JP2015038239A - Mixed powder for powder metallurgy, method for producing the same and sintered compact made of iron base powder - Google Patents

Mixed powder for powder metallurgy, method for producing the same and sintered compact made of iron base powder Download PDF

Info

Publication number
JP2015038239A
JP2015038239A JP2014109474A JP2014109474A JP2015038239A JP 2015038239 A JP2015038239 A JP 2015038239A JP 2014109474 A JP2014109474 A JP 2014109474A JP 2014109474 A JP2014109474 A JP 2014109474A JP 2015038239 A JP2015038239 A JP 2015038239A
Authority
JP
Japan
Prior art keywords
powder
mixed
machinability
machinability improving
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014109474A
Other languages
Japanese (ja)
Other versions
JP5904234B2 (en
Inventor
主代 晃一
Koichi Nushishiro
晃一 主代
前谷 敏夫
Toshio Maetani
敏夫 前谷
尾野 友重
Tomoshige Ono
友重 尾野
由紀子 尾▲崎▼
Yukiko Ozaki
由紀子 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014109474A priority Critical patent/JP5904234B2/en
Publication of JP2015038239A publication Critical patent/JP2015038239A/en
Application granted granted Critical
Publication of JP5904234B2 publication Critical patent/JP5904234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide mixed powder for powder metallurgy not only capable of sintering a compact without exerting a bad influence on the furnace environment of a sintering furnace but also having excellent lathe machinability and excellent drill machinability.SOLUTION: The powder for improving machinability is made into crystalline laminar alkali silica, and the blending amount of the powder for improving machinability is controlled to the range of 0.01 to 1.0% by mass% to the total amount of iron base powder, powder for alloying and the powder for improving machinability.

Description

本発明は、自動車焼結部品用などに好適な、鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合した粉末冶金用混合粉とその製造方法、ならびに、この混合粉を成形、焼結して得られる鉄基粉末製焼結体に関するものであって、特に、鉄基粉末製焼結体の切削性改善を図ろうとするものである。   The present invention relates to a powder for powder metallurgy mixed with an iron-based powder, an alloy powder, a machinability improving powder and a lubricant, suitable for automobile sintered parts, and a method for producing the same, and molding the mixed powder. The present invention relates to a sintered body made of iron-based powder obtained by sintering, and particularly aims to improve the machinability of the sintered body made of iron-based powder.

粉末冶金技術の進歩によって、高寸法精度で複雑な形状の部品をニアネット形状に製造することができるようになったため、粉末冶金技術を利用した製品が各種分野で利用されている。粉末冶金技術は、粉末を所望形状の金型に充填、成形した後、焼結を行うことから、形状の自由度が高いことが特徴となっている。そのため、形状が複雑な歯車等の機械部品に適用する事例が多い。   Advances in powder metallurgy technology have made it possible to manufacture parts with complex shapes with high dimensional accuracy in a near net shape, and therefore products using powder metallurgy technology are used in various fields. The powder metallurgy technique is characterized by a high degree of freedom in shape because powder is filled in a mold having a desired shape, and then sintered. For this reason, there are many cases of application to mechanical parts such as gears having complicated shapes.

また、鉄系粉末冶金の分野では、鉄基粉末(金属粉末)に、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸亜鉛、ステアリン酸リチウム等の潤滑剤とを混合した鉄基混合粉を、所定形状の金型に充填したのち加圧成形して成形体とし、ついで、焼結処理を施して焼結部品を得ている。このようにして得られた焼結部品は、一般的に寸法精度が良いとされるが、極めて厳しい寸法精度が要求される焼結部品を製造する場合には、焼結した後に、さらに切削加工を施す必要があり、この切削加工においては、旋盤による旋削やドリルによる穴あけなどの加工が、種々の切削速度で行われる。   In the field of iron-based powder metallurgy, an iron-based mixed powder in which an iron-based powder (metal powder) is mixed with a powder for an alloy such as copper powder or graphite powder and a lubricant such as zinc stearate or lithium stearate. Are filled into a mold having a predetermined shape and then pressure-molded to form a molded body, and then subjected to a sintering treatment to obtain a sintered part. The sintered parts obtained in this way are generally considered to have good dimensional accuracy. However, when manufacturing sintered parts that require extremely strict dimensional accuracy, the sintered parts are further processed after sintering. In this cutting process, a process such as turning with a lathe or drilling with a drill is performed at various cutting speeds.

しかし、上記焼結部品は、空孔の含有比率が高く、溶解法による金属材料にくらべると、切削抵抗が高くなる。そのため、従来から、焼結体の切削性を向上させる目的で、鉄基混合粉に、Pb、Se、Te等を、粉末で添加、または鉄粉もしくは鉄基粉末に合金化して添加することが行なわれてきた。
ところが、Pbは融点が330℃と低いため、焼結過程で溶融するものの、鉄中には固溶しないので、基地中に均一分散させることが難しいという問題があった。また、Se、Teは、焼結体を脆化させるため、焼結体の機械的特性の劣化が著しいという問題があった。
However, the sintered part has a high content ratio of pores, and the cutting resistance is higher than a metal material obtained by a melting method. Therefore, conventionally, for the purpose of improving the machinability of the sintered body, it is possible to add Pb, Se, Te, etc. to the iron-based mixed powder as a powder, or to add an alloy to the iron powder or iron-based powder. Has been done.
However, since Pb has a melting point as low as 330 ° C., it melts in the sintering process, but does not dissolve in iron, so that it is difficult to uniformly disperse in the matrix. Moreover, since Se and Te embrittle the sintered body, there was a problem that the mechanical properties of the sintered body deteriorated remarkably.

さらに、上述した空孔は、熱伝導性が悪いために、焼結体を加工すると加工時の摩擦熱が蓄積されて、工具の表面温度が上がりやすくなる。そのため、切削工具が損耗し易くなって短寿命となる結果、切削加工費が増大して、焼結部品の製造コストの上昇を招くという問題が生じる。   Furthermore, since the holes described above have poor thermal conductivity, when the sintered body is processed, frictional heat during processing is accumulated, and the surface temperature of the tool tends to increase. For this reason, the cutting tool is easily worn out and has a short life, resulting in a problem that the cutting cost increases and the manufacturing cost of the sintered part increases.

これらの問題に対し、例えば、特許文献1には、鉄粉に、10μm以下の微細な硫化マンガン粉末を重量%で0.05〜5%混合した焼結物体製造用鉄粉混合物が記載されている。
特許文献1に記載された技術によれば、大きな寸法変化および強度劣化を伴うことなく、焼結材の被削性(切削性)を改善できるとされている。
To deal with these problems, for example, Patent Document 1 describes an iron powder mixture for producing a sintered body in which 0.05 to 5% by weight of fine manganese sulfide powder of 10 μm or less is mixed with iron powder.
According to the technique described in Patent Document 1, it is said that the machinability (cutability) of the sintered material can be improved without causing a large dimensional change and strength deterioration.

特許文献2には、鉄基粉末に珪酸アルカリを添加する鉄基焼結体の製造方法が記載されている。
特許文献2に記載された技術によれば、珪酸アルカリを0.1〜1.0重量%添加することにより、大きな寸法変化および強度劣化を伴うことなく、快削性を改善できるとされている。
Patent Document 2 describes a method for producing an iron-based sintered body in which an alkali silicate is added to an iron-based powder.
According to the technique described in Patent Document 2, it is said that by adding 0.1 to 1.0% by weight of alkali silicate, free machinability can be improved without accompanying a large dimensional change and strength deterioration.

特許文献3には、鉄粉を主体とし、アノールサイト相および/またはゲーレナイト相を有する平均粒径50μm以下のCaO−Al2O3−SiO2系複合酸化物の粉末(セラミックス粉末)を0.02〜0.3重量%含有する粉末冶金用鉄系混合粉末が記載されている。
特許文献3に記載された技術によれば、切削時に加工面に露出したセラミックス粉末が工具表面に付着して工具保護膜(ベラーク層)を形成し、工具の材質劣化を防止して切削性を改善することができるとされている。
In Patent Document 3, a powder (ceramics powder) of CaO—Al 2 O 3 —SiO 2 composite oxide having an average particle size of 50 μm or less, mainly composed of iron powder and having an anolsite phase and / or gehlenite phase, is 0.02 to An iron-based mixed powder for powder metallurgy containing 0.3% by weight is described.
According to the technique described in Patent Document 3, the ceramic powder exposed on the work surface during cutting adheres to the tool surface to form a tool protective film (berak layer), and prevents material deterioration of the tool and improves machinability. It can be improved.

特許文献4には、鉄基粉末と、合金用粉末と、切削性改善用粉末として硫化マンガン粉とリン酸カルシウム粉および/またはヒドロキシアパタイト粉に加えて、潤滑剤を混合してなる鉄基混合粉が記載されている。ここで、硫化マンガンは切屑の微細化に有効に作用する一方、リン酸カルシウム粉およびヒドロキシアパタイト粉は、切削時に工具の表面に付着してベラーク層を形成し、工具表面の変質を防止または抑制する効果があると記載されている。
すなわち、特許文献4に記載された技術によれば、焼結体の機械的特性の劣化を伴うこともなく、切削性を向上できるとされている。
Patent Document 4 discloses an iron-based powder obtained by mixing a lubricant in addition to manganese-based powder, calcium phosphate powder and / or hydroxyapatite powder as iron-based powder, alloy powder, and machinability improving powder. Have been described. Here, manganese sulfide works effectively to make chips finer, while calcium phosphate powder and hydroxyapatite powder adhere to the surface of the tool during cutting to form a veraque layer, thereby preventing or suppressing alteration of the tool surface. It is described that there is.
That is, according to the technique described in Patent Document 4, it is said that the machinability can be improved without deteriorating the mechanical properties of the sintered body.

また、特許文献5によれば、鉄または鉄基合金に、硫酸バリウムあるいは硫化バリウムを、単独あるいは合計で0.3〜3.0重量%添加することによって切削性などの機械加工性を向上させることができると記載されている。   According to Patent Document 5, when machinability such as machinability can be improved by adding barium sulfate or barium sulfide alone or in a total of 0.3 to 3.0% by weight to iron or an iron-based alloy. Have been described.

特開昭61−147801号公報JP-A 61-147801 特開昭60−145353号公報JP 60-145353 A 特開平9−279204号公報JP-A-9-279204 特開2006−89829号公報JP 2006-89829 A 特公昭46−39564号公報Japanese Examined Patent Publication No. 46-39564 特開平04−157138号公報Japanese Patent Laid-Open No. 04-157138 特開2012−144801号公報JP 2012-144801 A 特開2001−114509号公報JP 2001-114509 A 特表平6−503060号公報JP-T 6-503060

しかしながら、特許文献1および4に記載された技術では、硫化マンガン(MnS)粉を含むため、焼結体外観の悪化の原因となるとともに、焼結体中に残留したSあるいはMnSは、焼結部品の発錆を促進し、その耐食性を低下させるという問題がある。
さらに、MnSは、切削速度が100m/min以下という低速域での切削性改善には優れているものの、200m/min程度の高速切削では、切削性改善効果が小さいという課題があった。
However, in the techniques described in Patent Documents 1 and 4, since manganese sulfide (MnS) powder is included, the appearance of the sintered body is deteriorated, and S or MnS remaining in the sintered body is sintered. There is a problem that rusting of parts is promoted and its corrosion resistance is lowered.
Furthermore, although MnS is excellent in improving machinability in a low speed region where the cutting speed is 100 m / min or less, there is a problem that the effect of improving machinability is small in high-speed cutting of about 200 m / min.

また、特許文献2に記載された技術では、珪酸アルカリが吸湿性であるため混合粉末に固着が生じて、成形不良を起こすという問題があった。   Moreover, in the technique described in Patent Document 2, since the alkali silicate is hygroscopic, there is a problem in that the mixed powder is fixed and defective molding occurs.

さらに、特許文献3に記載された技術では、粉体特性、焼結体特性の低下を防止するために、セラミックス粉末中の不純物を少なくし、かつその粒度を調整した粉末とする必要があって、材料コストが高騰するという問題があった。また、特許文献3に記載された技術では、高速での切削性改善には優れるものの、低速での切削では切削性改善効果が小さいという課題があった。   Furthermore, in the technique described in Patent Document 3, it is necessary to reduce the impurities in the ceramic powder and to adjust the particle size in order to prevent deterioration of the powder characteristics and sintered body characteristics. There was a problem that the material cost would rise. Moreover, although the technique described in Patent Document 3 is excellent in improving the machinability at a high speed, there is a problem that the effect of improving the machinability is small in the cutting at a low speed.

加えて、特許文献3、4に記載されたベラーク層形成による切削性改善は、旋削加工では切削動力低減に有効であるものの、切屑が微細化しないために、ドリル切削の場合は、切り屑の排除性が悪く、ドリルの切削性にはいまだ問題を残していた。   In addition, although the machinability improvement by the formation of the verak layer described in Patent Documents 3 and 4 is effective in reducing the cutting power in turning, the chips are not refined. Exclusion was bad, and the machinability of the drill remained a problem.

また、特許文献5に記載された技術では、MnSを用いた場合と同様に、200m/min程度の高速切削では、切削性改善効果が小さいという課題があった。   Further, in the technique described in Patent Document 5, as in the case of using MnS, there is a problem that the effect of improving the machinability is small in high-speed cutting of about 200 m / min.

本発明は、上記した従来技術の問題や課題を有利に解決し、優れた切削性、詳しくは、優れた旋盤切削性(以下、旋削性ともいう)および優れたドリル切削性を兼備した焼結体を得ることが可能な、粉末冶金用混合粉およびその製造方法を提供することを目的とする。また、本発明では、優れた旋削性およびドリル加工性を兼備する切削性に優れた鉄基粉末製焼結体を併せて提供することを目的とする。   The present invention advantageously solves the problems and problems of the prior art described above, and has excellent machinability, specifically, excellent lathe machinability (hereinafter also referred to as latheability) and excellent drill machinability. It is an object to provide a mixed powder for powder metallurgy capable of obtaining a body and a method for producing the same. Another object of the present invention is to provide an iron-based powder sintered body having excellent machinability and having excellent turning properties and drillability.

発明者らは、上記した目的を達成するために、焼結体の切削性に及ぼす各種要因、とくに珪酸アルカリの影響について鋭意考究した。すなわち、珪酸アルカリの吸湿性を緩和するために、高温での熱処理を施す試験を実施したところ、この熱処理によって得られた層状に結晶化した珪酸アルカリは、格段に焼結体の切削性を改善することが分かった。   In order to achieve the above-mentioned object, the inventors diligently studied various factors on the machinability of the sintered body, particularly the influence of alkali silicate. In other words, in order to alleviate the hygroscopicity of alkali silicates, a heat treatment was conducted at a high temperature. The layered crystallized alkali silicate obtained by this heat treatment significantly improved the machinability of the sintered body. I found out that

この改善機構について、現在までのところ明確になっているわけではないが、例えば特許文献6には、メタ珪酸マグネシウム系鉱物やオルト珪酸マグネシウム系鉱物は、劈開性があるために固体潤滑剤として作用し、その結果、合金の快削性、摺動特性、なじみ性および耐摩耗性が向上すると示されており、結晶質層状珪酸アルカリも同様の機構を有しているのではないかと考えている。   Although this improvement mechanism has not been clarified so far, for example, in Patent Document 6, a magnesium metasilicate mineral or a magnesium orthosilicate mineral acts as a solid lubricant because of its cleaving property. As a result, it has been shown that the free-cutting property, sliding property, conformability and wear resistance of the alloy are improved, and it is thought that the crystalline layered alkali silicate may have a similar mechanism. .

加えて、発明者らは、結晶質層状珪酸アルカリの切削性改善効果が、メタ珪酸マグネシウム系鉱物やオルト珪酸マグネシウムより優れていて、比較的低速まで切削性改善効果があり、低速から高速までの広範囲において切削性改善効果が認められることも併せて知得した。
この一層の改善機構について、現在までのところ明確になっているわけではないが、MnSなどでは、低ひずみせん断速度変形下におけるせん断域の延性破壊を助長する作用が報告されていることから、同様の機構がさらに有利に働いているものと推定される。
In addition, the inventors have improved the machinability improvement effect of crystalline layered alkali silicate, which is superior to magnesium metasilicate mineral and magnesium orthosilicate, and has a machinability improvement effect to relatively low speed, from low speed to high speed. It was also learned that the machinability improving effect was recognized in a wide range.
Although this further improvement mechanism has not been clarified so far, MnS and the like have been reported to promote ductile fracture in the shear region under deformation at a low strain shear rate. It is estimated that this mechanism works even more advantageously.

以上得られた知見から、発明者らは、結晶質層状珪酸アルカリは、旋盤での切削性(旋削性)とドリルによる切削性(ドリル切削性)という異なる要件が要求される切削性を同時に向上させることができることを究明した。   Based on the knowledge obtained above, the inventors have simultaneously improved the machinability of crystalline layered alkali silicate, which requires different requirements for machinability with a lathe (turnability) and machinability with a drill (drill machinability). I found out that I can make it happen.

また、発明者らは、切削性改善用粉末(添加材)として、結晶質層状珪酸アルカリに加えてさらに、少なくともSiO2およびMgOのうちから選んだ1種を含む粉末を加えることにより、低速での旋削性を一層改善できることを見出した。 In addition to the crystalline layered alkali silicate, the inventors further added a powder containing at least one selected from SiO 2 and MgO as a machinability improving powder (additive). It was found that the turning ability of can be further improved.

上記焼結体が相乗的に切削性を改善する機構について、現在までのところ明確になっているわけではないが、発明者らは次のように考えている。
特許文献7に開示の記載によれば、SiO2およびMgOのうちから選んだ1種を含む粉末を加えると、焼結処理の際、焼結体の基地相中に軟質相と硬質相とを同時に分散させることができる。そのため、本発明のように、結晶質層状珪酸アルカリにSiO2およびMgOのうちから選んだ1種を含む粉末を加えると、結晶質層状珪酸アルカリの固体潤滑材としての機能が一層顕在化して、軟質金属化合物相が工具に作用する抗力を低下させる。その結果、工具の摩耗、変形あるいは亀裂の発生を抑制する機能や、硬質金属化合物相による切屑内部における亀裂発生の促進を誘発し、ドリル穿孔の際の切屑排出性が一段と向上するものと考えられる。
すなわち、発明者らは特許文献7に記載の添加材に対し、結晶質層状珪酸アルカリを添加することで、ドリル加工における切削性改善の相乗効果が得られることを見出した。
The mechanism by which the sintered body synergistically improves machinability has not been clarified so far, but the inventors consider as follows.
According to the description disclosed in Patent Document 7, when a powder containing one selected from SiO 2 and MgO is added, a soft phase and a hard phase are added to the matrix phase of the sintered body during the sintering process. It can be dispersed simultaneously. Therefore, as in the present invention, when a powder containing one kind selected from SiO 2 and MgO is added to the crystalline layered silicate alkali, the function of the crystalline layered silicate alkali as a solid lubricant is further manifested, The soft metal compound phase reduces the drag acting on the tool. As a result, it is thought that the function of suppressing the wear, deformation or cracking of the tool and the promotion of crack generation inside the chip by the hard metal compound phase, and the chip dischargeability during drilling are further improved. .
That is, the inventors have found that a synergistic effect of improving machinability in drilling can be obtained by adding a crystalline layered alkali silicate to the additive described in Patent Document 7.

さらに、発明者らは、切削性改善用粉末(添加材)として、結晶質層状珪酸アルカリに加えて、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を含む粉末を加えることによって、低速での旋削性を一層改善できることを見出した。
上記焼結体が相乗的に切削性を改善する機構について、現在までのところ明確になっているわけではないが、発明者らは次のように考えている。
特許文献5に開示の記載によれば、BaSO4はあらゆる金属と溶解あるいは固溶せず、また軟質であり、これが結晶粒界および粒内に散在しており、切削時の切欠効果を発現することで、切削抵抗を下げて被削性を改善することができる。
Furthermore, the inventors include at least one selected from an alkali metal sulfate or an alkaline earth metal sulfate in addition to the crystalline layered alkali silicate as a powder (additive) for improving machinability. It has been found that the turning performance at low speed can be further improved by adding powder.
The mechanism by which the sintered body synergistically improves machinability has not been clarified so far, but the inventors consider as follows.
According to the description disclosed in Patent Document 5, BaSO 4 is not dissolved or solid-dissolved with any metal, and is soft, and this is scattered in the grain boundaries and within the grains, thereby expressing the notch effect at the time of cutting. Thereby, cutting resistance can be lowered and machinability can be improved.

そのため、本発明のように、結晶質層状珪酸アルカリにアルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を含む粉末を加えると、結晶質層状珪酸アルカリの固体潤滑材としての機能が一層顕在化して、軟質化合物相が工具に作用する抗力を低下させるので、工具の摩耗、変形あるいは亀裂の発生を抑制する機能が一段と向上するものと考えられる。
すなわち、発明者らは、特許文献5に記載の添加材に対し、結晶質層状珪酸アルカリを添加することで、ドリル加工を含む、低速における切削性改善の相乗効果が得られることを新規に見出した。
Therefore, as in the present invention, when a powder containing at least one selected from an alkali metal sulfate or an alkaline earth metal sulfate is added to a crystalline layered alkali silicate, solid lubrication of the crystalline layered alkali silicate Since the function as a material becomes more obvious and the drag force that the soft compound phase acts on the tool is lowered, it is considered that the function of suppressing the wear, deformation or cracking of the tool is further improved.
That is, the inventors have newly found that a synergistic effect of improving machinability at low speed including drilling can be obtained by adding crystalline layered alkali silicate to the additive described in Patent Document 5. It was.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨構成は次のとおりである。
1.鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合してなる粉末冶金用混合粉であって、
上記切削性改善用粉末が、結晶質層状珪酸アルカリであって、該切削性改善用粉末の配合量が、上記鉄基粉末、上記合金用粉末および該切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%の範囲である粉末冶金用混合粉。
The present invention has been completed based on such findings and further studies. That is, the gist configuration of the present invention is as follows.
1. A mixed powder for powder metallurgy, which is a mixture of iron-based powder, alloy powder, machinability improving powder and lubricant,
The machinability improving powder is a crystalline layered alkali silicate, and the blending amount of the machinability improving powder is mass% with respect to the total amount of the iron base powder, the alloy powder, and the machinability improving powder. And mixed powder for powder metallurgy in the range of 0.01 to 1.0%.

2.前記切削性改善用粉末がさらに、エンスタタイト粉末、タルク粉末、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末、および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む前記1に記載の粉末冶金用混合粉。 2. The machinability improving powder further includes enstatite powder, talc powder, kaolin powder, mica powder, granulated slag powder, pancreatic clay powder, magnesium oxide (MgO) powder, and silica (SiO 2 ) and magnesium oxide ( 2. The mixed powder for powder metallurgy according to 1 above, containing at least one selected from mixed powders with MgO) in a range of 10 to 80% by mass with respect to the blending amount of the powder for improving machinability.

3.前記切削性改善用粉末がさらに、アルカリ金属塩粉末を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む前記2に記載の粉末冶金用混合粉。 3. 3. The mixed powder for powder metallurgy according to 2 above, wherein the machinability improving powder further contains an alkali metal salt powder in a range of 10 to 80% by mass with respect to the blending amount of the machinability improving powder.

4.前記アルカリ金属塩粉末が、アルカリ炭酸塩粉末およびアルカリ金属石鹸のうちから選んだ1種または2種である前記3に記載の粉末冶金用混合粉。 4). 4. The powder metallurgy mixed powder according to 3, wherein the alkali metal salt powder is one or two selected from alkali carbonate powder and alkali metal soap.

5.前記切削性改善用粉末がさらに、フッ化カルシウム粉末を含む前記1乃至4のいずれかに記載の粉末冶金用混合粉。 5. The mixed powder for powder metallurgy according to any one of 1 to 4, wherein the machinability improving powder further contains calcium fluoride powder.

6.前記切削性改善用粉末がさらに、金属硼化物粉末および金属窒化物粉末のうちから選んだ1種または2種を含む前記1乃至5のいずれかに記載の粉末冶金用混合粉。 6). 6. The powder metallurgy mixed powder according to any one of 1 to 5, wherein the machinability improving powder further contains one or two kinds selected from metal boride powder and metal nitride powder.

7.前記金属硼化物粉末が、TiB2、ZrB2およびNbB2のうちから選んだ少なくとも1種からなり、前記金属窒化物粉末が、TiN、AlNおよびSi3N4のうちから選んだ少なくとも1種からなる前記6に記載の粉末冶金用混合粉。 7). The metal boride powder is made of at least one selected from TiB 2 , ZrB 2 and NbB 2 , and the metal nitride powder is made from at least one selected from TiN, AlN and Si 3 N 4. The mixed powder for powder metallurgy as described in 6 above.

8.前記切削性改善用粉末がさらに、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む前記1乃至7のいずれかに記載の粉末冶金用混合粉。
8). The machinability improving powder further comprises at least one selected from an alkali metal sulfate or an alkaline earth metal sulfate in an amount of 10 to 80% by mass based on the amount of the machinability improving powder. The mixed powder for powder metallurgy according to any one of 1 to 7 included in a range.

9.鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を配合したのち、混合して混合粉とする粉末冶金用混合粉の製造方法であって、
上記切削性改善用粉末を、結晶質層状珪酸アルカリとし、該切削性改善用粉末の配合量を、上記鉄基粉末、上記合金用粉末および該切削性改善用粉末の合計量に対する質量%で0.01〜1.0%とし、さらに、
上記混合を、鉄基粉末と合金用粉末とに対し、一次混合材として切削性改善用粉末の一部または全部と潤滑剤の一部とを添加して加熱し、該潤滑剤のうち少なくとも1種の潤滑剤を溶融させつつ混合し、ついで冷却して固化させる一次混合と、
上記切削性改善用粉末および潤滑剤の残り粉末を、二次混合材としてさらに添加して混合する二次混合とにより行う
粉末冶金用混合粉の製造方法。
9. A method for producing a mixed powder for powder metallurgy comprising mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant, followed by mixing into a mixed powder,
The machinability improving powder is a crystalline layered alkali silicate, and the blending amount of the machinability improving powder is 0.01% by mass with respect to the total amount of the iron base powder, the alloy powder and the machinability improving powder. ~ 1.0%, and
The mixture is heated by adding a part or all of the machinability improving powder and a part of the lubricant as a primary mixed material to the iron-based powder and the alloy powder, and at least one of the lubricants is heated. Primary mixing in which the lubricants of the seeds are mixed while being melted, and then cooled and solidified;
A method for producing a powder mixture for powder metallurgy, which is performed by secondary mixing in which the machinability improving powder and the remaining powder of the lubricant are further added and mixed as a secondary mixture.

10.前記切削性改善用粉末がさらに、エンスタタイト粉末、タルク粉末、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末、および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む前記9に記載の粉末冶金用混合粉の製造方法。 10. The machinability improving powder further includes enstatite powder, talc powder, kaolin powder, mica powder, granulated slag powder, pancreatic clay powder, magnesium oxide (MgO) powder, and silica (SiO 2 ) and magnesium oxide ( 10. Manufacturing of mixed powder for powder metallurgy according to 9 above, comprising at least one selected from mixed powder with MgO) in a range of 10 to 80% by mass with respect to the blending amount of the powder for improving machinability Method.

11.前記切削性改善用粉末がさらに、アルカリ金属塩粉末を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む前記10に記載の粉末冶金用混合粉の製造方法。 11. 11. The method for producing a mixed powder for powder metallurgy according to 10, wherein the machinability improving powder further contains an alkali metal salt powder in a range of 10 to 80% by mass with respect to the blending amount of the machinability improving powder.

12.前記アルカリ金属塩粉末が、アルカリ炭酸塩粉末およびアルカリ金属石鹸のうちから選んだ1種または2種である前記11に記載の粉末冶金用混合粉の製造方法。 12 12. The method for producing a mixed powder for powder metallurgy according to 11, wherein the alkali metal salt powder is one or two selected from alkali carbonate powder and alkali metal soap.

13.前記切削性改善用粉末がさらに、フッ化カルシウム粉末を含む前記9乃至12のいずれかに記載の粉末冶金用混合粉の製造方法。 13. 13. The method for producing a powder mixture for powder metallurgy according to any one of 9 to 12, wherein the machinability improving powder further contains calcium fluoride powder.

14.前記切削性改善用粉末がさらに、金属硼化物粉末および金属窒化物粉末のうちから選んだ1種または2種を含む前記9乃至13のいずれかに記載の粉末冶金用混合粉の製造方法。 14 14. The method for producing a mixed powder for powder metallurgy according to any one of 9 to 13, wherein the machinability improving powder further contains one or two selected from metal boride powder and metal nitride powder.

15.前記金属硼化物粉末が、TiB2、ZrB2およびNbB2のうちから選んだ少なくとも1種からなり、前記金属窒化物粉末が、TiN、AlNおよびSi3N4のうちから選んだ少なくとも1種からなる前記14に記載の粉末冶金用混合粉の製造方法。 15. The metal boride powder is made of at least one selected from TiB 2 , ZrB 2 and NbB 2 , and the metal nitride powder is made from at least one selected from TiN, AlN and Si 3 N 4. 15. The method for producing a powder mixture for powder metallurgy as described in 14 above.

16.前記切削性改善用粉末がさらに、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む前記9乃至15のいずれかに記載の粉末冶金用混合粉の製造方法。 16. The machinability improving powder further comprises at least one selected from an alkali metal sulfate or an alkaline earth metal sulfate in an amount of 10 to 80% by mass based on the amount of the machinability improving powder. The method for producing a mixed powder for powder metallurgy according to any one of 9 to 15 included in a range.

17.前記1乃至8のいずれかに記載の粉末冶金用混合粉を、金型に充填したのち圧縮成形して成形体とし、該成形体に焼結処理を施した鉄基粉末製焼結体。 17. A sintered body made of iron-based powder, wherein the mixed powder for powder metallurgy according to any one of 1 to 8 above is filled into a mold and then compression molded to form a molded body, and the molded body is sintered.

本発明によれば、優れた旋削性と、優れたドリル切削性とを兼備する切削性に優れた焼結体を安価に製造できるので、金属焼結部品の製造コストを顕著に低減し、産業上格段の効果を有する。特に、低速から高速までの広範囲の切削条件で切削が可能なため、ドリルのように中心部と周端部で切削速度が変わる加工にその効果を顕著に発揮する。
また、本発明によれば、成形時には、圧粉密度の低下や、抜出力の増大を招くことなく成形できるという効果もある。
According to the present invention, since it is possible to manufacture a sintered body having excellent turning properties and excellent drill cutting properties with excellent machinability at low cost, the production cost of sintered metal parts can be significantly reduced. Has a remarkable effect. In particular, since cutting is possible under a wide range of cutting conditions from low speed to high speed, the effect is remarkably exhibited in processing in which the cutting speed is changed between the central portion and the peripheral end portion like a drill.
Moreover, according to the present invention, there is an effect that at the time of molding, molding can be performed without causing a reduction in the density of the dust and an increase in the output power.

以下、本発明を具体的に説明する。
まず、本発明の粉末冶金用混合粉について説明する。
本発明の粉末冶金用混合粉は、鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合してなる混合粉である。
Hereinafter, the present invention will be specifically described.
First, the mixed powder for powder metallurgy according to the present invention will be described.
The mixed powder for powder metallurgy according to the present invention is a mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant.

本発明に用いる鉄基粉末としては、アトマイズ鉄粉および還元鉄粉などの純鉄粉、合金元素を予め合金化した予合金鋼粉(完全合金化鋼粉)、あるいは鉄粉に合金元素が部分拡散し合金化された部分拡散合金化鋼粉、あるいは予合金化鋼粉(完全合金化鋼粉)にさらに合金元素を部分拡散させたハイブリッド鋼粉など、の鉄基粉末がいずれも適用できる。また、鉄基粉末としては、上記した鉄基粉末に加えてさらに合金用粉末、および潤滑剤を混合した鉄基粉末混合粉を用いてもよい。   Examples of iron-based powders used in the present invention include pure iron powders such as atomized iron powder and reduced iron powder, pre-alloyed steel powders (alloyed steel powders) pre-alloyed with alloy elements, or alloy elements partially in iron powders. Any of the iron-based powders such as partially diffused alloyed steel powder that has been diffused and alloyed, or hybrid steel powder in which an alloying element is further partially diffused into prealloyed steel powder (fully alloyed steel powder) can be used. Further, as the iron-based powder, an iron-based powder mixed powder obtained by further mixing an alloy powder and a lubricant in addition to the above-described iron-based powder may be used.

他方、本発明に用いる合金用粉末としては、黒鉛粉末、Cu(銅粉末)粉、Mo粉、Ni粉などの非鉄金属粉末、亜酸化銅粉末などが例示され、所望の焼結体特性に応じて選択して混合する。これらの合金用粉末を、鉄基粉末に混合させることによって焼結体の強度を上昇させることができ、所望の焼結部品強度を確保できる。なお、合金用粉末の配合量は、所望の焼結体強度に応じて、金属粉末、合金用粉末および切削性改善用粉末の合計量に対する質量%で、0.1〜10%の範囲とする。合金用粉末の配合量が、0.1質量%未満では、所望の焼結体強度を確保できなくなる一方で、10質量%を超えて添加すると、焼結体の寸法精度が低下するからである。   On the other hand, examples of the alloy powder used in the present invention include non-ferrous metal powders such as graphite powder, Cu (copper powder) powder, Mo powder, and Ni powder, cuprous oxide powder, and the like, depending on desired sintered body characteristics. Select and mix. By mixing these alloy powders with iron-based powder, the strength of the sintered body can be increased, and a desired sintered part strength can be ensured. In addition, the compounding quantity of the powder for alloys is a mass% with respect to the total amount of the metal powder, the powder for alloys, and the powder for improving machinability according to the desired strength of the sintered body, and is in the range of 0.1 to 10%. This is because if the blending amount of the alloy powder is less than 0.1% by mass, the desired strength of the sintered body cannot be secured, while if it exceeds 10% by mass, the dimensional accuracy of the sintered body decreases.

また、本発明では、切削性改善用粉末として、結晶質層状珪酸アルカリを用いる。ここで珪酸アルカリとしては、珪酸ナトリウム、珪酸カリウムおよび珪酸リチウム等を用いることができる。これらは水溶性であるため、そのまま混合粉に添加すると、吸湿によって、混合粉末の粉末間に固着が生じ、粉末の流動性が悪化して、成形不良が生じてしまう。   In the present invention, crystalline layered alkali silicate is used as the machinability improving powder. Here, sodium silicate, potassium silicate, lithium silicate, or the like can be used as the alkali silicate. Since these are water-soluble, if they are added to the mixed powder as they are, moisture absorption causes sticking between the powders of the mixed powder, which deteriorates the fluidity of the powder and causes defective molding.

そのため、本発明では、珪酸アルカリに加熱処理を行って、表面のシラノール基を減少させ、水との結合性を低下させ、結晶質層状珪酸アルカリとすることができる。この際の加熱温度としては、400〜1100℃とすることが好ましい。加熱温度が400℃未満の場合には吸湿性の低減効果が十分でなく、1100℃を上回る場合には処理費用の観点から合理的ではないからである。
また、この加熱処理の際に、珪酸アルカリは結晶化し、層状構造を持つようになるが、これらの構造はX線回折等の分析手段により確認することができる。なお、本発明で用いられる結晶質層状珪酸アルカリは、結晶質アルカリ金属層状珪酸塩の一種である。この結晶質アルカリ金属層状珪酸塩は、洗剤に配合されると洗浄力を著しく増強する物質である洗剤ビルダーとして公知であり、特許文献8に詳しく開示されている。
Therefore, in this invention, it can heat-process to an alkali silicate, reduce the silanol group of a surface, reduce the bondability with water, and can set it as a crystalline layered alkali silicate. The heating temperature at this time is preferably 400 to 1100 ° C. This is because when the heating temperature is less than 400 ° C., the effect of reducing hygroscopicity is not sufficient, and when it exceeds 1100 ° C., it is not reasonable from the viewpoint of processing costs.
Further, during this heat treatment, the alkali silicate is crystallized and has a layered structure, and these structures can be confirmed by analysis means such as X-ray diffraction. The crystalline layered alkali silicate used in the present invention is a kind of crystalline alkali metal layered silicate. This crystalline alkali metal layered silicate is known as a detergent builder, which is a substance that remarkably enhances the detergency when incorporated in a detergent, and is disclosed in detail in Patent Document 8.

結晶質層状珪酸アルカリは、水熱処理によっても得られることが特許文献9に開示されているが、本発明では、前記の加熱処理された結晶質層状珪酸アルカリに限定することなく、水熱処理によって得られた結晶質層状珪酸アルカリを用いても良い。
なお、工業的には比較的容易に得られる加熱処理された結晶質層状珪酸アルカリを用いることが望ましい。
Although it is disclosed in Patent Document 9 that the crystalline layered alkali silicate can be obtained by hydrothermal treatment, in the present invention, the crystalline layered alkali silicate is obtained by hydrothermal treatment without being limited to the heat-treated crystalline layered alkali silicate. The obtained crystalline layered alkali silicate may be used.
Industrially, it is desirable to use a heat-treated crystalline layered alkali silicate which can be obtained relatively easily.

また、本発明では、混合粉を成形体としてから焼結する際に、結晶質層状珪酸アルカリとともに用いられる切削性改善用粉末として、焼結体の基地相中に基地相の平均硬さよりも低い硬さの軟質粒子(軟質相)であって、かつ低融点で非晶質相を形成できる軟質金属化合物粉末を添加することが好ましい。
具体的には、エンスタタイト粉末、タルク粉末、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選ばれた少なくとも1種である。
Further, in the present invention, when the mixed powder is made into a compact and then sintered, the machinability improving powder used together with the crystalline layered alkali silicate is lower than the average hardness of the base phase in the base phase of the sintered body. It is preferable to add a soft metal compound powder which is a soft soft particle (soft phase) and can form an amorphous phase with a low melting point.
Specifically, enstatite powder, talc powder, kaolin powder, mica powder, granulated slag powder, pancreatic clay powder, magnesium oxide (MgO) powder, and a mixture of silica (SiO 2 ) and magnesium oxide (MgO) It is at least one selected from among powders.

切削性改善用粉末として混合粉に添加する、エンスタタイト粉末、タルク粉末、カオリン粉末、マイカ粉末等の軟質鉱物はいずれも、少なくともSi、Mg、O(SiO2、MgO)を含有する金属化合物であり、また、水砕スラグ粉末は、CaO−SiO2−Al2O3、MgO−Al2O3−SiO2等の成分系で代表される脱酸生成物である。Si、Mg、Oを含有する化合物であるこれら粉末は、いずれも、混合粉を成形した圧粉体を焼結する際に、低融点の非晶質相を形成して、焼結体の基地相中に軟質金属化合物相として分散することができる。なお、焼結時に形成される低融点の非晶質相は、SiO2−MgO系非晶質相である。 Soft minerals such as enstatite powder, talc powder, kaolin powder, and mica powder that are added to the mixed powder as a machinability improving powder are metal compounds containing at least Si, Mg, O (SiO 2 , MgO). In addition, the granulated slag powder is a deoxidation product represented by a component system such as CaO—SiO 2 —Al 2 O 3 and MgO—Al 2 O 3 —SiO 2 . All of these powders, which are compounds containing Si, Mg, and O, form a low melting point amorphous phase when sintering a green compact formed from a mixed powder, thereby providing a base for the sintered body. It can be dispersed in the phase as a soft metal compound phase. Note that the low melting point amorphous phase formed during sintering is a SiO 2 -MgO-based amorphous phase.

また、切削性改善用粉末として、すいひ粘土粉末や、酸化マグネシウム(MgO)粉末、さらには、エンスタタイト粉末等と同様にSi、Mg、Oを含む、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末のうちから選んだ1種以上を用いてもよい。シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末は、混合粉を成形した圧粉体を焼結する際に、同様に低融点の非晶質相(非晶質粒子)を形成することができる。なお、混合比は、質量比でSiO2:MgOが、1:2〜3:1の範囲とすることが好ましい。 In addition, as powder for improving machinability, silica (SiO 2 ) and magnesium oxide (MgO) containing Si, Mg, O as well as pancreatic clay powder, magnesium oxide (MgO) powder, and enstatite powder, etc. 1) or more selected from the mixed powders. A mixed powder of silica (SiO 2 ) and magnesium oxide (MgO) similarly forms a low-melting-point amorphous phase (amorphous particles) when a green compact formed from the mixed powder is sintered. be able to. The mixing ratio is preferably such that SiO 2 : MgO is in the range of 1: 2 to 3: 1 by mass ratio.

本発明では、切削性改善用粉末として、さらにアルカリ金属塩粉末を加えることが好ましい。SiO2、MgOからなるエンスタタイト粉末等の粉末に、さらにアルカリ金属塩粉末を加えることによって、圧粉体焼結時の低融点非晶質相の形成がより促進されるからである。 In the present invention, it is preferable to further add an alkali metal salt powder as the machinability improving powder. This is because the addition of an alkali metal salt powder to a powder such as enstatite powder composed of SiO 2 and MgO further promotes the formation of a low melting point amorphous phase during green compact sintering.

アルカリ金属塩は、焼結時に単独で、あるいは鉄基粉末表面の酸化鉄と反応して、低融点のフラックスを形成するだけでなく、そのフラックス中に、混合粉中に含まれるSiO2、MgO等の他の酸化物が溶融し、SiO2−MgO−アルカリ金属酸化物系非晶質相を形成して、軟質相として焼結体の基地相中に分散する。
なお、アルカリ金属塩としては、アルカリ炭酸塩、アルカリ金属石鹸が例示でき、それら粉末のいずれか、あるいはそれらを複合して含有してもよい。なお、アルカリ金属石鹸を用いた場合には、金属石鹸による潤滑効果により粉末成形時に圧粉体の密度が向上するという利点もある。
Alkali metal salts not only form a low melting point flux upon sintering alone or react with iron oxide on the surface of the iron-based powder, but also in the flux, SiO 2 , MgO contained in the mixed powder And other oxides melt to form a SiO 2 —MgO-alkali metal oxide-based amorphous phase, which is dispersed as a soft phase in the matrix phase of the sintered body.
In addition, as an alkali metal salt, an alkali carbonate and an alkali metal soap can be illustrated, You may contain either of those powders or those in combination. In addition, when an alkali metal soap is used, there is an advantage that the density of the green compact is improved during powder molding due to the lubricating effect of the metal soap.

以上述べた、SiO2および/またはMgOを含む粉末、またはアルカリ金属塩粉末の配合量は、切削性改善用粉末の合計量に対する質量%で、10〜80%の範囲とすることが好ましい。配合量が10質量%未満では、上記した相乗効果が期待できない一方で、80質量%を超える配合では低速での切削性改善効果が低下するからである。 The blending amount of the powder containing SiO 2 and / or MgO or the alkali metal salt powder described above is preferably in the range of 10 to 80% by mass% with respect to the total amount of the machinability improving powder. This is because if the blending amount is less than 10% by mass, the above-mentioned synergistic effect cannot be expected, whereas if the blending amount exceeds 80% by mass, the effect of improving the machinability at a low speed decreases.

本発明では、さらにフッ化カルシウム粉末を含んでもよい。なお、フッ化カルシウム粉末の配合量は、切削性改善用粉末の合計量に対する質量%で、20〜80%の範囲とすることが好ましい。配合量が20質量%未満では、所望の切削性改善効果が期待できない一方で、80質量%を超える配合は焼結体の機械的強度が低下するからである。   In the present invention, calcium fluoride powder may be further included. In addition, it is preferable to make the compounding quantity of a calcium fluoride powder into the range of 20-80% by the mass% with respect to the total amount of the powder for machinability improvement. This is because if the blending amount is less than 20% by mass, the desired machinability improving effect cannot be expected, whereas if the blending amount exceeds 80% by mass, the mechanical strength of the sintered body decreases.

また、硬質粒子となる粉末としては、金属硼化物粉末および/または金属窒化物粉末が挙げられる。そして、金属硼化物粉末としては、TiB2粉末、ZrB2粉末、NbB2粉末が例示でき、なかでもNbB2粉末が好ましい。また、金属窒化物粉末としては、TiN粉末、AlN粉末、Si3N4粉末が例示でき、とりわけSi3N4粉末が好ましい。
なお、金属硼化物粉末および/または金属窒化物粉末の配合量は、切削性改善用粉末の合計量に対する質量%で、10〜80%の範囲とすることが好ましい。配合量が10質量%未満では、所望の切削性改善効果が期待できない一方で、80質量%を超える配合は粉末の圧縮性や焼結体強度が低下するからである。
Examples of the powder that becomes hard particles include metal boride powder and / or metal nitride powder. And, as the metal boride powder, TiB 2 powder, ZrB 2 powder, NbB 2 powder. Examples. Of these NbB 2 powder are preferred. The metal nitride powder, TiN powder, AlN powder, Si 3 N 4 powder. Examples of especially Si 3 N 4 powder are preferred.
The blending amount of the metal boride powder and / or metal nitride powder is preferably in the range of 10 to 80% in terms of mass% with respect to the total amount of the machinability improving powder. This is because if the blending amount is less than 10% by mass, the desired machinability improving effect cannot be expected, whereas if the blending amount exceeds 80% by mass, the compressibility of the powder and the strength of the sintered body decrease.

さらに、本発明では、混合粉を成形体としてから焼結する際に、結晶質層状珪酸アルカリとともに用いられる切削性改善用粉末として、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を添加することができる。
具体的には、硫酸ナトリウムや硫酸リチウムなど、アルカリ金属硫酸塩や硫酸カルシウム、硫酸マグネシウム、硫酸バリウムや硫酸ストロンチウムなどのアルカリ土類金属硫酸塩のうちから選んだ少なくとも1種である。
Furthermore, in the present invention, when the mixed powder is sintered after being formed into a compact, the powder for improving machinability used together with the crystalline layered alkali silicate is selected from among alkali metal sulfates or alkaline earth metal sulfates. At least one selected can be added.
Specifically, it is at least one selected from alkali metal sulfates such as sodium sulfate and lithium sulfate, and alkaline earth metal sulfates such as calcium sulfate, magnesium sulfate, barium sulfate and strontium sulfate.

これらはいずれも軟質物質であり、あらゆる金属と溶解あるいは固溶せずに、結晶粒界および粒内に散在しており、切削時の切欠効果を発現し、切削抵抗を下げて被削性を改善する際、結晶質層状珪酸アルカリの固体潤滑材としての機能が一層顕在化して、軟質化合物相が工具に作用する抗力を低下させるので、工具の摩耗、変形あるいは亀裂の発生を抑制する機能が一段と向上する。
なお、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩の配合量は、切削性改善用粉末の合計量に対する質量%で、10〜80%の範囲とすることが好ましい。配合量が10質量%未満では、所望の切削性改善効果が期待できない一方で、80質量%を超える配合は粉末の圧縮性や焼結体強度が低下するからである。
These are all soft materials that are not dissolved or solid-dissolved with any metal, but are scattered in the grain boundaries and within the grains, exhibiting notch effects during cutting, lowering the cutting resistance and improving machinability. In the improvement, the function of the crystalline layered alkali silicate as a solid lubricant becomes more obvious, and the drag that the soft compound phase acts on the tool is reduced, so the function of suppressing the wear, deformation or cracking of the tool is reduced. Improve further.
The blending amount of the alkali metal sulfate or alkaline earth metal sulfate is preferably 10% to 80% in terms of mass% with respect to the total amount of the machinability improving powder. This is because if the blending amount is less than 10% by mass, the desired machinability improving effect cannot be expected, whereas if the blending amount exceeds 80% by mass, the compressibility of the powder and the strength of the sintered body decrease.

以上述べてきた本発明に従う混合粉の切削性改善用粉末の配合量は、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%の範囲とする必要がある。配合量が、0.01質量%未満では、切削性改善効果が不十分となる一方で、1.0質量%を超えて配合すると、圧粉体密度が低下し、その成形体を焼結して得た焼結体の機械的強度が低下するからである。このため、混合粉における切削性改善用粉末の配合量は、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%の範囲に限定する。   The blending amount of the powder for improving machinability of the mixed powder according to the present invention described above should be in the range of 0.01 to 1.0% by mass% with respect to the total amount of the iron-base powder, the alloy powder and the machinability improving powder. There is. When the blending amount is less than 0.01% by mass, the effect of improving the machinability is insufficient. On the other hand, when the blending amount exceeds 1.0% by mass, the green compact density is lowered, and the sintered body obtained by sintering the compact is obtained. This is because the mechanical strength of the bonded body is lowered. For this reason, the blending amount of the powder for improving machinability in the mixed powder is limited to the range of 0.01 to 1.0% in terms of mass% with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder.

本発明に従う混合粉には、上記した鉄基粉末、合金用粉末、切削性改善用粉末に加えて、適正量の潤滑剤を配合する。配合される潤滑剤としては、ステアリン酸亜鉛、ステアリン酸リチウム等の金属石鹸、あるいはオレイン酸などのカルボン酸、ステアリン酸アミド、ステアリン酸ビスアミド、エチレンビスステアロアミドなどの、アミドワックスが好ましい。潤滑剤の配合量は、本発明ではとくに限定されないが、いわゆる外添加量として、金属粉末、合金用粉末、切削性改善用粉末の合計量100質量%に対し、0.1〜1.0質量%−外割とすることが好ましい。潤滑剤の配合量が、0.1質量%−外割に満たないと、金型との摩擦が増加して抜き出し力が増大して金型寿命が低下する一方で、1.0質量%−外割を超えて多量となると、成形密度が低下して焼結体密度が低くなってしまうからである。   In addition to the iron-based powder, the alloy powder, and the machinability improving powder, an appropriate amount of lubricant is blended in the mixed powder according to the present invention. The lubricant to be blended is preferably a metal soap such as zinc stearate or lithium stearate, or an amide wax such as carboxylic acid such as oleic acid, stearic acid amide, stearic acid bisamide, or ethylene bisstearamide. The blending amount of the lubricant is not particularly limited in the present invention, but as a so-called external addition amount, 0.1 to 1.0% by mass-external split with respect to 100% by mass of the total amount of metal powder, alloy powder and machinability improving powder. It is preferable that If the blending amount of the lubricant is less than 0.1% by mass-external ratio, the friction with the mold increases, the extraction force increases, and the mold life decreases, while 1.0% by mass exceeds the external ratio. This is because if the amount is too large, the molding density decreases and the sintered body density decreases.

つぎに、本発明に従う混合粉を得るのに好ましい製造方法について説明する。
鉄基粉末に対して、合金用粉末、および上記した種類や配合量の粉末からなる切削性改善用粉末、さらには潤滑剤を、それぞれ所定量配合し、通常公知の混合機を用いて、一回に、あるいは二回以上に分けて混合し、混合粉(鉄基混合粉)とすることが望ましい。上記した切削性改善用粉末は、必ずしも全量を一度に混合する必要はなく、一部のみを配合して混合(一次混合)を行ったのち、残部(二次混合材)を配合して混合(二次混合)することもできる。なお、潤滑剤は、二回に分けて配合することが好ましい。
なお、鉄基粉末の一部または全部に対し、合金用粉末および/または切削性改善用粉末の一部または全部を結合材によって表面に固着させる偏析防止処理を施した鉄基粉末を用いても良い。ここで、偏析防止処理としては、特許第3004800号公報に記載の偏析防止処理を用いることができる。
Next, a preferable production method for obtaining the mixed powder according to the present invention will be described.
The iron-base powder is mixed with a predetermined amount of a powder for alloying, a powder for improving machinability composed of the above-mentioned types and blending amounts of powder, and a lubricant. It is desirable to mix in one or two or more times to obtain a mixed powder (iron-based mixed powder). The above-mentioned machinability improving powder does not necessarily need to be mixed all at once. After mixing and mixing only a part (primary mixing), the remaining part (secondary mixture) is mixed and mixed ( (Secondary mixing). The lubricant is preferably blended in two portions.
Note that an iron-base powder that has been subjected to segregation prevention treatment in which part or all of the powder for alloying and / or the powder for improving machinability is fixed to the surface with a binder may be used for part or all of the iron-based powder. good. Here, as the segregation prevention treatment, the segregation prevention treatment described in Japanese Patent No. 3004800 can be used.

本発明では、混合粉に配合した種々の潤滑剤の融点の最低温度以上に加熱することで、前記潤滑剤のうち少なくとも1種類の潤滑剤を溶融させて一次混合したのち、冷却して固化させ、ついで、切削性改善用粉末と潤滑剤の残り粉末からなる二次混合材を添加して二次混合をすることができる。   In the present invention, at least one type of lubricant among the lubricants is melted and primarily mixed by heating above the minimum temperature of the melting point of various lubricants blended in the mixed powder, and then cooled and solidified. Then, a secondary mixing material consisting of the machinability improving powder and the remaining powder of the lubricant can be added for secondary mixing.

また、混合手段としては、とくに制限はなく、従来公知の混合機のいずれもが使用できる。なお、加熱が容易な、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機などは特に有利に適合する。   The mixing means is not particularly limited, and any conventionally known mixer can be used. Note that a high-speed bottom-stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, a conical planetary screw mixer, and the like that are easy to heat are particularly advantageous.

つぎに、上記した製造方法で得られる粉末冶金用混合粉を用いた焼結体の好ましい製造方法について説明する。
まず、上記した方法で製造された本発明に従う粉末冶金用混合粉を、金型に充填して圧縮成形し、成形体とする。成形方法は、プレス等の公知の成形方法がいずれも好適に使用できる。本発明に従う粉末冶金用混合粉を用いることによって、成形圧力を294MPa以上と高圧にすることができ、さらに常温でも成形することができる。なお、安定した成形性を確保するためには、混合粉や金型を適正な温度に加熱したり、金型に潤滑剤を塗布したりすることが好ましい。
Below, the preferable manufacturing method of the sintered compact using the mixed powder for powder metallurgy obtained with an above-described manufacturing method is demonstrated.
First, the mixed powder for powder metallurgy according to the present invention manufactured by the method described above is filled into a mold and compression molded to obtain a molded body. As the molding method, any known molding method such as a press can be suitably used. By using the mixed powder for powder metallurgy according to the present invention, the molding pressure can be increased to 294 MPa or higher, and further molding can be performed at room temperature. In order to ensure stable moldability, it is preferable to heat the mixed powder or the mold to an appropriate temperature or apply a lubricant to the mold.

また、圧縮成形を、加熱雰囲気中で行う場合には、混合粉や金型の温度は150℃未満とすることが好ましい。というのは、本発明の粉末冶金用混合粉は、圧縮性に富むため、150℃未満の温度でも優れた成形性を示すうえ、150℃以上になると酸化による劣化が懸念されるためである。   Further, when the compression molding is performed in a heated atmosphere, the temperature of the mixed powder or the mold is preferably less than 150 ° C. This is because the mixed powder for powder metallurgy of the present invention is excellent in compressibility, and thus exhibits excellent moldability even at a temperature of less than 150 ° C., and there is a concern about deterioration due to oxidation when the temperature exceeds 150 ° C.

上記成形加工により得られた成形体は、ついで焼結処理を施されて、本発明である鉄基粉末製焼結体となる。焼結処理の温度は、金属粉末の融点の約70%の温度で行うことが望ましい。
鉄基粉末の場合は、1000℃以上であって、好ましくは1300℃以下とする。焼結処理の温度が1000℃未満では、所望の密度の焼結体とすることが難しくなるからである。一方、焼結処理の温度が1300℃を超えて高温になると、焼結中に異常粒成長が起こって、焼結体強度が低下しやすくなるので好ましくない。
The molded body obtained by the above-described molding process is then subjected to a sintering process to become a sintered body made of iron-based powder according to the present invention. The temperature of the sintering treatment is desirably about 70% of the melting point of the metal powder.
In the case of iron-based powder, it is 1000 ° C. or higher, preferably 1300 ° C. or lower. This is because if the sintering temperature is less than 1000 ° C., it becomes difficult to obtain a sintered body having a desired density. On the other hand, if the temperature of the sintering process exceeds 1300 ° C. and becomes high, abnormal grain growth occurs during sintering, and the strength of the sintered body tends to decrease, which is not preferable.

上記焼結処理の雰囲気は、窒素あるいはアルゴンなどの不活性ガス雰囲気、あるいは、これに水素を混合した不活性ガス−水素ガス混合雰囲気、あるいは、アンモニア分解ガス、RXガス、天然ガスなどの還元雰囲気とすることが好ましい。
焼結処理後、さらに、必要に応じて、ガス浸炭熱処理や浸炭窒化処理等の熱処理を施し、所望の特性を具備された製品(焼結部品等)とする。なお、切削加工等の加工を随時施し、所定寸法の製品とすることは言うまでもない。
The sintering atmosphere is an inert gas atmosphere such as nitrogen or argon, an inert gas-hydrogen gas mixed atmosphere in which hydrogen is mixed with this, or a reducing atmosphere such as ammonia decomposition gas, RX gas, natural gas, etc. It is preferable that
After the sintering treatment, heat treatment such as gas carburizing heat treatment or carbonitriding treatment is performed as necessary to obtain a product (sintered part or the like) having desired characteristics. Needless to say, processing such as cutting is performed as needed to obtain a product with a predetermined size.

以下、実施例により、本発明をさらに詳細に説明するが、本発明は、以下の例に何ら限定されるものではない。
鉄基粉末として、表1に示す鉄基粉末(いずれも平均粒径:約80μm)を使用した。なお、以下記載の平均粒径は、レーザ回折法を利用して求めたものである。
ここに、使用した鉄基粉末は、表1に示したとおり、アトマイズ純鉄粉(A)、還元純鉄粉(B)、鉄粉表面に合金元素としてCuを部分拡散させ合金化した部分拡散合金化鋼粉(C)、鉄粉表面に合金元素としてNi、Cu、Moを部分拡散させ合金化した部分拡散合金化鋼粉(D)、合金元素としてNi、Moを予合金化した予合金化鋼粉(完全合金化鋼粉)(E)、合金元素としてMoを予合金化した予合金化鋼粉(完全合金化鋼粉)(F)および(G)と、合金元素として、Moを予合金化した完全合金化鋼粉にさらにMoを部分拡散合金化した鋼粉(ハイブリッド型合金鋼粉)(H)である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following examples at all.
As the iron-based powder, the iron-based powder shown in Table 1 (both average particle size: about 80 μm) was used. In addition, the average particle diameter described below is obtained using a laser diffraction method.
As shown in Table 1, the iron-based powder used here is atomized pure iron powder (A), reduced pure iron powder (B), and partial diffusion in which Cu is partially diffused and alloyed on the surface of the iron powder as an alloying element. Alloyed steel powder (C), partially diffused alloyed steel powder (D) in which Ni, Cu, and Mo are partially diffused and alloyed on the surface of iron powder, and prealloyed in which Ni and Mo are prealloyed as alloy elements Steel powder (fully alloyed steel powder) (E), pre-alloyed steel powder (fully alloyed steel powder) (F) and (G) pre-alloyed with Mo as the alloy element, and Mo as the alloy element Steel powder (hybrid type alloy steel powder) (H) obtained by partial diffusion alloying Mo with prealloyed fully alloyed steel powder.

Figure 2015038239
Figure 2015038239

上記した鉄基粉末に、表2に示す種類、配合量の合金用粉末と、表2に示した種類、配合量の切削性改善用粉末と、さらに、表2に示した種類、配合量の潤滑剤とを、配合し、高速底部撹拌式混合機を利用して、一次混合を行った。なお、一次混合では、混合しながら140℃に加熱した後、60℃以下に冷却した。また、合金用粉末として配合した天然黒鉛粉は平均粒径:5μmの粉末とし、銅粉は平均粒径:20μmの粉末とした。   The above-described iron-based powder includes the types and amounts of alloy powders shown in Table 2, the types and amounts shown in Table 2, and the machinability improving powders shown in Table 2, and the types and amounts shown in Table 2. A lubricant was blended and primary mixing was performed using a high-speed bottom stirring mixer. In primary mixing, the mixture was heated to 140 ° C. while mixing and then cooled to 60 ° C. or less. The natural graphite powder blended as an alloy powder was a powder having an average particle diameter of 5 μm, and the copper powder was a powder having an average particle diameter of 20 μm.

Figure 2015038239
Figure 2015038239

一次混合したのち、さらに表2に示した種類、配合量の切削性改善用粉末、潤滑剤からなる二次混合材を配合し、混合機の回転数を1000rpmとし、1分間撹拌する二次混合を行なった。二次混合後、混合機から混合粉を排出した。なお、切削性改善用粉末は、一次混合と二次混合時の二回に分けて配合した。切削性改善用粉末の配合量は、鉄基粉末、合金用粉末、切削性改善用粉末の合計量に対する質量%で表示し、潤滑剤の配合量は、外添加とし、鉄基粉末、合金用粉末、切削性改善用粉末の合計量100質量%に対する質量%−外割で表示した。
以上の工程を経て、鉄基粉末、合金用粉末、切削性改善用粉末が、偏析を生じることなく、均一に混合された混合粉が得られた。
なお、比較例として、表2に示した種類、配合量で、鉄基粉末、合金用粉末、潤滑剤を配合し、V型容器回転式混合機を用いて、常温で混合し、混合粉を得た。
After the primary mixing, further mix the secondary mixing material consisting of the types and blending amounts of powders for improving machinability and lubricants shown in Table 2, and the mixing speed is 1000 rpm. Was done. After the secondary mixing, the mixed powder was discharged from the mixer. In addition, the machinability improving powder was blended in two steps during primary mixing and secondary mixing. The compounding amount of the machinability improving powder is expressed in mass% with respect to the total amount of the iron-based powder, alloy powder, and machinability improving powder, and the compounding amount of the lubricant is externally added. It was expressed in terms of mass% -extracent to the total amount of powder and machinability improving powder of 100 mass%.
Through the above steps, a mixed powder was obtained in which the iron-based powder, the alloy powder, and the machinability improving powder were uniformly mixed without causing segregation.
As a comparative example, iron-based powder, alloy powder, and lubricant were blended in the types and blending amounts shown in Table 2, and mixed at room temperature using a V-type container rotary mixer. Obtained.

引続き、得られた混合粉を、金型(旋盤切削試験用およびドリル切削試験用の2種)に充填し、加圧力:590MPaで圧縮成形し、成形体を得た。その得られた成形体に、RXガス雰囲気中で、1130℃×20minの焼結処理を施して、焼結体を得た。
得られた焼結体について、旋盤切削試験、ドリル切削試験を実施した。試験方法は次のとおりとした。
Subsequently, the obtained mixed powder was filled into a mold (two types for lathe cutting test and drill cutting test) and compression molded at a pressure of 590 MPa to obtain a molded body. The obtained molded body was subjected to a sintering treatment at 1130 ° C. for 20 minutes in an RX gas atmosphere to obtain a sintered body.
About the obtained sintered compact, the lathe cutting test and the drill cutting test were implemented. The test method was as follows.

(1)旋盤切削試験
得られた焼結体(リング状:外径60mm×内径20mm×長さ20mm)を3個重ねて、その側面を、旋盤を利用して切削した。切削条件は、サーメット製旋盤用切削工具を用いて、切削速度:100m/minおよび200m/min、送り量:0.1mm/回、切込み深さ:0.5mm、切削距離:1000mとし、試験後、切削工具の逃げ面の摩耗幅を測定した。ここで工具寿命を概ね0.25mmの磨耗量と規定し、切削距離1000m未満でこの工具寿命に達した場合は、1000m未達と記載した。従って、切削工具の逃げ面の摩耗幅が小さいほど、焼結体の切削性が優れていると評価される。
(1) Lathe cutting test Three of the obtained sintered bodies (ring shape: outer diameter 60 mm x inner diameter 20 mm x length 20 mm) were stacked and the side surfaces were cut using a lathe. Cutting conditions were as follows: cutting speed: 100m / min and 200m / min, feed rate: 0.1mm / turn, depth of cut: 0.5mm, cutting distance: 1000m, using a cermet lathe cutting tool. The wear width of the flank of the tool was measured. Here, the tool life is defined as a wear amount of approximately 0.25 mm, and when this tool life is reached at a cutting distance of less than 1000 m, it is described as less than 1000 m. Therefore, it is evaluated that the smaller the wear width of the flank of the cutting tool, the better the machinability of the sintered body.

(2)ドリル切削試験
得られた焼結体(円盤状:外径60mm×厚さ10mm)に、高速度鋼製ドリル(直径:2.6mm)で、回転数:5,000rpm、送り速度:750mm/minの条件で貫通穴を穿孔し、その際、切削動力計を用い、ドリル切削時の切削抵抗としてスラスト成分を測定した。スラスト成分が小さいほど、焼結体の切削性が優れていると評価される。
得られた結果を、表3にそれぞれ示す。
(2) Drill cutting test The obtained sintered body (disk shape: outer diameter 60 mm x thickness 10 mm) was rotated with a high-speed steel drill (diameter: 2.6 mm), rotating speed: 5,000 rpm, feed rate: 750 mm / A through hole was drilled under the condition of min. At that time, a thrust component was measured as a cutting resistance at the time of drill cutting using a cutting dynamometer. It is evaluated that the smaller the thrust component, the better the machinability of the sintered body.
The obtained results are shown in Table 3, respectively.

Figure 2015038239
Figure 2015038239

表3に示したとおり、本発明に従う発明例はいずれも、切削工具逃げ面の摩耗幅が小さい結果を示しているので、旋盤切削性に優れていることが分かる。加えて、ドリル穿孔時のスラスト成分が低い値を示しているので、ドリル切削性にも優れた焼結体となっていることが分かる。一方、本発明の範囲を外れる比較例は、特に、ドリル切削性に劣った結果となっていた。   As shown in Table 3, since all of the inventive examples according to the present invention show the result that the wear width of the cutting tool flank is small, it is understood that the lathe machinability is excellent. In addition, since the thrust component at the time of drilling shows a low value, it can be seen that the sintered body is excellent in drill machinability. On the other hand, the comparative example which deviates from the range of the present invention has a particularly poor drill cutting performance.

Claims (17)

鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合してなる粉末冶金用混合粉であって、
上記切削性改善用粉末が、結晶質層状珪酸アルカリであって、該切削性改善用粉末の配合量が、上記鉄基粉末、上記合金用粉末および該切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%の範囲である粉末冶金用混合粉。
A mixed powder for powder metallurgy, which is a mixture of iron-based powder, alloy powder, machinability improving powder and lubricant,
The machinability improving powder is a crystalline layered alkali silicate, and the blending amount of the machinability improving powder is mass% with respect to the total amount of the iron base powder, the alloy powder, and the machinability improving powder. And mixed powder for powder metallurgy in the range of 0.01 to 1.0%.
前記切削性改善用粉末がさらに、エンスタタイト粉末、タルク粉末、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末、および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む請求項1に記載の粉末冶金用混合粉。 The machinability improving powder further includes enstatite powder, talc powder, kaolin powder, mica powder, granulated slag powder, pancreatic clay powder, magnesium oxide (MgO) powder, and silica (SiO 2 ) and magnesium oxide ( 2. The mixed powder for powder metallurgy according to claim 1, comprising at least one selected from mixed powders with (MgO) in a range of 10 to 80 mass% with respect to the blending amount of the powder for improving machinability. 前記切削性改善用粉末がさらに、アルカリ金属塩粉末を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む請求項2に記載の粉末冶金用混合粉。   The mixed powder for powder metallurgy according to claim 2, wherein the machinability improving powder further contains an alkali metal salt powder in a range of 10 to 80 mass% with respect to the blending amount of the machinability improving powder. 前記アルカリ金属塩粉末が、アルカリ炭酸塩粉末およびアルカリ金属石鹸のうちから選んだ1種または2種である請求項3に記載の粉末冶金用混合粉。   The mixed powder for powder metallurgy according to claim 3, wherein the alkali metal salt powder is one or two selected from alkali carbonate powder and alkali metal soap. 前記切削性改善用粉末がさらに、フッ化カルシウム粉末を含む請求項1乃至4のいずれかに記載の粉末冶金用混合粉。   The mixed powder for powder metallurgy according to any one of claims 1 to 4, wherein the machinability improving powder further contains calcium fluoride powder. 前記切削性改善用粉末がさらに、金属硼化物粉末および金属窒化物粉末のうちから選んだ1種または2種を含む請求項1乃至5のいずれかに記載の粉末冶金用混合粉。   The mixed powder for powder metallurgy according to any one of claims 1 to 5, wherein the machinability improving powder further contains one or two kinds selected from metal boride powder and metal nitride powder. 前記金属硼化物粉末が、TiB2、ZrB2およびNbB2のうちから選んだ少なくとも1種からなり、前記金属窒化物粉末が、TiN、AlNおよびSi3N4のうちから選んだ少なくとも1種からなる請求項6に記載の粉末冶金用混合粉。 The metal boride powder is made of at least one selected from TiB 2 , ZrB 2 and NbB 2 , and the metal nitride powder is made from at least one selected from TiN, AlN and Si 3 N 4. The mixed powder for powder metallurgy according to claim 6. 前記切削性改善用粉末がさらに、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む請求項1乃至7のいずれかに記載の粉末冶金用混合粉。   The machinability improving powder further comprises at least one selected from an alkali metal sulfate or an alkaline earth metal sulfate in an amount of 10 to 80% by mass based on the amount of the machinability improving powder. The mixed powder for powder metallurgy according to any one of claims 1 to 7, which is contained in a range. 鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を配合したのち、混合して混合粉とする粉末冶金用混合粉の製造方法であって、
上記切削性改善用粉末を、結晶質層状珪酸アルカリとし、該切削性改善用粉末の配合量を、上記鉄基粉末、上記合金用粉末および該切削性改善用粉末の合計量に対する質量%で0.01〜1.0%とし、さらに、
上記混合を、鉄基粉末と合金用粉末とに対し、一次混合材として切削性改善用粉末の一部または全部と潤滑剤の一部とを添加して加熱し、該潤滑剤のうち少なくとも1種の潤滑剤を溶融させつつ混合し、ついで冷却して固化させる一次混合と、
上記切削性改善用粉末および潤滑剤の残り粉末を、二次混合材としてさらに添加して混合する二次混合とにより行う
粉末冶金用混合粉の製造方法。
A method for producing a mixed powder for powder metallurgy comprising mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant, followed by mixing into a mixed powder,
The machinability improving powder is a crystalline layered alkali silicate, and the blending amount of the machinability improving powder is 0.01% by mass with respect to the total amount of the iron base powder, the alloy powder and the machinability improving powder. ~ 1.0%, and
The mixture is heated by adding a part or all of the machinability improving powder and a part of the lubricant as a primary mixed material to the iron-based powder and the alloy powder, and at least one of the lubricants is heated. Primary mixing in which the lubricants of the seeds are mixed while being melted, and then cooled and solidified;
A method for producing a powder mixture for powder metallurgy, which is performed by secondary mixing in which the machinability improving powder and the remaining powder of the lubricant are further added and mixed as a secondary mixture.
前記切削性改善用粉末がさらに、エンスタタイト粉末、タルク粉末、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末、および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む請求項9に記載の粉末冶金用混合粉の製造方法。 The machinability improving powder further includes enstatite powder, talc powder, kaolin powder, mica powder, granulated slag powder, pancreatic clay powder, magnesium oxide (MgO) powder, and silica (SiO 2 ) and magnesium oxide ( The mixed powder for powder metallurgy according to claim 9, comprising at least one selected from mixed powders with (MgO) in a range of 10 to 80% by mass with respect to the blending amount of the powder for improving machinability. Production method. 前記切削性改善用粉末がさらに、アルカリ金属塩粉末を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む請求項10に記載の粉末冶金用混合粉の製造方法。   The method for producing a mixed powder for powder metallurgy according to claim 10, wherein the machinability improving powder further contains an alkali metal salt powder in a range of 10 to 80% by mass with respect to the blending amount of the machinability improving powder. . 前記アルカリ金属塩粉末が、アルカリ炭酸塩粉末およびアルカリ金属石鹸のうちから選んだ1種または2種である請求項11に記載の粉末冶金用混合粉の製造方法。   The method for producing a powder mixture for powder metallurgy according to claim 11, wherein the alkali metal salt powder is one or two selected from an alkali carbonate powder and an alkali metal soap. 前記切削性改善用粉末がさらに、フッ化カルシウム粉末を含む請求項9乃至12のいずれかに記載の粉末冶金用混合粉の製造方法。   The method for producing a mixed powder for powder metallurgy according to any one of claims 9 to 12, wherein the machinability improving powder further contains calcium fluoride powder. 前記切削性改善用粉末がさらに、金属硼化物粉末および金属窒化物粉末のうちから選んだ1種または2種を含む請求項9乃至13のいずれかに記載の粉末冶金用混合粉の製造方法。   The method for producing a mixed powder for powder metallurgy according to any one of claims 9 to 13, wherein the machinability improving powder further contains one or two kinds selected from metal boride powder and metal nitride powder. 前記金属硼化物粉末が、TiB2、ZrB2およびNbB2のうちから選んだ少なくとも1種からなり、前記金属窒化物粉末が、TiN、AlNおよびSi3N4のうちから選んだ少なくとも1種からなる請求項14に記載の粉末冶金用混合粉の製造方法。 The metal boride powder is made of at least one selected from TiB 2 , ZrB 2 and NbB 2 , and the metal nitride powder is made from at least one selected from TiN, AlN and Si 3 N 4. The method for producing a mixed powder for powder metallurgy according to claim 14. 前記切削性改善用粉末がさらに、アルカリ金属の硫酸塩またはアルカリ土類金属の硫酸塩のうちから選んだ少なくとも1種を、該切削性改善用粉末の配合量に対し、10〜80質量%の範囲で含む請求項9乃至15のいずれかに記載の粉末冶金用混合粉の製造方法。   The machinability improving powder further comprises at least one selected from an alkali metal sulfate or an alkaline earth metal sulfate in an amount of 10 to 80% by mass based on the amount of the machinability improving powder. The method for producing a powder mixture for powder metallurgy according to any one of claims 9 to 15, which is included in a range. 請求項1乃至8のいずれかに記載の粉末冶金用混合粉を、金型に充填したのち圧縮成形して成形体とし、該成形体に焼結処理を施した鉄基粉末製焼結体。   An iron-based powder sintered body obtained by filling the powder metallurgy mixed powder according to any one of claims 1 to 8 into a mold and then compression-molding it to form a molded body, and subjecting the molded body to a sintering treatment.
JP2014109474A 2013-07-18 2014-05-27 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder Active JP5904234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014109474A JP5904234B2 (en) 2013-07-18 2014-05-27 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013149526 2013-07-18
JP2013149526 2013-07-18
PCT/JP2014/000342 WO2015008406A1 (en) 2013-07-18 2014-01-23 Mixed powder for powder metallurgy, method for producing same, and method for producing sintered compact of iron-based powder formulation
WOPCT/JP2014/000342 2014-01-23
JP2014109474A JP5904234B2 (en) 2013-07-18 2014-05-27 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder

Publications (2)

Publication Number Publication Date
JP2015038239A true JP2015038239A (en) 2015-02-26
JP5904234B2 JP5904234B2 (en) 2016-04-13

Family

ID=52345893

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014520096A Active JP5585749B1 (en) 2013-07-18 2014-01-23 Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body made of iron-based powder
JP2014109474A Active JP5904234B2 (en) 2013-07-18 2014-05-27 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014520096A Active JP5585749B1 (en) 2013-07-18 2014-01-23 Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body made of iron-based powder

Country Status (7)

Country Link
US (1) US20160151837A1 (en)
JP (2) JP5585749B1 (en)
KR (1) KR101776670B1 (en)
CN (1) CN105377477B (en)
CA (1) CA2916153C (en)
SE (1) SE540222C2 (en)
WO (1) WO2015008406A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106102A (en) * 2015-12-01 2017-06-15 Jfeスチール株式会社 Mixture powder for powder metallurgy, manufacturing method of mixture powder for powder metallurgy and sintered body
JP2017106103A (en) * 2015-12-08 2017-06-15 Jfeスチール株式会社 Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of sintered body
KR20180008730A (en) * 2015-05-27 2018-01-24 가부시키가이샤 고베 세이코쇼 A mixed powder for iron powder metallurgy, a method for producing the same, and a sintered body
KR20180008732A (en) * 2015-05-27 2018-01-24 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy, method for producing the same, sintered body made using the same and method for producing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377477B (en) * 2013-07-18 2017-11-24 杰富意钢铁株式会社 The manufacture method of powder used in metallurgy mixed powder and its manufacture method and iron-based powder sintered body
JP6007928B2 (en) * 2014-02-21 2016-10-19 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
KR102543070B1 (en) 2015-02-03 2023-06-12 회가내스 아베 (피유비엘) Powdered metal compositions for easy machining
JP6480264B2 (en) 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder and sintered body for iron-based powder metallurgy
JP6392797B2 (en) * 2016-02-08 2018-09-19 住友電気工業株式会社 Iron-based powder for powder metallurgy and method for producing iron-based powder for powder metallurgy
US20190084039A1 (en) 2016-03-18 2019-03-21 Hoganas Ab (Publ) Powder metal composition for easy machining
JP6634365B2 (en) * 2016-12-02 2020-01-22 株式会社神戸製鋼所 Method for producing mixed powder for iron-based powder metallurgy and sintered body
CN107266033B (en) * 2017-08-06 2020-11-27 福建省德化世盛陶瓷有限公司 Iron rust red glaze ceramic prepared from Dehua Yangshan magnetite tailings and process thereof
JP6929259B2 (en) * 2018-01-25 2021-09-01 株式会社神戸製鋼所 Mixed powder for powder metallurgy
KR102348200B1 (en) * 2018-01-25 2022-01-06 가부시키가이샤 고베 세이코쇼 Mixed powder for powder metallurgy
JP7322880B2 (en) * 2018-07-05 2023-08-08 株式会社レゾナック Iron-based sintered member, iron-based powder mixture, and method for producing iron-based sintered member
CN112481543B (en) * 2020-10-20 2022-03-01 东阳市科力达电子器材有限公司 High-performance neodymium iron boron material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145353A (en) * 1983-12-30 1985-07-31 Dowa Teppun Kogyo Kk Manufacture of iron-base sintered body having superior machinability
JPS6479302A (en) * 1987-06-18 1989-03-24 Kawasaki Steel Co Reduced iron powder having excellent machinability and mechanical properties after sintering
JP4639563B2 (en) * 2001-09-17 2011-02-23 株式会社デンソー Silicon carbide semiconductor manufacturing equipment
JP2011062526A (en) * 2009-09-18 2011-03-31 Ivoclar Vivadent Ag Method of reducing time for machining dental ceramic blank
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
JP5585749B1 (en) * 2013-07-18 2014-09-10 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body made of iron-based powder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE445715B (en) 1984-11-30 1986-07-14 Hoeganaes Ab MANGANESULPHIDIC IRON POWDER MIXTURE
JPH03133573A (en) * 1989-07-26 1991-06-06 Sanso Aaku Kogyo Kk Melt-cutting electrode
JP2763826B2 (en) 1990-10-18 1998-06-11 日立粉末冶金株式会社 Sintered alloy for valve seat
JP3449110B2 (en) 1996-04-17 2003-09-22 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
DE19943470A1 (en) 1999-09-11 2001-03-15 Clariant Gmbh Crystalline alkali layer silicate
JP4639564B2 (en) 2001-09-20 2011-02-23 日産自動車株式会社 Vehicle crossing fault warning device
US7294167B2 (en) * 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
CN100558488C (en) * 2004-01-23 2009-11-11 杰富意钢铁株式会社 Iron based powder for powder metallurgy
JP4412133B2 (en) * 2004-09-27 2010-02-10 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
US7575619B2 (en) * 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
CN101384387B (en) * 2006-02-15 2011-12-21 杰富意钢铁株式会社 Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body
JP5260913B2 (en) * 2007-08-03 2013-08-14 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and sintered iron powder
JP5308123B2 (en) * 2008-11-10 2013-10-09 株式会社神戸製鋼所 High-strength composition iron powder and sintered parts using it
CA2748028C (en) * 2008-12-22 2017-10-24 Hoganas Ab (Publ) Machinability improving composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145353A (en) * 1983-12-30 1985-07-31 Dowa Teppun Kogyo Kk Manufacture of iron-base sintered body having superior machinability
JPS6479302A (en) * 1987-06-18 1989-03-24 Kawasaki Steel Co Reduced iron powder having excellent machinability and mechanical properties after sintering
JP4639563B2 (en) * 2001-09-17 2011-02-23 株式会社デンソー Silicon carbide semiconductor manufacturing equipment
JP2011062526A (en) * 2009-09-18 2011-03-31 Ivoclar Vivadent Ag Method of reducing time for machining dental ceramic blank
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
JP5585749B1 (en) * 2013-07-18 2014-09-10 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body made of iron-based powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180008730A (en) * 2015-05-27 2018-01-24 가부시키가이샤 고베 세이코쇼 A mixed powder for iron powder metallurgy, a method for producing the same, and a sintered body
KR20180008732A (en) * 2015-05-27 2018-01-24 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy, method for producing the same, sintered body made using the same and method for producing the same
KR102102584B1 (en) 2015-05-27 2020-04-21 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy and manufacturing method therefor, and sintered body produced therefrom and manufacturing method thereof
KR102113996B1 (en) 2015-05-27 2020-05-22 가부시키가이샤 고베 세이코쇼 Iron powder mixed powder for metallurgy and manufacturing method thereof, and sintered body produced using the same
JP2017106102A (en) * 2015-12-01 2017-06-15 Jfeスチール株式会社 Mixture powder for powder metallurgy, manufacturing method of mixture powder for powder metallurgy and sintered body
JP2017106103A (en) * 2015-12-08 2017-06-15 Jfeスチール株式会社 Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of sintered body

Also Published As

Publication number Publication date
CN105377477A (en) 2016-03-02
JP5904234B2 (en) 2016-04-13
SE1650056A1 (en) 2016-01-18
CA2916153A1 (en) 2015-01-22
CN105377477B (en) 2017-11-24
KR20160023848A (en) 2016-03-03
KR101776670B1 (en) 2017-09-19
JPWO2015008406A1 (en) 2017-03-02
SE540222C2 (en) 2018-05-02
WO2015008406A8 (en) 2015-11-12
WO2015008406A1 (en) 2015-01-22
US20160151837A1 (en) 2016-06-02
CA2916153C (en) 2018-02-06
JP5585749B1 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5904234B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP4737107B2 (en) Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5962787B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP5874700B2 (en) Iron-based mixed powder for powder metallurgy
JP5741649B2 (en) Iron-based powder mixture
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP6380501B2 (en) Mixed powder for powder metallurgy, method for producing mixed powder for powder metallurgy, and sintered body
JP6007928B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
WO2018100955A1 (en) Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2014025109A (en) Mixed powder for powder metallurgy
JP5200768B2 (en) Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same
JP2009242887A (en) Iron-based powdery mixture
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JP2017106060A (en) Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body
JP2009221576A (en) Iron-based powdery mixture
JP2017101280A (en) Mixed powder for powder metallurgy, production method for mixed powder for powder metallurgy, and iron-based powder-made sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5904234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250