JP2015029987A - 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置 - Google Patents

酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置 Download PDF

Info

Publication number
JP2015029987A
JP2015029987A JP2013164112A JP2013164112A JP2015029987A JP 2015029987 A JP2015029987 A JP 2015029987A JP 2013164112 A JP2013164112 A JP 2013164112A JP 2013164112 A JP2013164112 A JP 2013164112A JP 2015029987 A JP2015029987 A JP 2015029987A
Authority
JP
Japan
Prior art keywords
acid gas
group
gas
carbon dioxide
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013164112A
Other languages
English (en)
Inventor
村井 伸次
Shinji Murai
伸次 村井
加藤 康博
Yasuhiro Kato
康博 加藤
幸繁 前沢
Yukishige Maezawa
幸繁 前沢
武彦 村松
Takehiko Muramatsu
武彦 村松
大悟 村岡
Daigo Muraoka
大悟 村岡
斎藤 聡
Satoshi Saito
聡 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013164112A priority Critical patent/JP2015029987A/ja
Priority to AU2014208282A priority patent/AU2014208282A1/en
Priority to US14/450,614 priority patent/US20150044114A1/en
Priority to CN201410385396.6A priority patent/CN104338413A/zh
Priority to EP14180257.9A priority patent/EP2835170A1/en
Publication of JP2015029987A publication Critical patent/JP2015029987A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20447Cyclic amines containing a piperazine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/60Additives
    • B01D2252/602Activators, promoting agents, catalytic agents or enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide

Abstract

【課題】二酸化炭素等の酸性ガスの吸収量や吸収速度が大きく、また酸性ガス吸収時の反応熱が低く、さらに、放散性が抑制され、酸性ガスの吸収能力に優れた酸性ガス吸収剤、並びにこれを用いた酸性ガス除去装置及び酸性ガス除去方法を提供する。【解決手段】一般式(1)で表されるアミノ酸塩を少なくとも1種含有する、・・・(1)(上記式(1)中、R1は炭素数3〜8の環状アルキル基を表し、R2は炭素数1〜4のアルキル基又は水素原子を表し、R3はメチレン基、炭素数2〜4のアルキレン基、炭素数2〜4のアルキリデン基、または炭素数3〜4のポリメチレン基を表し、Mはアルカリ金属を表す。)酸性ガス吸収剤、並びにこの吸収剤を用いる酸性ガス除去装置及び酸性ガス除去方法。アルカノールアミン類及び/又は下記一般式(2)で表されるヘテロ環状アミン化合物からなる反応促進剤をさらに含有する酸性ガス吸収剤。【選択図】なし

Description

本発明の実施形態は、酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置に関する。
近年、地球の温暖化現象の一因として二酸化炭素(CO)濃度の上昇による温室効果が指摘され、地球規模で環境を守る国際的な対策が急務となっている。COの発生源としては産業活動によるところが大きく、その排出抑制への機運が高まっている。
COをはじめとする酸性ガスの濃度の上昇を抑制するための技術としては、省エネルギー製品の開発、排出する酸性ガスの分離回収技術、酸性ガスの資源としての利用や隔離貯留させる技術、酸性ガスを排出しない自然エネルギーや原子力エネルギーなどの代替エネルギーへの転換などがある。
現在までに研究されてきた酸性ガス分離技術としては、吸収法、吸着法、膜分離法、深冷法などがある。中でも吸収法は、ガスを大量に処理するのに適しており、工場や発電所への適用が検討されている。
したがって、化石燃料を使用する火力発電所などの設備を対象に、化石燃料(石炭、石油、天然ガス等)を燃焼する際に発生する排ガスを化学吸収剤と接触させ、燃焼排ガス中のCOを除去して回収する方法、さらに回収されたCOを貯蔵する方法が世界中で行われている。また、化学吸収剤を用いてCO以外に硫化水素(HS)等の酸性ガスを除去することが提案されている。
一般に、吸収法において使用される化学吸収剤としてモノエタノールアミン(MEA)に代表されるアルカノールアミン類が1930年代ころから開発されており、現在も使用されている。この方法は、経済的でありまた除去装置の大型化が容易である。
既存に広く使用されるアルカノールアミンとしては、モノエタノールアミン、2−アミノ−2−メチルプロパノールアミン、メチルアミノエタノール、エチルアミノエタノール、プロピルアミノエタノール、ジエタノールアミン、ビス(2−ヒドロキシ−1−メチルエチル)アミン、メチルジエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、トリエタノールアミン、ジメチルアミノ−1−メチルエタノールなどがある。
特に、1級アミンであるエタノールアミンは、反応速度が速いため広く使用されてきた。しかし、この化合物は、腐食性を有しており、劣化し易く、また再生に要するエネルギーが高いという課題がある。一方、メチルジエタノールアミンは、腐食性は低く、また再生に要するエネルギーも低いものの、吸収速度が低いという欠点を有する。したがって、これらの点を改善した、新しい吸収剤の開発が要求されている。
近年、酸性ガスの吸収剤として、アミン系化合物の中でも、特に構造的に立体障害を有するアルカノールアミンに対する研究が盛んに試みられている。立体障害を有するアルカノールアミンは、酸性ガスの選択度が非常に高く、また再生に要するエネルギーが少ないという長所を有している。
立体障害を有するアミン系化合物の反応速度は、その立体構造によって決定される反応の障害の程度に依存する。立体障害を有するアミン系化合物の反応速度は、例えばメチルエタノールアミン、ジエタノールアミンなどの2級アミンよりは低いものの、メチルジエタノールアミン等の第3級アミンよりは高い反応速度を有している。
また、アルカノールアミン類とは異なる構造を有するアミン系化合物として、環状アミンを吸収剤として使用する方法も知られている。
しかしながら、上記したアルカノールアミン類等のアミン化合物を用いた酸性ガスの吸収剤では、吸収塔において酸性ガスの吸収を行う際、又は再生塔において吸収剤の再生を行う際に、吸収塔や再生塔から吸収剤が放散され易く、酸性ガスの吸収効率や吸収剤の回収効率が低下することがある。このため、実機での使用環境下でも、放散性が抑制された吸収剤が求められている。
一方、アルカノールアミン類以外のアミン系化合物として、直鎖状の第1級アミノ酸塩を吸収剤として用いる方法が知られている。アミノ酸塩は、水に対する溶解性に優れるうえ、放散性が抑制されるため、酸性ガス吸収剤として、優れた吸収性能を示し得る。
また、酸性ガスの吸収剤として、第2級アミノ酸塩又は第3級アミノ酸塩を用いる方法も知られている。
特開2008−307519号公報 特許第2871334号公報 米国特許4112052号明細書 韓国公開特許第2005−0007477号 特開2008−136989号公報 特開平7−246315号公報
しかしながら、吸収剤として直鎖状のアミノ酸塩を用いると、二酸化炭素の吸収時に沈殿物が発生し、アミノ酸塩の濃度低下に伴い、酸性ガスの吸収効率が低下することがある。また、この場合、沈殿物を回収して、アミノ酸塩として再生する工程を別途設ける必要があり、酸性ガスの回収処理全体としてのコストが増大するおそれがある。さらに、吸収剤として第1級アミノ酸塩を用いると、吸収剤から酸性ガスを分離する際に、多大なエネルギーを要するという問題がある。
一方、吸収剤として、第2級アミノ酸塩又は第3級アミノ酸塩を用いた場合には、再生に要するエネルギーは低いものの、酸性ガス吸収時の反応熱が十分に低減されないという問題がある。
したがって、これらの技術でも、酸性ガス吸収量や酸性ガス吸収速度、酸性ガス吸収時の反応熱などの酸性ガス吸収能力に関してはいまだ不十分であり、ガス吸収能力のさらなる向上が求められている。また、酸性ガスの吸収時及び吸収剤の再生時に、アミン成分が大気中に放散され難い吸収液が求められている。
本発明が解決しようとする課題は、二酸化炭素等の酸性ガスの吸収量や吸収速度が高く、また酸性ガス吸収時の反応熱が低く、さらに、放散性が抑制され、酸性ガスの吸収能力に優れた酸性ガス吸収剤、並びにこれを用いた酸性ガス除去装置及び酸性ガス除去方法を提供することである。
実施形態の酸性ガス吸収剤は、下記一般式(1)で表されるアミノ酸塩を少なくとも1種含有する。
Figure 2015029987
・・・(1)
(上記式(1)中、Rは炭素数3〜8の環状アルキル基を表し、Rは炭素数1〜4のアルキル基又は水素原子を表し、Rはメチレン基、炭素数2〜4のアルキレン基、炭素数2〜4のアルキリデン基、炭素数3〜4のポリメチレン基を表す。Mはアルカリ金属を表す。)
実施形態の酸性ガス除去装置の概略図である。
以下、本発明の実施形態について詳細に説明する。
実施形態の酸性ガス吸収剤は、下記一般式(1)で表されるアミノ酸塩を少なくとも1種含有することを特徴とする。
Figure 2015029987
・・・(1)
(上記式(1)中、Rは炭素数3〜8の環状アルキル基を表し、Rは炭素数1〜4のアルキル基又は水素原子を表し、Rはメチレン基、炭素数2〜4のアルキレン基、炭素数2〜4のアルキリデン基、炭素数3〜4のポリメチレン基を表し、Mはアルカリ金属を表す。)
従来より、アミン化合物が有する立体障害は、二酸化炭素吸収時の生成物に対する影響が大きく、低反応熱を示す重炭酸イオンの生成に有利に働くことが知られている。例えば分岐構造を有するN−イソプロピルアミノエタノールは、二酸化炭素の吸収反応に対して低反応熱性を示すことが報告されている。このような知見に基づき、立体障害の効果をさらに大きく得るため本願発明者が検討した結果、上記一般式(1)に示す化合物(例えばシクロペンチルアミノ酢酸ナトリウム)が、従来の分岐構造を有するアミン化合物より、さらに低反応熱性を得られることを見出した。
すなわち、上記一般式(1)のアミノ酸塩は、炭素数3〜8の環状アルキル基(R)が窒素原子に直接結合するとともに、当該窒素原子に、アルキル基(R)を介して、カルボキシル基が結合した構造を有している。
このように、炭素数3以上8以下の環構造(R)が、窒素原子に直接結合した上記一般式(1)のアミノ酸塩は、立体障害の大きい構造を有する。このため、上記一般式(1)のアミノ酸塩と二酸化炭素(CO)との反応では重炭酸イオンが生成し、反応熱が低減していると考えられる。
また、上記一般式(1)のアミノ酸塩は、カルボキシル塩の形態を有することで、上記一般式(1)のアミノ酸塩の揮発性が抑制される。このため、排気ガスを処理する過程で、大気中に放出されるアミン成分の量が低減された酸性ガス吸収剤とすることができる。
上記の一般式(1)で表されるアミノ酸塩(以下、アミノ酸塩(1)と示す。)を、例えば水などの溶媒に溶解させることにより、酸性ガスの吸収能力の高い酸性ガス吸収剤を得ることができる。以下の実施態様では、酸性ガスが二酸化炭素である場合を例に説明するが、本発明の実施形態に係る酸性ガス吸収剤は、硫化水素等、その他の酸性ガスに関しても同様の効果を得ることができる。
上記式(1)中、Rは炭素数3〜8の環状アルキル基を表し、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられる。上記のような環状構造を有することで、アミノ酸塩(1)の酸性ガスとの反応熱を低減することができ、酸性ガス吸収剤の二酸化炭素との反応性を向上させることができる。
上記のR(環構造)の中でも、水などの溶媒に対する溶解性の観点から、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が好ましい。特に、シクロペンチル基、シクロへキシル基は、水等の溶媒に対して良好な溶解性を維持しつつ、アミノ酸塩(1)全体として高い立体障害を得ることができ、酸性ガスの吸収時において、反応熱の低減の効果が高められ、優れた酸性ガス吸収能力を得られるため好ましい。
また、アミノ酸塩(1)の分子構造とすることにより揮発性が抑えられるため、排気ガスを処理する過程で、大気中に放出されるアミン成分の量が低減された酸性ガス吸収剤とすることができる。
は炭素数1〜4のアルキル基又は水素原子を表す。Rとしては、例えば、水素原子、又はメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、若しくはiso−ブチル基を用いることができる。Rの炭素数が4を超えると、アミノ酸塩(1)の疎水性が高くなり、溶媒に対する溶解性が低下して、酸性ガスとの反応性が低下するおそれがある。これらの中でも、Rを水素原子とすることで、アミノ酸塩(1)と酸性ガスとの反応性が高められ、酸性ガスの吸収量が高められるため好ましい。一方、Rをメチル基とした場合には、Rを水素原子とした場合と比較して、酸性ガスの吸収量は若干低下するものの、アミノ酸塩(1)の酸性ガスとの反応熱が低減される利点がある。
のアルキル基は、水素原子の一部が、Si、O、N、S等の原子を含む基で置換されていてもよい。Si、O、N、S等の原子を含む基としては、具体的にはシラノール基、ヒドロキシル基、アミノ基、メルカプト基等が挙げられる。
例えば、Rが、炭素数1〜4のアルキル基の水素原子の一部が水酸基で置換された基である場合には、アミノ酸塩(1)の水への溶解性が高められる。炭素数1〜4のアルキル基の水素原子の一部が水酸基で置換された基としては、具体的には、例えば、ヒドロキシエチル基、1,2−ジメチル−2−ヒドロキシエチル基、2−ヒドロキシ−2,2−ジメチルエチル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、3−ヒドロキシ−2−メチルプロピル基、1−ヒドロキシイソプロピル基、2,3−ジヒドロキシプロピル基、1,3−ジヒドロキシイソプロピル基、3−ヒドロキシ−2−メチルプロピル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基、2,3−ジヒドロキシブチル基、2,4−ジヒドロキシブチル基、3,4−ジヒドロキシブチル基、2,3,4−トリヒドロキシブチル基などが挙げられる。
は、窒素原子と結合するとともに、カルボキシル基と結合する基であり、メチレン基、炭素数2〜4のアルキレン基、炭素数2〜4のアルキリデン基、炭素数3〜4のポリメチレン基を表す。
としては、例えば、メチレン基、エチレン基、プロピレン基、1,2−ブチレン基、1,3−ブチレン基、2,3−ブチレン基、エチリデン基、プロピリデン基、ブチリデン基、トリメチレン基、テトラメチレン基が挙げられる。
のアルキレン基、アルキリデン基、ポリメチレン基は、例えば2−メチルプロピリデン基等のように、分岐鎖を有するものであってもよい。但し、Rは、分岐鎖を含めた炭素原子の数が、4を超えない範囲とする。
の炭素数が4を超えると、アミノ酸塩(1)の疎水性が高くなり、溶媒に対する溶解性が低下して、酸性ガスとの反応性が低下するおそれがある。一方、窒素原子とカルボキシル基とが、Rの炭素原子を介在することなく、直接結合すると、アミノ酸塩(1)全体としての塩基性が低下し、酸性ガスとの反応性が低下するおそれがある。これらの中でも、Rをメチレン基とすることで、酸性ガスに対する優れた反応性を維持しつつ、水などの溶媒に対して良好な溶解性を得られるため好ましい。
のメチレン基、アルキレン基、アルキリデン基、又はポリメチレン基は、水素原子の一部が、例えばヒドロキシル基、メルカプト基等で置換されていてもよい。この場合、Rの置換基は、Rを構成する炭素原子のうち、窒素原子に結合する炭素原子以外の炭素原子に結合することが好ましい。
上記式(1)において、Mはアルカリ金属を表し、好ましくはNa、Li、K、Rb、Cs、Frである。
一般式(1)で表わされるアミノ酸塩(1)としては、例えばシクロプロピルアミノ酢酸ナトリウム、シクロブチルアミノ酢酸ナトリウム、シクロペンチルアミノ酢酸ナトリウム、シクロヘキシルアミノ酢酸ナトリウム、シクロヘプチルアミノ酢酸ナトリウム、シクロオクチルアミノ酢酸ナトリウム、2−(シクロプロピルアミノ)プロピオン酸ナトリウム、2−(シクロブチルアミノ)プロピオン酸ナトリウム、2−(シクロペンチルアミノ)プロピオン酸ナトリウム、2−(シクロヘキシルアミノ)プロピオン酸ナトリウム、2−(シクロヘプチルアミノ)プロピオン酸ナトリウム、2−(シクロオクチルアミノ)プロピオン酸ナトリウム、3−(シクロプロピルアミノ)プロピオン酸ナトリウム、3−(シクロブチルアミノ)プロピオン酸ナトリウム、3−(シクロペンチルアミノ)プロピオン酸ナトリウム、3−(シクロヘキシルアミノ)プロピオン酸ナトリウム、3−(シクロヘプチルアミノ)プロピオン酸ナトリウム、3−(シクロオクチルアミノ)プロピオン酸ナトリウム、2−(シクロプロピルアミノ)−3−ヒドロキシプロピオン酸ナトリウム、2−(シクロブチルアミノ)−3−ヒドロキシプロピオン酸ナトリウム、2−(シクロペンチルアミノ)−3−ヒドロキシプロピオン酸ナトリウム、2−(シクロヘキシルアミノ)−3−ヒドロキシプロピオン酸ナトリウム、2−(シクロヘプチルアミノ)−3−ヒドロキシプロピオン酸ナトリウム、2−(シクロオクチルアミノ)−3−ヒドロキシプロピオン酸ナトリウムなどが挙げられる。
また、一般式(1)で表わされるアミノ酸塩(1)としては、例えば2−(シクロプロピルアミノ)ブタン酸ナトリウム、2−(シクロブチルアミノ)ブタン酸ナトリウム、2−(シクロペンチルアミノ)ブタン酸ナトリウム、2−(シクロヘキシルアミノ)ブタン酸ナトリウム、2−(シクロヘプチルアミノ)ブタン酸ナトリウム、2−(シクロオクチルアミノ)ブタン酸ナトリウム、3−(シクロプロピルアミノ)ブタン酸ナトリウム、3−(シクロブチルアミノ)ブタン酸ナトリウム、3−(シクロペンチルアミノ)ブタン酸ナトリウム、3−(シクロヘキシルアミノ)ブタン酸ナトリウム、3−(シクロヘプチルアミノ)ブタン酸ナトリウム、3−(シクロオクチルアミノ)ブタン酸ナトリウム、4−(シクロプロピルアミノ)ブタン酸ナトリウム、4−(シクロブチルアミノ)ブタン酸ナトリウム、4−(シクロペンチルアミノ)ブタン酸ナトリウム、4−(シクロヘキシルアミノ)ブタン酸ナトリウム、4−(シクロヘプチルアミノ)ブタン酸ナトリウム、4−(シクロオクチルアミノ)ブタン酸ナトリウム、2−(シクロペンチルアミノ)−3−スルファニルプロピオン酸ナトリウムなどが挙げられる。
なお、アミノ酸塩(1)としては、上記の群より選択された1種の化合物を用いることができる。又はアミノ酸塩(1)としては、上記の群より選択された2種以上の化合物を混合したものを用いることも可能である。
酸性ガス吸収剤に含まれるアミノ酸塩(1)の含有量は、15〜50質量%であることが好ましい。一般に、アミン成分の濃度が高い方が単位容量当たりの二酸化炭素の吸収量、脱離量が多く、また二酸化炭素の吸収速度、脱離速度が速いため、エネルギー消費の面やプラント設備の大きさ、処理効率の面においては好ましい。しかし、吸収液中のアミン成分の濃度が高すぎると、吸収液に含まれる水が、二酸化炭素吸収に対する活性剤としての機能を十分に発揮できなくなる。また、吸収液中のアミン成分の濃度が高すぎると、吸収液の粘度が上昇するなどの欠点が無視できなくなる。アミノ酸塩(1)の含有量が50質量%以下の場合、吸収液の粘度の上昇や、活性剤としての水の機能低下などの現象は見られない。また、アミノ酸塩(1)の含有量を15質量%以上とすることで、十分な二酸化炭素の吸収量、吸収速度を得ることができ、優れた処理効率を得ることができる。
アミノ酸塩(1)の含有量が15〜50質量%の範囲にある酸性ガス吸収剤は、二酸化炭素回収用として用いた場合、二酸化炭素吸収量及び二酸化炭素吸収速度が高いだけでなく、二酸化炭素脱離量及び二酸化炭素脱離速度も高い。このため、二酸化炭素の回収を効率的に行える点で有利である。アミノ酸塩(1)の含有量は、より好ましくは20〜50質量%である。
アミノ酸塩(1)は、アルカノールアミン類及び/又は下記一般式(2)で表されるヘテロ環状アミン化合物(以下、ヘテロ環状アミン化合物(2)と示す。)からなる反応促進剤と混合して使用することが好ましい。
Figure 2015029987
・・・(2)
上記式(2)中、Rは水素原子又は炭素数1〜4のアルキル基を表す。Rは炭素原子に結合した炭素数1〜4のアルキル基を表す。rは1〜3の整数を表し、qは1〜4の整数を表し、pは0〜12の整数を表す。rが2〜3の場合には、窒素原子同士は直接結合していない。qが2である場合には、rは1又は2の整数である。また、Rの炭素数1〜4のアルキル基の水素原子の一部、及びRの炭素数1〜4のアルキル基の水素原子の一部は、それぞれ水酸基、アミノ基で置換されていてもよい。
本実施形態では、例えばアミノ酸塩(1)と、アルカノールアミン類及び/又はヘテロ環状アミン化合物(2)からなる反応促進剤とを混合することができる。そして、アミノ酸塩(1)と、アルカノールアミン類及び/又はヘテロ環状アミン化合物(2)との混合物を例えば水溶液としたものを、酸性ガス吸収剤として用いることができる。アミノ酸塩(1)を、アルカノールアミン類及び/又はヘテロ環状アミン化合物(2)と混合して用いることで、アミノ酸塩(1)の単位モル当たりの二酸化炭素吸収量や、酸性ガス吸収剤の単位体積当たりの二酸化炭素吸収量及び二酸化炭素吸収速度をより一層向上させることができる。また、アミノ酸塩(1)を、アルカノールアミン類及び/又はヘテロ環状アミン化合物(2)と混合して用いることで、二酸化炭素吸収後に酸性ガスを分離するエネルギー(酸性ガス脱離エネルギー)も低下し、酸性ガス吸収剤を再生させる際のエネルギーを低減することができる。
反応促進剤としてのアルカノールアミンとしては、例えばモノエタノールアミン、2−アミノ−2−メチル−1−プロパノール、2−アミノ−2−メチル−1,3−ジプロパノールアミン、メチルアミノエタノール、エチルアミノエタノール、プロピルアミノエタノール、ジエタノールアミン、ビス(2−ヒドロキシ−1−メチルエチル)アミン、メチルジエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、トリエタノールアミン、ジメチルアミノ−1−メチルエタノール、2-メチルアミノエタノール、2-エチルアミノエタノール、2-プロピルアミノエタノール、n-ブチルアミノエタノール、2-(イソプロピルアミノ)エタノール、3-エチルアミノプロパノール、トリエタノールアミン、ジエタノールアミン等が挙げられる。ここで、アルカノールアミンとは、1分子中に、アミノ基と水酸基を有する化合物を意味する。
これらの中でも、アルカノールアミン類としては、第3級アミンと酸性ガスとの反応性をより向上させる観点から、2−(イソプロピルアミノ)エタノール、2−(エチルアミノ)エタノール及び2−アミノ−2−メチル−1−プロパノールからなる群より選ばれる少なくとも一種であることが好ましい。
ヘテロ環状アミン化合物(2)としては、アゼチジン、1−メチルアゼチジン、1−エチルアゼチジン、2−メチルアゼチジン、2−アゼチジルメタノール、2−(2−アミノエチル)アゼチジン、ピロリジン、1−メチルピロリジン、2−メチルピロリジン、2−ブチルピロリジン、2−ピロリジルメタノール、2−(2−アミノエチル)ピロリジン、ピペリジン、1−メチルピペリジン、2−エチルピペリジン、3−プロピルピペリジン、4−エチルピペリジン、2−ピペリジルメタノール、3−ピペリジルエタノール、2−(2−アミノエチル)ピロリジン、ヘキサヒドロ−1H−アゼピン、ヘキサメチレンテトラミン、ピペラジン、ピぺラジン誘導体等が挙げられる。
これらの中でも、特にピぺラジン誘導体は、酸性ガス吸収剤の二酸化炭素吸収量及び吸収速度向上の観点から望ましい。ピペラジン誘導体は第2級アミン化合物であり、一般に、第2級アミノ基の窒素原子が二酸化炭素と結合し、カルバメートイオンを形成することで、反応初期段階における吸収速度の向上に寄与する。さらに第2級アミノ基の窒素原子は、これに結合した二酸化炭素を重炭酸イオン(HCO )に転換する役割を担っており、反応後半段階の速度向上に寄与する。
ピぺラジン誘導体としては、2−メチルピペラジン、2,5−ジメチルピペラジン、2,6−ジメチルピペラジン、1−メチルピペラジン、1−(2−ヒドロキシエチル)ピペラジン、1−(2−アミノエチル)ピペラジンのうちの少なくとも1種類であることがより好ましい。
酸性ガス吸収剤に含まれる反応促進剤(アルカノールアミン類及び/又はヘテロ環状アミン化合物(2))の含有量は、1〜15質量%であることが好ましい。酸性ガス吸収剤に含まれる反応促進剤の含有量が1質量%未満であると、二酸化炭素吸収速度を向上させる効果を十分に得られないおそれがある。酸性ガス吸収剤に含まれる反応促進剤の含有量が15質量%を超えると、吸収剤の粘度が過度に高くなり、かえって反応性が低下するおそれがある。
酸性ガス吸収剤には、上記のアミノ酸塩及び反応促進剤の他に、プラント設備の腐食を防止するためのリン酸系等の防食剤や、泡立ち防止のためのシリコーン系等の消泡剤や、酸性ガス吸収剤の劣化防止のための酸化防止剤等を含有していてもよい。
本実施形態に係る酸性ガス除去方法は、酸性ガスを含有する排気ガスと、上記の実施形態で説明したアミノ酸塩を溶媒に溶解させてなる酸性ガス吸収剤とを接触させ、酸性ガスを含む排気ガスから酸性ガスを吸収分離して除去するようにしたものである。
二酸化炭素の吸収分離工程の基本的な構成は、酸性ガス吸収剤に、二酸化炭素を含有する排気ガスを接触させて、酸性ガス吸収剤に二酸化炭素を吸収させる工程(二酸化炭素吸収工程)と、上記二酸化炭素吸収工程で得られた、二酸化炭素が吸収された酸性ガス吸収剤を加熱して、二酸化炭素を脱離して回収する工程(二酸化炭素分離工程)とを含む。
二酸化炭素を含むガスを、上記の酸性ガス吸収剤を含む水溶液に接触させる方法は特に限定されないが、例えば、酸性ガス吸収剤中に二酸化炭素を含むガスをバブリングさせて吸収する方法、二酸化炭素を含むガス気流中に酸性ガス吸収剤を霧状に降らす方法(噴霧乃至スプレー方式)、あるいは磁製の充填材や金属網製の充填材の入った吸収塔内で、二酸化炭素を含むガスと酸性ガス吸収剤を向流接触させる方法などによって行われる。
二酸化炭素を含むガスを水溶液に吸収させる時の酸性ガス吸収剤の温度は、通常室温から60℃以下で行われる。好ましくは50℃以下、より好ましくは20〜45℃程度で行われる。低温度で行うほど、酸性ガスの吸収量は増加するが、処理温度の下限値は、プロセス上のガス温度や熱回収目標等によって決定される。二酸化炭素吸収時の圧力は通常ほぼ大気圧で行われる。吸収性能を高めるため、より高い圧力まで加圧することもできるが、圧縮のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。
二酸化炭素吸収工程において、上述した実施形態に係るアミノ酸塩を15〜50質量%含む酸性ガス吸収剤の、二酸化炭素吸収時(40℃)における二酸化炭素吸収量は、吸収剤中に含まれるアミン1mol当り0.3〜0.85mol程度である。また、二酸化炭素吸収工程において、上述した実施形態に係るアミノ酸塩を10〜55質量%含む酸性ガス吸収剤の、二酸化炭素の吸収を開始した時点から数分経過後における二酸化炭素吸収速度は0.002〜0.008mol/mol/分程度である。
ここで、二酸化炭素飽和吸収量は、酸性ガス吸収剤中の無機炭素量を赤外線式ガス濃度測定装置で測定した値である。また、二酸化炭素吸収速度は、二酸化炭素の吸収を開始した時点から数分経過した時点において赤外線式二酸化炭素計を用いて測定した値である。
二酸化炭素を吸収した酸性ガス吸収剤から二酸化炭素を分離し、純粋なあるいは高濃度の二酸化炭素を回収する方法としては、蒸留と同様に酸性ガス吸収剤を加熱して釜で泡立てて脱離する方法、棚段塔、スプレー塔、磁製の充填材や金属網製の充填材の入った再生塔内で液界面を広げて加熱する方法などが挙げられる。これにより、カルバミン酸アニオンや重炭酸イオンから二酸化炭素が遊離して放出される。
二酸化炭素分離時の酸性ガス吸収剤の温度は通常70℃以上で行われる。二酸化炭素分離時の酸性ガス吸収剤の温度は、好ましくは80℃以上、より好ましくは90〜120℃程度で行われる。温度が高いほど脱離量は増加するが、温度を上げると吸収液の加熱に要するエネルギーが増す。このため、二酸化炭素分離時の酸性ガス吸収剤温度はプロセス上のガス温度や熱回収目標等によって決定される。二酸化炭素脱離時の圧力は通常ほぼ大気圧で行われる。脱離性能を高めるためより低い圧力まで減圧することもできるが、減圧のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。
上述した実施形態に係るアミノ酸塩を15〜50質量%含む水溶液の二酸化炭素脱離時(70℃)における二酸化炭素脱離量は、吸収剤中に含まれるアミン1mol当り0.25〜0.70mol程度である。
二酸化炭素を分離した後の酸性ガス吸収剤は、再び二酸化炭素吸収工程に送られ循環使用(リサイクル)される。また、二酸化炭素吸収の際に生じた熱は、一般的には水溶液のリサイクル過程において再生塔に注入される水溶液の予熱のために熱交換器で熱交換されて冷却される。
このようにして回収された二酸化炭素の純度は、通常、95〜99体積%程度と極めて純度が高いものである。この純粋な二酸化炭素あるいは高濃度の二酸化炭素は、化学品、あるいは高分子物質の合成原料、食品冷凍用の冷剤等として用いられる。その他、回収した二酸化炭素を、現在技術開発されつつある地下等へ隔離貯蔵することも可能である。
上述した工程のうち、酸性ガス吸収剤から二酸化炭素を分離して酸性ガス吸収剤を再生する工程が、最も多量のエネルギーを消費する部分であり、この工程で、全体工程の約50〜80%程度のエネルギーが消費される。従って、酸性ガス吸収剤の再生工程における消費エネルギーを低減することにより、二酸化炭素の吸収分離工程のコストを低減できる。このため、排気ガスからの酸性ガス除去を、経済的に有利に行うことができる。
本実施形態によれば、上記の実施形態の酸性ガス吸収剤を用いることで、二酸化炭素脱離(再生工程)のために必要なエネルギーを低減することができる。このため、二酸化炭素の吸収分離工程を、経済的に有利な条件で行うことができる。
また、上述した実施形態に係るアミノ酸塩は、従来より酸性ガス吸収剤として用いられてきた2−アミノエタノール等のアルカノールアミン類と比較して、炭素鋼などの金属材料に対し著しく高い耐腐食性を有している。したがって、このような酸性ガス吸収剤を用いた酸性ガス除去方法とすることで、例えばプラント建設において、高コストの高級耐食鋼を用いる必要がなくなり、コスト面で有利である。
本実施形態に係る酸性ガス除去装置は、酸性ガスを含有するガスから酸性ガスを除去する酸性ガス除去装置であって、上記の実施形態に係る酸性ガス吸収剤を収容し、酸性ガスを含有するガスと前記酸性ガス吸収剤とを接触させて前記ガスから酸性ガスを除去する吸収塔と、前記吸収塔で吸収された酸性ガスを有する酸性ガス吸収剤を収容し、前記酸性ガス吸収剤から酸性ガスを除去して、前記吸収塔で再利用する酸性ガス吸収剤を再生する再生塔と、を有する。
図1は、実施形態の酸性ガス除去装置の概略図である。この酸性ガス除去装置1は、酸性ガスを含むガス(以下、排気ガスと示す。)と酸性ガス吸収剤とを接触させ、この排気ガスから酸性ガスを吸収させて除去する吸収塔2と、酸性ガスを吸収した酸性ガス吸収剤から酸性ガスを分離し、酸性ガス吸収剤を再生する再生塔3と、を備えている。以下、酸性ガスが二酸化炭素である場合を例に説明する。
図1に示すように、火力発電所から排出される燃焼排ガス等の、二酸化炭素を含む排気ガスが、ガス供給口4を通って吸収塔2下部へ導かれる。この排気ガスは、吸収塔2に押し込められ、吸収塔2上部の酸性ガス吸収剤供給口5から供給されて吸収塔2内部に収容されている酸性ガス吸収剤と接触する。酸性ガス吸収剤としては、上述した実施形態に係る酸性ガス吸収剤を使用する。
酸性ガス吸収剤のpH値は、少なくとも9以上に調整すればよい。酸性ガス吸収剤のpH値は、排気ガス中に含まれる有害ガスの種類、濃度、流量等によって、適宜最適条件を選択することがよい。また、この酸性ガス吸収剤には、上記のアミン系化合物、及び水などの溶媒の他に、二酸化炭素の吸収性能を向上させる含窒素化合物、酸化防止剤、pH調整剤等、その他化合物を任意の割合で含有していてもよい。
このように、排気ガスが酸性ガス吸収剤と接触することで、この排気ガス中の二酸化炭素が酸性ガス吸収剤に吸収され除去される。二酸化炭素が除去された後の排気ガスは、ガス排出口6から吸収塔2外部に排出される。
二酸化炭素を吸収した酸性ガス吸収剤は、熱交換器7、加熱器8に送液され、加熱された後、再生塔3に送液される。再生塔3内部に送液された酸性ガス吸収剤は、再生塔3の上部から下部に移動し、この間に、酸性ガス吸収剤中の二酸化炭素が脱離し、酸性ガス吸収剤が再生する。
再生塔3で再生した酸性ガス吸収剤は、ポンプ9によって熱交換器7、吸収液冷却器10に送液され、酸性ガス吸収剤供給口5から吸収塔2に戻される。
一方、酸性ガス吸収剤から分離された二酸化炭素は、再生塔3上部において、還流ドラム11から供給された還流水と接触し、再生塔3外部に排出される。二酸化炭素が溶解した還流水は、還流冷却器12で冷却された後、還流ドラム11において、二酸化炭素を伴う水蒸気が凝縮した液体成分と分離され、この液体成分は、回収二酸化炭素ライン13により二酸化炭素回収工程に導かれる。一方、二酸化炭素が分離された還流水は、還流水ポンプ14で再生塔3に送液される。
本実施形態の酸性ガス除去装置1によれば、二酸化炭素の吸収特性及び脱離特性に優れた酸性ガス吸収剤を用いることで、効率の高い二酸化炭素の吸収除去を行うことが可能となる。
以下、本発明について実施例、比較例を参照してさらに詳細な説明を行うが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
2−(シクロペンチルアミノ)酢酸ナトリウム塩を45質量%、ピペラジンを5質量%となるように水に溶解させ、50mlの水溶液(以下、吸収液と示す。)とした。この吸収液を試験管に充填して40℃に加熱し、二酸化炭素(CO)10体積%、窒素(N)ガス90体積%含む混合ガスを流速500mL/minで通気して、試験管出口でのガス中の二酸化炭素(CO)濃度を赤外線式ガス濃度測定装置(株式会社島津製作所製、商品名「CGT−700」)を用いて測定し、吸収性能を評価した。試験管内のアミン水溶液へのガス導入口には、1/8インチのテフロン(登録商標)チューブ(内径:1.59mm、外径:3.17mm)を用いて行った。また、上記のように混合ガスを40℃で吸収させた後の水溶液を80℃に加熱し、100%窒素(N)ガスを流速500mL/minで通気し、吸収液中のCO濃度を赤外線式ガス濃度測定装置を用いて測定して放出性能を評価した。吸収液の二酸化炭素吸収速度は、二酸化炭素の吸収を開始してから2分後の時点で計測した速度とした。
40℃での吸収液の二酸化炭素吸収量は、吸収液中のアミノ化合物1mol当り0.64molであった。80℃での吸収液の二酸化炭素(CO)吸収量は、アミノ化合物1mol当り0.14molであった。40℃で二酸化炭素(CO)を吸収させ、80℃で二酸化炭素(CO)を脱離させる過程で、アミノ化合物1mol当り0.50molのCOが回収された。CO吸収速度は0.0070mol/L/minであった。
反応熱は以下のようにして測定した。
恒温槽中に設置された同一形状のガラス製反応槽及びリファレンス槽からなる示差熱型反応熱量計「DRC」(製品名、SETARAM社製)を用いて吸収液による二酸化炭素吸収の反応熱を測定した。反応槽及びリファレンス槽にそれぞれ150mLの吸収液を充填し、槽のジャケット部分に40℃の恒温水を循環させる。この状態で反応槽の吸収液に100%濃度の二酸化炭素ガスを200ml/分で吹込み、液の温度上昇を二酸化炭素吸収が終了するまで温度記録計にて連続的に記録し、事前に測定された反応槽とジャケット水間の総括伝熱係数を用いて反応熱を算出した。二酸化炭素吸収の反応熱は68kJ/molであった。
放散性は以下のように測定した。
冷却管付きのガラス管に、吸収液100mlを入れ、吸収液入りのガラス管の重量を測定した。次いで、吸収液を収容したガラス管ごと80℃の恒温槽に設置し、10時間加熱した後、吸収液入りガラス管の重量を測定した。なお、この間、吸収液には、100ml/minの速度で窒素ガスを通気した。そして、加熱前のガラス管の重量と加熱後のガラス管の重量から、重量減少率を算出した。重量減少率は0.3%であった。
(実施例2)
2−(シクロペンチルアミノ)酢酸ナトリウム塩に代えて、2−(シクロペンチルアミノ)プロピオン酸ナトリウムを用いたこと以外は、実施例1と同様にして吸収液(水溶液)を調製し、実施例1と同様の装置を用い、同一条件下で二酸化炭素吸収量、二酸化炭素吸収速度、反応熱、及び重量減少率(放散性)を測定した。
吸収液中のアミノ化合物1mol当り、40℃での二酸化炭素吸収量は0.62molであり、80℃での二酸化炭素吸収量は0.14molであり、吸収液中のアミノ化合物1mol当り0.48molの二酸化炭素が回収された。CO吸収速度は0.0068mol/L/minであった。二酸化炭素吸収の反応熱は69kJ/molであった。重量減少率は0.2%であった。
(実施例3)
2−(シクロペンチルアミノ)酢酸ナトリウム塩を40質量%、2−アミノ−2−メチル−1−プロパノールを5重量%、ピペラジンを5質量%となるように水に溶解させて50mlの吸収液を調製し、実施例1と同様の装置を用い、実施例1と同一条件下で二酸化炭素吸収量、二酸化炭素吸収速度、反応熱及び重量減少率(放散性)を測定した。
吸収液中のアミノ化合物1mol当り、40℃での二酸化炭素吸収量は0.84molであり、80℃での二酸化炭素吸収量は0.25molであり、吸収液中のアミノ化合物1mol当り0.59molの二酸化炭素が回収された。CO吸収速度は0.0061mol/L/minであった。二酸化炭素吸収の反応熱は71kJ/molであった。重量減少率は0.4%であった。
(比較例1)
プロピルジエタノールアミンを50質量%、ピペラジンを5質量%となるように水に溶解させ、50mlの水溶液(以下、吸収液と示す。)とした。その後、実施例1と同様の装置を用い、実施例1と同一条件下で二酸化炭素吸収量、二酸化炭素吸収速度、反応熱及び重量減少率(放散性)を測定した。
吸収液中のアミノ化合物1mol当り、40℃での二酸化炭素吸収量は0.21molであり、80℃での二酸化炭素吸収量は0.09molであり、吸収液中のアミノ化合物1mol当り0.12molの二酸化炭素が回収された。CO吸収速度は0.0035mol/L/minであった。二酸化炭素吸収の反応熱は63kJ/molであった。重量減少率は5%であった。
表1に、実施例1〜3及び比較例1について、吸収液中のアミノ酸塩又はアミン化合物及び反応促進剤の含有量と共に、40℃での二酸化炭素吸収量、80℃での二酸化炭素吸収量、二酸化炭素回収量、二酸化炭素吸収速度、反応熱及び重量減少率(放散性)の測定結果を示す。
なお、表1中、二酸化炭素吸収量及び二酸化炭素回収量は、吸収液に含まれる各アミノ酸塩又はアミン化合物1mol当りの吸収量及び回収量をモル数で示したものである。また、実施例1〜3及び比較例1において、反応熱は、吸収液中に含まれる二酸化炭素(CO)1mol当たりの反応熱を示す。
Figure 2015029987
表1から明らかなように、環状アルキル基を有するアミノ酸塩を用いた実施例1〜3の吸収液では、二酸化炭素回収量、及び二酸化炭素吸収速度がともに高く、二酸化炭素の吸収性能に優れていた。一方、アミン化合物として、鎖状アルキル基を有するプロピルジエタノールアミン(PDEA)を用いた比較例1では、二酸化炭素回収量が0.12molと低く、また二酸化炭素吸収速度も小さかった。また、比較例1の吸収液では、5%の重量減少率が確認されたのに対し、実施例1〜3の吸収液では、重量減少率が0.2〜0.4%と低く、放散性が抑制されていることが確認された。また、実施例1〜3の吸収液の、二酸化炭素1mol当たりの反応熱は、比較例1の吸収液と略同等であった。
以上述べた少なくともひとつの実施形態の酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置によれば、二酸化炭素等の酸性ガスの吸収量や吸収速度を高くすることができ、また酸性ガス吸収時の反応熱を低くすることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…酸性ガス除去装置、2…吸収塔、3…再生塔、4…ガス供給口、5…酸性ガス吸収剤供給口、6…ガス排出口、7…熱交換器、8…加熱器、9…ポンプ、10…吸収液冷却器、11…還流ドラム、12…還流冷却器、13…回収二酸化炭素ライン、14…還流水ポンプ

Claims (11)

  1. 下記一般式(1)で表されるアミノ酸塩を少なくとも1種含有することを特徴とする酸性ガス吸収剤。
    Figure 2015029987
    ・・・(1)
    (上記式(1)中、Rは炭素数3〜8の環状アルキル基を表し、Rは炭素数1〜4のアルキル基又は水素原子を表し、Rはメチレン基、炭素数2〜4のアルキレン基、炭素数2〜4のアルキリデン基、炭素数3〜4のポリメチレン基を表し、Mはアルカリ金属を表す。)
  2. 前記一般式(1)で示されるアミノ酸塩において、Rがメチレン基である請求項1記載の酸性ガス吸収剤。
  3. 前記一般式(1)で示されるアミノ酸塩において、Rがメチル基又は水素原子である請求項1又は2記載の酸性ガス吸収剤。
  4. 前記一般式(1)で示されるアミノ酸塩において、Rがシクロペンチル基又はシクロへキシル基である請求項1乃至3のいずれか1項記載の酸性ガス吸収剤。
  5. 前記一般式(1)で示されるアミノ酸塩の含有量が15〜50質量%である
    請求項1乃至4のいずれか1項記載の酸性ガス吸収剤。
  6. アルカノールアミン類及び/又は下記一般式(2)で表されるヘテロ環状アミン化合物からなる反応促進剤をさらに含有し、前記反応促進剤の含有量が1〜15質量%である請求項1乃至5のいずれか1項記載の酸性ガス吸収剤。
    Figure 2015029987
    ・・・(2)
    (上記式(2)中、Rは水素原子又は炭素数1〜4のアルキル基を表し、Rは炭素原子に結合した炭素数1〜4のアルキル基を表す。rは1〜3の整数を表し、qは1〜4の整数を表し、pは0〜12の整数を表す。rが2〜3の場合には、窒素原子同士は直接結合していない。)
  7. 前記アルカノールアミン類が2−(イソプロピルアミノ)エタノール、2−(エチルアミノ)エタノール及び2−アミノ−2−メチル−1−プロパノールからなる群より選ばれる少なくとも一種である請求項6記載の酸性ガス吸収剤。
  8. 前記ヘテロ環状アミン化合物がピペラジン類からなる群より選ばれる少なくとも一種を包括する請求項6又は7記載の酸性ガス吸収剤。
  9. 前記ピペラジン類が、ピペラジン、2−メチルピペラジン、2,5−ジメチルピペラジン及び2,6−ジメチルピペラジンからなる群より選ばれる少なくとも一種である請求項8記載の酸性ガス吸収剤。
  10. 酸性ガスを含有するガスと、請求項1乃至9のいずれか1項記載の酸性ガス吸収剤とを接触させて、前記酸性ガスを含むガスから酸性ガスを除去することを特徴とする酸性ガス除去方法。
  11. 酸性ガスを含有するガスから酸性ガスを除去する酸性ガス除去装置であって、
    請求項1乃至9のいずれか1項記載の酸性ガス吸収剤を収容し、酸性ガスを含有するガスと前記酸性ガス吸収剤とを接触させて前記ガスから酸性ガスを除去する吸収塔と、
    前記吸収塔で吸収された酸性ガスを有する酸性ガス吸収剤を収容し、前記酸性ガス吸収剤から酸性ガスを除去して、前記吸収塔で再利用する酸性ガス吸収剤を再生する再生塔と、を有する酸性ガス除去装置。
JP2013164112A 2013-08-07 2013-08-07 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置 Pending JP2015029987A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013164112A JP2015029987A (ja) 2013-08-07 2013-08-07 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
AU2014208282A AU2014208282A1 (en) 2013-08-07 2014-08-01 Acid gas absorbent, acid gas removal method, and acid gas removal device
US14/450,614 US20150044114A1 (en) 2013-08-07 2014-08-04 Acid gas absorbent, acid gas removal method, and acid gas removal device
CN201410385396.6A CN104338413A (zh) 2013-08-07 2014-08-07 酸性气体吸收剂、酸性气体除去方法及酸性气体除去装置
EP14180257.9A EP2835170A1 (en) 2013-08-07 2014-08-07 Acid gas absorbent, acid gas removal method, and acid gas removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164112A JP2015029987A (ja) 2013-08-07 2013-08-07 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置

Publications (1)

Publication Number Publication Date
JP2015029987A true JP2015029987A (ja) 2015-02-16

Family

ID=51421812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164112A Pending JP2015029987A (ja) 2013-08-07 2013-08-07 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置

Country Status (5)

Country Link
US (1) US20150044114A1 (ja)
EP (1) EP2835170A1 (ja)
JP (1) JP2015029987A (ja)
CN (1) CN104338413A (ja)
AU (1) AU2014208282A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446346B2 (en) 2014-11-14 2016-09-20 Kabushiki Kaisha Toshiba Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
US10835858B2 (en) 2018-09-18 2020-11-17 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US11135544B2 (en) 2018-08-07 2021-10-05 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US11291948B2 (en) 2018-09-18 2022-04-05 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US11358092B2 (en) 2020-03-18 2022-06-14 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2951411C (en) * 2014-06-13 2022-09-13 Sintef Tto As Absorbent system and method for capturing co2 from a gas stream
JP6755854B2 (ja) 2015-03-26 2020-09-16 公益財団法人地球環境産業技術研究機構 二酸化炭素を分離回収するための吸収液、及びそれを用いた二酸化炭素を分離回収する方法
CN108136316B (zh) * 2015-09-29 2021-07-23 巴斯夫欧洲公司 用于选择性移除硫化氢的吸收剂
JP6906761B2 (ja) * 2017-05-01 2021-07-21 株式会社神戸製鋼所 ガス処理方法及びガス処理装置
CN111974164B (zh) * 2019-05-21 2023-01-13 中石化南京化工研究院有限公司 一种甘氨酸盐二氧化碳吸收剂
WO2021153650A1 (ja) * 2020-01-28 2021-08-05 東ソー株式会社 二酸化炭素分離用組成物、及び二酸化炭素の分離方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071674B (de) * 1958-07-29 1959-12-24 Farbwerke Hioiechst Aktiengesellschaft vormals Meister Lucius S- Brüniing, Frankfuwt/M Verfahren zur Abtrennung von Ko'hilendioxyd aus Gasgemischen
US4094957A (en) * 1976-12-14 1978-06-13 Exxon Research & Engineering Co. Process for removing acid gases with hindered amines and amino acids
JP2848538B2 (ja) * 1994-02-04 1999-01-20 大日本製薬株式会社 2環性アミノ基で置換されたピリドンカルボン酸誘導体、そのエステルおよびその塩ならびにこれらの中間体たる2環性アミン
JP3426685B2 (ja) * 1994-03-09 2003-07-14 関西電力株式会社 燃焼排ガス中の二酸化炭素を除去する方法
US7718151B1 (en) * 2006-04-07 2010-05-18 Liang Hu Methods and systems for deacidizing gaseous mixtures
PL2059327T3 (pl) * 2006-08-28 2015-04-30 Basf Se Usuwanie ditlenku węgla z gazów spalinowych
CN102292139B (zh) * 2009-01-29 2014-09-03 巴斯夫欧洲公司 用于除去酸性气体的包含氨基酸和酸性促进剂的吸收剂
AU2009353169B2 (en) * 2009-09-24 2014-07-10 Kabushiki Kaisha Toshiba Carbon dioxide absorbent solution
US8647413B2 (en) * 2009-10-30 2014-02-11 General Electric Company Spray process for the recovery of CO2 from a gas stream and a related apparatus
AU2011254003B2 (en) * 2010-12-22 2013-05-16 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal method, and acid gas removal device
CN102658010A (zh) * 2012-05-17 2012-09-12 东南大学 一种二氧化碳复合钙基吸收剂的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446346B2 (en) 2014-11-14 2016-09-20 Kabushiki Kaisha Toshiba Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
US11135544B2 (en) 2018-08-07 2021-10-05 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US10835858B2 (en) 2018-09-18 2020-11-17 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US11291948B2 (en) 2018-09-18 2022-04-05 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US11358092B2 (en) 2020-03-18 2022-06-14 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus

Also Published As

Publication number Publication date
EP2835170A1 (en) 2015-02-11
AU2014208282A1 (en) 2015-02-26
US20150044114A1 (en) 2015-02-12
CN104338413A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5659127B2 (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2015029987A (ja) 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
JP5659084B2 (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP5868795B2 (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP6383262B2 (ja) 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置
JP6173817B2 (ja) 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
JP6121894B2 (ja) 酸性ガス除去装置及び酸性ガス除去方法
US9724642B2 (en) Acid gas absorbent, acid gas removal device, and acid gas removal method
JP2018122278A (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2017196547A (ja) 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置
JP2017035669A (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP6479543B2 (ja) 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガスの除去装置
JP2017121610A (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP2019098316A (ja) 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置
JP2015071136A (ja) 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
JP2015112574A (ja) 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
JP2020044489A (ja) 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
JP6445874B2 (ja) 酸性ガス吸収剤、酸性ガス除去方法および酸性ガス除去装置
JP7204369B2 (ja) 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
JP2020044490A (ja) 酸性ガス吸収剤、酸性ガスの除去方法及び酸性ガス除去装置
JP7185421B2 (ja) 酸性ガス吸収剤、酸性ガスの除去方法および酸性ガス除去装置