状態の誘電率ε‖の差が、上述した誘電率の異方性(Δε)として表すことができる。
また図3は、図2(C)で示した液晶層を挟持する電極に電圧Vmidを印加した場合における透過率の変化を観察するための構成の模式図である。
図3では、図2(A)で説明した電圧Vmidとする際の液晶層の配向の様子(中間配向状態)を表している。また図3では、図2(C)で説明した第1の電極11、第2の電極12、配向膜13、配向膜14及び液晶分子15に加えて、偏光板21、偏光板22、光検出器23を示している。また、図3中、矢印は光を表しており、矢印24は液晶層に入射する光、矢印25は液晶層を透過する光を表している。なお矢印24による光は、液晶表示装置におけるバックライトに相当する光である。なお図3に示す、第1の電極11、第2の電極12、配向膜13、配向膜14、液晶分子15、偏光板21及び偏光板22を含む構成を液晶素子ということもある。
また図3における各構成の詳細は以下の通りである。第1の電極11及び第2の電極12は、インジウムスズ酸化物(ITO)を110nmの膜厚として設けている。配向膜13及び配向膜14は、ポリイミド膜(日産化学工業株式会社製SE−7492)を70nmの膜厚として設けている。液晶分子15としては、2種類の誘電率の異なるTNモードの液晶材料(メルク製ZLI4792、メルク製MLC7030)を設けている。配向膜13と配向膜14の間のセルギャップの距離は、4μmとしている。また液晶層に電圧を印加して光の透過率を制御することで表示する階調数は、256階調として測定をおこなっている。
図4(A)は、図1で説明した誘電率の異方性が5.2のTNモードの液晶層を有する液晶素子に対して電圧を印加した際の透過率の時間変化について示したものである。第1の電極11には、フレーム周波数として1Hzの駆動電圧波形(図4(A)中、上側の矩形波)により電圧を印加する。第2の電極12には、0Vの電圧を印加する。そして液晶層に電圧Vmidとなる電圧+2.5Vまたは−2.5Vを交互に印加する場合の、透過率の時間変化(図4(A)中、下側の鋸波形)について表したものである。
図4(B)に示す図は、図4(A)と同様にして得られる、誘電率の異方性が3.8のTNモードの液晶層を有する液晶素子に対して、電圧を印加した際の透過率の時間変化(図4(B)中、上側の鋸波形)について示したものである。また図4(B)に示す図は、図4(A)と同様にして得られる、誘電率の異方性が5.2のTNモードの液晶層を有する液晶素子に対して、電圧を印加した際の透過率の時間変化(図4(B)中、下側の鋸波形)について示したものである。
誘電率の異方性が3.8のTNモードの液晶層を有する液晶素子において、階調数のずれが最大で1.1階調分(透過率:0.35%)のずれであるのに対して、誘電率の異方性が5.2のTNモードの液晶層を有する液晶素子は、階調数のずれが最大で1.7階調(透過率:0.43%)のずれであると見積もられる。
図4(B)に示す鋸波形は、上述した液晶層に含まれる不純物に起因する残留DCによるものである。従って、液晶層に含まれる不純物の割合の少ない、本発明の一態様における誘電率の異方性の取りうる範囲を2以上5以下とする構成の方が、残留DCによる透過率の揺らぎを低減することができる。
つまり、誘電率の異方性は、本発明の一態様の範囲に入る、誘電率の異方性が3.8の方が階調数のずれを低減できることがわかる。
また別の例として、図5(A)は、図1で説明した誘電率の異方性が5.2のTNモードの液晶層を有する液晶素子に対して、電圧を印加した際の透過率の時間変化について示したものである。第1の電極11には、フレーム周波数として0.2Hzの駆動電圧波形(図5(A)中、上側の矩形波)により電圧を印加する。第2の電極12には、0Vの電圧を印加する。そして液晶層に電圧Vmidとなる電圧+2.5Vまたは−2.5Vを交互に印加する場合の、透過率の時間変化(図5(A)中、下側の鋸波形)について表したものである。
図5(B)に示す図は、図5(A)と同様にして得られる、誘電率の異方性が3.8のTNモードの液晶層を有する液晶素子に対して、電圧を印加した際の透過率の時間変化(図5(B)中、上側の鋸波形)について示したものである。また図5(B)に示す図は、図5(A)と同様にして得られる、誘電率の異方性が5.2のTNモードの液晶層を有する液晶素子に対して、電圧を印加した際の透過率の時間変化(図5(B)中、下側の鋸波形)について示したものである。
誘電率の異方性が3.8のTNモードの液晶層を有する液晶素子において、階調数のずれが最大で2.2階調分(透過率:0.7%)のずれであるのに対して、誘電率の異方性が5.2のTNモードの液晶層を有する液晶素子は、階調数のずれが最大で3.4階調(透過率:0.89%)のずれであると見積もられる。
図5(B)に示す鋸波形は、上述した液晶層に含まれる不純物に起因する残留DCによるものである。従って、図4(B)と同様に、液晶層に含まれる不純物の割合の少ない、本発明の一態様における誘電率の異方性の取りうる範囲を2以上5以下とする構成の方が、残留DCによる透過率の揺らぎを低減することができる。
つまり、誘電率の異方性は、本発明の一態様の範囲に入る、誘電率の異方性が3.8の方が階調数のずれを低減できることがわかる。また3階調を超えるずれは上述したようにフリッカーとして視認されるため、誘電率の異方性が、本発明の一態様における誘電率の異方性の取りうる範囲である2以上5以下から外れる範囲とする場合に、所望の効果が得られないことがわかる。
なお図4及び図5において、フレーム周波数の一例として、1Hzの場合と、0.2Hzの場合を説明したが、他の周波数とすることもできる。フレーム周波数は、液晶モード及び/または液晶層に用いる材料に応じて適宜設定すればよい。
また図6には、図4及び図5で説明したフレーム周波数、誘電率の異方性、及び階調値のずれ量についてまとめて示したものである。図6より、誘電率の異方性が3.8の場合、階調値のずれ量が3階調分以下に抑えられているのに対し、誘電率の異方性が5.2の場合、階調値のずれ量がフレーム周波数が1Hzでは3階調分以下に抑えられているものの、0.2Hzでは3階調分を越える値になることがわかる。
図6に示す通り、本発明の一態様における誘電率の異方性の取りうる範囲を2以上5以下とすることで、一旦画素に書き込んだ電圧の変化に起因する、階調値のずれを3以下とすることができる。そのため、リフレッシュレートを低減した場合のフリッカーを抑制することができ、表示品位の向上を図ることができる。
あるいは、画素に書き込んだ電圧の変化に起因する階調値のずれの、他の一因として、配向膜と液晶層の電気的特性の違いにより生じる電荷の蓄積が挙げられる。リーク電流は、配向膜及び液晶層を介して流れる。そのため、配向膜に流れるリーク電流の電流密度と、液晶層に流れるリーク電流の電流密度とは、同じ値になる。しかし、配向膜と液晶層とは、誘電率εと抵抗率ρの積に比例する緩和時間τに差がある。よって、液晶層にリーク電流が流れると、配向膜と液晶層の界面近傍に電荷が蓄積し、当該界面近傍に残留DCが発生する。
Maxwell−Wagnerの多層誘電体の理論により導かれる式(1)を満たすことで、配向膜と液晶層の界面近傍に蓄積する電荷を抑制し、残留DCを低減することができる。なお式(1)中、εLCは液晶層の誘電率、ρLCは液晶層の抵抗率、εALは配向膜の誘電率、ρALは配向膜の抵抗率を表している。
式(1)の条件に近づけるためには、液晶層の抵抗率及び配向膜の抵抗率の双方をできるだけ近づけることが好ましい。配向膜の抵抗率は液晶層の抵抗率に比べて大きいため、液晶層と配向膜の抵抗率を近づけるためには、液晶層の抵抗率を上げるか、配向膜の抵抗率を下げるかであるが、上述したように液晶層の抵抗率を上げることが好ましい。
具体的に、誘電率の異方性の取りうる範囲を2以上5以下とした液晶層として、誘電率の異方性が3.8のTNモードの液晶層を用い、異なる物性値の配向膜を用いて残留DCの違いを測定した。この測定結果を図29に示す。図29は、抵抗率が4×1015(Ω・cm)の配向膜を配向膜Aとし、抵抗率が2×1014(Ω・cm)の配向膜を配向膜Bとして、横軸に時間、縦軸に残留DCによる電圧値としたグラフである。
また図30には、誘電率の異方性が3.8のTNモードの液晶層を用い、配向膜Aと配向膜Bによる、液晶表示装置の電圧保持率の変化についてのグラフを示す。
図29からわかるように、配向膜の抵抗率を下げることで、残留DCを抑制できることが確認できた。しかし図30に示すように、液晶層及び配向膜の双方の抵抗率の減少によりリーク電流が増加し、電圧保持率が低下することも確認できた。
本実施の形態の構成のようにリフレッシュレートを低減して駆動する場合には、配向膜及び液晶層の双方の抵抗率を増加させて、双方の抵抗率を近づけることが好ましいことが確認できた。
以上の結果を踏まえると、誘電率の異方性の取りうる範囲を2以上5以下とした液晶層を用いること、液晶層の電圧保持率の高い材料を用いること、配向膜と液晶層の抵抗率を増加させ且つ双方を近づけることで残留DCを抑えること、がより好ましい。
(実施の形態2)
本実施の形態では、実施の形態1に示した液晶層を備えた液晶表示装置の一例について、図7及び図8を参照しながら説明する。
具体的には、画素を選択するG信号を60Hz以上の頻度で出力する第1のモードと、1Hz以下の頻度、好ましくは0.2Hz以下の頻度で出力する第2のモードを備える液晶表示装置について説明する。
図7は、本発明の一態様の表示機能を有する液晶表示装置の構成を説明するブロック図である。
図8は、本発明の一態様の表示機能を有する液晶表示装置の表示部の構成を説明するブロック図及び回路図である。
<1.液晶表示装置の構成>
本実施の形態で、図7に例示して説明する表示機能を有する液晶表示装置600は、入力される第1の駆動信号(S信号ともいう)633_Sを保持し、S信号633_Sに応じて画像を表示する表示素子635を含む画素回路634を有する画素部631と、S信号633_Sを画素回路634に出力する第1の駆動回路(S駆動回路ともいう)633と、画素回路634を選択する第2の駆動信号(G信号ともいう)632_Gを画素回路634に出力する第2の駆動回路(G駆動回路ともいう)632と、を有する。
そして、G駆動回路632は、G信号632_Gを画素に1秒間に30回以上の頻度、好ましくは1秒間に60回以上960回未満の頻度で出力する第1のモードと、1日に1回以上1秒間に0.1回未満の頻度、好ましくは1時間に1回以上1秒間に1回未満の頻度で出力する第2のモードを備える。
なお、G駆動回路632は、入力されるモード切り替え信号に応じて第1のモードと第2のモードとを切り替える。
また、画素回路634は画素631pに設けられ、画素631pは画素部631に複数設けられ、画素部631は表示部630に設けられている。
表示機能を有する液晶表示装置600は演算装置620を備える。演算装置620は一次制御信号625_Cと一次画像信号625_Vを出力する。
液晶表示装置600は制御部610を備え、制御部610はS駆動回路633とG駆動回路632を制御する。
表示素子635に液晶素子を適用する場合、光供給部650を表示部630に設ける。光供給部650は液晶素子が設けられた画素部631に光を供給し、バックライトとして機能する。
表示機能を有する液晶表示装置600は、画素部631に設けられた複数の画素回路634から一を選択する頻度を、G駆動回路632が出力するG信号632_Gを用いて変えることができる。その結果、液晶表示装置600を使用する者へ与えうる目の疲労が低減された表示機能を有する液晶表示装置を提供することができる。
以下に、本発明の一態様の表示機能を有する液晶表示装置を構成する個々の要素について説明する。
<2.演算装置>
演算装置620は、一次画像信号625_V及び一次制御信号625_Cを生成する。
また、演算装置620が、モード切り替え信号を含む一次制御信号625_Cを生成する。
例えば入力手段500から入力される画像切り替え信号500_Cに応じて、演算装置620がモード切り替え信号を含む一次制御信号625_Cを出力して良い。
第2のモードのG駆動回路632に、制御部610を介して、画像切り替え信号500_Cが、入力手段500から入力されると、G駆動回路632は第2のモードから第1のモードに切り替わり、G信号を1回以上出力し、その後第2のモードに切り替わる。
例えば、入力手段500がページめくり動作を検知した場合、入力手段500は画像切り替え信号500_Cを演算装置620に出力する。
演算装置620は、ページめくり動作信号を含む一次画像信号625_Vを生成し、画像切り替え信号500_Cを含む一次制御信号625_Cと共に当該一次画像信号625_Vを出力する。
制御部610は、画像切り替え信号500_CをG駆動回路632に出力し、ページめくり動作信号を含む二次画像信号615_VをS駆動回路633に出力する。
G駆動回路632は第2のモードから第1のモードに切り替わり、G信号632_Gを観察者が信号の書き換え動作毎に変化する画像の変化を識別できない程度の速さで、信号を出力する。
一方、S駆動回路633は、ページめくり動作信号を含む二次画像信号615_Vから生成したS信号633_Sを画素回路634に出力する。
これにより、画素631pは、ページめくり動作信号を含む二次画像信号615_Vが与えられることで、ページめくり動作を含む多数のフレーム画像を短時間に表示できるため、なめらかなページめくり動作を表示できる。
また、演算装置620が表示部630に出力する一次画像信号625_Vが動画像か静止画像かを判別し、一次画像信号625_Vが動画像である場合に、第1のモードを選択する切り替え信号を、静止画像である場合は第2のモードを選択する切り替え信号を、当該演算装置620が出力する構成としてもよい。
なお、動画像か静止画像かを判別する方法としては、一次画像信号625_Vに含まれる一のフレームとその前後のフレームの信号の差分が、あらかじめ定められた差分より大きいときに動画像と、それ以下のときに静止画像と、判別すればよい。
また、第2のモードから第1のモードに切り替わったとき、G信号632_Gを1回以上の所定の回数出力し、その後第2のモードに切り替わる構成としてもよい。
<3.制御部>
制御部610は、一次画像信号625_Vから生成した二次画像信号615_Vを出力する(図7参照)。なお、一次画像信号625_Vを表示部630に直接出力する構成としても良い。
制御部610は、垂直同期信号、水平同期信号などの同期信号を含む一次制御信号625_Cを用いて、スタートパルス信号SP、ラッチ信号LP、パルス幅制御信号PWCなどの二次制御信号615_Cを生成し、表示部630に供給する機能を有する。なお、二次制御信号615_Cには、クロック信号CKなども含まれる。
また、反転制御回路を制御部610に設け、制御部610が、反転制御回路が通知するタイミングに従って、二次画像信号615_Vの極性を反転させる機能を備える構成とすることもできる。具体的に、二次画像信号615_Vの極性の反転は、制御部610において行われてもよいし、制御部610からの命令に従って、表示部630内で行われてもよい。
反転制御回路は、二次画像信号615_Vの極性を反転させるタイミングを、同期信号を用いて定める機能を有する。例示する反転制御回路は、カウンタと、信号生成回路とを有する。
カウンタは、水平同期信号のパルスを用いてフレーム期間の数を数える機能を有する。
信号生成回路は、カウンタにおいて得られたフレーム期間の数の情報を用いて、連続する複数フレーム期間ごとに二次画像信号615_Vの極性を反転させるべく、二次画像信号615_Vの極性を反転させるタイミングを、制御部610に通知する機能を有する。
<4.表示部>
表示部630は、各画素に表示素子635を有する画素部631と、S駆動回路633、G駆動回路632などの駆動回路を有する。画素部631は、表示素子635が設けられた画素631pを、複数有する(図7参照)。
表示部630に入力される二次画像信号615_Vは、S駆動回路633に与えられる。また、電源電位、二次制御信号615_Cは、S駆動回路633及びG駆動回路632に与えられる。
なお、二次制御信号615_Cには、S駆動回路633の動作を制御するS駆動回路用のスタートパルス信号SP、S駆動回路用のクロック信号CK、ラッチ信号LP、G駆動回路632の動作を制御するG駆動回路用のスタートパルス信号SP、G駆動回路用のクロック信号CK、パルス幅制御信号PWCなどが含まれる。
表示部630の構成の一例を図8(A)に示す。
図8(A)に示す表示部630には、画素部631に、複数の画素631pと、画素631pを行毎に選択するための複数の走査線Gと、選択された画素631pに二次画像信号615_Vから生成されたS信号633_Sを供給するための複数の信号線Sとが設けられている。
走査線GへのG信号632_Gの入力は、G駆動回路632により制御されている。信号線SへのS信号633_Sの入力は、S駆動回路633により制御されている。複数の画素631pは、走査線Gの少なくとも一つと、信号線Sの少なくとも一つとに、それぞれ接続されている。
なお、画素部631に設けられる配線の種類及びその数は、画素631pの構成、数及び配置によって決めることができる。具体的に、図8(A)に示す画素部631の場合、x列×y行の画素631pがマトリクス状に配置されており、信号線S1乃至信号線Sx、走査線G1乃至走査線Gyが、画素部631内に配置されている場合を例示している。
<4−1.画素>
各画素631pは、表示素子635と、当該表示素子635を含む画素回路634を有する。
<4−2.画素回路>
本実施の形態では、画素回路634の一例として、液晶素子635LCを表示素子635に適用する構成を図8(B)に示す。
画素回路634は、液晶素子635LCへのS信号633_Sの供給を制御するトランジスタ634tを有する。トランジスタ634tと表示素子635の接続関係の一例について説明する。
トランジスタ634tのゲートが、走査線G1から走査線Gyのいずれか1つに接続されている。トランジスタ634tのソース及びドレインの一方は、信号線S1から信号線Sxのいずれか1つに接続され、トランジスタ634tのソース及びドレインの他方は、表示素子635の第1電極に接続されている。
なお、画素631pは、必要に応じて液晶素子635LCの第1電極と第2電極間の電圧を保持するための容量素子634cの他、トランジスタ、ダイオード、抵抗素子、容量素子、インダクタなどのその他の回路素子を有していても良い。
図8(B)に例示する画素631pは、S信号633_Sの画素631pへの入力を制御するスイッチング素子として、一のトランジスタ634tを用いる。ただし、一のスイッチング素子として機能する、複数のトランジスタを画素631pに用いていてもよい。複数のトランジスタが一のスイッチング素子として機能する場合、上記複数のトランジスタは並列に接続されていてもよいし、直列に接続されていてもよいし、直列と並列が組み合わされて接続されていてもよい。
なお、画素回路634の容量は適宜調整すればよい。例えば、後述する第2のモードにおいて、S信号633_Sを比較的長い期間(具体的には、1/60sec以上)保持する場合には、容量素子634cを設ける。また、容量素子634c以外の構成を用いて、画素回路634の容量を調節してもよい。例えば、液晶素子635LCの第1の電極と第2の電極を重ねて設ける構成により、実質的に容量素子を形成してもよい。
なお、画素回路634は、表示素子635の種類、または駆動方法に応じた構成を選択して用いることができる。
<4−2a.表示素子>
液晶素子635LCは、第1電極及び第2電極並びに第1電極と第2電極の間の電圧が印加される液晶材料を含んだ液晶層を有している。液晶素子635LCは、第1電極と第2電極の間に与えられる電圧の値に従って、液晶分子の配向が変化して、透過率が変化する。よって、表示素子635は、S信号633_Sの電位によってその透過率が制御されることで、階調を表示することができる。
<4−2b.トランジスタ>
トランジスタ634tは、表示素子635の第1電極に、信号線Sの電位を与えるか否かを制御する。表示素子635の第2電極には、所定の基準電位Vcomが与えられている。
なお、本発明の一態様の液晶表示装置に好適なトランジスタとして酸化物半導体を用いたトランジスタを適用することができる。酸化物半導体を用いたトランジスタの詳細については、実施の形態8、9を参酌することができる。
<5.光供給部>
光供給部650には、複数の光源が設けられている。制御部610は、光供給部650が有する光源の駆動を制御する。
光供給部650の光源としては、冷陰極蛍光ランプ、発光ダイオード(LED)、電場を加えることでルミネッセンス(Electroluminescence)が発生するOLED素子などを用いることができる。
特に、光源が発する青色の光の強度を他の色の光の強度より弱めた構成が好ましい。光源が発する光に含まれる青色を呈する光は、眼の角膜や水晶体で吸収されずに、網膜まで到達する。したがって光源が発する青色の光の強度を他の色の光の強度より弱めた構成とすることで、長期的な網膜への影響(例えば、加齢黄斑変性など)や、夜中まで青色の光に暴露された際の概日リズム(サーカディアン・リズム:Circadian rhythm)への悪影響などを低減できる。また、光源が発する光は、420nmより長い波長、好ましくは440nmより長い波長を有することが好ましい。
図24に、好ましいバックライトからの発光のスペクトルを示す。ここで図24には、バックライトの光源として、R(赤色)、G(緑色)、B(青色)の3色のLED(Light Emitting Diode)を用いた場合の、各LEDからの発光のスペクトルの例を示している。図24では、420nm以下の範囲で、放射照度がほとんど観測されていない。このような光源をバックライトとして用いた表示部は、使用者の目の疲労を低減できる。
これにより、短波長の光の輝度を低減することにより、使用者の目の疲労や網膜の損傷を抑制することができ、使用者の健康が害されることを抑制することができる。
<6.入力手段>
入力手段500としては、タッチパネル、タッチパッド、マウス、ジョイスティック、トラックボール、データグローブ、撮像装置などを用いることができる。演算装置620は、入力手段500から入力される電気信号と表示部の座標を関連づけることができる。これにより、使用する者が表示部に表示される情報を処理するための命令を入力することができる。
使用する者が入力手段500から入力する情報としては、例えば表示部に表示される画像の表示位置を変えるためにドラッグする命令、表示されている画像を送り次の画像を表示するためにスワイプする命令、巻物状の画像を順に送るためにスクロールする命令、特定の画像を選択する命令、画像を表示する大きさを変化するためにピンチする命令の他、手書き文字入力する命令などを挙げることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態2に示した液晶表示装置(表示装置ともよぶ)の駆動方法の一例について、図8乃至図10を参照しながら説明する。
図8は、本発明の一態様の表示機能を有する液晶表示装置の表示部の構成を説明するブロック図及び回路図である。
図9は、本発明の一態様の表示機能を有する液晶表示装置の表示部の構成の変形例を説明するブロック図である。
図10は、本発明の一態様の表示機能を有する液晶表示装置を説明する回路図である。
<1.S信号の画素部への書き込み方法>
図8(A)または図9に例示する画素部631に、S信号633_Sを書き込む方法の一例を説明する。具体的には、S信号633_Sを、画素部631の、図8(B)に例示する画素回路を備える画素631pのそれぞれに書き込む方法を説明する。
<画素部への信号の書き込み>
第1フレーム期間において、走査線G1にパルスを有するG信号632_Gが入力されることで、走査線G1が選択される。選択された走査線G1に接続された複数の各画素631pにおいて、トランジスタ634tが導通状態になる。
トランジスタ634tが導通状態の時(1ライン期間)に、信号線S1から信号線Sxに二次画像信号615_Vから生成したS信号633_Sの電位が与えられる。そして、導通状態のトランジスタ634tを介して、S信号633_Sの電位に応じた電荷が容量素子634cに蓄積され、S信号633_Sの電位が液晶素子635LCの第1電極に与えられる。
第1フレーム期間の走査線G1が選択されている期間において、正の極性のS信号633_Sが全ての信号線S1乃至信号線Sxに、順に入力される。走査線G1と、信号線S1乃至信号線Sxとにそれぞれ接続された画素631p内の第1電極(G1S1)乃至第1電極(G1Sx)には、正の極性のS信号633_Sが与えられる。これにより、液晶素子635LCの透過率が、S信号633_Sの電位によって制御され、各画素が階調を表示する。
同様にして、走査線G2から走査線Gyが順に選択され、走査線G1が選択されていた期間と同様の動作が、走査線G2から走査線Gyの各走査線に接続された画素631pにおいて順次繰り返される。上記動作により、画素部631において、第1フレームの画像を表示することができる。
なお、本発明の一態様では、必ずしも走査線G1乃至走査線Gyを順に選択する必要はない。
なお、S駆動回路633から信号線S1乃至信号線Sxに、S信号633_Sを順に入力する点順次駆動を用いることも、一斉にS信号633_Sを入力する線順次駆動を用いることができる。或いは、複数の信号線Sごとに順に、S信号633_Sを入力する駆動方法を用いていても良い。
また、プログレッシブ方式を用いた走査線Gの選択方法に限らず、インターレース方式を用いて走査線Gの選択を行うようにしても良い。
また、任意の一フレーム期間において、全ての信号線に入力されるS信号633_Sの極性が同一であっても、任意の一フレーム期間において、一の信号線ごとに、画素に入力されるS信号633_Sの極性が反転していても良い。
<複数の領域に分割された画素部への信号の書き込み>
また、表示部630の構成の変形例を図9に示す。
図9に示す表示部630には、複数の領域に分割された画素部631(具体的には第1領域631a、第2領域631b、第3領域631c)に、複数の画素631pと、画素631pを行毎に選択するための複数の走査線Gと、選択された画素631pにS信号633_Sを供給するための複数の信号線Sとが設けられている。
それぞれの領域に設けられた走査線GへのG信号632_Gの入力は、それぞれのG駆動回路632により制御されている。信号線SへのS信号633_Sの入力は、S駆動回路633により制御されている。複数の画素631pは、走査線Gの少なくとも一つと、信号線Sの少なくとも一つとに、それぞれ接続されている。
このような構成とすることで、画素部631を分割して駆動することができる。
例えば、入力手段500としてタッチパネルから情報を入力する際に、当該情報が入力される領域を特定する座標を取得し、その座標に対応する領域を駆動するG駆動回路632のみを第1のモードとし、他の領域を第2のモードとしてもよい。この動作により、タッチパネルから情報が入力されなかった領域、すなわち表示画像を書き換える必要がない領域のG駆動回路の動作を停止することができる。
<2.第1のモードと第2のモードのG駆動回路>
G駆動回路632が出力するG信号632_Gが入力された画素回路634に、S信号633_Sが入力される。G信号632_Gが入力されない期間、画素回路634は、S信号633_Sの電位を保持する。言い換えると、画素回路634は、S信号633_Sの電位が書き込まれた状態を保持する。
表示データが書き込まれた画素回路634は、S信号633_Sに応じた表示状態を維持する。なお、表示状態を維持するとは、表示状態の変化が一定の範囲より大きくならないように保持することをいう。上記一定の範囲は、適宜設定される範囲であり、例えば使用者が表示画像を閲覧する場合に、同じ表示画像であると認識できる表示状態の範囲に設定することが好ましい。
G駆動回路632は第1のモードと第2のモードを備える。
<2−1.第1のモード>
G駆動回路632の第1のモードは、G信号632_Gを、画素に1秒間に30回以上好ましくは1秒間に60回以上960回未満の頻度で出力する。
第1のモードのG駆動回路632は、観察者が信号の書き換え動作毎に変化する画像の変化を識別できない程度の速さで、信号を書き換える。その結果、動画像をなめらかに表示することができる。
<2−2.第2のモード>
G駆動回路632の第2のモードは、G信号632_Gを、画素に1日に1回以上1秒間に0.1回未満、好ましくは1時間に1回以上1秒間に1回未満の頻度で出力する。
G信号632_Gが入力されない期間、画素回路634は、S信号633_Sを保持し、その電位に応じた表示状態を引き続き維持する。
これにより、第2のモードでは、画素の表示の書き換えに伴うチラつき(フリッカーともいう)がない表示をすることができる。
その結果、当該表示機能を有する液晶表示装置の使用者の目の疲労を低減できる。
なお、G駆動回路632が消費する電力は、G駆動回路632が動作しない期間、低減される。
なお、第2のモードを有するG駆動回路632を用いて駆動する画素回路は、S信号633_Sを長い期間保持する構成が好ましい。例えば、トランジスタ634tのリーク電流は、オフ状態において小さいものほど好ましい。
オフ状態においてリーク電流が小さいトランジスタ634tの構成の一例について、実施の形態8、9を参酌することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、実施の形態2に示した液晶表示装置の駆動方法の一例について、図10乃至図12を参照しながら説明する。
図10は、本発明の一態様の表示機能を有する液晶表示装置を説明する回路図である。
図11は、本発明の一態様の表示機能を有する液晶表示装置のソースライン反転駆動及びドット反転駆動を説明する図である。
図12は、本発明の一態様の表示機能を有する液晶表示装置のソースライン反転駆動及びドット反転駆動を説明するタイミングチャートである。
<1.オーバードライブ駆動>
液晶は、電圧が印加されてからその透過率が収束するまでの応答時間が、一般的に十数msec程度である。よって、液晶の応答の遅さが動画のぼやけとして視認されやすい。
そこで、本発明の一態様では、液晶素子を用いた表示素子635に印加する電圧を一時的に大きくして液晶の配向を速く変化させるオーバードライブ駆動を用いるようにしても良い。オーバードライブ駆動を用いることで、液晶の応答速度を上げ、動画のぼやけを防ぎ、動画の画質を改善することができる。
また、トランジスタ634tが非導通状態になった後においても、液晶素子を用いた表示素子635の透過率が収束せずに変化し続けると、液晶の比誘電率が変化するため、液晶素子を用いた表示素子635の保持する電圧が変化しやすい。
例えば、液晶素子を用いた表示素子635に並列で容量素子634cを接続しない場合、または接続される容量素子634cの容量値が小さい場合、上述した液晶素子を用いた表示素子635の保持する電圧の変化は顕著に起こりやすい。しかし、上記オーバードライブ駆動を用いることで、応答時間を短くすることができるので、トランジスタ634tが非導通状態になった後における液晶素子を用いた表示素子635の透過率の変化を小さくすることができる。したがって、液晶素子を用いた表示素子635に並列で接続される容量素子634cの容量値が小さい場合でも、トランジスタ634tが非導通状態になった後に、液晶素子を用いた表示素子635の保持する電圧が変化するのを防ぐことができる。
<2.ソースライン反転駆動及びドット反転駆動>
図10に例示する画素回路の信号線Siに接続されている画素631pにおいて、画素電極635_1が、信号線Siと、信号線Siに隣接している信号線Si+1に挟まれるように、画素631p内に配置されている。トランジスタ634tがオフの状態であるならば、画素電極635_1と信号線Siは、理想的には電気的に分離している。また、画素電極635_1と信号線Si+1も、理想的には、電気的に分離している。しかし、実際には、画素電極635_1と信号線Siの間には寄生容量634c(i)が存在しており、なおかつ、画素電極635_1と信号線Si+1の間には寄生容量634c(i+1)が存在している(図11(C)参照)。なお、図11(C)には、図10に図示されている液晶素子635LCの替わりに、液晶素子635LCの第1の電極または第2の電極として機能する画素電極635_1が図示されている。
液晶素子635LCの第1の電極と第2の電極を重ねて設ける構成とする場合等では、2つの電極の重なりを実質的な容量素子とすることで、液晶素子635LCに容量配線を用いて形成された容量素子634cを接続しない場合、或いは液晶素子635LCに接続されている容量素子634cの容量値が小さい場合がある。このような場合、液晶素子の第1の電極または第2の電極として機能する画素電極635_1の電位が、寄生容量634c(i)と寄生容量634c(i+1)の影響を受けやすい。
これにより、トランジスタ634tが、画像信号の電位を保持する期間において、オフの状態であっても、画素電極635_1の電位が、信号線Siまたは信号線Si+1の電位の変化に連動して変動する現象が起こりやすい。
画像信号の電位を保持する期間において、画素電極の電位が、信号線の電位が変化に連動して変動する現象をクロストーク現象という。クロストーク現象が発生すると、表示のコントラストが低下してしまう。例えば、液晶素子635LCにノーマリーホワイトの液晶を用いた場合、画像が白っぽくなる。
そこで、本発明の一態様では、任意の一フレーム期間において、画素電極635_1を間に挟んで配設されている信号線Siと信号線Si+1に、互いに逆の極性を有する画像信号を入力する駆動方法を用いるようにしても良い。
なお、逆の極性を有する画像信号とは、液晶素子の共通電極の電位を基準電位としたときに、基準電位よりも高い電位を有する画像信号と、基準電位よりも低い電位を有する画像信号とを意味する。
交互に逆の極性を有する画像信号を選択された複数の画素に順番に書き込む方法として、2つの方法(ソースライン反転およびドット反転)を例に挙げることができる。
いずれの方法においても、第1フレーム期間において、信号線Siに正(+)の極性を有する画像信号を入力し、信号線Si+1に負(−)の極性を有する画像信号を入力する。次いで、第2フレーム期間において、信号線Siに負(−)の極性を有する画像信号を入力し、信号線Si+1に正(+)の極性を有する画像信号を入力する。次いで、第3フレーム期間において、信号線Siに正(+)の極性を有する画像信号を入力し、信号線Si+1に負(−)の極性を有する画像信号を入力する(図11(C)参照)。
このような駆動方法を用いると、一対の信号線の電位が互いに逆の方向に変動するため、任意の画素電極が受ける電位の変動が打ち消される。よって、クロストークの発生を抑えることができる。
<2−1.ソースライン反転駆動>
ソースライン反転は、任意の一フレーム期間において、一の信号線に接続されている複数の画素と、当該信号線に隣接する他の信号線に接続されている複数の画素とに逆の極性を有する画像信号を入力するものである。
ソースライン反転を用いた場合の画素に与えられる画像信号の極性を、図11(A−1)及び図11(A−2)に模式的に示す。任意の一フレーム期間において与えられる画像信号が正の極性の画素を+の記号で、負の極性の画素を−の記号で示している。図11(A−2)に示すフレームは、図11(A−1)に示すフレームに続くフレームを示している。
<2−2.ドット反転駆動>
ドット反転は、任意の一フレーム期間において、一の信号線に接続されている複数の画素と、当該信号線に隣接する他の信号線に接続されている複数の画素とに、逆の極性を有する画像信号を入力し、なおかつ、同一の信号線に接続されている複数の画素において、隣接する画素に逆の極性を有する画像信号を入力するものである。
ドット反転を用いた場合の画素に与えられる画像信号の極性を、図11(B−1)及び図11(B−2)に模式的に示す。任意の一フレーム期間において与えられる画像信号が正の極性の画素を+の記号で、負の極性の画素を−の記号で示している。図11(B−2)に示すフレームは、図11(B−1)に示すフレームに続くフレームを示している。
<2−3.タイミングチャート>
次いで、図12に、図10に示した画素部631をソースライン反転で動作させた場合のタイミングチャートを示す。具体的に、図12では、走査線G1に与えられる信号の電位と、信号線S1から信号線Sxに与えられる画像信号の電位と、走査線G1に接続された各画素の有する画素電極の電位の、時間変化を示している。
まず、走査線G1にパルスを有する信号が入力されることで、走査線G1が選択される。選択された走査線G1に接続された複数の各画素631pにおいて、トランジスタ634tがオンになる。そして、トランジスタ634tがオンの状態の時に、信号線S1から信号線Sxに画像信号の電位が与えられると、オンのトランジスタ634tを介して、画像信号の電位が液晶素子635LCの画素電極に与えられる。
図12に示すタイミングチャートでは、第1のフレーム期間の走査線G1が選択されている期間において、奇数番目の信号線S1、信号線S3、...に、正の極性の画像信号が順に入力されており、偶数番目の信号線S2、信号線S4、...信号線Sxに、負の極性の画像信号が入力されている例を示している。よって、奇数番目の信号線S1、信号線S3、...に接続された画素631p内の画素電極(S1)、画素電極(S3)、...には、正の極性の画像信号が与えられている。また、偶数番目の信号線S2、信号線S4、...信号線Sxに接続された画素631p内の画素電極(S2)、画素電極(S4)、...画素電極(Sx)には、負の極性の画像信号が与えられている。
液晶素子635LCでは、画素電極と共通電極の間に与えられる電圧の値に従って、液晶分子の配向が変化し、透過率が変化する。よって、液晶素子635LCは、画像信号の電位によってその透過率が制御されることで、階調を表示することができる。
信号線S1から信号線Sxへの画像信号の入力が終了すると、走査線G1の選択は終了する。走査線の選択が終了すると、該走査線を有する画素631pにおいて、トランジスタ634tがオフになる。すると、液晶素子635LCは、画素電極と共通電極の間に与えられた電圧を保持することで、階調の表示を維持する。そして、走査線G2から走査線Gyが順に選択され、走査線G1が選択されていた期間と同様の動作が、上記各走査線に接続された画素において行われる。
次いで、第2のフレーム期間において、再び、走査線G1が選択される。そして、第2のフレーム期間の走査線G1が選択されている期間では、第1のフレーム期間の走査線G1が選択されている期間とは異なり、奇数番目の信号線S1、信号線S3、...に、負の極性の画像信号が順に入力されており、偶数番目の信号線S2、信号線S4、...信号線Sxに、正の極性の画像信号が入力されている。よって、奇数番目の信号線S1、信号線S3、...に接続された画素631p内の画素電極(S1)、画素電極(S3)、...には、負の極性の画像信号が与えられている。また、偶数番目の信号線S2、信号線S4、...信号線Sxに接続された画素631p内の画素電極(S2)、画素電極(S4)、...画素電極(Sx)には、正の極性の画像信号が与えられている。
第2のフレーム期間においても、信号線S1から信号線Sxへの画像信号の入力が終了すると、走査線G1の選択は終了する。そして、走査線G2から走査線Gyが順に選択され、走査線G1が選択されていた期間と同様の動作が、上記各走査線に接続された画素において行われる。
そして、第3のフレーム期間と、第4のフレーム期間においても、上記動作が同様に繰り返される。
なお、図12に示すタイミングチャートでは、信号線S1から信号線Sxに、順に画像信号が入力されている場合を例示しているが、本発明はこの構成に限定されない。信号線S1から信号線Sxに、一斉に画像信号が入力されていても良いし、複数の信号線ごとに順に画像信号が入力されていても良い。
また、本実施の形態では、プログレッシブ方式を用いた場合における、走査線の選択について説明したが、インターレース方式を用いて走査線の選択を行うようにしても良い。
なお、画像信号の電位の極性を、共通電極の基準電位を基準として反転させる反転駆動を行うことで、焼き付きと呼ばれる液晶の劣化を防ぐことができる。
しかし、反転駆動を行うと、画像信号の極性が変化する際に信号線に与えられる電位の変化が大きくなるため、スイッチング素子として機能するトランジスタ634tのソース電極とドレイン電極の電位差が大きくなる。よって、トランジスタ634tは、閾値電圧がシフトするなどの特性劣化が生じやすい。
また、液晶素子635LCに保持されている電圧を維持するために、ソース電極とドレイン電極の電位差が大きくても、オフ電流が低いことが要求される。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、本発明の一態様の液晶表示装置で表示可能な画像の生成方法について説明する。特に、画像の切り替えを行う際に使用者の目に優しい画像の切り替え方法、使用者の目の疲労を軽減する画像の切り替え方法、使用者の目に負担を与えない画像の切り替え方法について説明する。
画像を素早く切り替えて表示すると、使用者の目の疲労を誘発する場合がある。例えば、著しく異なる場面が切り換わる動画像や、異なる静止画を切り換える場合などが含まれる。
異なる画像を切り替えて表示する際には、瞬間的に表示を切り換えるのではなく、緩やかに(静かに)、自然に画像を切り替えて表示することが好ましい。
例えば、異なる第1の画像から第2の画像に表示を切り替える場合、第1の画像と第2の画像の間に第1の画像がフェードアウトする画像または/及び第2の画像がフェードインする画像を挿入すると好ましい。また、第1の画像がフェードアウトすると同時に、第2の画像がフェードインする(クロスフェードともいう)ように、両者の画像を重ね合わせた画像を挿入してもよく、第1の画像が第2の画像に次第に変化する様子を表示する動画(モーフィングともいう)を挿入しても良い。
具体的には、第1の静止画像を低いリフレッシュレートで表示し、続いて画像の切り替えのための画像を高いリフレッシュレートで表示した後に、第2の静止画像を低いリフレッシュレートで表示する。
<フェードイン、フェードアウト>
以下に、互いに異なる画像Aと画像Bとを切り換える方法の一例について説明する。
図13(A)は、画像の切り換え動作を行うことができる表示装置の構成を示すブロック図である。図13(A)に示す表示装置は、演算装置701、記憶装置702、グラフィックユニット703、及び表示手段704を備える。
第1のステップにおいて、演算装置701は外部記憶装置等から画像A、及び画像Bの各データを記憶装置702に格納する。
第2のステップにおいて、演算装置701は、予め設定された分割数の値に応じて、画像Aと画像Bの各画像データを元に新たな画像データを順次生成する。
第3のステップにおいて、生成した画像データをグラフィックユニット703に出力する。グラフィックユニット703は入力された画像データを表示手段704に表示させる。
図13(B)は、画像Aから画像Bにかけて段階的に画像を切り換える際の、生成される画像データを説明するための模式図である。
図13(B)では、画像Aから画像BにかけてN(Nは自然数)個の画像データを生成し、それぞれ1個あたりの画像データをf(fは自然数)フレーム期間表示した場合について示している。したがって、画像Aから画像Bに切り替わるまでの期間は、f×Nフレームとなる。
ここで、上述したN、及びfなどのパラメータは、使用者が自由に設定可能であることが好ましい。演算装置701はこれらのパラメータを予め取得し、当該パラメータに応じて、画像データを生成する。
i番目に生成される画像データ(iは1以上N以下の整数)は、画像Aの画像データと画像Bの画像データに対して、それぞれに重み付けを行って足し合わせることで生成できる。例えば、ある画素において、画像Aを表示したときの輝度(階調)をa、画像Bを表示したときの輝度(階調)をbとすると、i番目に生成される画像データを表示したときの当該画素の輝度(階調)cは式(2)に示す値となる。
このような方法により生成された画像データを用いて、画像Aから画像Bに切り換えることで、緩やかに(静かに)、自然に不連続な画像を切り替えることができる。
なお、式(2)において、全ての画素についてa=0の場合が、黒画像から徐々に画像Bに切り替わるフェードインに相当する。また、全ての画素についてb=0の場合が、画像Aからに徐々に黒画像に切り替わるフェードアウトに相当する。
上記では、2つの画像を一時的にオーバーラップさせて画像を切り換える方法について述べたが、オーバーラップさせない方法としてもよい。
2つの画像をオーバーラップさせない場合、画像Aから画像Bに切り換える場合に、間に黒画像を挿入してもよい。このとき、画像Aから黒画像に遷移する際、または黒画像から画像Bに遷移する際、またはその両方に、上述したような画像の切り換え方法を用いてもよい。また、画像Aと画像Bの間に挿入する画像は黒画像だけでなく、白画像などの単一色の画像を用いてもよいし、画像Aや画像Bとは異なる、多色の画像を用いてもよい。
画像Aと画像Bとの間に他の画像、特に黒画像などの単一色の画像を挿入することで、画像の切り換えをより自然に使用者が感じ取ることができ、使用者にストレスを感じさせることなく画像を切り換えることができる。
(実施の形態6)
本実施の形態では、本発明の一態様の液晶表示装置の表示手段に適用可能なパネルモジュールの構成例について、図面を参照して説明する。
図23(A)は、本実施の形態で例示するパネルモジュール200の上面概略図である。
パネルモジュール200は、第1の基板201、第2の基板202、及びシール材203に囲まれた封止領域内に、複数の画素を備える画素部211とゲート駆動回路213を備える。また、第1の基板201上の封止領域よりも外側の領域に外部接続電極205と、ソース駆動回路として機能するIC212を備える。外部接続電極205に電気的に接続されたFPC204から、画素部211やゲート駆動回路213、IC212等を駆動するための電源や信号を入力することができる。
図23(B)は、図23(A)に示したFPC204及びシール材203を含む領域を切断する切断線A−Bと、ゲート駆動回路213を含む領域を切断する切断線C−Dと、画素部211を含む領域を含む領域を切断する切断線E−Fと、シール材203を含む領域を切断する切断線G−Hのそれぞれに沿って切断した際の、断面概略図である。
第1の基板201と第2の基板202はその外周に近い領域においてシール材203によって接着されている。また、第1の基板201、第2の基板202、及びシール材203に囲まれた領域に、少なくとも画素部211が設けられている。
図23には、ゲート駆動回路213として、いずれもnチャネル型のトランジスタ231とトランジスタ232を組み合わせた回路を有する例を示している。なお、ゲート駆動回路213の構成はこれに限られず、nチャネル型のトランジスタとpチャネル型のトランジスタを組み合わせた種々のCMOS回路や、pチャネル型のトランジスタを組み合わせた回路を有する構成としてもよい。本構成例では、第1の基板201上にゲート駆動回路213が形成されたドライバ一体型のパネルモジュールの構成を示すが、ゲート駆動回路とソース駆動回路の一方または両方を異なる基板に設ける構成としてもよい。例えば、COG方式により駆動回路用ICを実装してもよいし、COF方式により駆動回路用ICが実装されたフレキシブル基板(FPC)を実装してもよい。本構成例では、ソース駆動回路として機能するIC212をCOG方式により第1の基板201上に設ける構成を示している。
なお、画素部211、ゲート駆動回路213が備えるトランジスタの構造は特に限定されない。例えば、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。また、トランジスタに用いる半導体材料としては、例えばシリコンやゲルマニウムなどの半導体材料を用いてもよいし、インジウム、ガリウム、亜鉛のうち少なくともひとつを含む酸化物半導体を用いてもよい。
また、トランジスタに用いる半導体の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化が抑制されるため好ましい。
インジウム、ガリウム、亜鉛のうち少なくともひとつを含む酸化物半導体としては、代表的にはIn−Ga−Zn系金属酸化物などが挙げられる。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい酸化物半導体を用いると、オフ時のリーク電流を抑制できるため好ましい。好ましい酸化物半導体の詳細については、後の実施の形態8,9で説明する。
図23(B)には、画素部211の一例として、一画素分の断面構造を示している。画素部211は、VA(Vertical Alignment)モードが適用された液晶素子250を備える。
1つの画素には少なくともスイッチング用のトランジスタ256を備える。また1つの画素に図示しない保持容量を有していてもよい。また、トランジスタ256のソース電極またはドレイン電極と電気的に接続する第1の電極251が絶縁層239上に設けられている。
画素に設けられる液晶素子250は、絶縁層239上に設けられた第1の電極251と、第2の基板202上に設けられた第2の電極253と、第1の電極251と第2の電極253に挟持された液晶252を有する。
第1の電極251及び第2の電極253には、透光性の導電性材料を用いる。透光性を有する導電性材料としては、酸化インジウム、インジウムスズ酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物、又はグラフェンを用いることができる。
また、少なくとも画素部211と重なる領域において、第2の基板202上にカラーフィルタ243と、ブラックマトリクス242が設けられている。
カラーフィルタ243は、画素からの透過光を調色し、色純度を高める目的で設けられている。例えば、白色のバックライト用いてフルカラーのパネルモジュールとする場合には、異なる色のカラーフィルタを設けた複数の画素を用いる。その場合、赤色(R)、緑色(G)、青色(B)の3色のカラーフィルタを用いてもよいし、これに黄色(Y)を加えた4色とすることもできる。また、R、G、B(及びY)に加えて白色(W)の画素を用い、4色(又は5色)としてもよい。
また、隣接するカラーフィルタの243の間に、ブラックマトリクス242が設けられている。ブラックマトリクス242は隣接する画素から回り込む光を遮光し、隣接画素間における混色を抑制する。ブラックマトリクス242は異なる発光色の隣接画素間にのみ配置し、同色画素間には設けない構成としてもよい。ここで、カラーフィルタ243の端部を、ブラックマトリクス242と重なるように設けることにより、光漏れを抑制することができる。ブラックマトリクス242は、画素の透過光を遮光する材料を用いることができ、金属材料や顔料を含む樹脂材料などを用いて形成することができる。なお、図23に示すようにブラックマトリクス242はゲート駆動回路213などの画素部211以外の領域に設けると、導波光などによる意図しない光漏れを抑制できるため好ましい。
また、カラーフィルタ243とブラックマトリクス242を覆うオーバーコート255が設けられている。オーバーコート255を設けることにより、カラーフィルタ243やブラックマトリクス242に含まれる顔料などの不純物が液晶252に拡散することを抑制できる。オーバーコートは透光性の材料を用い、無機絶縁材料や有機絶縁材料を用いることができる。
なお、オーバーコート255上に、第2の電極253が設けられている。
さらに、オーバーコート255のブラックマトリクス242と重なる領域に、スペーサ254が設けられている。スペーサ254には、樹脂材料を用いると厚く形成できるため好ましい。例えばポジ型またはネガ型の感光性樹脂を用いて形成することができる。また、スペーサ254として遮光性の材料を用いると、隣接する画素から回り込む光を遮光し、隣接画素間における混色を抑制することができる。なお、本構成例ではスペーサ254を第2の基板202側に設ける構成としたが、第1の基板201側に設ける構成としてもよい。また、スペーサ254として、球状の酸化シリコンなどの粒を用い、液晶252が設けられる領域に散布された構成としてもよい。
第1の電極251と第2の電極253の間に電圧を印加することにより、電極面に対して垂直方向に電界が生じ、該電界によって液晶252の配向が制御され、パネルモジュールの外部に配置されたバックライトからの光の偏光を画素単位で制御することにより、画像を表示することができる。
液晶252と接する面には、液晶252の配向を制御するための配向膜を設けてもよい。配向膜には透光性の材料を用いる。
本構成例では、液晶素子250と重なる領域にカラーフィルタが設けられているため、色純度が高められたフルカラーの画像表示を実現できる。また、バックライトとして異なる発光色の複数の発光ダイオード(LED:Light Emitting Diode)を用いて、時間分割表示方式(フィールドシーケンシャル駆動方式)を行うこともできる。時間分割表示方式を用いた場合、カラーフィルタを設ける必要が無く、また例えばR(赤色)、G(緑色)、B(青色)のそれぞれの発光を呈する副画素を設ける必要がないため、画素の開口率を向上させることや、単位面積あたりの画素数を増加できるなどの利点がある。
液晶252としては、サーモトロピック液晶、低分子液晶、高分子液晶、強誘電液晶、反強誘電液晶などを用いることができる。また、ブルー相を示す液晶を使用すると、配向膜が不要であり、且つ広い視野角が得られるため好ましい。また、上記の液晶にモノマー、重合開始剤を添加して注入または滴下封止後にモノマーを重合させて高分子安定化する液晶材料でもよい。
なお、本構成例ではVAモードが適用された液晶素子250について説明するが、液晶素子の構成はこれに限られず、異なるモードが適用された液晶素子250を用いることができる。
第1の基板201上には、第1の基板201の上面に接して絶縁層237と、トランジスタのゲート絶縁層として機能する絶縁層238と、トランジスタを覆う絶縁層239が設けられている。
絶縁層237は、第1の基板201に含まれる不純物の拡散を抑制する目的で設けられる。また、トランジスタの半導体層に接する絶縁層238及び絶縁層239は、トランジスタの劣化を助長する不純物の拡散を抑制する材料を用いることが好ましい。これら絶縁層には、例えばシリコンなどの半導体や、アルミニウムなどの金属の、酸化物または窒化物、または酸窒化物を用いることができる。またこのような無機絶縁材料の積層膜、または無機絶縁材料と有機絶縁材料の積層膜を用いてもよい。なお、絶縁層237や絶縁層239は不要であれば設けなくてもよい。
絶縁層239と第1の電極251の間に、下層に設けられるトランジスタや配線などによる段差を被覆する平坦化層としての絶縁層を設けてもよい。このような絶縁層としてはポリイミドやアクリルなどの樹脂材料を用いることが好ましい。また、平坦性を高められる場合には、無機絶縁材料を用いてもよい。
図23(B)で例示した構成では、第1の基板201上にトランジスタと、液晶素子250の第1の電極251を形成するために必要なフォトマスクの数を低減できる。より具体的には、ゲート電極の加工工程と、半導体層の加工工程と、ソース電極及びドレイン電極の加工工程と、絶縁層239の開口工程と、及び第1の電極251の加工工程のそれぞれに用いる、5種類のフォトマスクを用いればよい。
第1の基板201に設けられる配線206は、シール材203によって封止された領域から外側に延在して設けられ、ゲート駆動回路213と電気的に接続している。また配線206の端部の一部が外部接続電極205を成している。本構成例では、外部接続電極205はトランジスタのソース電極又はドレイン電極と同一の導電膜と、トランジスタのゲート電極と同一の導電膜を積層して形成されている。このように、複数の導電膜を積層して外部接続電極205を構成することにより、FPC204などの圧着工程に対する機械的強度を高めることができるため好ましい。
また図示しないが、IC212と画素部211とを電気的に接続する配線や外部接続電極も、配線206や外部接続電極205と同様の構成とすればよい。
また、外部接続電極205に接して接続層208が設けられ、接続層208を介してFPC204と外部接続電極205とが電気的に接続している。接続層208としては、公知の異方性導電フィルムや、異方性導電ペーストなどを用いることができる。
配線206や、外部接続電極205の端部は、その表面が露出しないように絶縁層で覆われていると、表面の酸化や意図しないショートなどの不具合を抑制できるため好ましい。
本実施の形態は、本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
実施の形態6で説明したパネルモジュールに、タッチセンサ(接触検出装置)を設けることで、タッチパネルとして機能させることができる。本実施の形態では、図14及び図15を参照して、タッチパネルについて説明する。以下において、上記実施の形態と重複する部分については、説明を省略する場合がある。
図14(A)は、本実施の形態で例示するタッチパネル400の斜視概略図である。また、図14(B)には、タッチパネル400を展開した斜視概略図を示す。なお図14には明瞭化のため代表的な構成要素のみを示している。
タッチパネル400は、第1の基板401と第2の基板402との間に挟持された表示部411と、第2の基板402と第3の基板403との間に挟持されたタッチセンサ430とを備える。
第1の基板401には、表示部411と、表示部411と電気的に接続する複数の配線406を備える。また、複数の配線406は、第1の基板401の外周部にまで引き回され、その一部がFPC404と電気的に接続するための外部接続電極405を構成している。
表示部411は、複数の画素を有する画素部414、ソース駆動回路412、及びゲート駆動回路413を有し、第1の基板401と第2の基板402とによって封止されている。図14(B)では、ソース駆動回路412を、画素部414を挟んでその両側に2つ配置する構成としたが、1つのソース駆動回路412を画素部414の一方の辺に沿って配置する構成としてもよい。
表示部411の画素部414に適用可能な表示素子としては、液晶素子を用いる。
第3の基板403には、タッチセンサ430と、タッチセンサ430と電気的に接続する複数の配線417を備える。タッチセンサ430は、第3の基板403の第2の基板402と対向する面側に設けられる。また複数の配線417は第3の基板403の外周部にまで引き回され、その一部がFPC415と電気的に接続するための外部接続電極416を構成している。なお、図14(B)では明瞭化のため、第3の基板403の裏面側(紙面奥側)に設けられるタッチセンサ430の電極や配線等を実線で示している。
図14(B)に示すタッチセンサ430は、投影型静電容量方式のタッチセンサの一例である。タッチセンサ430は、電極421と電極422とを有する。電極421と電極422とは、それぞれ複数の配線417のいずれかと電気的に接続する。
ここで、電極422の形状は、図14(A)、(B)に示すように、複数の四辺形が一方向に連続した形状となっている。また、電極421の形状は四辺形であり、電極422の延在する方向とは交差する方向に一列に並んだ複数の電極421のそれぞれが、配線423によって電気的に接続されている。このとき、電極422と配線423の交差部の面積ができるだけ小さくなるように配置することが好ましい。このような形状とすることで、電極が設けられていない領域の面積を低減でき、当該電極の有無によって生じる透過率の違いによって生じるタッチセンサ430を透過する光の輝度ムラを、低減することができる。
なお、電極421、電極422の形状はこれに限られず、様々な形状を取りうる。例えば、複数の電極421をできるだけ隙間が生じないように配置し、絶縁層を介して電極422を、電極421と重ならない領域ができるように離間して複数設ける構成としてもよい。このとき、隣接する2つの電極422の間に、これらとは電気的に絶縁されたダミー電極を設けると、透過率の異なる領域の面積を低減できるため好ましい。
図15に、図14(A)に示すタッチパネル400のX1−X2における断面図を示す。
第1の基板401上には、スイッチング素子層437が設けられている。スイッチング素子層437は、少なくともトランジスタを有する。スイッチング素子層437には、トランジスタの他に、容量素子などを有していてもよい。また、スイッチング素子層437は、駆動回路(ゲート駆動回路、ソース駆動回路)などを含んでいてもよい。さらに、スイッチング素子層437は配線や電極等を含んでいてもよい。
第2の基板402の一方の面には、カラーフィルタ層435が設けられている。カラーフィルタ層435は、液晶素子と重なるカラーフィルタを有する。カラーフィルタ層435には、R(赤色)、G(緑色)、B(青色)の3色のカラーフィルタを設ける構成とすると、フルカラーの液晶表示装置とすることができる。
カラーフィルタ層435は、例えば、顔料を含む感光性の材料を用い、フォトリソグラフィ工程により形成される。また、カラーフィルタ層435として、異なる色のカラーフィルタの間にブラックマトリクスを設けてもよい。また、カラーフィルタやブラックマトリクスを覆うオーバーコートを設けてもよい。
なお、用いる液晶素子の構成に応じて、カラーフィルタ層435上に液晶素子の一方の電極を形成してもよい。なお該電極は、後に形成される液晶素子の一部となる。また該電極上に配向膜が設けられていてもよい。
液晶431は、第1の基板401と第2の基板402との間に挟持された状態で、封止材436によって封止される。また、封止材436は、スイッチング素子層437やカラーフィルタ層435を囲むように設けられている。
封止材436としては、熱硬化樹脂や紫外線硬化樹脂を用いることができ、アクリル、ウレタン、エポキシ、またはシロキサン結合を有する樹脂などの有機樹脂を用いることができる。また、封止材436は、低融点ガラスを含むガラスフリットにより形成されていてもよい。また、封止材436は、上記有機樹脂とガラスフリットとを組み合わせて形成されていてもよい。例えば、液晶431に接して上記有機樹脂を設け、その外側にガラスフリットを設けることで、外部から、液晶へ水などが混入することを抑制することができる。
また、第2の基板402上には、タッチセンサが設けられている。第3の基板403の一方の面に、絶縁層424を介してセンサ層440が設けられ、センサ層440は、接着層434を介して第2の基板402と貼り合わされている。また、第3の基板403の他方の面には、偏光板441が設けられている。
タッチセンサは、第3の基板403上に、センサ層440を形成した後、センサ層440上に設けられた接着層434を介して、第2の基板402と貼り合わせて設けることができる。
絶縁層424は、例えば、酸化シリコンなどの酸化物を用いることができる。絶縁層424に接して透光性を有する電極421及び電極422が設けられている。電極421及び電極422は、第3の基板403上に形成された絶縁層424上に、スパッタリング法により導電膜を成膜した後、フォトリソグラフィ法等の公知のパターニング技術により、不要な部分を除去することで形成される。透光性を有する導電性材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物を用いることができる。
電極421又は電極422には、配線438が電気的に接続されている。配線438の一部は、FPC415と電気的に接続する外部接続電極として機能する。配線438としては、例えば、アルミニウム、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン、鉄、コバルト、銅、又はパラジウム等の金属材料や、該金属材料を含む合金材料を用いることができる。
電極422は、一方向に延在したストライプ状複数設けられている。また、電極421は、一本の電極422を一対の電極421が挟むように設けられ、これらを電気的に接続する配線423が電極422と交差するように設けられる。ここで、一本の電極422と、配線423とによって電気的に接続される一対の電極421は、必ずしも直交して設ける必要はなく、これらのなす角度が90度未満であってもよい。
また、電極421及び電極422を覆うように、絶縁層433が設けられている。絶縁層433に用いる材料としては、例えば、アクリル、エポキシなどの樹脂、シロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、酸化アルミニウムなどの無機絶縁材料を用いることもできる。また、絶縁層433には、電極421に達する開口部が設けられ、電極421と電気的に接続する配線423が絶縁層433上及び開口部に設けられている。配線423は、電極421及び電極422と同様の透光性の導電性材料を用いると、タッチパネルの開口率が高まるため好ましい。また、配線423に電極421及び電極422と同一の材料を用いてもよいが、これよりも導電性の高い材料を用いることが好ましい。
また、絶縁層433及び配線423を覆う絶縁層が設けられていてもよい。当該絶縁層は、保護層として機能させることができる。
また、絶縁層433(及び保護層として機能する絶縁層)には、配線438に達する開口が設けられており、開口に設けられた接続層439によって、FPC415と配線438とが電気的に接続されている。接続層439としては、公知の異方性導電フィルム(ACF:AnisotropicConductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
センサ層440と、第2の基板402とを接着する接着層434は、透光性を有することが好ましい。例えば、熱硬化性樹脂や紫外線硬化樹脂を用いることができ、具体的には、アクリル、ウレタン、エポキシ、またはシロキサン結合を有する樹脂などの樹脂を用いることができる。
偏光板441としては、公知の偏光板を用いればよく、自然光や円偏光から直線偏光を作り出すことができるような材料を用いる。例えば、二色性の物質を一定方向にそろえて配置することで、光学的な異方性を持たせたものを用いることができる。例えば、ヨウ素系の化合物などをポリビニルアルコールなどのフィルムに吸着させ、これを一方向に延伸することで作製することができる。なお、二色性の物質としては、ヨウ素系の化合物のほか、染料系の化合物などが用いられる。偏光板441は、フィルム状、シート状、もしくは板状の材料を用いることができる。
なお、本実施の形態ではセンサ層440として投影型静電容量式のタッチセンサを適用する例を示したが、センサ層440としてはこれに限られず、偏光板よりも外側から指等の導電性の検知対象が近接する、または触れることを検知するタッチセンサとして機能するセンサを適用することができる。センサ層440に設けられるタッチセンサとして、静電容量方式のタッチセンサが好ましい。静電容量方式のタッチセンサとしては、表面型静電容量方式、投影型静電容量方式等があり、投影型静電容量方式としては、主に駆動方式の違いから自己容量方式、相互容量方式などがある。相互容量方式を用いると同時多点検出が可能となるため好ましい。
本実施の形態にて説明したタッチパネルでは、表示された静止画のリフレッシュレートを低減することができるため、使用者は極力長い時間同じ画像を見ることが可能となり、視認される画面のちらつきが低減される。また、1画素のサイズを小さく高精細な表示が可能となるため、緻密で滑らかな表示とすることができる。また、静止画表示を行う際、階調が変化することによる画質の劣化を低減することができるとともに、タッチパネルで消費される電力を低減することができる。
(実施の形態8)
本実施の形態では、液晶表示装置の画素に適用できるトランジスタの構成例について、図面を参照して説明する。
<トランジスタの構成例>
図16(A)に、以下で例示するトランジスタ100の上面概略図を示す。また図16(B)に図16(A)中に示す切断線A−Bにおけるトランジスタ100の断面概略図を示す。本構成例で例示するトランジスタ100はボトムゲート型のトランジスタである。
トランジスタ100は、基板101上に設けられるゲート電極102と、基板101及びゲート電極102上に設けられる絶縁層103と、絶縁層103上にゲート電極102と重なるように設けられる酸化物半導体層104と、酸化物半導体層104の上面に接する一対の電極105a、105bとを有する。また、絶縁層103、酸化物半導体層104、一対の電極105a、105bを覆う絶縁層106と、絶縁層106上に絶縁層107が設けられている。
《基板101》
基板101の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有する材料を用いる。例えば、ガラス基板、セラミック基板、石英基板、サファイヤ基板、YSZ(イットリア安定化ジルコニア)基板等を、基板101として用いてもよい。また、シリコンや炭化シリコンなどの単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどの化合物半導体基板、SOI基板等を適用することも可能である。また、これらの基板上に半導体素子が設けられたものを、基板101として用いてもよい。
また、基板101として、プラスチックなどの可撓性基板を用い、該可撓性基板上に直接、トランジスタ100を形成してもよい。または、基板101とトランジスタ100の間に剥離層を設けてもよい。剥離層は、その上層にトランジスタの一部あるいは全部を形成した後、基板101より分離し、他の基板に転載するのに用いることができる。その結果、トランジスタ100は耐熱性の劣る基板や可撓性の基板にも転載できる。
《ゲート電極102》
ゲート電極102は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属を用いてもよい。また、ゲート電極102は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合わせた合金膜、もしくはこれらの窒化膜を用いてもよい。
また、ゲート電極102は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属の積層構造とすることもできる。
また、ゲート電極102と絶縁層103との間に、In−Ga−Zn系酸窒化物半導体膜、In−Sn系酸窒化物半導体膜、In−Ga系酸窒化物半導体膜、In−Zn系酸窒化物半導体膜、Sn系酸窒化物半導体膜、In系酸窒化物半導体膜、金属窒化膜(InN、ZnN等)等を設けてもよい。これらの膜は5eV以上、好ましくは5.5eV以上の仕事関数を有し、酸化物半導体の電子親和力よりも大きい値であるため、酸化物半導体を用いたトランジスタのしきい値電圧をプラスにシフトすることができ、所謂ノーマリーオフ特性のスイッチング素子を実現できる。例えば、In−Ga−Zn系酸窒化物半導体膜を用いる場合、少なくとも酸化物半導体層104より高い窒素濃度、具体的には7原子%以上のIn−Ga−Zn系酸窒化物半導体膜を用いる。
《絶縁層103》
絶縁層103は、ゲート絶縁膜として機能する。酸化物半導体層104の下面と接する絶縁層103は、非晶質膜であることが好ましい。
絶縁層103は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属酸化物、窒化シリコンなどを用いればよく、積層または単層で設ける。
また、絶縁層103として、ハフニウムシリケート(HfSiO)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−k材料を用いることでトランジスタのゲートリークを低減できる。
《一対の電極105a、105b》
一対の電極105a及び105bは、トランジスタのソース電極またはドレイン電極として機能する。
一対の電極105a、105bは、導電材料として、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンからなる単体金属、またはこれを主成分とする合金を単層構造または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、タングステン膜上にチタン膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
《絶縁層106、107》
絶縁層106は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を用いることが好ましい。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、加熱により一部の酸素が脱離する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、昇温脱離ガス分光法(TDS:Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物絶縁膜である。
絶縁層106としては、酸化シリコン、酸化窒化シリコン等を用いることができる。
なお、絶縁層106は、後に形成する絶縁層107を形成する際の、酸化物半導体層104へのダメージ緩和膜としても機能する。
また、絶縁層106と酸化物半導体層104の間に、酸素を透過する酸化物膜を設けてもよい。
酸素を透過する酸化物膜としては、酸化シリコン、酸化窒化シリコン等を用いることができる。なお、本明細書中において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多い膜を指し、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多い膜を指す。
絶縁層107は、酸素、水素、水等のブロッキング効果を有する絶縁膜を用いることができる。絶縁層106上に絶縁層107を設けることで、酸化物半導体層104からの酸素の外部への拡散と、外部から酸化物半導体層104への水素、水等の侵入を防ぐことができる。酸素、水素、水等のブロッキング効果を有する絶縁膜としては、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム等がある。
<トランジスタの作製方法例>
続いて、図16に例示するトランジスタ100の作製方法の一例について説明する。
まず、図17(A)に示すように、基板101上にゲート電極102を形成し、ゲート電極102上に絶縁層103を形成する。
ここでは、基板101としてガラス基板を用いる。
《ゲート電極の形成》
ゲート電極102の形成方法を以下に示す。はじめに、スパッタリング法、CVD法、蒸着法等により導電膜を形成し、導電膜上に第1のフォトマスクを用いてフォトリソグラフィ工程によりレジストマスクを形成する。次に、該レジストマスクを用いて導電膜の一部をエッチングして、ゲート電極102を形成する。その後、レジストマスクを除去する。
なお、ゲート電極102は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジェット法等で形成してもよい。
《ゲート絶縁層の形成》
絶縁層103は、スパッタリング法、CVD法、蒸着法等で形成する。
絶縁層103として酸化シリコン膜、酸化窒化シリコン膜、または窒化酸化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
また、絶縁層103として窒化シリコン膜を形成する場合、2段階の形成方法を用いることが好ましい。はじめに、シラン、窒素、及びアンモニアの混合ガスを原料ガスとして用いたプラズマCVD法により、欠陥の少ない第1の窒化シリコン膜を形成する。次に、原料ガスを、シラン及び窒素の混合ガスに切り替えて、水素濃度が少なく、且つ水素をブロッキングすることが可能な第2の窒化シリコン膜を成膜する。このような形成方法により、絶縁層103として、欠陥が少なく、且つ水素ブロッキング性を有する窒化シリコン膜を形成することができる。
また、絶縁層103として酸化ガリウム膜を形成する場合、MOCVD(Metal Organic Chemical Vapor Deposition)法を用いて形成することができる。
《酸化物半導体層の形成》
次に、図17(B)に示すように、絶縁層103上に酸化物半導体層104を形成する。
酸化物半導体層104の形成方法を以下に示す。はじめに、酸化物半導体膜を形成する。続いて、酸化物半導体膜上に第2のフォトマスクを用いてフォトリソグラフィ工程によりレジストマスクを形成する。次に、該レジストマスクを用いて酸化物半導体膜の一部をエッチングして、酸化物半導体層104を形成する。その後、レジストマスクを除去する。
この後、加熱処理を行ってもよい。加熱処理を行う場合には、酸素を含む雰囲気下で行うことが好ましい。
《一対の電極の形成》
次に、図17(C)に示すように、一対の電極105a、105bを形成する。
一対の電極105a、105bの形成方法を以下に示す。はじめに、スパッタリング法、CVD法、蒸着法等で導電膜を形成する。次に、該導電膜上に第3のフォトマスクを用いてフォトリソグラフィ工程によりレジストマスクを形成する。次に、該レジストマスクを用いて導電膜の一部をエッチングして、一対の電極105a、105bを形成する。その後、レジストマスクを除去する。
なお、図17(B)に示すように、導電膜のエッチングの際に酸化物半導体層104の上部の一部がエッチングされ、薄膜化することがある。そのため、酸化物半導体層104の形成時、酸化物半導体膜の厚さを予め厚く設定しておくことが好ましい。
《絶縁層の形成》
次に、図17(D)に示すように、酸化物半導体層104及び一対の電極105a、105b上に、絶縁層106を形成し、続いて絶縁層106上に絶縁層107を形成する。
絶縁層106として酸化シリコン膜または酸化窒化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
例えば、プラズマCVD装置の真空排気された処理室内に載置された基板を180℃以上260℃以下、さらに好ましくは200℃以上240℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし、処理室内に設けられる電極に0.17W/cm以上0.5W/cm以下、さらに好ましくは0.25W/cm以上0.35W/cm以下の高周波電力を供給する条件により、酸化シリコン膜または酸化窒化シリコン膜を形成する。
成膜条件として、上記圧力の反応室において上記パワー密度の高周波電力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し、原料ガスの酸化が進むため、酸化物絶縁膜中における酸素含有量が化学量論比よりも多くなる。しかしながら、基板温度が、上記温度であると、シリコンと酸素の結合力が弱いため、加熱により酸素の一部が脱離する。この結果、化学量論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化物絶縁膜を形成することができる。
また、酸化物半導体層104と絶縁層106の間に酸化物絶縁膜を設ける場合には、絶縁層106の形成工程において、該酸化物絶縁膜が酸化物半導体層104の保護膜となる。この結果、酸化物半導体層104へのダメージを低減しつつ、パワー密度の高い高周波電力を用いて絶縁層106を形成することができる。
例えば、プラズマCVD装置の真空排気された処理室内に載置された基板を180℃以上400℃以下、さらに好ましくは200℃以上370℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を20Pa以上250Pa以下、さらに好ましくは100Pa以上250Pa以下とし、処理室内に設けられる電極に高周波電力を供給する条件により、酸化物絶縁膜として酸化シリコン膜または酸化窒化シリコン膜を形成することができる。また、処理室の圧力を100Pa以上250Pa以下とすることで、該酸化物絶縁層を成膜する際に、酸化物半導体層104へのダメージを低減することが可能である。
酸化物絶縁膜の原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
絶縁層107は、スパッタリング法、CVD法等で形成することができる。
絶縁層107として窒化シリコン膜、または窒化酸化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体、酸化性気体、及び窒素を含む気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。窒素を含む気体としては、窒素、アンモニア等がある。
以上の工程により、トランジスタ100を形成することができる。
<トランジスタ100の変形例>
以下では、トランジスタ100と一部が異なるトランジスタの構成例について説明する。
《変形例1》
図18(A)に、以下で例示するトランジスタ110の断面概略図を示す。トランジスタ110は、酸化物半導体層の構成が異なる点で、トランジスタ100と相違している。
トランジスタ110の備える酸化物半導体層114は、酸化物半導体層114aと酸化物半導体層114bとが積層されて構成される。
なお、酸化物半導体層114aと酸化物半導体層114bの境界は不明瞭である場合があるため、図18(A)等の図中には、これらの境界を破線で示している。
酸化物半導体層114a及び酸化物半導体層114bのうち、いずれか一方または両方に、本発明の一態様の酸化物半導体膜を適用することができる。
例えば、酸化物半導体層114aは、代表的にはIn−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、またはHf)を用いる。また、酸化物半導体層114aがIn−M−Zn酸化物であるとき、InとMの原子数比率は、好ましくは、Inが50atomic%未満、Mが50atomic%以上、さらに好ましくは、Inが25atomic%未満、Mが75atomic%以上とする。また例えば、酸化物半導体層114aは、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である材料を用いる。
例えば、酸化物半導体層114bはIn若しくはGaを含み、代表的には、In−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、NdまたはHf)であり、且つ酸化物半導体層114aよりも伝導帯の下端のエネルギーが真空準位に近く、代表的には、酸化物半導体層114bの伝導帯の下端のエネルギーと、酸化物半導体層114aの伝導帯の下端のエネルギーとの差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15eV以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下とすることが好ましい。
また例えば、酸化物半導体層114bがIn−M−Zn酸化物であるとき、InとMの原子数比率は、好ましくは、Inが25atomic%以上、Mが75atomic%未満、さらに好ましくは、Inが34atomic%以上、Mが66atomic%未満とする。
例えば、酸化物半導体層114aとしてIn:Ga:Zn=1:1:1または3:1:2の原子数比のIn−Ga−Zn酸化物を用いることができる。また、酸化物半導体層114bとしてIn:Ga:Zn=1:3:2、1:6:4、または1:9:6の原子数比のIn−Ga−Zn酸化物を用いることができる。なお、酸化物半導体層114a、及び酸化物半導体層114bの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含む。
上層に設けられる酸化物半導体層114bに、スタビライザーとして機能するGaの含有量の多い酸化物を用いることにより、酸化物半導体層114a、及び酸化物半導体層114bからの酸素の放出を抑制することができる。
なお、これらに限られず、必要とするトランジスタの半導体特性及び電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、酸化物半導体層114a、酸化物半導体層114bのキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
なお、上記では酸化物半導体層114として、2つの酸化物半導体層が積層された構成を例示したが、3つ以上の酸化物半導体層を積層する構成としてもよい。
《変形例2》
図18(B)に、以下で例示するトランジスタ120の断面概略図を示す。トランジスタ120は、酸化物半導体層の構成が異なる点で、トランジスタ100及びトランジスタ110と相違している。
トランジスタ120の備える酸化物半導体層124は、酸化物半導体層124a、酸化物半導体層124b、酸化物半導体層124cが順に積層されて構成される。
酸化物半導体層124a及び酸化物半導体層124bは、絶縁層103上に積層して設けられる。また酸化物半導体層124cは、酸化物半導体層124bの上面、並びに一対の電極105a、105bの上面及び側面に接して設けられる。
例えば、酸化物半導体層124bとして、上記変形例1で例示した酸化物半導体層114aと同様の構成を用いることができる。また例えば、酸化物半導体層124a、124cとして、上記変形例1で例示した酸化物半導体層114bと同様の構成を用いることができる。
例えば、酸化物半導体層124bの下層に設けられる酸化物半導体層124a、及び上層に設けられる酸化物半導体層124cに、スタビライザーとして機能するGaの含有量の多い酸化物を用いることにより、酸化物半導体層124a、酸化物半導体層124b、及び酸化物半導体層124cからの酸素の放出を抑制することができる。
また、例えば酸化物半導体層124bに主としてチャネルが形成される場合に、酸化物半導体層124bにInの含有量の多い酸化物を用い、酸化物半導体層124bと接して一対の電極105a、105bを設けることにより、トランジスタ120のオン電流を増大させることができる。
<トランジスタの他の構成例>
以下では、本発明の一態様の酸化物半導体膜を適用可能な、トップゲート型のトランジスタの構成例について説明する。
なお、以下では、上記と同様の構成、または同様の機能を備える構成要素においては、同一の符号を付し、重複する説明は省略する。
《構成例》
図19(A)に、以下で例示するトップゲート型のトランジスタ150の断面概略図を示す。
トランジスタ150は、絶縁層151が設けられた基板101上に設けられる酸化物半導体層104と、酸化物半導体層104の上面に接する一対の電極105a、105bと、酸化物半導体層104、一対の電極105a、105b上に設けられる絶縁層103と、絶縁層103上に酸化物半導体層104と重なるように設けられるゲート電極102とを有する。また、絶縁層103及びゲート電極102を覆って絶縁層152が設けられている。
絶縁層151は、基板101から酸化物半導体層104への不純物の拡散を抑制する機能を有する。例えば、上記絶縁層107と同様の構成を用いることができる。なお、絶縁層151は、不要であれば設けなくてもよい。
絶縁層152には、上記絶縁層107と同様、酸素、水素、水等のブロッキング効果を有する絶縁膜を適用することができる。なお、絶縁層107は不要であれば設けなくてもよい。
《変形例》
以下では、トランジスタ150と一部が異なるトランジスタの構成例について説明する。
図19(B)に、以下で例示するトランジスタ160の断面概略図を示す。トランジスタ160は、酸化物半導体層の構成が異なる点で、トランジスタ150と相違している。
トランジスタ160の備える酸化物半導体層164は、酸化物半導体層164a、酸化物半導体層164b、及び酸化物半導体層164cが順に積層されて構成されている。
酸化物半導体層164a、酸化物半導体層164b、酸化物半導体層164cのうち、いずれか一、またはいずれか二、または全部に、本発明の一態様の酸化物半導体膜を適用することができる。
例えば、酸化物半導体層164bとして、上記変形例1で例示した酸化物半導体層114aと同様の構成を用いることができる。また例えば、酸化物半導体層164a、164cとして、上記変形例1で例示した酸化物半導体層114bと同様の構成を用いることができる。
例えば、酸化物半導体層164bの下層に設けられる酸化物半導体層164a、及び上層に設けられる酸化物半導体層164cに、スタビライザーとして機能するGaの含有量の多い酸化物を用いることにより、酸化物半導体層164a、酸化物半導体層164b、酸化物半導体層164cからの酸素の放出を抑制することができる。
ここで、酸化物半導体層164の形成時において、酸化物半導体層164cと酸化物半導体層164bをエッチングにより加工して酸化物半導体層164aとなる酸化物半導体膜を露出させ、その後にドライエッチング法によって該酸化物半導体膜を加工して酸化物半導体層164aを形成する場合に、該酸化物半導体膜の反応生成物が、酸化物半導体層164b及び酸化物半導体層164cの側面に再付着し、側壁保護層(ラビットイヤーとも呼べる)が形成される場合がある。なお、該反応生成物は、スパッタリング現象によって再付着するほか、ドライエッチング時のプラズマを介して再付着する場合もある。
図19(C)には、上述のようにして酸化物半導体層164の側面に側壁保護層164dが形成された場合の、トランジスタ160の断面概略図を示している。
側壁保護層164dは、主として酸化物半導体層164aと同一の材料を含む。また、側壁保護層164dには、酸化物半導体層164aの下層に設けられる層(ここでは絶縁層151)の成分(例えばシリコン)を含有する場合がある。
また、図19(C)に示すように、酸化物半導体層164bの側面を側壁保護層164dで覆い、一対の電極105a、105bと接しない構成とすることにより、特に酸化物半導体層164bに主としてチャネルが形成される場合に、トランジスタのオフ時の意図しないリーク電流を抑制し、優れたオフ特性を有するトランジスタを実現できる。また、側壁保護層164dとしてスタビライザーとして機能するGaの含有量の多い材料を用いることで、酸化物半導体層164bの側面からの酸素の脱離を効果的に抑制し、電気的特性の安定性に優れたトランジスタを実現できる。
本実施の形態は、本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態9)
上記実施の形態で例示したトランジスタのチャネルが形成される領域に好適に用いることができる半導体及び半導体膜の一例について、以下に説明する。
酸化物半導体は、エネルギーギャップが3.0eV以上と大きく、酸化物半導体を適切な条件で加工し、そのキャリア密度を十分に低減して得られた酸化物半導体膜が適用されたトランジスタにおいては、オフ状態でのソースとドレイン間のリーク電流(オフ電流)を、従来のシリコンを用いたトランジスタと比較して極めて低いものとすることができる。
酸化物半導体膜をトランジスタに適用する場合、酸化物半導体膜の膜厚は2nm以上40nm以下とすることが好ましい。
適用可能な酸化物半導体としては、少なくともインジウム(In)あるいは亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザーとして、それらに加えてガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、チタン(Ti)、スカンジウム(Sc)、イットリウム(Y)、ランタノイド(例えば、セリウム(Ce)、ネオジム(Nd)、ガドリニウム(Gd))から選ばれた一種、または複数種が含まれていることが好ましい。
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、In−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系酸化物、In−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−Zr−Zn系酸化物、In−Ti−Zn系酸化物、In−Sc−Zn系酸化物、In−Y−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。
ここで、In−Ga−Zn系酸化物とは、InとGaとZnを主成分として有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素が入っていてもよい。
また、酸化物半導体として、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた一の金属元素または複数の金属元素、若しくは上記のスタビライザーとしての元素を示す。また、酸化物半導体として、InSnO(ZnO)(n>0、且つ、nは整数)で表記される材料を用いてもよい。
例えば、In:Ga:Zn=1:1:1、In:Ga:Zn=1:3:2、In:Ga:Zn=3:1:2、あるいはIn:Ga:Zn=2:1:3の原子数比のIn−Ga−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
酸化物半導体膜に水素が多量に含まれると、酸化物半導体と結合することによって、水素の一部がドナーとなり、キャリアである電子を生じてしまう。これにより、トランジスタのしきい値電圧がマイナス方向にシフトしてしまう。そのため、酸化物半導体膜の形成後において、脱水化処理(脱水素化処理)を行い酸化物半導体膜から、水素、又は水分を除去して不純物が極力含まれないように高純度化することが好ましい。
なお、酸化物半導体膜への脱水化処理(脱水素化処理)によって、酸化物半導体膜から酸素も同時に減少してしまうことがある。よって、酸化物半導体膜への脱水化処理(脱水素化処理)によって増加した酸素欠損を補填するため酸素を酸化物半導体膜に加える処理を行うことが好ましい。本明細書等において、酸化物半導体膜に酸素を供給する場合を、加酸素化処理と記す場合がある、または酸化物半導体膜に含まれる酸素を化学量論的組成よりも多くする場合を過酸素化処理と記す場合がある。
このように、酸化物半導体膜は、脱水化処理(脱水素化処理)により、水素または水分が除去され、加酸素化処理により酸素欠損を補填することによって、i型(真性)化またはi型に限りなく近く実質的にi型(真性)である酸化物半導体膜とすることができる。なお、実質的に真性とは、酸化物半導体膜中にドナーに由来するキャリアが極めて少なく(ゼロに近く)、キャリア密度が1×1017/cm以下、1×1016/cm以下、1×1015/cm以下、1×1014/cm以下、1×1013/cm以下であることをいう。
またこのように、i型又は実質的にi型である酸化物半導体膜を備えるトランジスタは、極めて優れたオフ電流特性を実現できる。例えば、酸化物半導体膜を用いたトランジスタがオフ状態のときのドレイン電流を、室温(25℃程度)にて1×10−18A以下、好ましくは1×10−21A以下、さらに好ましくは1×10−24A以下、または85℃にて1×10−15A以下、好ましくは1×10−18A以下、さらに好ましくは1×10−21A以下とすることができる。なお、トランジスタがオフ状態とは、nチャネル型のトランジスタの場合、ゲート電圧がしきい値電圧よりも十分小さい状態をいう。具体的には、ゲート電圧がしきい値電圧よりも1V以上、2V以上または3V以上小さければ、トランジスタはオフ状態となる。
酸化物半導体膜は、例えば非単結晶を有してもよい。非単結晶は、例えば、CAAC(C Axis Aligned Crystal)、多結晶、微結晶、非晶質部を有する。非晶質部は、微結晶、CAACよりも欠陥準位密度が高い。また、微結晶は、CAACよりも欠陥準位密度が高い。なお、CAACを有する酸化物半導体を、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)と呼ぶ。
酸化物半導体膜は、例えばCAAC−OSを有してもよい。CAAC−OSは、例えば、c軸配向し、a軸または/およびb軸はマクロに揃っていない。
酸化物半導体膜は、例えば微結晶を有してもよい。なお、微結晶を有する酸化物半導体を、微結晶酸化物半導体と呼ぶ。微結晶酸化物半導体膜は、例えば、1nm以上10nm未満のサイズの微結晶(ナノ結晶ともいう。)を膜中に含む。
酸化物半導体膜は、例えば非晶質部を有してもよい。なお、非晶質部を有する酸化物半導体を、非晶質酸化物半導体と呼ぶ。非晶質酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質酸化物半導体膜は、例えば、完全な非晶質であり、結晶部を有さない。
なお、酸化物半導体膜が、CAAC−OS、微結晶酸化物半導体、非晶質酸化物半導体の混合膜であってもよい。混合膜は、例えば、非晶質酸化物半導体の領域と、微結晶酸化物半導体の領域と、CAAC−OSの領域と、を有する。また、混合膜は、例えば、非晶質酸化物半導体の領域と、微結晶酸化物半導体の領域と、CAAC−OSの領域と、の積層構造を有してもよい。
なお、酸化物半導体膜は、例えば、単結晶を有してもよい。
酸化物半導体膜は、複数の結晶部を有し、当該結晶部のc軸が被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃っていることが好ましい。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよい。そのような酸化物半導体膜の一例としては、CAAC−OS膜がある。
CAAC−OS膜に含まれる結晶部は、一辺が100nm未満の立方体内に収まる大きさであることが多い。また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)による観察像では、CAAC−OS膜に含まれる結晶部と結晶部との境界は明確ではない。また、TEMによってCAAC−OS膜には明確な粒界(グレインバウンダリーともいう。)は確認できない。そのため、CAAC−OS膜は、粒界に起因する電子移動度の低下が抑制される。
CAAC−OS膜に含まれる結晶部は、例えば、c軸がCAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃い、かつab面に垂直な方向から見て金属原子が三角形状または六角形状に配列し、c軸に垂直な方向から見て金属原子が層状または金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載する場合、80°以上100°以下、好ましくは85°以上95°以下の範囲も含まれることとする。また、単に平行と記載する場合、−10°以上10°以下、好ましくは−5°以上5°以下の範囲も含まれることとする。
CAAC−OS膜は、例えば、X線回折(XRD:X−Ray Diffraction)装置を用い、out−of−plane法による分析を行うと、2θが31°近傍のピークが現れる場合がある。2θが31°近傍のピークは、InGaZnOの結晶であれば、(009)面に配向していることを示す。また、CAAC−OS膜は、例えば、2θが36°近傍のピークが現れる場合がある。2θが36°近傍のピークは、GaZnOの結晶であれば、(222)面に配向していることを示す。CAAC−OS膜は、好ましくは、2θが31°近傍にピークが現れ、2θが36°近傍にピークが現れない。
また、例えば、InGaZnOの結晶を有するCAAC−OS膜であれば、XRD装置を用い、c軸に垂直な方向からX線を入射させるin−plane法による分析を行うと、2θが56°近傍のピークが現れる場合がある。2θが56°近傍のピークは、InGaZnOの結晶の(110)面からの回折ピークである。ここで、2θを56°近傍で固定し、表面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行うと、a軸およびb軸の向きが揃っている単結晶酸化物半導体の場合は6つの対称性のピークが現れるが、CAAC−OS膜の場合は明瞭なピークが現れない。
なお、CAAC−OS膜において、結晶部の分布が一様でなくてもよい。例えば、CAAC−OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC−OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部の結晶性が低下することもある。
CAAC−OS膜に含まれる結晶部のc軸は、CAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃うため、CAAC−OS膜の形状(被形成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。また、結晶部は、成膜したとき、または成膜後に加熱処理などの結晶化処理を行ったときに形成される。従って、結晶部のc軸は、CAAC−OS膜が形成されたときの被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃う。
CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。よって、当該トランジスタは、信頼性が高い。
CAAC−OSは、例えば、多結晶である酸化物半導体スパッタリング用ターゲットを用い、スパッタリング法によって成膜することができる。当該スパッタリング用ターゲットにイオンが衝突すると、スパッタリング用ターゲットに含まれる結晶領域がa−b面から劈開し、a−b面に平行な面を有する平板状またはペレット状のスパッタリング粒子として剥離することがある。この場合、当該平板状またはペレット状のスパッタリング粒子が、結晶状態を維持したまま被成膜面に到達することで、CAAC−OS膜を成膜することができる。
平板状のスパッタリング粒子は、例えばa−b面に平行な面の円相当径が3nm以上10nm以下、厚さ(a−b面に垂直な方向の長さ)が0.7nm以上1nm未満である。なお、平板状のスパッタリング粒子は、a−b面に平行な面が正三角形又は正六角形であってもよい。ここで、円相当径とは、面の面積と等しい正円の直径をいう。
また、CAAC−OSを成膜するために、以下の条件を適用することが好ましい。
成膜時の基板温度を高めることで、基板に到達した平板状のスパッタリング粒子のマイグレーションが起こり、スパッタリング粒子の平らな面が基板に付着する。このとき、スパッタリング粒子が正に帯電することで、スパッタリング粒子同士が反発しながら基板に付着するため、スパッタリング粒子が偏って不均一に重なることがなく、厚さの均一なCAAC−OSを成膜することができる。具体的には、基板温度を100℃以上740℃以下、好ましくは200℃以上500℃以下として成膜することが好ましい。
また、成膜時の不純物混入を低減することで、不純物によって結晶状態が崩れることを抑制できる。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素および窒素など)を低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が−80℃以下、好ましくは−100℃以下である成膜ガスを用いる。
また、成膜ガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメージを軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100体積%とする。
CAAC−OSを成膜した後、加熱処理を行ってもよい。加熱処理の温度は、100℃以上740℃以下、好ましくは200℃以上500℃以下とする。また、加熱処理の時間は1分以上24時間以下、好ましくは6分以上4時間以下とする。また、加熱処理は、不活性雰囲気又は酸化性雰囲気で行えばよい。好ましくは、不活性雰囲気で加熱処理を行った後、酸化性雰囲気で加熱処理を行う。不活性雰囲気での加熱処理により、CAAC−OSの不純物濃度を短時間で低減することができる。一方、不活性雰囲気での加熱処理によりCAAC−OSに酸素欠損が生成されることがある。その場合、酸化性雰囲気での加熱処理によって該酸素欠損を低減することができる。また、加熱処理を行うことで、CAAC−OSの結晶性をさらに高めることができる。なお、加熱処理は、1000Pa以下、100Pa以下、10Pa以下又は1Pa以下の減圧下で行ってもよい。減圧下では、CAAC−OSの不純物濃度をさらに短時間で低減することができる。
スパッタリング用ターゲットの一例として、In−Ga−Zn−O化合物ターゲットについて以下に示す。
InO粉末、GaO粉末及びZnO粉末を所定のmol数で混合し、加圧処理後、1000℃以上1500℃以下の温度で加熱処理をすることで多結晶であるIn−Ga−Zn−O化合物ターゲットとする。なお、X、Y及びZは任意の正数である。ここで、所定のmol数比は、例えば、InO粉末、GaO粉末及びZnO粉末が、1:1:1、1:1:2、1:3:2、1:9:6、2:1:3、2:2:1、3:1:1、3:1:2、3:1:4、4:2:3、8:4:3、またはこれらの近傍の値とすることができる。なお、粉末の種類、及びその混合するmol数比は、作製するスパッタリング用ターゲットによって適宜変更すればよい。
または、CAAC−OSは、以下の方法により形成してもよい。
まず、第1の酸化物半導体膜を1nm以上10nm未満の厚さで成膜する。第1の酸化物半導体膜はスパッタリング法を用いて成膜する。具体的には、基板温度を100℃以上500℃以下、好ましくは150℃以上450℃以下とし、成膜ガス中の酸素割合を30体積%以上、好ましくは100体積%として成膜する。
次に、加熱処理を行い、第1の酸化物半導体膜を結晶性の高い第1のCAAC−OSとする。加熱処理の温度は、350℃以上740℃以下、好ましくは450℃以上650℃以下とする。また、加熱処理の時間は1分以上24時間以下、好ましくは6分以上4時間以下とする。また、加熱処理は、不活性雰囲気または酸化性雰囲気で行えばよい。好ましくは、不活性雰囲気で加熱処理を行った後、酸化性雰囲気で加熱処理を行う。不活性雰囲気での加熱処理により、第1の酸化物半導体膜の不純物濃度を短時間で低減することができる。一方、不活性雰囲気での加熱処理により第1の酸化物半導体膜に酸素欠損が生成されることがある。その場合、酸化性雰囲気での加熱処理によって該酸素欠損を低減することができる。なお、加熱処理は1000Pa以下、100Pa以下、10Pa以下または1Pa以下の減圧下で行ってもよい。減圧下では、第1の酸化物半導体膜の不純物濃度をさらに短時間で低減することができる。
第1の酸化物半導体膜は、厚さが1nm以上10nm未満であることにより、厚さが10nm以上である場合と比べ、加熱処理によって容易に結晶化させることができる。
または、CAAC−OSは、スパッタ法とは異なる方法、例えば、熱CVD法により形成してもよい。熱CVD法の例としてMOCVD(Metal Organic Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法を使っても良い。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
熱CVD法は、チャンバー内を大気圧または減圧下とし、原料ガスと酸化剤を同時にチャンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行ってもよい。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。例えば、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以上の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の単原子層を成膜し、後から導入される第2の原料ガスと反応して、第2の単原子層が第1の単原子層上に積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なFETを作製する場合に適している。
例えば、InGaZnO(X>0)膜を成膜する場合には、トリメチルインジウム、トリメチルガリウム、及びジエチル亜鉛を用いる。なお、トリメチルインジウムの化学式は、(CHInである。また、トリメチルガリウムの化学式は、(CHGaである。また、ジエチル亜鉛の化学式は、(CHZnである。また、これらの組み合わせに限定されず、トリメチルガリウムに代えてトリエチルガリウム(化学式(CGa)を用いることもでき、ジエチル亜鉛に代えてジメチル亜鉛(化学式(CZn)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばInGaZnO(X>0)膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してInO層を形成し、その後、Ga(CHガスとOガスを同時に導入してGaO層を形成し、更にその後Zn(CHとOガスを同時に導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてInGaO層やInZnO層、GaInO層、ZnInO層、GaZnO層などの混合化合物層を形成しても良い。なお、Oガスに変えてAr等の不活性ガスでバブリングして得られたHOガスを用いても良いが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにかえて、In(Cガスを用いても良い。また、Ga(CHガスにかえて、Ga(Cガスを用いても良い。また、In(CHガスにかえて、In(Cガスを用いても良い。また、Zn(CHガスを用いても良い。
次に、第1の酸化物半導体膜と同じ組成である第2の酸化物半導体膜を10nm以上50nm以下の厚さで成膜する。第2の酸化物半導体膜はスパッタリング法を用いて成膜する。具体的には、基板温度を100℃以上500℃以下、好ましくは150℃以上450℃以下とし、成膜ガス中の酸素割合を30体積%以上、好ましくは100体積%として成膜する。
次に、加熱処理を行い、第2の酸化物半導体膜を第1のCAAC−OSから固相成長させることで、結晶性の高い第2のCAAC−OSとする。加熱処理の温度は、350℃以上740℃以下、好ましくは450℃以上650℃以下とする。また、加熱処理の時間は1分以上24時間以下、好ましくは6分以上4時間以下とする。また、加熱処理は、不活性雰囲気または酸化性雰囲気で行えばよい。好ましくは、不活性雰囲気で加熱処理を行った後、酸化性雰囲気で加熱処理を行う。不活性雰囲気での加熱処理により、第2の酸化物半導体膜の不純物濃度を短時間で低減することができる。一方、不活性雰囲気での加熱処理により第2の酸化物半導体膜に酸素欠損が生成されることがある。その場合、酸化性雰囲気での加熱処理によって該酸素欠損を低減することができる。なお、加熱処理は1000Pa以下、100Pa以下、10Pa以下または1Pa以下の減圧下で行ってもよい。減圧下では、第2の酸化物半導体膜の不純物濃度をさらに短時間で低減することができる。
以上のようにして、合計の厚さが10nm以上であるCAAC−OSを形成することができる。
また、酸化物半導体膜は、複数の酸化物半導体膜が積層された構造でもよい。
例えば、酸化物半導体膜を、酸化物半導体膜(便宜上、第1層と呼ぶ)とゲート絶縁膜との間に、第1層を構成する元素からなり、第1層よりも電子親和力が0.2eV以上小さい第2層を設けてもよい。このとき、ゲート電極から電界が印加されると、第1層にチャネルが形成され、第2層にはチャネルが形成されない。第1層は、第2層と構成する元素が同じであるため、第1層と第2層との界面において、界面散乱がほとんど起こらない。従って、第1層とゲート絶縁膜との間に第2層を設けることによって、トランジスタの電界効果移動度を高くすることができる。
さらに、ゲート絶縁膜に酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜または窒化シリコン膜を用いる場合、ゲート絶縁膜に含まれるシリコンが、酸化物半導体膜に混入することがある。酸化物半導体膜にシリコンが含まれると、酸化物半導体膜の結晶性の低下、キャリア移動度の低下などが起こる。従って、チャネルの形成される第1層のシリコン濃度を低減するために、第1層とゲート絶縁膜との間に第2層を設けることが好ましい。同様の理由により、第1層を構成する元素からなり、第1層よりも電子親和力が0.2eV以上小さい第3層を設け、第1層を第2層及び第3層で挟むことが好ましい。
このような構成とすることで、チャネルの形成される領域へのシリコンなどの不純物の拡散を低減さらには防止することができるため、信頼性の高いトランジスタを得ることができる。
なお、酸化物半導体膜をCAAC−OSとするためには、酸化物半導体膜中に含まれるシリコン濃度を2.5×1021/cm以下とする。好ましくは、酸化物半導体膜中に含まれるシリコン濃度を、1.4×1021/cm未満、より好ましくは4×1019/cm未満、さらに好ましくは2.0×1018/cm未満とする。酸化物半導体膜に含まれるシリコン濃度が、1.4×1021/cm以上であると、トランジスタの電界効果移動度の低下の恐れがあり、4.0×1019/cm以上であると、酸化物半導体膜と接する膜との界面で酸化物半導体膜がアモルファス化する恐れがあるためである。また、酸化物半導体膜に含まれるシリコン濃度を2.0×1018/cm未満とすることで、トランジスタの信頼性のさらなる向上並びに酸化物半導体膜におけるDOS(density of state)の低減が期待できる。なお、酸化物半導体膜中のシリコン濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)で測定することができる。
実施の形態は、本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態10)
本実施の形態では、上記実施の形態で説明した液晶表示装置を用いて作製される電子機器の具体例について、図20を用いて説明する。
本発明を適用可能な電子機器の一例として、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音楽再生装置、遊技機(パチンコ機、スロットマシン等)、ゲーム筐体が挙げられる。これらの電子機器の具体例を図20に示す。
図20(A)は、表示部を有する携帯情報端末1400を示している。携帯情報端末1400は、筐体1401に表示部1402及び操作ボタン1403が組み込まれている。本発明の一態様の液晶表示装置は、表示部1402に用いることができる。
図20(B)は、携帯電話機1410を示している。携帯電話機1410は、筐体1411に表示部1412、操作ボタン1413、スピーカー1414、及びマイク1415が組み込まれている。本発明の一態様の液晶表示装置は、表示部1412に用いることができる。
図20(C)は、音楽再生装置1420を示している。音楽再生装置1420は、筐体1421に表示部1422、操作ボタン1423、アンテナ1424が組み込まれている。またアンテナ1424からは、無線信号により情報を送受信することができる。本発明の一態様の液晶表示装置は、表示部1422に用いることができる。
表示部1402、表示部1412及び表示部1422は、タッチ入力機能を有しており、表示部1402、表示部1412及び表示部1422に表示された表示ボタン(図示せず)を指などで触れることで、画面操作や、情報を入力することができる。
先の実施の形態に示した液晶表示装置を表示部1402、表示部1412及び表示部1422に用いることで、表示品位の向上が図られた表示部1402、表示部1412及び表示部1422とすることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態11)
本実施の形態では、上記実施の形態で説明したリフレッシュレートを低減する意義に関して説明を行う。
目の疲労には、神経系の疲労と、筋肉系の疲労の2種類がある。神経系の疲労は、長時間液晶表示装置の発光、点滅画面を見続けることで、その明るさが眼の網膜や神経、脳を刺激して疲れさせるものである。筋肉系の疲労は、ピント調節のときに使用する毛様体の筋肉を酷使することにより疲れさせるものである。
図21(A)に、従来の液晶表示装置の表示を表す模式図を示す。図21(A)に示すように、従来の液晶表示装置の表示では、1秒間に60回の画像の書き換えが行われている。このような画面を長時間見続けることにより、使用者の眼の網膜や神経、脳を刺激して眼の疲労が引き起こされるおそれがあった。
本発明の一態様では、液晶表示装置の画素部に、酸化物半導体を用いたトランジスタ、例えば、CAAC−OSを用いたトランジスタを適用する。当該トランジスタのオフ電流は、極めて小さいため、フレーム周波数を下げても、液晶表示装置の輝度の維持が可能となる。
つまり、図21(B)に示すように、例えば、5秒間に1回の画像の書き換えが可能となるため、極力長い時間同じ映像を見ることが可能となり、使用者に視認される画面のちらつきが低減される。これにより、使用者の眼の網膜や神経、脳の刺激が低減され、神経系の疲労が軽減される。
また、図22(A)に示すように、1画素のサイズが大きい場合(例えば精細度が150ppi未満の場合)、液晶表示装置に表示された文字はぼやけてしまう。液晶表示装置に表示されたぼやけた文字を長時間見続けると、毛様体の筋肉が、絶えずピントを合わせようと動いているにもかかわらず、ピントが合わせづらい状態が続くことになり、目に負担をかけてしまうおそれがあった。
これに対し、図22(B)に示すように、本発明の一態様にかかる液晶表示装置では、1画素のサイズが小さく高精細な表示が可能となるため、緻密で滑らかな表示とすることができる。これにより、毛様体の筋肉が、ピントを合わせやすくなるため、使用者の筋肉系の疲労が軽減される。
なお、目の疲労を定量的に測定する方法が検討されている。例えば、神経系の疲労の評価指標としては、臨界融合周波数(CFF:Critical Flicker(Fusion) Frequency)などが知られている。また、筋肉系の疲労の評価指標としては、調節時間や調節近点距離などが知られている。
そのほか、目の疲労を評価する方法として、脳波測定、サーモグラフィ法、瞬きの回数の測定、涙液量の評価、瞳孔の収縮反応速度の評価や、自覚症状を調査するためのアンケート等がある。
本発明の一態様によれば、目に優しい液晶表示装置を提供することができる。
(実施例)
本実施例では、上記実施の形態1で説明した本発明の一態様による液晶層を用いて実際にパネルを作製し、透過率を測定した結果について説明する。本実施例で測定に用いたパネルは、液晶素子が横電界により配向する液晶層を有するFFSモードの液晶表示装置である。
図26(A)に実線2602で示す波形は、誘電率の異方性が3.8の液晶層を有する液晶表示装置に対して、中間階調となる電圧をフレーム周波数を1Hzで鋸波形となるように印加した際、そのときの透過率の時間変化を表している。また、図26(A)に点線2601で示す波形は、比較のため、誘電率の異方性が5.2の液晶層を有する液晶表示装置に対して、中間階調となる電圧をフレーム周波数を1Hzで鋸波形となるように印加した際、そのときの透過率の時間変化を表している。
図26(B)に実線2604及び点線2603で示す波形は、図26(A)で説明した条件のうち、フレーム周波数を0.2Hzとした場合の、透過率の時間変化を表している。
なお図26(A)、(B)に示すグラフにおける縦軸は、規格化された透過率である。具体的に図26(A)、(B)に示すグラフでは、透過率を100%とした際を1として、中間階調による透過率の変化を表している。
図26(A)の点線2601で示す、誘電率の異方性が5.2の液晶表示装置の場合の透過率の時間変化は、図26(A)の実線2602で示す、誘電率の異方性が3.8の液晶表示装置の場合の透過率の時間変化に比べて大きかった。この結果は、上記実施の形態1で説明した図4の結果と、一致した。
また図26(B)の点線2603で示す、誘電率の異方性が5.2の液晶表示装置の場合の透過率の時間変化は、図26(B)の実線2604で示す、誘電率の異方性が3.8の液晶表示装置の場合の透過率の時間変化に比べて大きかった。この結果は、上記実施の形態1で説明した図5の結果と、一致した。
図26(A)、(B)に示す点線2601及び点線2603で示される鋸波形は、液晶層に含まれる不純物に起因する残留DCによるものである。一方、液晶層に含まれる不純物の割合の少ない、図26(A)、(B)に示す実線2602及び実線2604で示される鋸波形は、残留DCによる透過率の揺らぎが低減されていることがわかった。
また、図26(A)、(B)に示す中間階調での透過率の時間変化によると、透過率の変動幅を40%程度に抑制することができることが確認できた。
図31に示す複数の波形は、誘電率の異方性が3.8の液晶層を有する液晶表示装置に対して、フレーム周波数を1Hz、0.2Hz、0.017Hzで、中間階調となる電圧を鋸波形となるように印加した際、そのときの透過率の時間変化を表している。
図31に示す複数の波形から、フレーム周波数を1Hz、0.2Hz、0.017Hzと変化させても、透過率の変化がほとんど変わらないことが確認できた。
また図27には、誘電率の異方性が3.8の液晶層を有する液晶表示装置による表示例を示す。
図27に示すように、実用上問題がなく、良好な表示を得ることができた。
G1 走査線
G2 走査線
S1 信号線
S2 信号線
S3 信号線
10 領域
11 第1の電極
12 第2の電極
13 配向膜
14 配向膜
15 液晶分子
21 偏光板
22 偏光板
23 光検出器
24 矢印
25 矢印
100 トランジスタ
101 基板
102 ゲート電極
103 絶縁層
104 酸化物半導体層
105a 電極
105b 電極
106 絶縁層
107 絶縁層
110 トランジスタ
114 酸化物半導体層
114a 酸化物半導体層
114b 酸化物半導体層
120 トランジスタ
124 酸化物半導体層
124a 酸化物半導体層
124b 酸化物半導体層
124c 酸化物半導体層
150 トランジスタ
151 絶縁層
152 絶縁層
160 トランジスタ
164 酸化物半導体層
164a 酸化物半導体層
164b 酸化物半導体層
164c 酸化物半導体層
164d 側壁保護層
200 パネルモジュール
201 第1の基板
202 第2の基板
203 シール材
204 FPC
205 外部接続電極
206 配線
208 接続層
211 画素部
212 IC
213 ゲート駆動回路
231 トランジスタ
232 トランジスタ
237 絶縁層
238 絶縁層
239 絶縁層
242 ブラックマトリクス
243 カラーフィルタ
250 液晶素子
251 第1の電極
252 液晶
253 第2の電極
254 スペーサ
255 オーバーコート
256 トランジスタ
400 タッチパネル
401 第1の基板
402 第2の基板
403 基板
404 FPC
405 外部接続電極
406 配線
411 表示部
412 ソース駆動回路
413 ゲート駆動回路
414 画素部
415 FPC
416 外部接続電極
417 配線
420 液晶表示装置
421 電極
422 電極
424 絶縁層
423 配線
430 タッチセンサ
431 液晶
433 絶縁層
434 接着層
435 カラーフィルタ層
436 封止材
437 スイッチング素子層
438 配線
439 接続層
440 センサ層
441 偏光板
500 入力手段
500_C 信号
600 液晶表示装置
610 制御部
615_C 二次制御信号
615_V 二次画像信号
620 演算装置
625_C 一次制御信号
625_V 一次画像信号
630 表示部
631 画素部
631a 領域
631b 領域
631c 領域
631p 画素
632 G駆動回路
632_G G信号
633 S駆動回路
633_S S信号
634 画素回路
634c(i) 寄生容量
634c 容量素子
634t トランジスタ
635 表示素子
635_1 画素電極
635LC 液晶素子
650 光供給部
701 演算装置
702 記憶装置
703 グラフィックユニット
704 表示手段
1400 携帯情報端末
1401 筐体
1402 表示部
1403 操作ボタン
1410 携帯電話機
1411 筐体
1412 表示部
1413 操作ボタン
1414 スピーカー
1415 マイク
1420 音楽再生装置
1421 筐体
1422 表示部
1423 操作ボタン
1424 アンテナ
2601 点線
2602 実線
2603 点線
2604 実線

Claims (6)

  1. フレーム周波数を1Hz以下として静止画像を表示する画素を有し、
    前記画素は誘電率の異方性が2以上5以下である液晶層を有することを特徴とする液晶表示装置。
  2. フレーム周波数を1Hz以下として静止画像を表示する画素を有し、
    前記画素は、トランジスタと、液晶層を有する液晶素子とを有し、
    前記液晶層は、誘電率の異方性が2以上5以下であることを特徴とする液晶表示装置。
  3. 請求項2において、前記トランジスタは、半導体層を有し、
    前記半導体層は、酸化物半導体を有することを特徴とする液晶表示装置。
  4. 請求項1乃至請求項3のいずれか一において、前記誘電率の異方性が2.6以上4.4以下である液晶層を有することを特徴とする液晶表示装置。
  5. 請求項1乃至請求項3のいずれか一において、前記誘電率の異方性が3以上3.8以下である液晶層を有することを特徴とする液晶表示装置。
  6. 請求項1乃至請求項5のいずれか一において、前記フレーム周波数は、0.2Hz以下であることを特徴とする液晶表示装置。
JP2013233605A 2012-11-15 2013-11-12 液晶表示装置 Active JP6423586B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233605A JP6423586B2 (ja) 2012-11-15 2013-11-12 液晶表示装置

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2012251653 2012-11-15
JP2012251653 2012-11-15
JP2012260839 2012-11-29
JP2012260839 2012-11-29
JP2013044848 2013-03-07
JP2013044848 2013-03-07
JP2013151217 2013-07-22
JP2013151217 2013-07-22
JP2013233605A JP6423586B2 (ja) 2012-11-15 2013-11-12 液晶表示装置

Publications (3)

Publication Number Publication Date
JP2015043054A true JP2015043054A (ja) 2015-03-05
JP2015043054A5 JP2015043054A5 (ja) 2016-11-10
JP6423586B2 JP6423586B2 (ja) 2018-11-14

Family

ID=50681392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233605A Active JP6423586B2 (ja) 2012-11-15 2013-11-12 液晶表示装置

Country Status (5)

Country Link
US (2) US9129568B2 (ja)
JP (1) JP6423586B2 (ja)
KR (1) KR20150085035A (ja)
TW (2) TWI677740B (ja)
WO (1) WO2014077295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218451A (ja) * 2015-03-23 2016-12-22 株式会社半導体エネルギー研究所 表示装置及び表示装置の作製方法
US10706790B2 (en) 2014-12-01 2020-07-07 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2987134B1 (fr) * 2012-02-16 2014-11-28 Commissariat Energie Atomique Procede et dispositif de mesure de l'evolution dans le temps des performances electriques d'un transistor fdsoi
US20140111558A1 (en) * 2012-10-23 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Display device and program
US9263531B2 (en) 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
JP2014142616A (ja) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 液晶表示装置
KR20150086763A (ko) * 2014-01-20 2015-07-29 삼성디스플레이 주식회사 발광형 표시장치 및 그 제조방법
JP2017116819A (ja) * 2015-12-25 2017-06-29 株式会社ジャパンディスプレイ 液晶表示装置
WO2017125834A1 (en) 2016-01-18 2017-07-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and data processor
JP2018013765A (ja) 2016-04-28 2018-01-25 株式会社半導体エネルギー研究所 電子デバイス
TWI709952B (zh) 2016-07-01 2020-11-11 日商半導體能源研究所股份有限公司 電子裝置、電子裝置的驅動方法
TWI610285B (zh) * 2016-08-16 2018-01-01 晨星半導體股份有限公司 應用於顯示器的裝置及相關的影像顯示方法
CN207264695U (zh) * 2017-09-30 2018-04-20 云谷(固安)科技有限公司 终端及显示屏
CN108701214A (zh) * 2017-12-25 2018-10-23 深圳市大疆创新科技有限公司 图像数据处理方法、装置及设备
CN108564928B (zh) 2018-03-15 2021-01-26 京东方科技集团股份有限公司 显示装置及其显示驱动方法
CN109036236B (zh) * 2018-09-14 2021-10-26 京东方科技集团股份有限公司 阵列基板检测方法及检测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000267144A (ja) * 1999-03-16 2000-09-29 Toshiba Corp 液晶表示装置
JP2002169184A (ja) * 2000-11-30 2002-06-14 Hitachi Ltd 液晶表示装置
JP2002311457A (ja) * 2001-04-16 2002-10-23 Hitachi Ltd 液晶表示装置
JP2004051646A (ja) * 2002-05-31 2004-02-19 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2004151222A (ja) * 2002-10-29 2004-05-27 Sharp Corp 液晶表示制御装置および液晶表示装置
JP2006292972A (ja) * 2005-04-08 2006-10-26 Sharp Corp 表示装置の駆動装置および表示装置
JP2008233713A (ja) * 2007-03-23 2008-10-02 Sony Corp 液晶表示装置および電子機器
US20100103365A1 (en) * 2008-10-29 2010-04-29 Samsung Electronics Co., Ltd. Liquid crystal display
JP2011141525A (ja) * 2009-10-30 2011-07-21 Semiconductor Energy Lab Co Ltd 液晶表示装置、液晶表示装置の駆動方法、及び当該液晶表示装置を具備する電子機器
JP2011237760A (ja) * 2009-12-18 2011-11-24 Semiconductor Energy Lab Co Ltd 液晶表示装置及び電子機器

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906956B2 (ja) * 1998-12-24 2007-04-18 株式会社 日立ディスプレイズ 液晶表示装置
US7362294B2 (en) * 2000-04-26 2008-04-22 Jps Group Holdings, Ltd Low power LCD with gray shade driving scheme
JP3544348B2 (ja) * 2000-09-12 2004-07-21 シャープ株式会社 液晶表示装置
JP2003169184A (ja) * 2001-11-29 2003-06-13 Ricoh Co Ltd ファクシミリ装置
GB2419215A (en) * 2004-10-14 2006-04-19 Magink Display Technologies In Display device
US7334901B2 (en) * 2005-04-22 2008-02-26 Ostendo Technologies, Inc. Low profile, large screen display using a rear projection array system
TWI295047B (en) * 2006-08-04 2008-03-21 Himax Display Inc Displaying method for liquid crystal display
JP5227502B2 (ja) * 2006-09-15 2013-07-03 株式会社半導体エネルギー研究所 液晶表示装置の駆動方法、液晶表示装置及び電子機器
US9176353B2 (en) * 2007-06-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5135063B2 (ja) 2008-05-27 2013-01-30 株式会社ジャパンディスプレイイースト 液晶表示装置
KR101648927B1 (ko) * 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR102462145B1 (ko) 2009-10-16 2022-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 이를 구비한 전자 장치
WO2011046010A1 (en) 2009-10-16 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the liquid crystal display device
KR20180014255A (ko) 2009-11-13 2018-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 이 표시 장치를 구비한 전자 기기
CN102648490B (zh) 2009-11-30 2016-08-17 株式会社半导体能源研究所 液晶显示设备、用于驱动该液晶显示设备的方法、以及包括该液晶显示设备的电子设备
WO2011068106A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
CN102640207A (zh) 2009-12-18 2012-08-15 株式会社半导体能源研究所 液晶显示装置及其驱动方法
CN105390110B (zh) 2009-12-18 2019-04-30 株式会社半导体能源研究所 显示设备及其驱动方法
KR20120101716A (ko) * 2009-12-24 2012-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
KR101613701B1 (ko) 2009-12-25 2016-04-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 구동 방법
CN102714023B (zh) * 2010-01-20 2016-05-04 株式会社半导体能源研究所 液晶显示设备的驱动方法
KR101744906B1 (ko) 2010-01-20 2017-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 표시 장치의 구동 방법
WO2011089832A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for driving display device and liquid crystal display device
CN102713999B (zh) 2010-01-20 2016-01-20 株式会社半导体能源研究所 电子设备和电子系统
KR101842860B1 (ko) 2010-01-20 2018-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치의 구동 방법
KR20200088506A (ko) 2010-01-24 2020-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
WO2011096153A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Display device
CN102763156B (zh) 2010-02-12 2015-11-25 株式会社半导体能源研究所 液晶显示装置和电子装置
KR101848684B1 (ko) * 2010-02-19 2018-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 전자 장치
WO2011105200A1 (en) 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
KR101779235B1 (ko) 2010-03-08 2017-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
TWI594173B (zh) 2010-03-08 2017-08-01 半導體能源研究所股份有限公司 電子裝置及電子系統
WO2011111504A1 (en) 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Electronic device and electronic system
WO2011135988A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving method the same
US9697788B2 (en) 2010-04-28 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2011136018A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
US9349325B2 (en) 2010-04-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9478185B2 (en) 2010-05-12 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
US9064473B2 (en) 2010-05-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
CN102906980B (zh) 2010-05-21 2015-08-19 株式会社半导体能源研究所 半导体装置及显示装置
WO2011145707A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
TWI541782B (zh) 2010-07-02 2016-07-11 半導體能源研究所股份有限公司 液晶顯示裝置
US8605059B2 (en) 2010-07-02 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Input/output device and driving method thereof
JP5832181B2 (ja) 2010-08-06 2015-12-16 株式会社半導体エネルギー研究所 液晶表示装置
JP5825895B2 (ja) 2010-08-06 2015-12-02 株式会社半導体エネルギー研究所 液晶表示装置
JP5848912B2 (ja) 2010-08-16 2016-01-27 株式会社半導体エネルギー研究所 液晶表示装置の制御回路、液晶表示装置、及び当該液晶表示装置を具備する電子機器
US9230994B2 (en) 2010-09-15 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2012115051A1 (ja) * 2011-02-25 2012-08-30 シャープ株式会社 ドライバ装置、駆動方法、及び、表示装置
KR101850510B1 (ko) * 2011-03-22 2018-04-20 삼성디스플레이 주식회사 산화물 반도체의 전구체 조성물 및 이를 이용한 박막 트랜지스터 표시판의 제조 방법
US9111795B2 (en) 2011-04-29 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor connected to memory element through oxide semiconductor film
CN103534950B (zh) 2011-05-16 2017-07-04 株式会社半导体能源研究所 可编程逻辑装置
US8779799B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
TWI639150B (zh) 2011-11-30 2018-10-21 日商半導體能源研究所股份有限公司 半導體顯示裝置
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000267144A (ja) * 1999-03-16 2000-09-29 Toshiba Corp 液晶表示装置
JP2002169184A (ja) * 2000-11-30 2002-06-14 Hitachi Ltd 液晶表示装置
JP2002311457A (ja) * 2001-04-16 2002-10-23 Hitachi Ltd 液晶表示装置
JP2004051646A (ja) * 2002-05-31 2004-02-19 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2004151222A (ja) * 2002-10-29 2004-05-27 Sharp Corp 液晶表示制御装置および液晶表示装置
JP2006292972A (ja) * 2005-04-08 2006-10-26 Sharp Corp 表示装置の駆動装置および表示装置
JP2008233713A (ja) * 2007-03-23 2008-10-02 Sony Corp 液晶表示装置および電子機器
US20100103365A1 (en) * 2008-10-29 2010-04-29 Samsung Electronics Co., Ltd. Liquid crystal display
JP2011141525A (ja) * 2009-10-30 2011-07-21 Semiconductor Energy Lab Co Ltd 液晶表示装置、液晶表示装置の駆動方法、及び当該液晶表示装置を具備する電子機器
JP2011237760A (ja) * 2009-12-18 2011-11-24 Semiconductor Energy Lab Co Ltd 液晶表示装置及び電子機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10706790B2 (en) 2014-12-01 2020-07-07 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
JP2016218451A (ja) * 2015-03-23 2016-12-22 株式会社半導体エネルギー研究所 表示装置及び表示装置の作製方法
JP2016218452A (ja) * 2015-03-23 2016-12-22 株式会社半導体エネルギー研究所 装置及び装置の作製方法
US10020350B2 (en) 2015-03-23 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Display panel and information processing device
US10516008B2 (en) 2015-03-23 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Display panel and information processing device
US11018206B2 (en) 2015-03-23 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Display panel and information processing device

Also Published As

Publication number Publication date
WO2014077295A1 (en) 2014-05-22
US9129568B2 (en) 2015-09-08
KR20150085035A (ko) 2015-07-22
TWI620974B (zh) 2018-04-11
TW201426145A (zh) 2014-07-01
TWI677740B (zh) 2019-11-21
TW201825992A (zh) 2018-07-16
JP6423586B2 (ja) 2018-11-14
US10008162B2 (en) 2018-06-26
US20150379945A1 (en) 2015-12-31
US20140132870A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6423586B2 (ja) 液晶表示装置
JP7407253B2 (ja) 表示装置、電子機器
JP6298276B2 (ja) 表示装置
US10347212B2 (en) Method for driving information processing device, program, and information processing device
US9390665B2 (en) Display device
JP6205249B2 (ja) 情報処理装置の駆動方法
JP2014142623A (ja) 表示装置
KR20200104945A (ko) 반도체 장치, 및 반도체 장치의 제작 방법
US20140118378A1 (en) Method for driving display device
JP2014142616A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250