JP2015021795A - Rotation sensor - Google Patents

Rotation sensor Download PDF

Info

Publication number
JP2015021795A
JP2015021795A JP2013148785A JP2013148785A JP2015021795A JP 2015021795 A JP2015021795 A JP 2015021795A JP 2013148785 A JP2013148785 A JP 2013148785A JP 2013148785 A JP2013148785 A JP 2013148785A JP 2015021795 A JP2015021795 A JP 2015021795A
Authority
JP
Japan
Prior art keywords
pair
magnetoresistive effect
effect elements
rotation
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013148785A
Other languages
Japanese (ja)
Other versions
JP6064816B2 (en
JP2015021795A5 (en
Inventor
孝昌 金原
Takamasa Kanehara
金原  孝昌
紀博 車戸
Norihiro Kurumado
紀博 車戸
泰行 奥田
Yasuyuki Okuda
泰行 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013148785A priority Critical patent/JP6064816B2/en
Priority to DE112014003316.2T priority patent/DE112014003316B4/en
Priority to PCT/JP2014/003436 priority patent/WO2015008439A1/en
Publication of JP2015021795A publication Critical patent/JP2015021795A/en
Publication of JP2015021795A5 publication Critical patent/JP2015021795A5/ja
Application granted granted Critical
Publication of JP6064816B2 publication Critical patent/JP6064816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale

Abstract

PROBLEM TO BE SOLVED: To provide a rotation sensor in which the accuracy of detecting the rotating state of a rotary body is improved.SOLUTION: The rotation sensor has a plurality of electromagnetic conversion units (10, 20) for converting a change in a magnetic flux cyclically changing in direction into an electric signal. Each of the plurality of electromagnetic conversion units has magneto-resistance effect elements constituting a pair (11-14, 21-24). Each of the magneto-resistance effect elements constituting a pair has a pin layer, a free layer, and an intermediate layer provided between the pin layer and the free layer. The magnetization directions of the pin layers possessed by the respective magneto-resistance effect elements constituting a pair differ in phase by 180° with each other. The magneto-resistance effect elements constituting a pair possessed by each of the plurality of electromagnetic conversion units are juxtaposed along the rotation direction of a rotary body and symmetrically arranged about a base line (BL) extending from the rotation shaft of the rotary body so as to cross the rotation direction at right angles, each of the magneto-resistance effect elements constituting a pair composing a bridge circuit, the midpoint potential of which is considered as a signal based on the rotating state of the rotary body.

Description

本発明は、回転体の回転に伴って周期的に向きが変動する磁束の変化に基づいて、回転体の回転状態を検出する回転センサに関するものである。   The present invention relates to a rotation sensor that detects a rotation state of a rotating body based on a change in magnetic flux whose direction periodically changes as the rotating body rotates.

従来、例えば特許文献1に示されるように、N極とS極が交互に配列された磁気部材と、磁気部材の磁極配列面に対向する1対又は複数対のベクトル検知型磁気抵抗効果素子と、を有する磁気式位置検出装置が提案されている。1対又は複数対のベクトル検知型磁気抵抗効果素子は、磁気部材の磁極配列方向に対して略垂直に1列配置されている。これにより、全てのベクトル検知型磁気抵抗効果素子を透過する磁束の位相が同一となっている。   Conventionally, for example, as shown in Patent Document 1, a magnetic member in which N poles and S poles are alternately arranged, and one or more pairs of vector detection type magnetoresistive effect elements facing the magnetic pole arrangement surface of the magnetic member, Have been proposed. One or a plurality of pairs of vector detection type magnetoresistive elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction of the magnetic member. Thereby, the phase of the magnetic flux which permeate | transmits all the vector detection type | mold magnetoresistive effect elements is the same.

特開2006−23179号公報JP 2006-23179 A

上記した特許文献1に記載の磁気式位置検出装置では、1対又は複数対のベクトル検知型磁気抵抗効果素子が磁極配列方向に対して略垂直に1列配置され、全てのベクトル検知型磁気抵抗効果素子を透過する磁束の位相が同一となっている。しかしながらこの構成の場合、各ベクトル検知型磁気抵抗効果素子と磁気部材との対向間隔が異なるために、各ベクトル検知型磁気抵抗効果素子を透過する磁束の強度が異なることとなる。そのため、各ベクトル検知型磁気抵抗効果素子の抵抗値に依存する電気信号に基づいて磁気部材(回転体)の回転状態を高精度に検出することが困難となる虞がある。   In the magnetic position detection device described in Patent Document 1 described above, one or more pairs of vector detection type magnetoresistive effect elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction, and all the vector detection type magnetoresistance elements are arranged. The phase of the magnetic flux passing through the effect element is the same. However, in the case of this configuration, since the facing distance between each vector detection type magnetoresistive effect element and the magnetic member is different, the intensity of the magnetic flux passing through each vector detection type magnetoresistive effect element is different. Therefore, it may be difficult to detect the rotation state of the magnetic member (rotating body) with high accuracy based on an electric signal that depends on the resistance value of each vector detection type magnetoresistive element.

そこで、本発明は上記問題点に鑑み、回転体の回転状態の検出精度が向上された回転センサを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a rotation sensor with improved detection accuracy of the rotation state of a rotating body.

上記した目的を達成するために、本発明は、回転体(200)の回転に伴って周期的に向きが変動する磁束の変化に基づいて、回転体の回転状態を検出する回転センサであって、周期的に向きが変動する磁束の変化を電気信号に変換する磁電変換部(10,20)を複数有し、複数の磁電変換部それぞれは、対を成す磁気抵抗効果素子(11〜14,21〜24)を有し、対を成す磁気抵抗効果素子それぞれは、磁化方向が固定されたピン層と、磁化方向が外部磁界に応じて変動する自由層と、ピン層と自由層との間に設けられた非磁性の中間層と、を有し、ピン層と自由層それぞれの磁化方向に応じて抵抗値が変動する性質を有し、対を成す磁気抵抗効果素子それぞれが有するピン層の磁化方向が互いに180°異なっており、複数の磁電変換部それぞれが有する対を成す磁気抵抗効果素子は、回転体の回転方向に沿って並んで配置され、回転体の回転軸から回転方向に直交するように延びる基準線(BL)にて対称配置されており、対を成す磁気抵抗効果素子それぞれによってブリッジ回路が組まれ、その中点電位を回転体の回転状態に基づく信号とすることを特徴とする。   In order to achieve the above-described object, the present invention provides a rotation sensor that detects a rotation state of a rotating body based on a change in magnetic flux whose direction periodically changes as the rotating body (200) rotates. , Having a plurality of magnetoelectric conversion units (10, 20) for converting a change in magnetic flux whose direction is periodically changed into an electric signal, and each of the plurality of magnetoelectric conversion units includes a pair of magnetoresistive effect elements (11-14, Each of the magnetoresistive effect elements having a pair of 21 to 24) includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a pinned layer and a free layer. A non-magnetic intermediate layer provided on the pin layer, and having a property that the resistance value varies according to the magnetization direction of each of the pinned layer and the free layer. Magnetization directions are 180 ° different from each other, The pair of magnetoresistive effect elements included in each of the replacement parts are arranged side by side along the rotation direction of the rotating body, and are symmetrically arranged on a reference line (BL) extending perpendicularly to the rotation direction from the rotation axis of the rotating body. Each of the magnetoresistive effect elements forming a pair forms a bridge circuit, and the midpoint potential is a signal based on the rotation state of the rotating body.

このように本発明によれば、磁気抵抗効果素子(11〜14,21〜24)が回転方向に沿って並んで配置されている。これによれば、磁気抵抗効果素子(11〜14,21〜24)が回転方向ではなく、回転方向に対して垂直な方向に並んで配置された構成とは異なり、各磁気抵抗効果素子(11〜14,21〜24)を透過する磁束の強度が同一となる。ただしこの構成の場合、各磁気抵抗効果素子(11〜14,21〜24)を透過する磁束の位相が異なることとなる。しかしながら上記したように、対を成す磁気抵抗効果素子(11〜14,21〜24)それぞれによってブリッジ回路を組み、その中点電位を回転体(200)の回転状態に基づく信号とすることで、位相ズレをなくすことができる。以下、1組の対を成す磁気抵抗効果素子(11,12)によってハーフブリッジ回路が組まれた構成を例として、その理由を説明する。   Thus, according to this invention, the magnetoresistive effect element (11-14, 21-24) is arrange | positioned along with the rotation direction. According to this, unlike the configuration in which the magnetoresistive effect elements (11 to 14, 21 to 24) are arranged in the direction perpendicular to the rotation direction instead of the rotation direction, each magnetoresistive effect element (11 -14, 21 to 24) have the same magnetic flux intensity. However, in the case of this configuration, the phases of magnetic fluxes transmitted through the magnetoresistive elements (11-14, 21-24) are different. However, as described above, a bridge circuit is formed by each of the magnetoresistive effect elements (11 to 14, 21 to 24) forming a pair, and the midpoint potential is set as a signal based on the rotation state of the rotating body (200). Phase shift can be eliminated. Hereinafter, the reason will be described by taking as an example a configuration in which a half bridge circuit is assembled by a pair of magnetoresistive elements (11, 12).

対を成す磁気抵抗効果素子(11,12)それぞれが並ぶ並列方向と基準線(BL)との交差点(CP)を透過する基準磁束の基準線(BL)からの交差点周りの角度をa、磁気抵抗効果素子(11,12)の中心を透過する磁束の向きにおける基準磁束からの角度ズレをb、対を成す磁気抵抗効果素子(11,12)それぞれの抵抗値の中心値をRc、対を成す磁気抵抗効果素子(11,12)それぞれの抵抗変化量の振幅をR0、ブリッジ回路に供給する電圧をVとすると、ブリッジ回路の中点電位は、(R0×sin(a−b)+Rc)V/(R0×sin(a−b)+Rc+R0×sin(a+b+180°)+Rc)と表される。これを整理すると、ブリッジ回路の中点電位は、(−V/2)(sin(a)×cos(b)/(cos(a)×sin(b)−Rc)−1)となり、これは、(sin(a)×cos(b)/(cos(a)×sin(b)−Rc)−1)に依存することがわかる。   The angle around the intersection from the reference line (BL) of the reference magnetic flux passing through the intersection (CP) between the parallel direction in which the magnetoresistive elements (11, 12) forming a pair and the reference line (BL) are arranged is a, The angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the center of the resistance effect element (11, 12) is b, the center value of the resistance value of each of the magnetoresistive effect elements (11, 12) forming a pair is Rc, and the pair is When the amplitude of the resistance change amount of each magnetoresistive element (11, 12) formed is R0, and the voltage supplied to the bridge circuit is V, the midpoint potential of the bridge circuit is (R0 × sin (ab) + Rc). V / (R0 × sin (ab) + Rc + R0 × sin (a + b + 180 °) + Rc). To summarize this, the midpoint potential of the bridge circuit is (−V / 2) (sin (a) × cos (b) / (cos (a) × sin (b) −Rc) −1). , (Sin (a) × cos (b) / (cos (a) × sin (b) −Rc) −1).

ここで、bとRcそれぞれは時間的に一定であるため、sin(b)、cos(b)、および、Rcそれぞれは一定値となる。このため、上記した式は時間的にaだけに依存することとなる。このように、各磁気抵抗効果素子(11,12)を透過する磁束の位相が異なったとしても、ブリッジ回路の中点電位はその位相ズレがなくなった値となる。そこで、この中点電位を回転体(200)の回転状態に基づく信号として活用する。こうすることで、回転体(200)の回転状態の検出精度が向上される。   Here, since b and Rc are constant in time, sin (b), cos (b), and Rc each have a constant value. For this reason, the above-described formula depends only on a in terms of time. As described above, even if the phases of the magnetic fluxes transmitted through the magnetoresistive elements (11, 12) are different, the midpoint potential of the bridge circuit has a value in which the phase shift is eliminated. Therefore, this midpoint potential is utilized as a signal based on the rotation state of the rotating body (200). By doing so, the detection accuracy of the rotating state of the rotating body (200) is improved.

なお、特許請求の範囲に記載の請求項、および、課題を解決するための手段それぞれに記載の要素に括弧付きで符号をつけているが、この括弧付きの符号は実施形態に記載の各構成要素との対応関係を簡易的に示すためのものであり、実施形態に記載の要素そのものを必ずしも示しているわけではない。括弧付きの符号の記載は、いたずらに特許請求の範囲を狭めるものではない。   In addition, although the elements described in the claims and the means for solving the problems are attached with parentheses, the parentheses are attached to each component described in the embodiment. This is to simply show the correspondence with the elements, and does not necessarily indicate the elements themselves described in the embodiments. The description of the reference numerals with parentheses does not unnecessarily narrow the scope of the claims.

第1実施形態に係る回転センサと回転体の位置を概略的に示す斜視図である。It is a perspective view which shows roughly the position of the rotation sensor which concerns on 1st Embodiment, and a rotary body. 回転センサと回転体の位置を概略的に示す上面図である。It is a top view which shows the position of a rotation sensor and a rotary body roughly. ピン層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of a pin layer. 磁気抵抗効果素子によって組まれたブリッジ回路を示す回路図である。It is a circuit diagram which shows the bridge circuit assembled by the magnetoresistive effect element. 中点電位とパルス信号を示すタイミングチャートである。It is a timing chart which shows a midpoint potential and a pulse signal. 交差点を貫く基準磁束を示す模式図である。It is a schematic diagram which shows the reference | standard magnetic flux which penetrates an intersection. 磁気抵抗効果素子、および、中点それぞれの抵抗値の変動を示すグラフ図である。It is a graph which shows a magnetoresistive effect element and the fluctuation | variation of each resistance value of a middle point. 磁電変換部の変形例を示す上面図である。It is a top view which shows the modification of a magnetoelectric conversion part. 磁電変換部の変形例を示す上面図である。It is a top view which shows the modification of a magnetoelectric conversion part. 磁電変換部の変形例を示す上面図である。It is a top view which shows the modification of a magnetoelectric conversion part. 第1フルブリッジ回路を示す回路図である。It is a circuit diagram which shows a 1st full bridge circuit. 第2フルブリッジ回路を示す回路図である。It is a circuit diagram which shows a 2nd full bridge circuit.

以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1〜図7に基づいて、本実施形態に係る回転センサを説明する。以下においては、回転体200と回転センサ100それぞれが配置された同一の高さ位置における平面を規定平面、規定平面に直交し、回転体200の回転中心RCを貫く方向を軸方向と示す。また、軸方向の周りの方向を回転方向と示し、規定平面に沿い、回転中心RCから延びる方向を径方向と示す。なお、特許請求の範囲に記載の回転軸は軸方向に沿っている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
Based on FIGS. 1-7, the rotation sensor which concerns on this embodiment is demonstrated. In the following, a plane at the same height position where the rotator 200 and the rotation sensor 100 are arranged is defined as a specified plane, and a direction perpendicular to the specified plane and passing through the rotation center RC of the rotator 200 is referred to as an axial direction. A direction around the axial direction is indicated as a rotation direction, and a direction extending from the rotation center RC along the prescribed plane is indicated as a radial direction. In addition, the rotating shaft described in the claims is along the axial direction.

回転センサ100は、回転体200の回転に伴って周期的に向きが変動する磁束の変化に基づいて、回転体200の回転状態を検出するものである。回転体200は円環状を成し、その外環面に回転方向に沿って等間隔に磁極210,220が形成されている。図1および図2に示すように、異なる磁極210,220が交互に形成され、N極210からS極220へとの磁束が流れる。隣接する磁極210,220間の磁束は、半円形の軌跡を描くように流れる。回転センサ100は、この半円形の軌跡を描く磁束の回転による周期的な変化を検出する。   The rotation sensor 100 detects the rotation state of the rotating body 200 based on a change in magnetic flux whose direction periodically changes as the rotating body 200 rotates. The rotating body 200 has an annular shape, and magnetic poles 210 and 220 are formed on the outer ring surface at equal intervals along the rotation direction. As shown in FIGS. 1 and 2, different magnetic poles 210 and 220 are alternately formed, and a magnetic flux flows from the N pole 210 to the S pole 220. The magnetic flux between the adjacent magnetic poles 210 and 220 flows so as to draw a semicircular locus. The rotation sensor 100 detects a periodic change due to the rotation of the magnetic flux that draws this semicircular locus.

回転センサ100は、磁束の向きの変化を電気信号に変換する磁電変換部10,20を有する。第1磁電変換部10は1組の対を成す磁気抵抗効果素子11,12を有し、第2磁電変換部20は1組の対を成す磁気抵抗効果素子21,22を有する。対を成す磁気抵抗効果素子11,12および対を成す磁気抵抗効果素子21,22それぞれは、図1および図2に示すように回転方向に沿って並んで配置され、回転体200の回転中心RCから径方向に沿って延びる基準線BLにて対称配置されている。対を成す磁気抵抗効果素子11,12は間に何も介さずに回転方向(厳密には基準線BLと磁気抵抗効果素子11,12の配置された回転方向の交差点CPにおける回転体200の回転の接線方向)に並び、対を成す磁気抵抗効果素子21,22は磁気抵抗効果素子11,12を介して回転方向(厳密には接線方向)に並んでいる。なお、特許請求の範囲に記載の並列方向は、上記した接線方向に相当する。   The rotation sensor 100 includes magnetoelectric conversion units 10 and 20 that convert changes in the direction of magnetic flux into electrical signals. The 1st magnetoelectric conversion part 10 has the magnetoresistive effect elements 11 and 12 which make a pair, and the 2nd magnetoelectric conversion part 20 has the magnetoresistive effect elements 21 and 22 which make a pair. The magnetoresistive effect elements 11 and 12 forming a pair and the magnetoresistive effect elements 21 and 22 forming a pair are arranged side by side along the rotation direction as shown in FIGS. Are symmetrically arranged on a reference line BL extending in the radial direction from the center. The magnetoresistive elements 11 and 12 forming a pair are rotated in the rotational direction (strictly speaking, the rotation of the rotating body 200 at the intersection CP in the rotational direction where the reference line BL and the magnetoresistive elements 11 and 12 are arranged). The magnetoresistive elements 21 and 22 forming a pair are arranged in the rotational direction (strictly, the tangential direction) via the magnetoresistive elements 11 and 12. The parallel direction described in the claims corresponds to the tangential direction described above.

本実施形態では磁気抵抗効果素子11,12,21,22それぞれの回転方向の横幅が同一となっている。そのため、磁気抵抗効果素子11,12,21,22の横幅をLとすると、磁気抵抗効果素子11,12それぞれの中心は基準線BL(交差点CP)から回転方向(接線方向)にL/2だけ離間している。そして、磁気抵抗効果素子21,22それぞれの中心は基準線BL(交差点CP)から回転方向(接線方向)に3L/2だけ離間している。このように、磁気抵抗効果素子11,12,21,22それぞれは、基準線BL(交差点CP)に対して、横幅の分、離間している。そのため、磁気抵抗効果素子11,12,21,22それぞれの中心を透過する磁束と交差点CPを透過する磁束とには位相差がある。   In the present embodiment, the lateral widths of the magnetoresistive elements 11, 12, 21, and 22 in the rotational direction are the same. Therefore, if the lateral width of the magnetoresistive effect elements 11, 12, 21, and 22 is L, the center of each of the magnetoresistive effect elements 11 and 12 is L / 2 in the rotational direction (tangential direction) from the reference line BL (intersection CP). It is separated. The centers of the magnetoresistive elements 21 and 22 are separated from the reference line BL (intersection CP) by 3L / 2 in the rotational direction (tangential direction). Thus, each of the magnetoresistive effect elements 11, 12, 21, and 22 is separated from the reference line BL (intersection CP) by the width. Therefore, there is a phase difference between the magnetic flux that passes through the centers of the magnetoresistive elements 11, 12, 21, and 22 and the magnetic flux that passes through the intersection CP.

図2に示すように、磁気抵抗効果素子11,21は基準線BLよりも紙面左方に位置し、磁気抵抗効果素子12,22は基準線BLよりも紙面右方に位置している。したがって、回転体200が反時計回りに回転する場合、磁気抵抗効果素子11,21は基準線BLよりも上流に位置し、磁気抵抗効果素子12,22は基準線BLよりも下流に位置することとなる。したがって、磁気抵抗効果素子21を貫く磁束は、基準線BLを貫く基準磁束よりも3L/2だけ位相が速く、磁気抵抗効果素子11を貫く磁束は、基準磁束よりもL/2だけ位相が速くなる。これとは反対に、磁気抵抗効果素子12を貫く磁束は、基準磁束よりもL/2だけ位相が遅く、磁気抵抗効果素子22を貫く磁束は、基準磁束よりも3L/2だけ位相が遅くなる。これとは逆に、回転体200が時計回りに回転する場合、磁気抵抗効果素子12,22は基準線BLよりも上流に位置し、磁気抵抗効果素子11,21は基準線BLよりも下流に位置することとなる。したがって、磁気抵抗効果素子22を貫く磁束は基準磁束よりも3L/2だけ位相が速く、磁気抵抗効果素子12を貫く磁束は基準磁束よりもL/2だけ位相が速くなる。これとは反対に、磁気抵抗効果素子11を貫く磁束は基準磁束よりもL/2だけ位相が遅く、磁気抵抗効果素子21を貫く磁束は基準磁束よりも3L/2だけ位相が遅くなる。本実施形態では、回転体200が反時計回りに回転する場合を対象として話をする。回転体200が時計回りに回転する場合、上記した関係が成立するので、その説明を省略する。   As shown in FIG. 2, the magnetoresistive effect elements 11 and 21 are located on the left side of the drawing with respect to the reference line BL, and the magnetoresistive effect elements 12 and 22 are located on the right side of the drawing with respect to the reference line BL. Therefore, when the rotating body 200 rotates counterclockwise, the magnetoresistive effect elements 11 and 21 are positioned upstream of the reference line BL, and the magnetoresistive effect elements 12 and 22 are positioned downstream of the reference line BL. It becomes. Therefore, the magnetic flux that passes through the magnetoresistive effect element 21 has a phase that is 3L / 2 faster than the reference magnetic flux that passes through the reference line BL, and the magnetic flux that passes through the magnetoresistive effect element 11 has a phase that is L / 2 faster than the reference magnetic flux. Become. On the contrary, the magnetic flux passing through the magnetoresistive effect element 12 is delayed in phase by L / 2 than the reference magnetic flux, and the magnetic flux passing through the magnetoresistive effect element 22 is delayed in phase by 3 L / 2 from the reference magnetic flux. . On the contrary, when the rotating body 200 rotates clockwise, the magnetoresistive effect elements 12 and 22 are located upstream from the reference line BL, and the magnetoresistive effect elements 11 and 21 are located downstream from the reference line BL. Will be located. Therefore, the magnetic flux that passes through the magnetoresistive effect element 22 has a phase that is 3L / 2 faster than the reference magnetic flux, and the magnetic flux that passes through the magnetoresistive effect element 12 has a phase that is L / 2 faster than the reference magnetic flux. On the contrary, the magnetic flux passing through the magnetoresistive effect element 11 is delayed in phase by L / 2 from the reference magnetic flux, and the magnetic flux passing through the magnetoresistive effect element 21 is delayed in phase by 3 L / 2 from the reference magnetic flux. In the present embodiment, the case where the rotating body 200 rotates counterclockwise will be described. When the rotating body 200 rotates clockwise, the above-described relationship is established, and thus the description thereof is omitted.

磁気抵抗効果素子11,12,21,22それぞれは、図示しないが、磁化方向が固定されたピン層と、磁化方向が外部磁界に応じて変動する自由層と、ピン層と自由層との間に設けられた非磁性の中間層と、を有する。ピン層と自由層それぞれの磁化方向に応じて抵抗値が変動する性質を有し、自由層とピン層それぞれの磁化方向が平行の場合に最も抵抗値が低く変動し、反平行の場合に最も高く変動する。本実施形態では中間層が導電性を有し、磁気抵抗効果素子11,12,21,22それぞれは巨大磁気抵抗効果素子である。   Although not shown, each of the magnetoresistive effect elements 11, 12, 21, and 22 includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a pinned layer and a free layer. And a nonmagnetic intermediate layer provided on the substrate. The resistance value fluctuates depending on the magnetization direction of each of the pinned layer and the free layer. Highly fluctuating. In the present embodiment, the intermediate layer has conductivity, and each of the magnetoresistive elements 11, 12, 21, and 22 is a giant magnetoresistive element.

磁気抵抗効果素子11,12,21,22それぞれが有するピン層の磁化方向は、規定平面に沿っており、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向は径方向に沿い、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向は回転方向(厳密にはその接線方向)に沿っている。そのため、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向と、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向とは90°(270°)異なっている。また、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向は互いに180°異なり、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向は互いに180°異なっている。   The magnetization directions of the pinned layers of each of the magnetoresistive effect elements 11, 12, 21, and 22 are along the prescribed plane, and the magnetization directions of the pinned layers of each of the magnetoresistive effect elements 11 and 12 forming a pair are in the radial direction. The magnetization direction of the pinned layer of each of the magnetoresistive effect elements 21 and 22 that form a pair is along the rotational direction (strictly, the tangential direction thereof). Therefore, the magnetization direction of the pinned layer included in each of the magnetoresistive effect elements 11 and 12 forming a pair is different from the magnetization direction of the pinned layer included in each of the magnetoresistive effect elements 21 and 22 forming a pair by 90 ° (270 °). Yes. In addition, the magnetization directions of the pin layers of the magnetoresistive elements 11 and 12 forming a pair are different from each other by 180 °, and the magnetization directions of the pin layers of the magnetoresistive elements 21 and 22 forming a pair are different from each other by 180 °. Yes.

図3に示すように、径方向に沿う基準線BLから時計回りの角度θで磁化方向を表すと、磁気抵抗効果素子11はピン層の磁化方向が0°であり、磁気抵抗効果素子12はピン層の磁化方向が180°である。また、磁気抵抗効果素子21はピン層の磁化方向が90°であり、磁気抵抗効果素子22はピン層の磁化方向が270°である。このように、対を成す磁気抵抗効果素子11,12の磁化方向は互いに反平行となり、対を成す磁気抵抗効果素子21,22の磁化方向は互いに反平行となっている。そのため、2つの磁気抵抗効果素子の抵抗値の変化が反対となり、2つの磁電変換素子の内の一方の抵抗値が小さくなる場合、他方の抵抗値が大きくなる。   As shown in FIG. 3, when the magnetization direction is expressed by a clockwise angle θ from the reference line BL along the radial direction, the magnetoresistive effect element 11 has a magnetization direction of the pinned layer of 0 °, and the magnetoresistive effect element 12 is The magnetization direction of the pinned layer is 180 °. The magnetoresistive element 21 has a pinned layer with a magnetization direction of 90 °, and the magnetoresistive element 22 has a pinned layer with a magnetization direction of 270 °. Thus, the magnetization directions of the magnetoresistive effect elements 11 and 12 forming a pair are antiparallel to each other, and the magnetization directions of the magnetoresistive effect elements 21 and 22 forming a pair are antiparallel to each other. For this reason, when the resistance values of the two magnetoresistive elements are opposite to each other and one of the two magnetoelectric transducers has a small resistance value, the other resistance value is large.

図4に示すように、対を成す磁気抵抗効果素子11,12、および、対を成す磁気抵抗効果素子21,22それぞれによってブリッジ回路が組まれ、その中点電位が回転体200の回転状態に基づく信号として、後段に位置する処理回路(図示略)に入力される。第1磁電変換部10の有する1組の対を成す磁気抵抗効果素子11,12によって第1ハーフブリッジ回路が組まれ、第2磁電変換部20の有する1組の対を成す磁気抵抗効果素子21,22によって第2ハーフブリッジ回路が組まれている。上記したように、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向と、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向とは90°(270°)異なっている。そのため、第1ハーフブリッジ回路の中点電位(以下、第1中点電位と示す)と第2ハーフブリッジ回路の中点電位(以下、第2中点電位と示す)とは位相差が90°(270°)ある。したがって、第1中点電位を正弦波とすると、第2中点電位は余弦波となる。上記した処理回路は閾値(図5に示す破線)を有しており、この閾値と中点電位とを比較することで、第1中点電位を第1パルス信号、第2中点電位を第2パルス信号に変換する。   As shown in FIG. 4, a bridge circuit is formed by the magnetoresistive effect elements 11 and 12 and the magnetoresistive effect elements 21 and 22 that form a pair, and the midpoint potential is changed to the rotational state of the rotating body 200. As a signal based on this, it is input to a processing circuit (not shown) located in the subsequent stage. The first half-bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 that form a pair of the first magnetoelectric conversion unit 10, and the magnetoresistive effect element 21 that forms a pair of the second magnetoelectric conversion unit 20. , 22 form a second half bridge circuit. As described above, the magnetization direction of the pinned layer included in each of the paired magnetoresistive effect elements 11 and 12 and the magnetization direction of the pinned layer included in each of the paired magnetoresistive effect elements 21 and 22 are 90 ° (270 °). ) Is different. Therefore, the phase difference between the midpoint potential of the first half bridge circuit (hereinafter referred to as the first midpoint potential) and the midpoint potential of the second half bridge circuit (hereinafter referred to as the second midpoint potential) is 90 °. (270 °). Therefore, if the first midpoint potential is a sine wave, the second midpoint potential is a cosine wave. The processing circuit described above has a threshold value (broken line shown in FIG. 5). By comparing this threshold value with the midpoint potential, the first midpoint potential is set as the first pulse signal, and the second midpoint potential is set as the second potential. Convert to 2-pulse signal.

以下、回転センサ100の特徴点とその作用効果について図6および図7に基づいて説明する。上記したように、磁気抵抗効果素子11,12,21,22は回転方向(交差点CPの接線方向)に沿って並んで配置されている。これによれば、複数の磁気抵抗効果素子が回転方向ではなく、回転方向に対して垂直な径方向に並んで配置された構成とは異なり、各磁気抵抗効果素子を透過する磁束の強度が同一となる。ただし本構成の場合、上記したように、自身の横幅のために、磁気抵抗効果素子11,12,21,22それぞれを透過する磁束と交差点CPを透過する基準磁束とに位相差が生じる。   Hereinafter, the characteristic points of the rotation sensor 100 and the operation and effects thereof will be described with reference to FIGS. 6 and 7. As described above, the magnetoresistive effect elements 11, 12, 21, and 22 are arranged side by side along the rotation direction (the tangential direction of the intersection CP). According to this, unlike the configuration in which a plurality of magnetoresistive elements are arranged in the radial direction perpendicular to the rotational direction instead of the rotational direction, the strength of the magnetic flux transmitted through each magnetoresistive element is the same. It becomes. However, in the case of this configuration, as described above, due to its own lateral width, there is a phase difference between the magnetic flux passing through the magnetoresistive effect elements 11, 12, 21, and 22 and the reference magnetic flux passing through the intersection CP.

図6に示すように、基準磁束における基準線BLから交差点CP周りの角度をaとする。磁気抵抗効果素子11の中心が交差点CPにある場合、図7に破線で示すように、第1ハーフブリッジ回路を構成する磁気抵抗効果素子11の抵抗値(以下、第1抵抗値と示す)は、角度aに依存する正弦波の振る舞いを示す。しかしながら磁気抵抗効果素子11の中心は交差点CPからズレているので、図7に実線で示すように、第1抵抗値は上記した正弦波から位相がズレた振る舞いを示す。同様にして、磁気抵抗効果素子12の中心が交差点CPにある場合、図7に破線で示すように、第1ハーフブリッジ回路を構成する磁気抵抗効果素子12の抵抗値(以下、第2抵抗値と示す)は角度aに依存する余弦波の振る舞いを示す。しかしながら磁気抵抗効果素子12の中心は交差点CPからズレているので、図7に実線で示すように、第2抵抗値は上記した余弦波から位相がズレた振る舞いを示す。   As shown in FIG. 6, the angle around the intersection CP from the reference line BL in the reference magnetic flux is defined as a. When the center of the magnetoresistive effect element 11 is at the intersection CP, the resistance value of the magnetoresistive effect element 11 constituting the first half bridge circuit (hereinafter referred to as the first resistance value) is as shown by a broken line in FIG. The behavior of a sine wave depending on the angle a is shown. However, since the center of the magnetoresistive effect element 11 is deviated from the intersection CP, the first resistance value exhibits a behavior in which the phase is deviated from the sine wave as shown by the solid line in FIG. Similarly, when the center of the magnetoresistive effect element 12 is at the intersection CP, as indicated by a broken line in FIG. 7, the resistance value of the magnetoresistive effect element 12 constituting the first half bridge circuit (hereinafter referred to as the second resistance value). Indicates a behavior of a cosine wave depending on the angle a. However, since the center of the magnetoresistive effect element 12 is deviated from the intersection CP, the second resistance value exhibits a behavior in which the phase is deviated from the cosine wave as shown by the solid line in FIG.

以上示したように、第1抵抗値と第2抵抗値それぞれは角度aから位相がズレた振る舞いを示す。これは、第2ハーフブリッジ回路を構成する磁気抵抗効果素子21,22の抵抗値についても同様である。しかしながら上記したように、対を成す磁気抵抗効果素子11,12によって第1ハーフブリッジ回路を組み、対を成す磁気抵抗効果素子21,22によって第2ハーフブリッジ回路を組み、その中点電位を回転体200の回転状態に基づく信号としている。これによれば、以下に示す理由により、位相ズレをなくすことができる。   As described above, each of the first resistance value and the second resistance value behaves with a phase shift from the angle a. The same applies to the resistance values of the magnetoresistive elements 21 and 22 constituting the second half bridge circuit. However, as described above, the first half bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 forming a pair, the second half bridge circuit is assembled by the magnetoresistive effect elements 21 and 22 forming the pair, and the midpoint potential is rotated. The signal is based on the rotation state of the body 200. According to this, the phase shift can be eliminated for the following reason.

上記したように、基準磁束の角度をaとする。そして、対を成す磁気抵抗効果素子11,12それぞれの中心を透過する磁束の向きにおける基準磁束からの角度ズレをbとする。また、対を成す磁気抵抗効果素子それぞれの抵抗値の中心値をRc、対を成す磁気抵抗効果素子11,12それぞれの抵抗変化量の振幅をR0、第1ハーフブリッジ回路に供給する電圧をVとすると、第1中点電位は、(R0×sin(a−b)+Rc)V/(R0×sin(a−b)+Rc+R0×sin(a+b+180°)+Rc)と表される。これを整理すると、第1ハーフブリッジ回路の中点電位は、(−V/2)(sin(a)×cos(b)/(cos(a)×sin(b)−Rc)−1)となり、これは、第1ハーフブリッジ回路の中点における抵抗(以下、第1中点抵抗と示す)に相当する(sin(a)×cos(b)/(cos(a)×sin(b)−Rc)−1)に依存することがわかる。   As described above, the angle of the reference magnetic flux is a. An angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the centers of the paired magnetoresistive elements 11 and 12 is defined as b. Further, the center value of the resistance value of each of the magnetoresistive effect elements forming the pair is Rc, the amplitude of the resistance change amount of each of the magnetoresistive effect elements 11 and 12 forming the pair is R0, and the voltage supplied to the first half bridge circuit is V Then, the first midpoint potential is expressed as (R0 × sin (ab) + Rc) V / (R0 × sin (ab) + Rc + R0 × sin (a + b + 180 °) + Rc). To summarize this, the midpoint potential of the first half-bridge circuit is (−V / 2) (sin (a) × cos (b) / (cos (a) × sin (b) −Rc) −1). This corresponds to the resistance at the midpoint of the first half-bridge circuit (hereinafter referred to as the first midpoint resistance) (sin (a) × cos (b) / (cos (a) × sin (b) − It can be seen that it depends on Rc) -1).

ここで、bとRcそれぞれは時間的に一定であるため、sin(b)、cos(b)、および、Rcそれぞれは一定値となる。このため、第1中点抵抗は時間的にaだけに依存することとなり、図7に一点鎖線で示す振る舞いを示す。すなわち、位相ズレのない正弦波に似通った振る舞いを示す。このように、対を成す磁気抵抗効果素子11,12を透過する磁束の位相が異なったとしても、第1中点電位はその位相ズレがなくなった値となる。そこで、この第1中点電位を回転体200の回転状態に基づく信号として活用することで、回転体200の回転状態の検出精度が向上される。   Here, since b and Rc are constant in time, sin (b), cos (b), and Rc each have a constant value. For this reason, the first midpoint resistance depends only on a in terms of time, and FIG. 7 shows the behavior indicated by the alternate long and short dash line. That is, it shows behavior similar to a sine wave without phase shift. As described above, even if the phases of the magnetic fluxes transmitted through the paired magnetoresistive elements 11 and 12 are different, the first midpoint potential is a value at which the phase shift is eliminated. Therefore, by using the first midpoint potential as a signal based on the rotation state of the rotator 200, the detection accuracy of the rotation state of the rotator 200 is improved.

なお、もちろんではあるが、対を成す磁気抵抗効果素子21,22についても同様の議論を適用することができる。この場合、対を成す磁気抵抗効果素子21,22の中心を透過する磁束の向きにおける基準磁束からの角度ズレをcとすることで、同様の議論を進めることができ、第2ハーフブリッジ回路の中点における抵抗(以下、第2中点抵抗と示す)は位相ズレのなくなった値となる。したがって、第2中点電位を回転体200の回転状態に基づく信号として活用することで、回転体200の回転状態の検出精度が向上される。   Of course, the same argument can be applied to the magnetoresistive effect elements 21 and 22 forming a pair. In this case, the same argument can be advanced by setting the angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the centers of the paired magnetoresistive effect elements 21 and 22 to c. The resistance at the midpoint (hereinafter referred to as the second midpoint resistance) is a value with no phase shift. Therefore, by using the second midpoint potential as a signal based on the rotation state of the rotator 200, the detection accuracy of the rotation state of the rotator 200 is improved.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、対を成す磁気抵抗効果素子11,12は間に何も介さずに回転方向(接線方向)に並び、対を成す磁気抵抗効果素子21,22は磁気抵抗効果素子11,12を介して回転方向(接線方向)に並んでいる例を示した。しかしながら図8に示すように、対を成す磁気抵抗効果素子21,22が間に何も介さずに回転方向(接線方向)に並び、対を成す磁気抵抗効果素子11,12が磁気抵抗効果素子21,22を介して回転方向(接線方向)に並んだ構成を採用することもできる。   In the present embodiment, the magnetoresistive effect elements 11 and 12 forming a pair are arranged in the rotational direction (tangential direction) without any intervening therebetween, and the magnetoresistive effect elements 21 and 22 forming the pair are magnetoresistive effect elements 11 and 12. In the example shown in FIG. However, as shown in FIG. 8, the magnetoresistive elements 21 and 22 forming a pair are arranged in the rotational direction (tangential direction) without any intervening elements, and the magnetoresistive elements 11 and 12 forming a pair are magnetoresistive elements. It is also possible to adopt a configuration in which the rotation direction (tangential direction) is arranged via 21 and 22.

本実施形態では、第1磁電変換部10は1組の対を成す磁気抵抗効果素子11,12を有し、第2磁電変換部20は1組の対を成す磁気抵抗効果素子21,22を有する例を示した。しかしながら、磁電変換部10,20それぞれが有する対を成す磁気抵抗効果素子の組数としては上記例に限定されず、複数でも良い。例えば図9および図10に示すように、第1磁電変換部10が2組の対を成す磁気抵抗効果素子11〜14を有し、第2磁電変換部20が2組の対を成す磁気抵抗効果素子21〜24を有する構成を採用することもできる。この場合、図11および図12に示すように、2組の対を成す磁気抵抗効果素子11〜14によって第1ハーフブリッジ回路が2つ組まれ、これらによって第1フルブリッジ回路が組まれる。また、2組の対を成す磁気抵抗効果素子21〜24によって第2ハーフブリッジ回路が2つ組まれ、これらによって第2フルブリッジ回路が組まれる。   In the present embodiment, the first magnetoelectric conversion unit 10 includes a pair of magnetoresistive effect elements 11 and 12, and the second magnetoelectric conversion unit 20 includes a pair of magnetoresistive effect elements 21 and 22. An example is shown. However, the number of pairs of magnetoresistive effect elements forming a pair included in each of the magnetoelectric conversion units 10 and 20 is not limited to the above example, and a plurality of pairs may be used. For example, as shown in FIGS. 9 and 10, the first magnetoelectric conversion unit 10 has magnetoresistive effect elements 11 to 14 forming two pairs, and the second magnetoelectric conversion unit 20 forms magnetoresistives forming two pairs. A configuration having the effect elements 21 to 24 can also be adopted. In this case, as shown in FIG. 11 and FIG. 12, two first half bridge circuits are assembled by the magnetoresistive effect elements 11 to 14 forming two pairs, and the first full bridge circuit is assembled by these. In addition, two second half-bridge circuits are formed by the magnetoresistive effect elements 21 to 24 forming two pairs, and the second full-bridge circuit is formed by these.

本実施形態では磁気抵抗効果素子11,12,21,22それぞれの回転方向の横幅が同一となっている例を示した。しかしながら、対を成す磁気抵抗効果素子同士の回転方向(接線方向)の横幅が等しく、対を成す磁気抵抗効果素子同士の基準線BL(交差点CP)からの離間距離が等しければ良い。したがって、すべての磁気抵抗効果素子の横幅が一律に等しくなくともよい。   In the present embodiment, an example in which the lateral widths in the rotation direction of the magnetoresistive elements 11, 12, 21, and 22 are the same is shown. However, the lateral widths in the rotational direction (tangential direction) of the magnetoresistive elements forming a pair are equal and the distances from the reference line BL (intersection CP) of the magnetoresistive elements forming the pair may be equal. Therefore, the lateral widths of all the magnetoresistive elements need not be equal.

本実施形態では中間層が導電性を有し、磁気抵抗効果素子11,12,21,22それぞれが巨大磁気抵抗効果素子である例を示した。しかしながら、中間層が絶縁性を有し、磁気抵抗効果素子11,12,21,22それぞれがトンネル磁気抵抗効果素子である構成を採用することもできる。   In the present embodiment, an example is shown in which the intermediate layer has conductivity, and each of the magnetoresistive effect elements 11, 12, 21, and 22 is a giant magnetoresistive effect element. However, it is also possible to adopt a configuration in which the intermediate layer has insulating properties and each of the magnetoresistive effect elements 11, 12, 21, and 22 is a tunnel magnetoresistive effect element.

10,20・・・磁電変換部
11,12,21,22・・・磁気抵抗効果素子
100・・・回転センサ
200・・・回転体
DESCRIPTION OF SYMBOLS 10,20 ... Magnetoelectric conversion part 11,12,21,22 ... Magnetoresistive effect element 100 ... Rotation sensor 200 ... Rotating body

Claims (4)

回転体(200)の回転に伴って周期的に向きが変動する磁束の変化に基づいて、前記回転体の回転状態を検出する回転センサであって、
周期的に向きが変動する磁束の変化を電気信号に変換する磁電変換部(10,20)を複数有し、
複数の前記磁電変換部それぞれは、対を成す磁気抵抗効果素子(11〜14,21〜24)を有し、
対を成す前記磁気抵抗効果素子それぞれは、磁化方向が固定されたピン層と、磁化方向が外部磁界に応じて変動する自由層と、前記ピン層と前記自由層との間に設けられた非磁性の中間層と、を有し、前記ピン層と前記自由層それぞれの磁化方向に応じて抵抗値が変動する性質を有し、
対を成す前記磁気抵抗効果素子それぞれが有するピン層の磁化方向が互いに180°異なっており、
複数の前記磁電変換部それぞれが有する対を成す前記磁気抵抗効果素子は、前記回転体の回転方向に沿って並んで配置され、前記回転体の回転軸から前記回転方向に直交するように延びる基準線(BL)にて対称配置されており、
対を成す前記磁気抵抗効果素子それぞれによってブリッジ回路が組まれ、その中点電位を前記回転体の回転状態に基づく信号とすることを特徴とする回転センサ。
A rotation sensor that detects a rotation state of the rotating body based on a change in magnetic flux whose direction periodically changes as the rotating body (200) rotates.
Having a plurality of magnetoelectric converters (10, 20) for converting a change in magnetic flux whose direction periodically changes into an electric signal;
Each of the plurality of magnetoelectric conversion units has a pair of magnetoresistive effect elements (11 to 14, 21 to 24),
Each of the pair of magnetoresistive effect elements includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a non-layer provided between the pinned layer and the free layer. A magnetic intermediate layer, having a property that the resistance value varies according to the magnetization direction of each of the pinned layer and the free layer,
The magnetization directions of the pinned layers of each of the magnetoresistive effect elements forming a pair are different from each other by 180 °,
The magnetoresistive effect elements forming a pair included in each of the plurality of magnetoelectric conversion units are arranged side by side along the rotation direction of the rotating body and extend from the rotation axis of the rotating body so as to be orthogonal to the rotation direction. It is arranged symmetrically with the line (BL),
A rotation sensor, wherein a bridge circuit is formed by each of the magnetoresistive effect elements forming a pair, and a midpoint potential thereof is used as a signal based on a rotation state of the rotating body.
対を成す前記磁気抵抗効果素子それぞれが並ぶ並列方向と前記基準線との交差点(CP)を透過する基準磁束の前記基準線からの前記交差点周りの角度をa、前記磁気抵抗効果素子の中心を透過する磁束の向きにおける前記基準磁束からの角度ズレをb、対を成す前記磁気抵抗効果素子それぞれの抵抗値の中心値をRcとすると、前記ブリッジ回路の中点電位は、sin(a)×cos(b)/(cos(a)×sin(b)−Rc)−1に依存することを特徴とする請求項1に記載の回転センサ。   The angle around the intersection from the reference line of the reference magnetic flux that passes through the intersection (CP) between the parallel direction in which each of the magnetoresistive elements forming a pair and the reference line passes is a, and the center of the magnetoresistive effect element is Assuming that the angle deviation from the reference magnetic flux in the direction of the magnetic flux to be transmitted is b and the center value of the resistance value of each of the magnetoresistive elements forming a pair is Rc, the midpoint potential of the bridge circuit is sin (a) × The rotation sensor according to claim 1, wherein the rotation sensor depends on cos (b) / (cos (a) × sin (b) −Rc) −1. 複数の前記磁電変換部として、前記ピン層の磁化方向が前記回転軸に直交する径方向に沿う第1磁電変換部と、前記ピン層の磁化方向が前記回転体の回転の接線方向に直交する第2磁電変換部と、を有し、
前記第1磁電変換部の有する1組の対を成す磁気抵抗効果素子(11,12)によって第1ハーフブリッジ回路が組まれ、前記第2磁電変換部の有する1組の対を成す磁気抵抗効果素子(21,22)によって第2ハーフブリッジ回路が組まれていることを特徴とする請求項2に記載の回転センサ。
As the plurality of magnetoelectric converters, a first magnetoelectric converter in which the magnetization direction of the pinned layer extends along a radial direction orthogonal to the rotation axis, and the magnetization direction of the pinned layer is orthogonal to the tangential direction of rotation of the rotating body A second magnetoelectric converter,
A first half bridge circuit is assembled by a pair of magnetoresistive effect elements (11, 12) included in the first magnetoelectric conversion unit, and a pair of magnetoresistive effect included in the second magnetoelectric conversion unit. The rotation sensor according to claim 2, wherein the second half-bridge circuit is assembled by the elements (21, 22).
前記第1磁電変換部の有する2組の対を成す磁気抵抗効果素子(11〜14)によって前記第1ハーフブリッジ回路が2つ組まれ、これらによって第1フルブリッジ回路が組まれており、
前記第2磁電変換部の有する2組の対を成す磁気抵抗効果素子(21〜24)によって前記第2ハーフブリッジ回路が2つ組まれ、これらによって第2フルブリッジ回路が組まれていることを特徴とする請求項3に記載の回転センサ。
Two of the first half bridge circuits are assembled by the magnetoresistive effect elements (11 to 14) forming two pairs of the first magnetoelectric conversion unit, and the first full bridge circuit is assembled by these,
Two second half bridge circuits are assembled by two pairs of magnetoresistive effect elements (21 to 24) of the second magnetoelectric conversion unit, and the second full bridge circuit is assembled by these. The rotation sensor according to claim 3.
JP2013148785A 2013-07-17 2013-07-17 Rotation sensor Expired - Fee Related JP6064816B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013148785A JP6064816B2 (en) 2013-07-17 2013-07-17 Rotation sensor
DE112014003316.2T DE112014003316B4 (en) 2013-07-17 2014-06-27 rotation sensor
PCT/JP2014/003436 WO2015008439A1 (en) 2013-07-17 2014-06-27 Rotation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013148785A JP6064816B2 (en) 2013-07-17 2013-07-17 Rotation sensor

Publications (3)

Publication Number Publication Date
JP2015021795A true JP2015021795A (en) 2015-02-02
JP2015021795A5 JP2015021795A5 (en) 2015-08-20
JP6064816B2 JP6064816B2 (en) 2017-01-25

Family

ID=52345923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148785A Expired - Fee Related JP6064816B2 (en) 2013-07-17 2013-07-17 Rotation sensor

Country Status (3)

Country Link
JP (1) JP6064816B2 (en)
DE (1) DE112014003316B4 (en)
WO (1) WO2015008439A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743770B2 (en) * 2017-06-16 2020-08-19 株式会社デンソー Position sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector
WO2010029684A1 (en) * 2008-09-12 2010-03-18 日立金属株式会社 Self-pinned spin valve magnetoresistance effect film and magnetic sensor using the same, and rotation angle detection device
WO2013094236A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Rotation angle detector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561368A (en) * 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
DE10028640B4 (en) * 2000-06-09 2005-11-03 Institut für Physikalische Hochtechnologie e.V. Wheatstone bridge, including bridge elements, consisting of a spin valve system, and a method for their production
JP3839697B2 (en) * 2001-10-17 2006-11-01 アルプス電気株式会社 Rotation angle sensor
JP2005049097A (en) * 2003-07-29 2005-02-24 Alps Electric Co Ltd Fault detection circuit
JP4582298B2 (en) 2004-07-08 2010-11-17 Tdk株式会社 Magnetic position detector
JP2007199007A (en) 2006-01-30 2007-08-09 Alps Electric Co Ltd Magnetic encoder
JP4820182B2 (en) * 2006-02-14 2011-11-24 アルプス電気株式会社 Magnetic encoder
WO2008081797A1 (en) * 2006-12-28 2008-07-10 Alps Electric Co., Ltd. Magnetic detector
JP2010286236A (en) 2007-09-20 2010-12-24 Alps Electric Co Ltd Origin detection device
JP5177197B2 (en) * 2010-10-13 2013-04-03 Tdk株式会社 Rotating magnetic field sensor
JP2013148785A (en) 2012-01-20 2013-08-01 Kaneka Corp Image display device and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector
WO2010029684A1 (en) * 2008-09-12 2010-03-18 日立金属株式会社 Self-pinned spin valve magnetoresistance effect film and magnetic sensor using the same, and rotation angle detection device
WO2013094236A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Rotation angle detector

Also Published As

Publication number Publication date
JP6064816B2 (en) 2017-01-25
DE112014003316T5 (en) 2016-03-31
DE112014003316B4 (en) 2019-07-11
WO2015008439A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP5500785B2 (en) Magnetic sensor
JP6345235B2 (en) Magnetic position detection device and magnetic position detection method
JP5590349B2 (en) Magnetic sensor system
JP4319153B2 (en) Magnetic sensor
JP5013146B2 (en) Magnetic position detector
JP5218491B2 (en) Rotation angle detector
JP4582298B2 (en) Magnetic position detector
JP6460372B2 (en) Magnetic sensor, method for manufacturing the same, and measuring instrument using the same
JP5989257B2 (en) Magnetic detector
WO2015056439A1 (en) Rotation angle sensor
JP6064816B2 (en) Rotation sensor
JP6455314B2 (en) Rotation detector
JP2012230021A (en) Rotation angle measuring device
JP2015049046A (en) Angle detector
JP2015021795A5 (en)
JP2011226912A (en) Magnetic detector for rotation angle
JP2022102470A (en) Magnetic sensor device
JP6540010B2 (en) Magnetic sensor unit
JP5013135B2 (en) Magnetic position detector
JP2022061879A (en) Magnetic sensor and magnetic sensor device
JP2016109472A (en) Magnetic sensor
JP4992641B2 (en) Rotation angle detection device and rotation angle detection method
JP2021076503A (en) Magnetic rotation position detection device
JP2010145166A (en) Magnetic encoder
JP2015049048A (en) Angle detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6064816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees