JP2015022077A - スポットサイズ変換器を作製する方法 - Google Patents

スポットサイズ変換器を作製する方法 Download PDF

Info

Publication number
JP2015022077A
JP2015022077A JP2013148815A JP2013148815A JP2015022077A JP 2015022077 A JP2015022077 A JP 2015022077A JP 2013148815 A JP2013148815 A JP 2013148815A JP 2013148815 A JP2013148815 A JP 2013148815A JP 2015022077 A JP2015022077 A JP 2015022077A
Authority
JP
Japan
Prior art keywords
semiconductor
mesa
layer
core layer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013148815A
Other languages
English (en)
Inventor
英樹 八木
Hideki Yagi
英樹 八木
尚子 井上
Naoko Inoue
尚子 井上
崇光 北村
Takamitsu Kitamura
崇光 北村
直哉 河野
Naoya Kono
直哉 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013148815A priority Critical patent/JP2015022077A/ja
Priority to US14/331,762 priority patent/US9176360B2/en
Publication of JP2015022077A publication Critical patent/JP2015022077A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/217Multimode interference type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】第1半導体コア層と第2半導体コア層との間のコア分離半導体層の厚みの面内ばらつきを低減可能なスポットサイズ変換器を作製する方法を提供する。【解決手段】第2エリア11cにおいてメサ構造物25の側面に残される絶縁膜を保護マスク27として利用する。保護マスク27を用いて、第1半導体コア層17の残り部分17bをエッチングして、コア分離半導体層19の上面19aを露出させる。このエッチングにより、上部メサ33が形成される。第1エリア11b上の上部メサ33bは、マッハツェンダ変調器の変調部を構成する。第1半導体コア層17の残り部分17bをエッチングする際に、半導体主面11aの第1エリア11b上の上部メサ33cの最上の半導体層が残されている。最上の半導体層は、マッハツェンダ変調器の電極へのコンタクト層として使用できる。第2エリア11cのメサ構造物25内の高添加のコンタクト層13が除去される。【選択図】図10

Description

本発明は、スポットサイズ変換器を作製する方法に関する。
特許文献1は、スポットサイズ変換器を作製する方法を開示する。
米国特許6229947号公報
上部クラッド層、第1半導体コア層、コア分離半導体層、及び第2半導体コア層を含む半導体積層の複数回のエッチングにより作製される。コア分離半導体層は第1半導体コア層と第2半導体コア層とに挟まれる。上部メサ及び下部メサの構成には、いくつかの形態がある。その一つとして、上部コアに係る光導波路と下部コアに係る光導波路との間の光遷移に際して上部コアと下部コアとのモードフィールドを合わせるようにするために、上部コアの上部クラッド層を除去している。この形態では、上部メサのコア層を残す一方で上部メサの上部クラッド層を除去するので、作製方法が複雑化する。
また、上部メサの形成には、ドライエッチングが用いられる。分離半導体層が例えばInPを備え上部メサの第1半導体コア層がGa元素を構成元素として備えるとき、ドライエッチングにおいて、プラズマモニタによりGaのプラズマ発光の強度変化を利用して、第1半導体コア層に係るエッチングの終点検出を行う。発明者らの検討によれば、ウエハ面内では中心部と外周部とにおいてエッチング面積の違いに起因してエッチングレートが異なる(ローディング効果により)。プラズマモニタからの情報に基づき、例えば大きなエッチングレートに合わせてエッチング時間を決定すると、小さいエッチングレートによるエッチングのウエハ表面部分では、第1半導体コア層のエッチング残りが生じる可能性がある。プラズマモニタからの情報に基づき、例えば小さなエッチングレートに合わせてエッチング時間を決定すると、大きなエッチングレートによるエッチングのウエハ表面部分では、分離半導体層の厚みが減る、或いは分離半導体層が消失する可能性がある。このような可能性を減らすために、ウエハ全面にわたって上部メサのエッチング深さを揃えるようにエッチング条件を検討することは、大きな負担になる。
本発明は、このような事情を鑑みて為されたものであり、第1半導体コア層と第2半導体コア層との間に設けられるコア分離半導体層の厚みの面内ばらつきを低減できる、スポットサイズ変換器を作製する方法を提供することを目的とする。
本発明は、スポットサイズ変換器を作製する方法に係る。スポットサイズ変換器を作製する方法(以下「作製方法」と記す)は、(a)半導体主面を有する基板と、半導体クラッド層、第1半導体コア層、コア分離半導体層、及び第2半導体コア層を含む半導体積層とを含むエピタキシャル基板上に、前記スポットサイズ変換器の導波路のためのパターンを有する絶縁膜の第1マスクを形成する工程と、(b)前記第1マスクを用いて前記半導体積層の上面から前記第1半導体コア層の途中まで前記半導体積層のエッチングを行って、前記第1半導体コア層に該エッチングにより形成された側面及び上面を含み導波路軸に沿って延在するメサ構造物を、前記半導体主面の第1エリア及び第2エリア上に作製する工程と、(c)前記メサ構造物の側面を覆うと共に前記第1半導体コア層の前記上面に開口を有する絶縁膜の保護マスクを形成する工程と、(d)前記保護マスクを形成した後に、前記第1半導体コア層の残り部分をエッチングして、前記コア分離半導体層の上面を露出させると共に上部メサを形成する工程と、(e)前記上部メサを形成した後に、前記上部メサのメサ幅より大きいメサ幅を有するストライプ状のパターンを有する絶縁膜の第2マスクを形成する工程と、(f)前記第2マスクを用いて、前記コア分離半導体層及び前記第2半導体コア層をエッチングして、前記半導体主面の前記第2エリア上に下部メサを形成する工程とを備え、前記上部メサは前記半導体クラッド層及び前記第1半導体コア層を含み、前記第2エリアにおいて前記上部メサは前記下部メサ上に位置し、前記第2エリアにおいて、前記コア分離半導体層の幅は前記上部メサの前記第1コア層の幅より広く、前記第2エリアにおいて前記上部メサは前記導波路軸の第1方向に前記上部メサのメサ幅が徐々に小さくなる部分を含み、前記下部メサは、前記導波路軸の前記第1方向に反対向きの第2方向に前記下部メサのメサ幅が徐々に小さくなる部分を含み、前記第2半導体コア層、前記コア分離半導体層、前記第1半導体コア層及び前記半導体クラッド層は、前記半導体主面上に順に配列される。
この作製方法によれば、第1マスクを用いて半導体積層の上面から半導体クラッド層をエッチングすると共に、更に第1半導体コア層をその途中までの前半のエッチングを行う。このエッチングにより、半導体主面の第1エリア及び第2エリア上にメサ構造物が形成される。メサ構造物は、前半のエッチングにより形成されたメサ状のメサ中間部と、これから行われる後半のエッチングで除去されるべき第1半導体コア層の残り部分とを含む。第1半導体コア層の残り部分上には該メサ中間部が搭載されている。半導体積層のエッチングにおいて第1半導体コア層の途中までのエッチングを行うので、メサ構造物は、第1半導体コア層の残り部分が現れている上面を含み、メサ構造物の側面は、第1半導体コア層の側面を含む。
メサ構造物の側面を覆う保護マスクを形成して後に、コア分離半導体層の上面が露出するように第1半導体コア層の残り部分のエッチングを行う。コア分離半導体層の上面を露出させるエッチングの後に、コア分離半導体層及び第2半導体コア層をエッチングして、下部メサを形成する。
下部メサにおけるコア分離半導体層の幅は上部メサの幅より大きい。下部メサに係る光導波路は、第2半導体コア層及びコア分離半導体層を含み、コア分離半導体層の屈折率は第1半導体コア層の平均の屈折率及び第2半導体コア層の平均の屈折率より小さい。コア分離半導体層が、下部メサの第2半導体コア層と上部メサの第1半導体コア層との間に設けられることに加えて、上部メサの底縁より外側に下部メサの第2半導体コア層に沿って延在する。
下部メサに係る光導波路は、半導体導波路より大きいモードフィード径を有する外部の光導波路に光学的に結合される。上部メサに係る光導波路は、下部メサに係る光導波路に光学的に結合されており、半導体素子のアクティブデバイスに光学的に結合される。コア分離半導体層が、上部メサの底縁より外側において下部メサの第2半導体コア層に沿って延在する。下部メサの第2半導体コア層上にコア分離半導体層が延在するので、下部メサに係る光導波路を伝搬する光は、コア分離半導体層が上部メサに含まれる形態に比べて、空気の屈折率より大きいコア分離半導体層に引かれて、下部メサの全体にわたって光分布が拡がる。下部メサの第2半導体コア層上にコア分離半導体層が延在するので、コア分離半導体層にも振幅を有する。これ故に、下部メサに係る光導波路及び上部メサに係る光導波路の間の光伝搬がスムーズに進行する。具体的には、下部メサに係る光導波路から上部メサに係る光導波路への光の伝搬、及び上部メサに係る光導波路から下部メサに係る光導波路への光の伝搬が生じて、この光の移動に際して、遷移元に残される光成分が低減させる。
本発明に係る作製方法は、前記メサ構造物を形成した後に、前記半導体主面の前記第1エリア上に位置するパターンを有すると共に前記半導体主面の前記第2エリア上に位置する開口を有するマスクを形成する工程と、前記マスクを用いて前記第1絶縁膜マスクのエッチングを行って、前記メサ構造物の第1部分上の前記第1絶縁膜マスクの第1部分を残すと共に前記メサ構造物の第2部分上の前記第1絶縁膜マスクの第2部分を除去する工程と、前記第1絶縁膜マスクの前記エッチングの後に、第1の厚さの絶縁膜を前記基板上に成長する工程と、前記絶縁膜の異方的エッチングを行って、前記第1半導体コア層の前記残り部分の上面及び前記メサ構造物の前記第2部分上の上面を露出させると共に、前記保護マスクを形成する工程とを更に備え、 前記第1半導体コア層の前記残り部分をエッチングする際に、前記半導体主面の前記第2エリア上の前記上部メサの最上の半導体層がエッチングされ、前記マスクは、前記第1絶縁膜マスク及び前記メサ構造物を覆う。
この作製方法によれば、メサ構造物を形成した後に、メサ構造物のための第1マスクの一部分(半導体主面の第2エリア上に位置する部分)を除去する。この除去の後に、第1厚の絶縁膜を基板上に成長する。絶縁膜の第1厚に対応するエッチング量のエッチングを行うと、第1半導体コア層の残り部分の上面及びメサ構造物の第2部分上の上面を露出させることができる。一方、第2エリアにおいてメサ構造物の側面には保護マスクとして絶縁膜が残される。
また、第1半導体コア層の残り部分をエッチングする際に、半導体主面の第2エリア上の上部メサの最上の半導体層がエッチングされる。この最上の半導体層は、第1エリアにおいてはアクティブデバイスの電極へのコンタクト層として使用可能である。
本発明に係る作製方法では、前記異方的エッチングは、炭化フッ素を含むエッチャントを含むことができる。この作製方法によれば、第2エリアにおいてメサ構造物の側面に保護マスクとして絶縁膜を残すために、炭化フッ素を用いることが好適である。
本発明に係る作製方法では、前記基板の前記半導体主面の前記第1エリア上の前記上部メサは、マッハツェンダ変調器の変調部を構成する。この作製方法によれば、第1半導体コア層の残り部分をエッチングする際に、半導体主面の第2エリア上の上部メサの最上の半導体層が残されている。この最上の半導体層は、マッハツェンダデバイスの電極へのコンタクト層として使用可能である。
本発明に係る作製方法では、前記第2半導体コア層は、交互に配列されたGaInAsP層及びInP層を含む多重量子井戸構造を有し、前記第2半導体コア層は、第1部分及び第2部分を含み、前記第2半導体コア層の前記第2部分は前記第1部分と前記基板との間に設けられ、前記第2半導体コア層の前記第2部分はn型ドーパントを含み、前記マッハツェンダ変調器は、前記上面メサを含む第1アーム導波路と、前記上面メサを含む第2アーム導波路とを備える。当該方法は、前記上部メサを形成した後に、前記半導体主面の前記第2エリア上において前記第1アーム導波路と前記第2アーム導波路との間に位置する開口を有するコンタクトマスクを形成する工程と、前記コンタクトマスクを用いて前記コア分離半導体層及び前記第2半導体コア層の前記第1部分をエッチングして、コンタクト開口を形成する工程と、前記第2エリア上の前記上部メサに第1電極を形成ずると共に、前記コンタクト開口に第2電極を形成ずる工程とを更に備える。
この作製方法によれば、第2コア層は、n型ドーパントを含む第2部分を備え、コンタクトマスクを用いてコア分離半導体層及び第2半導体コア層の第1部分をエッチングして、コンタクト開口を形成できる。
本発明に係る作製方法では、前記下部メサを形成する際に、前記半導体主面の前記第1エリアには、素子分離メサが形成される。この作製方法によれば、下部メサを形成する際に行う、第1半導体コア層のエッチングを利用して、素子分離メサを形成できる。これ故に、半導体主面の第1エリアには、複数のアクティブ半導体素子を配置できる。
本発明に係る作製方法では、前記第1半導体コア層は、交互に配列された第1AlGaInAs層及び第2AlGaInAs層を含む多重量子井戸構造を有し、前記コア分離半導体層はInPを備え、前記下部メサの前記第2半導体コア層の上面を前記コア分離半導体層が覆う。
この作製方法によれば、第1AlGaInAs層及び第2AlGaInAs層を含む第1半導体コア層のエッチングにおいて、コア分離半導体層がInPを備えるとき、選択的なウエットエッチングが可能になる。
以上説明したように、本発明によれば、第1半導体コア層と第2半導体コア層との間に設けられるコア分離半導体層の厚みの面内ばらつきを低減できる、スポットサイズ変換器を作製する方法を提供できる。
図1は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図2は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図3は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図4は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図5は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図6は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図7は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図8は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図9は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図10は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図11は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図12は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図13は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図14は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図15は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図16は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図17は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図18は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。 図19は、本実施の形態における実施例を示す図面である。 図20は、本実施の形態における実施例とは異なる構造のスポットサイズ変換器を示す図面である。
引き続いて、添付図面を参照しながら、本発明のスポットサイズ変換器を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1〜図18は、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を模式的に示す図面である。図1〜図18を参照しながら、本実施の形態に係るスポットサイズ変換器を作製する方法における主要な工程を説明する。工程S101では、半導体結晶の成長に使用する基板を準備する。この基板はIII−V半導体からなる主面を有しており、図1において、参照符号11として示される。基板11は例えば半導体基板を備え、この半導体基板は例えばInP基板であることができる。半導体の成長は、例えば有機金属気相成長法を用いて行われる。
工程S102では、図1に示されるように、基板11上に半導体積層10を形成する。半導体積層10は、半導体コンタクト層13、半導体クラッド層15、第1半導体コア層17、コア分離半導体層19、及び第2半導体コア層21を含む。これらの半導体層はIII−V化合物半導体を備え、有機金属気相成長法で主面11aに成長される。この成長によりエピタキシャル基板Eが作製される。エピタキシャル基板Eは、基板11及び半導体積層10を備える。第2半導体コア層21、コア分離半導体層19、第1半導体コア層17及び半導体クラッド層15は、基板11の主面11a上に順に配列されている。図1の(b)部は、ウエハ上における一素子分のサイズのエリアを示し、図1の(a)部は、図1の(b)部におけるI−I線に沿ってとられた断面を示す。図1には、直交座標系Sが示されており、基板主面11aはX軸及びY軸により規定される平面に沿って延在し、半導体コンタクト層13、半導体クラッド層15、第1半導体コア層17、コア分離半導体層19、及び第2半導体コア層21はZ軸(主面11aの法線軸)の方向に配列される。
一例の基板及び半導体積層は以下のものである。
基板11:InPウエハ(InP基板)。
半導体コンタクト層13:p+型GaInAs半導体層。
半導体クラッド層15:p型InP半導体層。
第1半導体コア層17:i型AlGaInAs多重量子井戸構造。
コア分離半導体層19:n型InP半導体層。
第2半導体コア層21:n型GaInAsP/n型InP多層構造。
図1に示されるように、基板11の半導体主面11aは、第1エリア11b及び第2エリア11cを備える。第1エリア11b及び第2エリア11c上には、それぞれ、半導体積層10の第1部分10b及び第2部分10cが設けられている。基板主面11aの第2エリア11c及び半導体積層10の第2部分10cには、スポットサイズ変換器の導波路が形成される。また、基板主面11aの第1エリア11b及び半導体積層10の第1部分10bには、スポットサイズ変換器の導波路に光学的に結合されるアクティブ半導体素子が形成される。本実施例では、アクティブ半導体素子として、引き続く工程において、例えばマッハツェンダ変調器を作製する。本実施例では、引き続く説明から理解されるように、第1エリア11bには、導波路に接触を成す電極を設けるためのコンタクト層を含む導波路メサを形成し、第2エリア11cには、コンタクト層を含まない導波路メサを形成する。
工程S103では、図2に示されるように、エピタキシャル基板E上に絶縁膜の第1マスク23を形成する。第1マスク23を作製するために、エピタキシャル基板E上に、例えばシリコン系無機絶縁膜を成長する。シリコン系無機絶縁膜は例えばシリコン窒化膜であり、この成長には例えば気相成長法が用いられる。このシリコン系無機絶縁膜上に、スポットサイズ変換器の導波路のためのパターンを有するレジストマスクを形成する。このレジストマスクを用いてシリコン系無機絶縁膜をエッチングして、スポットサイズ変換器の導波路のためのパターンを有する第1マスク23を形成でき、また本実施例では、マッハツェンダ変調器の導波路のためのパターンを更に有する。第1マスク23は、第1エリア11b上に位置する第1パターン23b、及び第2エリア11c上に位置する第2パターン23cを備える。マッハツェンダ変調器は、第1の2×2MMI、第2の2×2MMI、第1の2×2MMIの一次側に接続される第1及び第2導波路、第2の2×2MMIの一次側に接続される第1及び第2導波路、並びに、これらのMMIの二次側を接続する第1アーム導波路及び第2アーム導波路を備え、第1マスク23は、これらの導波路のためのパターン及びMMIのためのパターンを含む。また、基板主面11aは、主にスポットサイズ変換器のための導波路構造を設ける第1部分11dと、主にマッハツェンダ変調器ための導波路構造を設ける第2部分11eとを含む。
工程S104では、図3に示されるように、第1マスク23を用いて半導体積層10の上面から第1半導体コア層17の途中まで半導体積層10のエッチングを行って、メサ構造物25を半導体主面11aの第1エリア11b及び第2エリア11c上に作製する。メサ構造25は、第1エリア11b上に位置する第1メサ構造部25b、及び第2エリア11c上に位置する第2メサ構造部25cを備える。メサ構造25は、マッハツェンダ変調器のための導波路部を含み、この導波路部は、例えば、第1の2×2MMIのための第1MMI部25d、第2の2×2MMIのための第2MMI部25e、第1の2×2MMIの一次側に接続される第1導波路部25f及び第2導波路部25g、第2の2×2MMIの一次側に接続される第1導波路部25h及び第2導波路部25i、並びに、これらのMMIの二次側を接続する第1アーム導波路部25j及び第2アーム導波路部25kを備える。本実施例では、メサ構造物25を形成した後においても、マスク23を除去しない。
図4はスポットサイズ変換器のための導波路構造を示す図面である。図4の(a)部に示されるように、基板主面11aの第1部分11dには、スポットサイズ変換器のための導波路構造が形成される。図4の(b)部、(c)部及び(d)部には、それぞれ、図4の(a)部におけるII−II線、III−III線、及びIV−IV線にそって取られた断面を示す。スポットサイズ変換器のための導波路メサ25に関して、第1部分11dにおけるスポットサイズ変換器の端面になるべき位置におけるメサ構造物25の幅W2は、スポットサイズ変換器の内部(例えば、マッハツェンダ変調器)のための導波路メサ25の幅(第2部分11eにおける半導体導波路幅)W1より小さい。スポットサイズ変換器の内部(例えば、マッハツェンダ変調器)のための半導体導波路W1は、光(例えば波長1.53〜1.57μm)の単一モード伝搬可能な導波路幅を有している。一方、第1部分11dにおけるスポットサイズ変換器のためのメサ構造物25の幅は、本実施例では、素子端部になるべき位置に向けて徐々に狭くなる。一実施例では、半導体導波路幅は2μmであり、素子端部になるべき位置における導波路メサ幅は例えば0.5μmである。第1部分11dにおける長さLdは例えば700μmである。メサ構造物25の高さは例えば2μm程度であり、メサ構造物25の形成に際して、エッチングばらつきは、目標値に対して−0.1μm〜+0.1μmの範囲にあることが好ましい。なお、図4の(a)部における破線は、下部メサ及び素子分離メサを示す。
工程S105では、図5に示されるように、絶縁膜の保護マスク27を形成する。メサ構造物25は、第1半導体コア層17のメサ部分17a、クラッド層15、及びコンタクト層13を含み、第1半導体コア層17の残り部分17b上に位置する。図5の(a)部に示されるように、第2エリア11cにおいて、保護マスク27は、メサ構造物25の側面(第1半導体コア層17の側面)を覆うと共に、メサ構造物25(コンタクト層)の上面に開口を有する。また、保護マスク27は、第1エリア11bにおいてメサ構造物25の側面(第1半導体コア層17の側面)及びメサ構造物25の上面を覆う。第1エリア11b及び第2エリア11c上においては、保護マスク27は、第1半導体コア層17の残り部分17bの露出表面に開口を有する。図5の(b)部及び(c)部に示されるように、保護マスク27の側部27aがメサ構造物25の側面上に設けられ、保護マスク27の上部27bがメサ構造物25の上面上に設けられる。
このような保護マスク27を形成するための一形態を説明する。まず、第1マスク23を除去することなく、工程S105−1では、図6に示されるように、メサ構造物25を形成した後に、マスク29を形成する。マスク29は、半導体主面11aの第1エリア11b上に位置するパターン29aを有すると共に前記半導体主面11aの第2エリア11c上に位置する開口29bを有する。マスク29は、例えばレジストからなることができる。メサ構造物25は、第1エリア11b上に位置する第1部分及び第2エリア11c上に位置する第2部分を有する。第1マスク23は、第1エリア11b上に位置する第1部分23b及び第2エリア11c上に位置する第2部分23cを有しており、メサ構造物25の第1部分の上面には第1マスク23の第1部分23bが位置し、メサ構造物25の第2部分の上面には第1マスク23の第2部分23cが位置する。
工程S105−2では、図7に示されるように、マスク29を用いて第1マスク23のエッチングを行う。第1マスク23は、第1エリア11b上に位置する第1パターン23b、及び第2エリア11c上に位置する第2パターン23cを備えるけれども、図7の(a)部及び(b)部に示されるように、第1マスク23の第1パターン23bが第1エリア11bに残る。このエッチングのエッチャントは、例えばバッファードフッ酸(BHF)であることができる。第1マスク23については、第1エリア11b上に位置する第1部分23bが残る。このエッチングの後に、図7の(c)部に示されるように、マスク29を除去する。図7の(a)部及び(b)部は、図7の(c)部に示されるV−V線及びIV−IV線にそって取られた断面を示す。図7の(a)部には、マスク29が示される。
工程S105−3では、図8に示されるように、第1絶縁膜マスク23のエッチングの後に、絶縁膜31を基板11上に成長する。図8の(a)部に示されるように、絶縁膜31は、基板11の全面にわたって成長される。絶縁膜31は第1の厚さは、例えば0.4μmである。絶縁膜31は例えばSiNであることができる。図8の(b)部及び(c)部は、第1エリア11b及び第2エリア11cに位置するメサ構造物の断面を示す。図8の(b)部に示されるように、メサ構造物25の第1部分25上の第1マスク23の第1部分23bが残されているので、第1エリア11bでは、絶縁膜31は、第1マスク23の第1部分23bを覆うと共に、メサ構造物25の側面を直接に覆う。図8の(c)部に示されるように、第2エリア11cでは、絶縁膜31は、メサ構造物25の側面及び上面を直接に覆う。
工程S105−4では、図9に示されるように、絶縁膜31の異方的エッチング、例えば異方的ドライエッチングを行って、保護マスク27を形成する。第1マスク23の第1部分23bを残したので、保護マスク27は、マッハツェンダ変調器のアクティブ部分を設ける第1エリア11bにおいてはメサ構造物25の側面だけでなく上面も覆う。保護マスク27に関しては、第1半導体コア層17の残り部分17bをエッチングするために、第1エリア11b及び第2エリア11cにおいて第1半導体コア層17の残り部分17bの上面を露出させると共に、マッハツェンダ変調器のアクティブ部分への電気的接触を得るための高ドーピングのコンタクト層を維持するために第1エリア11bにおいてメサ構造物25の上面を保護する。また、このエッチングにおいて、マッハツェンダ変調器の非アクティブ部分及びスポットサイズ変換器のための導波路における高ドーピングのコンタクト層を除去する。このために、第2エリア11cにおいてメサ構造物25の第2部分上の上面を露出させる。
上記の説明から理解されるように、第1エリア11b及び第2エリア11c上においては、保護マスク27は、第2エリア11Cにおいてメサ構造物25の上面に開口28aを有する。保護マスク27は、第1半導体コア層17の残り部分17bの露出表面に開口28bを有する。
この作製方法によれば、メサ構造物25を形成した後に、メサ構造物25のための第1マスク23の一部分(半導体主面11aの第2エリア11c上に位置する部分23c)を除去する。この除去の後に、第1厚の絶縁膜31を基板11上に成長する。絶縁膜31の第1厚に対応する量のエッチングを行うと、第1半導体コア層17の残り部分17bの上面及びメサ構造物25の第2部分上の上面を露出させることができる。一方、第2エリア11cにおいてメサ構造物25の側面には保護マスク27として絶縁膜が残される。
この工程における異方的ドライエッチングは、炭化フッ素を含むエッチャントを含むことができる。第2エリア11cにおいてメサ構造物25の側面に保護マスク27として絶縁膜31を残すために、炭化フッ素ガス、例えばCFガスを用いることが好適である。
工程S106では、図10に示されるように、保護マスク27を用いて、開口28bにおいて、第1半導体コア層17の残り部分17bをエッチングして、コア分離半導体層19の上面19aを露出させる。このエッチングにより、図10の(a)部に示されるように、上部メサ33が形成される。第1エリア11b上の上部メサ33bは、マッハツェンダ変調器の変調部を構成する。第1半導体コア層17の残り部分17bをエッチングする際に、半導体主面11aの第1エリア11b上の上部メサ33cの最上の半導体層が残されている。この最上の半導体層は、マッハツェンダ変調器といったアクティブデバイスの電極へのコンタクト層として使用可能である。
また、工程S106では、図10の(b)部に示されるように、第2エリア11cにおけるメサ構造物25内の高ドーピングのコンタクト層13が除去される。コンタクト層13を含まない上部メサ33cは、マッハツェンダ変調器の非アクティブ部分及びスポットサイズ変換器のための導波路に適用される。コンタクト層13を含む上部メサ33bは、マッハツェンダ変調器のアクティブ部分のための導波路に適用される。引き続く半導体加工により、第2エリア11cにおいて、コア分離半導体層19の幅が上部メサ33の第1コア層17の幅(メサ構造物25の幅)より広くなるように形成でき、第1エリア11bにおいて、コア分離半導体層19の幅が上部メサ33の第1コア層17の幅より広くなるように形成できる。
このエッチングは、例えばウエットエッチングであり、そのエッチャントは例えば硫酸と、過酸化水素水の混合液である。ウエットエッチングが用いられるとき、エッチングが進むにつれて新たに形成されるメサ部分の側面は、メサ構造物25の側面を覆う保護マスク27により保護されない。これ故に、図10の(b)部及び(c)部に示されるように、新たに形成されたメサ構造部分では、ウエットエッチングによるサイドエッチングが生じる。このサイドエッチングにより、上部メサ33の根本には、導波路軸に沿って延在するくびれ34が形成される。くびれ34は、第1エリア11b及び第2エリア11c上の上部メサ33に形成される。第2エリア11cにおいて上部メサ33のメサ幅は変化しており、第2エリア11cのうちスポットサイズ変換器のための導波路構造を設ける第1部分11dにおいて上部メサ33のメサ幅は単一のモード伝搬可能な導波路幅より小さい。上部メサ33は、コア分離半導体層19を介して第2コア半導体層21に結合されるので、上部メサ33根本のくびれ34は光の遷移に実質的に影響しない。第1エリア11bにおいて上部メサ33のメサ幅は、単一のモード伝搬可能な導波路幅又はそれ以上であるので、上部メサ33は、安定して伝搬光を閉じ込めでき、上部メサ33根本のくびれ34は、第2半導体コア層21への光の浸みだしを抑制できる点で役立つ。
上部メサ33では、コア分離半導体層19の直上に位置する第1コア層の側面に溝が形成される。第1半導体コア層17の残り部分17bをエッチングした後に、保護マスク27を除去する。
第1半導体コア層17が多重量子井戸構造を有し、この多重量子井戸構造は交互に配列された第1AlGaInAs層及び第2AlGaInAs層を含むことができる。また、コア分離半導体層19はInPを備えることができる。第2半導体コア層21の上面をコア分離半導体層19が覆う。この方法によれば、コア分離半導体層19がInPを備えるとき、第1AlGaInAs層及び第2AlGaInAs層を含む第1半導体コア層17のエッチングにおいて選択的なウエットエッチングが可能になる。
必要な場合、例えばマッハツェンダ変調器の変調部を作製する場合には、工程S107では、マッハツェンダ変調器の変調部に対するコンタクト開口を行う。具体的には、上部メサ33を形成した後に、図11の(a)部に示されるように、コンタクトマスク35を形成する。コンタクトマスク35は、半導体主面11aの第1エリア11b上に設けられる開口35aを有する。開口35aは、メサ構造物25jからの第1アーム導波路部33jとメサ構造物25kからの第2アーム導波路部33kとの間に位置する。コンタクトマスク35は、第1エリア11bの上部メサ33(33b)の側面及び上面を覆うと共に、第1エリア11bのコア分離半導体層19の、開口35aにより規定されるコンタクトエリアを除いた表面も覆う。また、コンタクトマスク35は、図11の(b)部に示されるように、第2エリア11cの上部メサ33(33c)の側面及び上面を覆うと共に、第2エリア11cのコア分離半導体層19の表面も覆う。コンタクトマスク35の材料は例えばシリコン窒化膜であることができる。図11の(c)部に示されるように、コンタクトマスク35を用いてコア分離半導体層19及び第2半導体コア層21をエッチングして、コンタクト開口37を形成する。第2半導体コア層21は、第1部分21a及び第2部分21bを含む。第2半導体コア層21の第2部分21bは第1部分21aと基板11との間に設けられる。第2半導体コア層21の第2部分21bはn型ドーパントを含み、第1部分21aがn型ドーパントを含む場合には、第2部分21bのn型ドーパント濃度は、第1部分21aのn型ドーパント濃度より大きい。第2部分21bのn型ドーパント濃度は例えば1018cm−3程度であり、第1部分21aのn型ドーパント濃度は例えば1017cm−3程度である。第2半導体コア層21の第1部分21a及び第2部分21bは、例えば交互に配列されたGaInAsP層及びInP層を含む多層構造を有することができ、この多層構造の下側領域のドーパント濃度は上側領域のドーパント濃度より大きい。コンタクト開口は、より高いドーパント濃度の第2半導体コア層21に到達する深さDPを有する。この開口形成のためのエッチングは、例えば塩素系ドライエッチングであることができる。コンタクト開口37を形成した後に、コンタクトマスク35を除去する。この除去には、コンタクトマスク35がシリコン窒化膜からなるとき、エッチャントとして例えばBHFが用いられる。
コンタクトマスク35を用いてコア分離半導体層19及び第2半導体コア層21の第1部分21aをエッチングして、コンタクト開口37を形成でき、第2半導体コア層21はn型ドーパントを含む第2部分21bを備えるので、コンタクト開口37には第2部分21bが現れる。
次いで、上部メサ33を形成した後に、工程S108では、図12の(a)部に示されるように、第2エリア11cに下部メサ(図12の(c)部に示される下部メサ43)を形成するための第2マスク39を形成する。第2マスク39は、絶縁膜、例えばシリコン系無機絶縁膜を備えることができ、例えばシリコン窒化膜である。下部メサ43はコア分離半導体層19及び第2半導体コア層21を含み、さらに基板11の一部分を含むことができる。第2マスク39は、上部メサ33のメサ幅USWより大きいメサ幅DSWを有するストライプ状のパターンを有する。この下部メサ43を形成する際に、第2マスク39は、図12の(b)部に示されるように、素子分離メサ(図12の(d)部に示される素子分離メサ41)を形成するためのパターンを第1エリア11bに備える。この方法によれば、下部メサ43を形成する際に行う第2半導体コア層21のエッチングを利用して、素子分離メサ41を形成できる。これ故に、半導体主面11aの第1エリア11bには、複数のアクティブ半導体素子を配置できる。
工程S109では、第2マスク39を用いて、コア分離半導体層19及び第2半導体コア層21をエッチングして、図12の(c)部及び(d)部に示されるように、第2エリア11c上に下部メサ43を形成すると共に、第1エリア11b上に素子分離メサ41を形成する。下部メサ43及び素子分離メサ41を形成した後に、マスク39を除去する。この除去は例えばBHFである。
上部メサ33(33a)は半導体クラッド層15及び第1半導体コア層17を含み、第2エリア11cにおいて上部メサ33は下部メサ43上に位置する。また、上部メサ33(33b)は、コンタクト層13、半導体クラッド層15及び第1半導体コア層17を含み、第1エリア11bにおいて上部メサ33は素子分離メサ41上に位置する。
これらの工程により、図13に示されるように、上部メサ33は下部メサ43が形成されたので、スポットサイズ変換器の実質的な部分が形成された。図13の(b)部、(c)部及び(d)部に示されたVI―VI線、VII―VII線、VIII―VIII線に沿って取られた断面である。スポットサイズ変換器に関しては、図13の(a)部に示されるように、上部メサ33は導波路軸Axの第1方向(素子内部から素子端面に向かう方向AOUT)に上部メサ33のメサ幅が徐々に小さくなる部分を含む。第2エリア11cにおける上部メサ33及び下部メサ43について説明する。下部メサは43、導波路軸Axの第1方向に反対向きの第2方向(素子端面から素子内部に向かう方向AIN)に下部メサ43のメサ幅が徐々に小さくなる第1部分43aを含む。下部メサ43は、第1部分43aに接続された第2部分43bを含む。第1部分43a及び第2部分43b上において、上部メサ33のメサ幅が方向AOUTの向きに徐々に小さくなる。下部メサ43は、第2部分43bに接続された第3部分43cを含むことができる。第3部分43cは、下部メサ43を素子分離メサ41に接続する遷移部分である。第1部分43a及び第3部分43cのメサ幅は軸Axの方向に変化している。第2部分43bのメサ幅は、本実施例では軸Axの方向に変化せず一定の値である。素子端部においては下部メサ43の横幅は例えば4.7〜5.7μmである。下部メサ43の第2部分43bの横幅は例えば2.4〜3.0μmである。スポットサイズ変換器の長さLdのうち、第1部分43aの比率は0.15程度であり、第2部分43bの比率は0.75程度であり、第3部分43cの比率は0.1程度である。
下部メサ43及び上部メサ33の垂直方向の構造について、第2半導体コア層21、コア分離半導体層19、第1半導体コア層17及び半導体クラッド層15が半導体主面11a上に順に配列されて、第2半導体コア層21はコア分離半導体層19を介して第1半導体コア層17に光学的に結合される。
上部メサ33のメサ幅が徐々に小さくなる部分は、上部メサ33から下部メサ43への光モードの遷移、及び下部メサ43から上部メサ33への光モードの遷移を可能にしている。
上部メサ33を搭載しない下部メサ43では、第2半導体コア層21の表面をコア分離半導体層19が覆っており、第2半導体コア層21上には、第2半導体コア層21の平均屈折率より低い屈折率のコア分離半導体層19が設けられるので、下部メサ43を伝搬する光は、第2半導体コア層21だけでなく、第2半導体コア層21及びコア分離半導体層19の全体に広がっており、下部メサ43と上部メサ33との間の光学的な結合を促進する。
スポットサイズ変換器を作製する方法においては、第1マスク23を用いて半導体積層の上面から半導体クラッド層15をエッチングすると共に、更に第1半導体コア層17をその途中までの前半のエッチングを行う。この前半のエッチングにより、半導体主面11aの第1エリア11b及び第2エリア11c上にメサ構造物25が形成される。メサ構造物25は、前半のエッチングにより形成されたメサ状のメサ構造物(メサ中間部)25と、これから行われる後半のエッチングで除去されるべき第1半導体コア層17の残り部分17bとを含む。第1半導体コア層17の残り部分上には該メサ中間部25が搭載されている。半導体積層10のエッチングにおいて第1半導体コア層17の途中までのエッチングを行うので、メサ構造物25は、第1半導体コア層17の残り部分17bが現れている上面を含み、メサ構造物25の側面は、第1半導体コア層17の側面を含む。
メサ構造物25の側面を覆う保護マスク27を形成して後に、コア分離半導体層19の上面19aが露出するように第1半導体コア層17の残り部分17bのエッチングを行う。コア分離半導体層19の上面19aを露出させるエッチングの後に、コア分離半導体層19及び第2半導体コア層21をエッチングして、下部メサ43を形成する。
下部メサ43におけるコア分離半導体層19の幅は上部メサ33の幅より大きい。下部メサ43に係る光導波路は、第2半導体コア層21及びコア分離半導体層19を含み、コア分離半導体層19の屈折率は第1半導体コア層17の平均の屈折率及び第2半導体コア層21の平均の屈折率より小さい。コア分離半導体層19が、下部メサ43の第2半導体コア層21と上部メサ33の第1半導体コア層17との間に設けられることに加えて、上部メサ33の底縁より外側において下部メサ43の第2半導体コア層21に沿って延在する。
下部メサ43に係る光導波路は、半導体導波路より大きいモードフィード径を有する外部の光導波路に光学的に結合される。上部メサ33に係る光導波路は、下部メサ43に係る光導波路に光学的に結合されており、半導体素子のアクティブデバイスに光学的に結合される。コア分離半導体層19が、上部メサ33の底縁より外側において下部メサ43の第2半導体コア層21に沿って延在する。下部メサ43の第2半導体コア層21上にコア分離半導体層19が延在するので、下部メサ43に係る光導波路を伝搬する光は、コア分離半導体層19が上部メサ33に含まれる形態に比べて、空気の屈折率より大きいコア分離半導体層19に引かれて、下部メサ43の全体にわたって光が拡がる。下部メサ43の第2半導体コア層21上にコア分離半導体層19が延在するので、下部メサ43に係る光導波路を伝搬する光はコア分離半導体層19にも振幅を有する。これ故に、下部メサ43に係る光導波路及び上部メサ33に係る光導波路の間の光伝搬がスムーズに進行する。具体的には、下部メサ43に係る光導波路から上部メサ33に係る光導波路への光の伝搬、及び上部メサ33に係る光導波路から下部メサ43に係る光導波路への光の伝搬が生じて、この光の移動に際して、遷移の残留光成分が低減される。
引き続き、保護膜、及び電極を形成する工程を説明する。工程S110では、図14に示されるように、基板11の全面にわたって保護膜45を成長する。保護膜45は例えば厚さ300nmのSiOであることができる。保護膜45は、図14の(a)部に示されるように、マッハツェンダ変調器の導波路のための上部メサ33の上面及び側面を覆うと共に、素子分離メサ41の上面及び側面を覆う。また、保護膜45は、図14の(b)部に示されるように、マッハツェンダ変調器の導波路及びスポットサイズ変換器の上部メサ33の上面及び側面を覆うと共に、下部メサ43の上面及び側面を覆う。また、保護膜45は、素子分離メサ41及び下部メサ43の外側の基板表面も覆う。
工程S111では、図15に示されるように、基板11の全面にわたって樹脂体47を形成する。この樹脂体47は例えばベンゾシクロブテン(BCB)樹脂であることができる。この樹脂体47は例えばスピン塗布により形成される。
工程S112では、図16に示されるように、第1エリア11bにおいて、電極のための開口47a、47bを樹脂体47に形成する。図16の(a)部に示されるように、開口47aは、第1アーム導波路部33jと第2アーム導波路部33kとの間に位置する半導体領域のコンタクト開口に合わせて形成され、開口47bは、第1アーム導波路部33j及び第2アーム導波路部33kの個々の上面に合わせて形成される。開口47a、47bの形成のために、フォトリソグラフィ及びエッチングを用いることができる。開口47a、47bには、保護膜45が現れる。図16の(b)部に示されるように、第2エリア11c(スポットサイズ変換器のためのエリア)の樹脂体47には開口は形成されない。
工程S113では、図17に示されるように、開口47a、47bに露出された保護膜45を除去する。この除去のためのレジストマスクを形成することができる。除去には、エッチングを用いる。このエッチングとしてCF4ドライエッチングを用いることができる。図17の(a)部に示されるように、開口47a、47bには、第1アーム導波路部33j及び第2アーム導波路部33kの最上層の半導体層(例えばコンタクト層13、21b)が現れる。図17の(b)部に示されるように、第2エリア11c(スポットサイズ変換器のためのエリア)の樹脂体47には開口は形成されない。
工程S114では、図18に示されるように、開口47aに第1電極51を形成する。開口47bに第2電極53を形成する。図17の(a)部に示されるように、第1電極51は例えばカソード電極であり、第2電極53は例えばアノード電極である。カソード電極は例えばAu/Ge/Niを備え、アノード電極は例えばTi/Pt/Auを備える。図18の(b)部に示されるように、第2エリア11c(スポットサイズ変換器のためのエリア)には電極は形成されない。
図19は、本実施の形態における実施例を示す図面である。図19の(a)部を参照すると、実施例におけるスポットサイズ変換器が示される。このスポットサイズ変換器では、下部メサ43は、下部半導体コア層(SSCコア)21及びコア分離半導体層19を含み、上部メサ33が上部半導体コア層(MZコア)17及びクラッド層15を含む。図19の(b)部は、スポットサイズ変換器の導波路の一端部(外部導波路と結合する端部)における光分布を示し、図19の(c)部は、スポットサイズ変換器の導波路の中間における光分布を示し、図19の(d)部は、スポットサイズ変換器の導波路の他端部(シングルモード半導体導波路と結合する端部)における光分布を示す。この実施例におけるスポットサイズ変換器では、下部メサ43が半導体コア層21に加えてコア分離半導体層19を含むので、光の遷移がスムーズに進行する。図19の(a)部では、外部導波路から受けた光のスポットサイズを内部の半導体導波路のスポットサイズに変換するように光が描かれているけれども、この実施例におけるスポットサイズ変換器は、逆向きの光の進行にも同様な機能を発揮する。
図20は、本実施の形態における実施例とは異なる構造のスポットサイズ変換器を示す図面である。図20の(a)部を参照すると、このスポットサイズ変換器では、下部メサは、下部半導体コア層(SSCコア)を含み、上部メサが中間層(コア分離半導体層)、上部半導体コア層(MZコア)及びクラッド層を含む。図20の(b)部は、スポットサイズ変換器の導波路の一端部(外部導波路と結合する端部)における光分布を示し、図20の(c)部は、スポットサイズ変換器の導波路の中間における光分布を示し、図20の(d)部は、スポットサイズ変換器の導波路の他端部(シングルモード半導体導波路と結合する端部)における光分布を示す。図20の(b)部〜(d)部における破線は、図19の(b)部〜(d)部の光分布を比較のために示す。このスポットサイズ変換器では、下部メサがコア分離半導体層を含まないので、光の遷移がスムーズに進行せず、外部導波路から受けた光の一部が内部の半導体導波路にスムーズに遷移できず、下部メサに残留光成分が生じる。この残留光成分は、光学的なロスとなる。逆方向の光遷移については、同様に、内部の半導体導波路の上部メサからの光の一部が下部メサにスムーズに遷移できず、上部メサに残留光成分が生じる。この残留光成分は、光学的なロスとなる。
本実施の形態に係るスポットサイズ変換器では、上部メサの形成を複数の段階で行う。その一例では、一段階目はドライエッチングにより行い、最終段階はウエットエッチングにより行う。このウエットエッチングでは、コア分離半導体層に対して上部半導体コア層を選択的にエッチング可能なものとなるエッチャントを用いる。
図20に示されたスポットサイズ変換器と図19に示された実施例のスポットサイズ変換器との違いは、2つのコア間に位置する半導体層が上部メサ及び下部メサのいずれに含まれるかという点にあり、その他の事項は、半導体層の材料、厚さ、ドーピング濃度、素子寸法等についても同じになるようにモデルを作成している。これらのモデルを用いてシミュレーションにより遷移方向(縦方向)に光分布を求めている。図19の(b)部〜(d)部及び図20の(b)部〜(d)部は、このようなモデルのシミュレーション結果を示す。
(実施例)
スポットサイズ変換器(Spot-Size Converters:SSC)を有するマッハツェンダ変調器のための半導体膜をエピタキシャル成長する。最初に、半絶縁性InP基板上にn型GaInAsP/InPからなる下部コア層(上部コア層から離れた基板に近い部分はドーピング濃度1018cm−3以上の高ドープ層とする)、n−InPバッファ層、ノンドープのAlGaInAs多層量子井戸構造層(上部コア層)、p型InPクラッド層、及びp+型GaInAsコンタクト層を有機金属気相成長(OMVPE)法等の結晶成長により成長して、エピタキシャル基板を準備する。
厚さ300nmのSiN膜を化学的気相成長(CVD)法で堆積する。この後に、フォトリソグラフィーによりSSCパターンを有するマッハツェンダストライプパターンを形成する。このレジストパターンをCF反応性イオンエッチングによりSiN膜にパターン転写する。この後に、レジストパターンをO2アッシングにより除去する。このパターン転写されたSiNマスクをエッチングマスクとして、Cl系反応性イオンエッチングにより半導体メサストライプ(上部コア)を形成する。エッチングは上部コア(AlGaInAs多層量子井戸)の途中で停止させる。
変調アーム領域絶縁膜マスク残しのための工程を行う。フォトリソグラフィーにより変調アーム領域をレジストで覆った後にバッファードフッ酸(BHF)により変調アーム以外の領域のSiN絶縁膜の除去を行う。変調アーム領域のメサ上のみメサ形成に用いた絶縁膜が残る。
全面にSiNの成膜を行う。ウエハ全面に対し、CVD法により厚さ400nmのSiN膜を成膜する。この結果、変調アーム領域(アクティブ導波路領域)のSiNはパッシブ導波路領域と比較して厚くなる。
メサ側面に絶縁膜マスクを形成する。基板全面に対してCF反応性イオンエッチングをマスク無しで行い、メサ側面にSiN膜を残すと共にパッシブ導波路領域の側面にSiN膜を残すように、マスクパターンを形成する。上部コア(AlGaInAs多層量子井戸)の途中の表面を露出させる。
コンタクト層、及び上部コア層残りを除去する。硫酸系エッチャントによりGaInAsコンタクト層と、AlGaInAs多層量子井戸層の残り部分を除去する。このウエットエッチングの際に、InPがエッチストップ層として機能するので、上部コア層残りを除去できる。最後に、バファードフッ酸により全SiNを除去する。
高ドープのn型半導体層を露出させる。CVD法により厚さ300nmのSiN膜を成長した後に、フォトリソグラフィーによりマッハツェンダストライプの中央に開口パターンを形成する。次に、レジストパターンをCF反応性イオンエッチングによりSiN膜にパターン転写する。パターン転写されたSiN膜を形成した後に、レジストパターンを酸素プラズマにより除去する。このSiNマスクパターンをエッチングマスクとして、Cl系反応性イオンエッチングにより変調アーム領域のマッハツェンダストライプの中央において、高ドープn型半導体層を露出させる。パッシブ導波路領域は全体をSiN膜で覆って、高ドープn型半導体層を露出させない。SiNマスクパターンはBHFにより除去する。
下部メサ及び素子分離メサを形成する。厚さ300nmのSiN膜CVD法により堆積した後に、フォトリソグラフィーにより素子分離、及び下部コアパターンを形成する。このレジストパターンをCF反応性イオンエッチングによりSiN膜にパターン転写する。パターン転写されたSiN膜を形成した後に、レジストパターンを酸素プラズマにより除去する。このSiNマスクパターンをエッチングマスクとして、Cl系反応性イオンエッチングにより素子分離及び下部メサの形成を行う。この後に、SiNマスクパターンはBHFにより除去する。
SiO保護膜を形成すると共に、BCB埋め込みを行う。メサ保護膜としてCVD法により厚さ300nmのSiO膜を堆積し、次いでベンゾシクロブテン(BCB)樹脂をスピンコート法により塗布する。
BCB樹脂に開口パターンを形成する。フォトリソグラフィーによりBCB樹脂上にレジストパターンを形成した後に、このレジストマスクをエッチングマスクとして用いて、CF/O反応性イオンエッチングによりBCB樹脂に開口を形成する。この開口は、p側領域上に、またn側領域上に順に形成される。好ましくは、深い開口のために段差が比較的大きいn側領域の開口部を後に形成することが好ましい。その後、レジストパターンを有機溶媒により除去する。
コンタクト開口のSiOを除去するための開口パターンを形成する。p側領域及びn側領域のコンタクト上の絶縁膜をCF4反応性イオンエッチングにより除去する。
このように形成されたコンタクト開口に、オーミック電極を形成する。p側領域及びn側領域のそれぞれのために、オーミック電極を蒸着により形成し、リフトオフにより電極を作製する。次いで、電極のアニール、Auメッキの形成、ならびに裏面加工を順に行う。
本発明は、本実施の形態に開示された特定の構成に限定されるものではない。
以上説明したように、本実施の形態によれば、第1半導体コア層と第2半導体コア層との間に設けられるコア分離半導体層の厚みの面内ばらつきを低減できる、スポットサイズ変換器を作製する方法を提供できる。
E…エピタキシャル基板、10…半導体積層、11…基板、11a…半導体主面、13…コンタクト層、15…半導体クラッド層、17…第1半導体コア層、19…コア分離半導体層、21…第2半導体コア層、23…第1マスク、25…メサ構造、25d…2×2第1MMIのための第1MMI部、25e…2×2第2MMIのための第1MMI部、25f…第1導波路部、25g…第2導波路部、33、33a、33b…上部メサ、25h…第1導波路部、25i…第2導波路部、25j…第1アーム導波路部、25k…第2アーム導波路部、35…コンタクトマスク、37…コンタクト開口、41…素子分離メサ、43…下部メサ。

Claims (7)

  1. スポットサイズ変換器を作製する方法であって、
    半導体クラッド層、第1半導体コア層、コア分離半導体層、及び第2半導体コア層を含む半導体積層と、半導体主面を有する基板とを含むエピタキシャル基板上に、前記スポットサイズ変換器の導波路のためのパターンを有する絶縁膜の第1マスクを形成する工程と、
    前記第1マスクを用いて前記半導体積層の上面から前記第1半導体コア層の途中まで前記半導体積層のエッチングを行って、該エッチングにより形成された側面及び上面を前記第1半導体コア層に含み導波路軸に沿って延在するメサ構造物を、前記半導体主面の第1エリア及び第2エリア上に作製する工程と、
    前記第1半導体コア層の前記上面に開口を有すると共に前記メサ構造物の側面を覆う絶縁膜の保護マスクを形成する工程と、
    前記保護マスクを形成した後に、前記第1半導体コア層の残り部分をエッチングして、前記コア分離半導体層の上面を露出させると共に上部メサを形成する工程と、
    前記上部メサを形成した後に、前記上部メサのメサ幅より大きいメサ幅を有するストライプ状のパターンを有する絶縁膜の第2マスクを形成する工程と、
    前記第2マスクを用いて、前記コア分離半導体層及び前記第2半導体コア層をエッチングして、前記半導体主面の前記第2エリア上に下部メサを形成する工程と、
    を備え、
    前記上部メサは前記半導体クラッド層及び前記第1半導体コア層を含み、
    前記第2エリアにおいて前記上部メサは前記下部メサ上に位置し、
    前記第2エリアにおいて、前記コア分離半導体層の幅は前記上部メサの前記第1半導体コア層の幅より広く、
    前記第2エリアにおいて、前記上部メサは前記導波路軸の第1方向に前記上部メサのメサ幅が徐々に狭くなる部分を含み、
    前記下部メサは、前記導波路軸の前記第1方向に反対向きの第2方向に前記下部メサのメサ幅が徐々に狭くなる部分を含み、
    前記第2半導体コア層、前記コア分離半導体層、前記第1半導体コア層及び前記半導体クラッド層は、前記半導体主面上に順に配列される、スポットサイズ変換器を作製する方法。
  2. 前記メサ構造物を形成した後に、前記半導体主面の前記第1エリア上に位置するパターンを有すると共に前記半導体主面の前記第2エリア上に位置する開口を有するマスクを形成する工程と、
    前記マスクを用いて前記第1マスクのエッチングを行って、前記メサ構造物の第1部分上の前記第1マスクの第1部分を残すと共に前記メサ構造物の第2部分上の前記第1マスクの第2部分を除去する工程と、
    前記第1マスクの前記エッチングの後に、第1の厚さの絶縁膜を前記基板上に成長する工程と、
    前記絶縁膜の異方的エッチングを行って、前記第1半導体コア層の前記残り部分の前記上面及び前記メサ構造物の前記第2部分上の上面を露出させると共に、前記保護マスクを形成する工程と、
    を更に備え、
    前記第1半導体コア層の前記残り部分をエッチングする際に、前記半導体主面の前記第2エリア上の前記上部メサの最上の半導体層がエッチングされ、
    前記マスクは、前記第1マスク及び前記メサ構造物を覆う、請求項1に記載されたスポットサイズ変換器を作製する方法。
  3. 前記異方的エッチングは、炭化フッ素を含むエッチャントを含む、請求項2に記載されたスポットサイズ変換器を作製する方法。
  4. 前記基板の前記半導体主面の前記第1エリア上の前記上部メサは、マッハツェンダ変調器の変調部を構成するように設けられる、請求項1〜請求項3のいずれか一項に記載されたスポットサイズ変換器を作製する方法。
  5. 前記第2半導体コア層は、交互に配列されたGaInAsP層及びInP層を含む多層構造を有し、
    前記第2半導体コア層は、第1部分及び第2部分を含み、
    前記第2半導体コア層の前記第2部分は前記第1部分と前記基板との間に設けられ、
    前記第2半導体コア層の前記第2部分はn型ドーパントを含み、
    前記マッハツェンダ変調器は、前記第1エリアにおいて前記上部メサを含む第1アーム導波路と、前記上部メサを含む第2アーム導波路とを備え、
    当該方法は、
    前記上部メサを形成した後に、前記第1アーム導波路と前記第2アーム導波路との間に位置する開口を前記半導体主面の前記第1エリア上に有するコンタクトマスクを形成する工程と、
    前記コンタクトマスクを用いて前記第2半導体コア層の前記第1部分及び前記コア分離半導体層をエッチングして、コンタクト開口を形成する工程と、
    前記第1エリア上の前記上部メサに第1電極を形成すると共に、前記コンタクト開口に第2電極を形成する工程と、
    を更に備える、請求項4に記載されたスポットサイズ変換器を作製する方法。
  6. 前記下部メサを形成する際に、前記半導体主面の前記第1エリアには、素子分離メサが形成される、請求項1〜請求項5のいずれか一項に記載されたスポットサイズ変換器を作製する方法。
  7. 前記第1半導体コア層は、交互に配列された第1AlGaInAs層及び第2AlGaInAs層を含む多重量子井戸構造を有し、
    前記コア分離半導体層はInPを備え、
    前記コア分離半導体層が、前記下部メサの前記第2半導体コア層の上面を覆う、請求項1〜請求項6のいずれか一項に記載されたスポットサイズ変換器を作製する方法。
JP2013148815A 2013-07-17 2013-07-17 スポットサイズ変換器を作製する方法 Pending JP2015022077A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013148815A JP2015022077A (ja) 2013-07-17 2013-07-17 スポットサイズ変換器を作製する方法
US14/331,762 US9176360B2 (en) 2013-07-17 2014-07-15 Method for producing spot-size convertor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013148815A JP2015022077A (ja) 2013-07-17 2013-07-17 スポットサイズ変換器を作製する方法

Publications (1)

Publication Number Publication Date
JP2015022077A true JP2015022077A (ja) 2015-02-02

Family

ID=52343898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148815A Pending JP2015022077A (ja) 2013-07-17 2013-07-17 スポットサイズ変換器を作製する方法

Country Status (2)

Country Link
US (1) US9176360B2 (ja)
JP (1) JP2015022077A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453694A (zh) * 2013-07-18 2016-03-30 索尼公司 控制装置和通信终端
KR101804480B1 (ko) * 2013-12-31 2017-12-04 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법, 장치 및 시스템
JP7070148B2 (ja) * 2018-06-26 2022-05-18 住友電気工業株式会社 スポットサイズ変換器、スポットサイズ変換器を作製する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229947B1 (en) 1997-10-06 2001-05-08 Sandia Corporation Tapered rib fiber coupler for semiconductor optical devices
JP6065663B2 (ja) * 2013-03-08 2017-01-25 住友電気工業株式会社 半導体光導波路素子を作製する方法
JP2014220413A (ja) * 2013-05-09 2014-11-20 住友電気工業株式会社 スポットサイズ変換器を作製する方法
JP6327051B2 (ja) * 2013-08-09 2018-05-23 住友電気工業株式会社 半導体光素子、半導体光素子を作製する方法

Also Published As

Publication number Publication date
US9176360B2 (en) 2015-11-03
US20150024527A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP2547001B2 (ja) 半導体構造の製造方法
US9229293B2 (en) Semiconductor optical device and method for manufacturing semiconductor optical device
US8673664B2 (en) Method of manufacturing photodiode with waveguide structure and photodiode
JP6065663B2 (ja) 半導体光導波路素子を作製する方法
CN108233175A (zh) 一种掩埋AlGaInAs DFB激光器的制作方法
US9435950B2 (en) Semiconductor optical device
JP6206247B2 (ja) 半導体装置の製造方法
JP2015022077A (ja) スポットサイズ変換器を作製する方法
JP2013143393A (ja) 半導体集積素子、及び半導体集積素子を作製する方法
JP5211728B2 (ja) 半導体光素子を作製する方法
JP2006091880A (ja) アクティブ構造体に接続する低寄生容量の突合せ接合型パッシブ導波路装置及び方法
US8731344B2 (en) Method for manufacturing semiconductor optical modulator and semiconductor optical modulator
US8597966B2 (en) Method for producing semiconductor optical device
US20090117676A1 (en) Semiconductor optical device
US9023677B2 (en) Method for producing spot size converter
JP5924138B2 (ja) 光半導体集積回路装置及びその製造方法
JP5217598B2 (ja) 半導体発光素子の製造方法
KR100821364B1 (ko) 보호막을 이용한 자기정렬 릿지 도파로 반도체 레이저다이오드 및 광 모드 변환기의 제조방법
JP6926735B2 (ja) 導波路型受光素子の製造方法
JP2011108829A (ja) 半導体光集積素子を作製する方法
JP2012226162A (ja) マッハツェンダー変調器を作製する方法、及びマッハツェンダー変調器
JP2016200760A (ja) 変換器、光半導体装置および光半導体装置の製造方法
JP2016127131A (ja) 光半導体装置及びその製造方法
JP2006047666A (ja) 半導体フォトニック結晶導波路構造及びそれを使用した半導体フォトニック結晶デバイス
JP2011151075A (ja) 半導体光集積素子を作製する方法