WO2013094236A1 - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
WO2013094236A1
WO2013094236A1 PCT/JP2012/063421 JP2012063421W WO2013094236A1 WO 2013094236 A1 WO2013094236 A1 WO 2013094236A1 JP 2012063421 W JP2012063421 W JP 2012063421W WO 2013094236 A1 WO2013094236 A1 WO 2013094236A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection unit
magnetic detection
magnetic
arm
bridge circuit
Prior art date
Application number
PCT/JP2012/063421
Other languages
French (fr)
Japanese (ja)
Inventor
塚本 学
泰助 古川
川野 裕司
横谷 昌広
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112012005322.2T priority Critical patent/DE112012005322B4/en
Priority to JP2013550143A priority patent/JP5762567B2/en
Publication of WO2013094236A1 publication Critical patent/WO2013094236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a rotation angle detection device that detects a rotation angle of a rotation shaft or the like using a magnetoresistive effect element.
  • a magnetoresistive element is known in addition to a Hall element as a magnetic field magnetoelectric conversion element that detects a magnetic field applied from the outside.
  • Magnetoresistive elements include AMR (Anisotropic Magneto-Resistance) elements, GMR (Giant Magneto-Resistance) elements, and TMR (Tunnel Magneto-Resistance) elements. There are elements. In particular, GMR elements and TMR elements that can obtain a larger MR ratio than others are drawing attention.
  • Patent Document 1 discloses a GMR element and a TMR element having a spin valve structure.
  • a magnetoresistive effect element having a spin valve structure includes a ferromagnetic first thin film layer (free layer) and a second thin film layer (fixed layer) which are partitioned by a nonmagnetic thin film layer.
  • the magnetization direction of the ferromagnetic second thin film layer is fixed.
  • an antiferromagnetic thin film layer is attached to the ferromagnetic second thin film layer.
  • the antiferromagnetic thin film layer may be a ferromagnetic layer having high coercivity and high electrical resistance.
  • a magnet rotor equipped with a cylindrical magnet whose peripheral surface is multipolarized is rotated about an axis.
  • the sensor device is arranged at a position away from the peripheral surface of the cylindrical magnet by a predetermined distance r. Regions A and B are provided in the sensor device at the same interval as the magnetization width ⁇ of the cylindrical magnet, the magnetoresistive elements RA1 and RA2 are arranged in the region A, and the magnetoresistive elements RB1 and RB2 are arranged in the region B.
  • RA1, RA2, RB1, and RB2 are connected to form a bridge circuit.
  • FIG. 37 the cylindrical magnet on the circumferential surface of the magnet rotor is schematically described in a straight line.
  • the circumferential surface of the magnet rotor moves in the direction of the arrow with respect to the sensor device.
  • phase angle ⁇ shown in FIG. 37 indicates the phase relationship between the region A and the magnetic poles of the magnet rotor 1.
  • the phase angle ⁇ coincides with the angle of the magnetic field in the region A.
  • the phase angle ⁇ ′ shown in FIG. 40 indicates the angle of the magnetic field in the region B when the phase relationship between the region A and the magnetic pole of the magnet rotor 1 is ⁇ .
  • the resistance value changes in accordance with the angle of the magnetic field applied to the element.
  • the resistance values of the magnetoresistive effect elements RA1, RA2 and RB1, RB2 change substantially sinusoidally with the rotation of the magnet rotor. Therefore, the midpoint potentials V1 and V2 and the bridge output Vout of the bridge circuit shown in FIG. 38 have waveforms as shown in FIG.
  • FIG. 43 is an explanatory diagram showing in detail the angle of the magnetic field of the conventional rotation angle detection device.
  • the magnetic fields generated by the magnet rotor in the radial direction (x-axis direction in FIG. 43) and in the rotation direction (y-axis direction in FIG. 43) change substantially sinusoidally with respect to the phase angle.
  • the magnetic field amplitude differs between the rotational direction and the radial direction.
  • the amplitude P of the magnetic field in the radial direction is generally 1 to 2 times the amplitude Q of the magnetic field in the rotation direction. Therefore, the x-axis component Hx and the y-axis component Hy of the magnetic field at the phase angle ⁇ can be expressed by the following equations (1) and (2). Therefore, tan ⁇ representing the direction of the magnetic field at the phase angle ⁇ and the direction ⁇ of the magnetic field can be represented by the following equations (3) and (4), respectively.
  • FIG. 44 shows the relationship between the phase angle ⁇ and the magnetic field angle ⁇ sensed by the magnetoresistive effect element in the conventional rotation angle detection device when the ratio of the amplitudes of the magnetic field magnitudes in the radial direction and the rotation direction is different.
  • Q / P 1 to 0.5.
  • ⁇ .
  • FIG. 46 and 47 are waveform diagrams showing changes in the output voltage of the conventional rotation angle detection device when the amplitude ratio of the magnitude of the magnetic field in the radial direction is different from that in the rotation direction.
  • FIG. 45 when the resistance value of the magnetoresistive element has a triangular waveform, a third-order harmonic component is added to the output voltage Vout of the bridge circuit, and the output waveform is distorted. The influence of the fifth and higher harmonics is small, and the third harmonic component is the main cause of distortion. If the output waveform is distorted and becomes a triangular wave as shown in FIG. 46 or a trapezoidal wave as shown in FIG. 47, accurate angle information cannot be obtained.
  • a rotation angle detection device that can detect a rotation angle without distortion by multiplying a rotation direction detection signal by a correction coefficient k.
  • An object of the present invention is to provide a rotation angle detection device capable of obtaining accurate angle information while reducing the circuit scale.
  • Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width ⁇ , and a magnetic field generated by the rotor First to fourth magnetic detectors for detecting the first magnetic detector, the first magnetic detector and the fourth magnetic detector are disposed at the first detection position, and the second magnetic detector and the third magnetic detector are The first magnetic detection unit and the second detection position are arranged at two detection positions, the first detection position and the second detection position are provided at a distance L, and are connected in series between the first reference potential and the second reference potential.
  • the third magnetic detection unit, the second magnetic detection unit and the fourth magnetic detection unit connected in series are connected in parallel, and the first to fourth magnetic detection units constitute a bridge circuit, and the first magnetic detection unit and the first magnetic detection unit
  • the 4 magnetic detector, the second magnetic detector, and the third magnetic detector are respectively arranged on the arms where the bridge circuit intersects, and the first magnet
  • Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width ⁇ , and a magnetic field generated by the rotor First to eighth magnetic detectors for detecting the first magnetic detector, the first magnetic detector and the fourth magnetic detector are disposed at the first detection position, and the second magnetic detector and the third magnetic detector are The fifth magnetic detection unit and the eighth magnetic detection unit are disposed at the third detection position, the sixth magnetic detection unit and the seventh magnetic detection unit are disposed at the fourth detection position, The first detection position and the second detection position are provided at a distance L12, the third detection position and the fourth detection position are provided at a distance L12, and the first detection position and the third detection position are separated by a distance L13.
  • a first magnetic detection unit and a third magnetic detection unit which are provided and connected in series between the first reference potential and the second reference potential
  • the second magnetic detection unit and the fourth magnetic detection unit connected in series are connected in parallel, and the first to fourth magnetic detection units constitute a bridge circuit, and the first magnetic detection unit and the fourth magnetic detection unit,
  • the second magnetic detection unit and the third magnetic detection unit are respectively disposed on the intersecting arms of the bridge circuit, and are connected in series between the third reference potential and the fourth reference potential.
  • Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width ⁇ , and a magnetic field generated by the rotor First to eighth magnetic detectors for detecting the first magnetic detector, the first magnetic detector and the fourth magnetic detector are disposed at the first detection position, and the second magnetic detector and the third magnetic detector are The sixth magnetic detection unit and the seventh magnetic detection unit are arranged at the third detection position, the fifth magnetic detection unit and the eighth magnetic detection unit are arranged at the fourth detection position, The first detection position and the second detection position are provided at a distance L12, the third detection position and the fourth detection position are provided at a distance L12, and the first detection position and the third detection position are separated by a distance L13.
  • the third magnetic detection unit and the seventh magnetic detection unit are connected in parallel with the second magnetic detection unit, the sixth magnetic detection unit, the fourth magnetic detection unit, and the eighth magnetic detection unit that are connected in series.
  • the magnetic detection unit constitutes a bridge circuit.
  • the first magnetic detection unit and the fifth magnetic detection unit are arranged on the first arm of the bridge circuit, and the second magnetic detection unit and the second magnetic detection unit are arranged on the second arm of the bridge circuit.
  • a sixth magnetic detector is disposed, a third magnetic detector and a seventh magnetic detector are disposed on the third arm of the bridge circuit, and a fourth magnetic detector and an eighth are disposed on the fourth arm of the bridge circuit.
  • Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width ⁇ , and a magnetic field generated by the rotor 2p + 1 magnetic detection units, each having two magnetic detection units arranged at 2p detection positions, i-th detection position (i is an integer of 1 or more) and j-th detection position (j Is an integer greater than or equal to 1), Lij, and between the first reference potential and the second reference potential, 2p magnetic detection units connected in series and 2p pieces connected in series
  • the magnetic detection units are connected in parallel, and the 2p + 1 magnetic detection units constitute a bridge circuit, and 2p-1 magnetic detection units are arranged on each arm of the bridge circuit.
  • FIG. 3 is a layout diagram of regions provided in the sensor device according to the first embodiment of the present invention. It is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus by Embodiment 1 of this invention. It is a wave form diagram which shows the change of the resistance value of a magnetoresistive effect element of the rotation angle detection apparatus by Embodiment 1 of this invention. It is a wave form diagram which shows the change of the output electric potential of the rotation angle detection apparatus by Embodiment 1 of this invention about the case where the arrangement space
  • FIG. 6 is a waveform diagram showing a difference between the output potential of FIG.
  • FIG. 9 is a waveform diagram showing a difference between the output potential of FIG. 8 and a sine wave whose DC component, amplitude, frequency, and phase are adjusted.
  • FIG. 13 is a waveform diagram showing a difference between the output voltage of FIG. 12 and a sine wave whose DC component, amplitude, frequency, and phase are adjusted.
  • FIG. 19 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge circuit A in the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 18.
  • FIG. 19 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge circuit B of the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 18.
  • FIG. 21 It is a wave form diagram which shows the change of a differential voltage and an output voltage of the rotation angle detection apparatus by Embodiment 3 of this invention about the arrangement
  • FIG. 25 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge A in the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 24.
  • FIG. 25 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge B of the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 24.
  • FIG. 27 is a waveform diagram showing the midpoint potential of FIG. 31 and the difference between the output voltage and a sine wave whose DC component, amplitude, frequency and phase are adjusted.
  • the magnetoresistive effect element whose magnitude of resistance changes depending on the direction of an applied magnetic field is used as a magnetic detection unit for detecting a magnetic field that changes as the magnet rotor rotates. explain. However, the same effect can be obtained even when other magnetic detection units are used.
  • the magnetoresistive effect element is simply referred to as “element”.
  • FIG. 1 is a configuration diagram of a rotation angle detection device of the present invention.
  • the rotation angle detection device 10 includes a magnet rotor 1 on which a cylindrical magnet 2 is mounted, and a sensor device 3 that senses a magnetic field generated by the cylindrical magnet 2.
  • the cylindrical magnet 2 has 2 m poles (m is an integer of 1 or more) in which N and S poles are alternately magnetized with a magnetization width ⁇ along the circumferential surface.
  • the sensor device 3 is arranged at a predetermined distance from the magnet rotor 1.
  • FIG. 2 is a layout diagram of regions provided in the sensor device according to the first embodiment of the present invention.
  • the sensor device 3 is provided with a region A and a region B with a distance L therebetween.
  • the element RA is arranged in the region A
  • the element RB is arranged in the region B
  • the distance between the elements RA and RB is also set to L.
  • the distance between regions is assumed to be equal to the distance between elements arranged in the region.
  • FIG. 3 is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus according to the first embodiment of the present invention.
  • elements RA and RB are connected in series between a DC power supply (VCC) and a ground (GND).
  • VCC DC power supply
  • GND ground
  • the distance L is expressed by the following formula (5), where ⁇ is the magnetization width of the cylindrical magnet 2.
  • ⁇ in FIG. 4 represents the phase angle of the magnet rotor 1, and is 360 ° for a magnetized single pole pair on the circumferential surface. The same applies to other drawings.
  • FIG. 6 shows a difference signal between the waveform of the output potential Vout shown in FIG. 5 and a sine wave.
  • the “sine wave” here is a sine wave in which the direct current component, amplitude, frequency, and phase are adjusted so that the difference from the output potential Vout is minimized.
  • FIG. 7 shows resistance values of the elements RA and RB to which the fifth-order harmonic component is added.
  • FIG. 9 shows a difference signal between the waveform of the output potential Vout and the sine wave shown in FIG.
  • the elements RA and RB are arranged at a distance of 2 / n times the magnetization width ⁇ , and the elements are arranged and connected as shown in FIG. It was found that harmonic components can be suppressed.
  • the cylindrical magnet 2 magnetized so as to generate a magnetic field that creates a magnetic flux density distribution in the circumferential direction is used.
  • the sensor device 3 is disposed above or below the magnetic pole with the axial direction as the vertical direction. The same applies to the following embodiments.
  • FIG. FIG. 10 is a wiring diagram of the magnetoresistive effect element in the rotation angle detecting device according to the second embodiment of the present invention.
  • the rotation angle detection device according to the present embodiment is different from the configuration of the first embodiment in that two elements are arranged in the regions A and B, respectively, and a bridge circuit configured by four elements is provided. Further, a differential amplifier 4 is provided in the bridge circuit. Other configurations are the same as those of the first embodiment.
  • two elements RA1 and RA2 are arranged in the area A of the sensor device 3, and two elements RB1 and RB2 are arranged in the area B, respectively.
  • the elements RA1 and RA2 are arranged so as to sense from the cylindrical magnet 1 magnetic fields having the same size and direction. This also applies to the case where two elements are arranged in the same region.
  • elements RA1, RB2, RB1, and RA2 are arranged in the first arm Arm1 to the fourth arm Arm4 of the bridge circuit, respectively.
  • the bridge circuit has a configuration in which the first arm and the fourth arm intersect and the second arm and the third arm intersect. That is, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit.
  • the first arm and the third arm are connected in series between the DC power supply (VCC) and the ground (GND), and the second arm and the fourth arm are similarly connected between the DC power supply (VCC) and the ground (GND). Connect the arm in series.
  • the first arm and the third arm are connected in parallel with the second arm and the fourth arm.
  • the midpoint potential of the first and third arms is V1
  • the midpoint potential of the second and fourth arms is V2.
  • the midpoint of the first arm and the third arm is connected to the inverting input terminal ( ⁇ ) of the differential amplifier 4
  • the midpoint of the second arm and the fourth arm is connected to the non-inverting input terminal (+) of the differential amplifier 4.
  • the signal processing unit 5 outputs the rotation angle of the magnet rotor 1 based on the output voltage Vout.
  • the resistance values of the elements RA1 and RB1 are triangular as shown by thin lines in FIG. It changes in a wave shape.
  • the elements RA1 and RA2 and the elements RB1 and RB2 are arranged so as to sense magnetic fields having the same magnitude and direction from the cylindrical magnet 1, so that the resistance values of the elements RA1 and RA2 are equal.
  • the resistance values of RB1 and RB2 are equal.
  • the midpoint potential V1 of the elements RA1 and RB1 corresponds to the midpoint potential Vout of the elements RA and RB of the first embodiment.
  • the output voltage Vout indicated by a bold line in FIG. 5 has a shape close to a sine wave.
  • the midpoint potential V2 has a shape close to a sine wave as shown by a thick line in FIG. The same applies to the midpoint potential V2 of the elements RA2 and RB2. Therefore, as shown in FIG.
  • FIG. 14 shows resistance values of the elements RA1 and RA2 and the elements RB1 and RB2 to which a fifth-order harmonic component is added.
  • FIG. 16 shows a difference signal between the waveform of the output voltage Vout shown in FIG. 15 and a sine wave.
  • elements RA1 and RA2 and elements RB1 and RB2 that sense the same magnetic field are arranged on the intersecting arms to constitute a bridge circuit. Therefore, out of the harmonic components added to the intermediate potentials V1 and V2, even-order harmonics have phases reversed between V1 and V2. Since the output voltage Vout is a differential output of V1 and V2, even-order harmonics cancel each other. Thereby, only the odd order should be considered for the harmonic component of the output voltage Vout resulting from the difference in amplitude of the magnetic field magnitude between the rotational direction and the radial direction. Further, even when external noise is added to the output voltage Vout, noise corresponding to the second harmonic component can be suppressed.
  • the regions A and B are arranged at a distance of 2/3 times the magnetization width ⁇ of the cylindrical magnet 2, thereby providing a third order. It was found that harmonic components are suppressed and the level of distortion can be reduced. Furthermore, since the bridge circuit is configured, second harmonic components such as external noise can be suppressed.
  • FIG. 17 is a wiring diagram of the magnetoresistive effect element in the rotation angle detecting device according to the third embodiment of the present invention.
  • the sensor device 3 is provided with four regions A to D, and two elements are arranged in each region.
  • the rotation angle detection device according to the present embodiment is different from the configuration of the second embodiment in that it has two bridge circuits and uses three differential amplifiers 4A to 4C. Other configurations are the same as those of the second embodiment.
  • the elements RA1 and RA2 are disposed in the region A of the sensor device 3, the elements RB1 and RB2 are disposed in the region B, the elements RC1 and RC2 are disposed in the region C, and the elements RD1 and RD2 are disposed in the region D.
  • the elements RA1 and RA2 are disposed in the region A of the sensor device 3
  • the elements RB1 and RB2 are disposed in the region B
  • the elements RC1 and RC2 are disposed in the region C
  • the elements RD1 and RD2 are disposed in the region D.
  • the bridge circuit A shown in FIG. 10 is configured using four elements RA1, RB1, RA2, and RB2. Further, the bridge circuit B is configured in the same manner as the bridge circuit A using the four elements RC1, RD1, RC2, and RD2. As shown in FIG. 17, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit.
  • the bridge circuit A is provided with a differential amplifier 4A
  • the bridge circuit B is provided with a differential amplifier 4B.
  • the differential amplifier 4A is connected to the inverting input terminal ( ⁇ ) of the differential amplifier 4C
  • the differential amplifier 4B is connected to the non-inverting input terminal (+) of the differential amplifier 4C.
  • the signal processing unit 5 outputs the rotation angle of the magnet rotor 1 based on the output voltage Vout.
  • the arrangement of the regions is determined so that harmonic components of two kinds of orders n1 and n2 can be suppressed.
  • L AB the distance between the region A and the region B is described as L AB .
  • FIG. 18 is a layout diagram of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention.
  • FIG. 23 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention.
  • the same effect as the arrangement can be obtained. That is, when the arrangement of the areas C and D is reversed, the distance between the areas is equal to (2 ⁇ 2 ⁇ / n1). Similarly, when the arrangement of the areas A and B is reversed, the distance between the areas is equal to (2 ⁇ 2 ⁇ / n1). Furthermore, when the arrangement of the areas A and C is reversed, the distance between the areas is equal to (2 ⁇ 2 ⁇ / n2).
  • FIG. 24 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention.
  • FIG. 29 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention.
  • the same effect as the arrangement can be obtained. That is, when the arrangement of the areas A and B is reversed, the distance between the areas is equal to (2 ⁇ 2 ⁇ / n1). Similarly, when the arrangement of regions C and D is reversed, the distance between the regions is equal to (2 ⁇ 2 ⁇ / n1). Further, when the arrangement of the areas A and C is reversed, the distance between the areas is equal to (2 ⁇ 2 ⁇ / n2).
  • FIG. 30 is a wiring diagram of magnetoresistive elements in the rotation angle detection device according to the fourth embodiment of the present invention.
  • the number of regions provided in the sensor device 3 is increased to increase the number p of harmonic components that can be suppressed (p is an integer of 1 or more).
  • the rotation angle detection device according to the present embodiment is different from the second embodiment in that it has one bridge circuit and a plurality of elements are arranged in each arm of the bridge circuit. Other configurations of the present embodiment are the same as those of the second embodiment.
  • the sensor device 3 is provided with four regions A to D, and two elements are arranged in each region. Elements RA1 and RA2 are arranged in area A of sensor device 3, elements RB1 and RB2 are arranged in area B, elements RC1 and RC2 are arranged in area C, and elements RD1 and RD2 are arranged in area D, respectively.
  • elements RA1 and RD1 are provided in the first arm of the bridge circuit
  • elements RB2 and RC2 are provided in the second arm
  • elements RB1 and RC1 are provided in the third arm
  • elements RA2 and RD2 are provided in the fourth arm.
  • the bridge circuit has a configuration in which the first arm and the fourth arm intersect and the second arm and the third arm intersect. That is, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit.
  • the first arm and the third arm are connected in series between the DC power supply (VCC) and the ground (GND), and the second arm and the fourth arm are similarly connected between the DC power supply (VCC) and the ground (GND).
  • Each arm is connected in series.
  • the first arm and the third arm are connected in parallel with the second arm and the fourth arm. In addition, as long as it exists in the same arm, you may replace the order which connects an element.
  • the midpoint potential of the first and third arms is V1
  • the midpoint potential of the second and fourth arms is V2.
  • the midpoint of the first arm and the third arm is connected to the inverting input terminal ( ⁇ ) of the differential amplifier 4
  • the midpoint of the second arm and the fourth arm is connected to the non-inverting input terminal (+) of the differential amplifier 4.
  • the signal processing unit 5 outputs the rotation angle of the magnet rotor 1 based on the output voltage Vout.
  • FIG. 32 shows the difference between the output voltages Vout and Vout of the differential amplifier 4 and the sine wave. It can be seen that the output voltage Vout has a waveform substantially similar to a sine wave.
  • the configuration of this embodiment can suppress two types of harmonic components. Furthermore, there is an advantage that the number of differential amplifiers can be reduced as compared with the third embodiment.
  • FIG. 33 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the fourth embodiment of the present invention.
  • eight elements are arranged. By using twice as many as 16 elements, harmonic components of three kinds of orders can be suppressed.
  • the sensor device 3 is provided with eight regions A to H.
  • L AE 2 ⁇ / n 3 (n 3 is (Integer of 2 or more).
  • FIG. 34 is a wiring diagram of the magnetoresistive effect element in the rotation angle detection device according to the fourth embodiment of the present invention. Elements are arranged on the first to fourth arms of the bridge circuit as shown in FIG. In addition, as long as it exists in the same arm, you may replace the order which connects an element.
  • FIG. 35 is a table showing an example of the arrangement interval of each region and the wiring of each magnetoresistive element that can suppress p types of harmonic components in the rotation angle detection device according to the fourth embodiment of the present invention. According to this rule, harmonic components of four or more orders can be suppressed. In addition, as long as it exists in the same arm, you may replace the order which connects an element.
  • the arrangement interval and the wiring are only examples, and the p-type harmonic wave components can be suppressed by other configurations.
  • Regions (1) to (2 p ) are provided on the sensor device 3. Further, according to the rules of FIG. 35, the region (2 k m- (2 k -1 )) and region (2 k m- (2 k -1 ) +2 k-1), is disposed at a distance L k (K and m are integers of 1 or more). In the region (j), two elements R (j) 1 and element R (j) 2 are arranged (j is an integer of 1 or more). The distance L k is expressed by the following formula (6).
  • the elements R (1) 1 to R (2 p ) 1 and elements R (1) 2 to R (2 p ) 2 constitute a bridge circuit.
  • the bridge circuit has a configuration in which the first arm and the fourth arm intersect and the second arm and the third arm intersect.
  • the elements R (1) 1 to R (16) 1 correspond to the elements RA1 to RP1
  • the elements R (1) 2 to R (16) 2 correspond to the elements RA2 to RP2, respectively.
  • eight elements RA1, RD1, RF1, RG1, RJ1, RK1, RM1, RP1 connected in series are arranged.
  • Eight elements RB2, RC2, RE2, RH2, RI2, RL2, RN2, and RO2 are arranged on the second arm.
  • Eight elements RB1, RC1, RE1, RH1, RI1, RL1, RN1, and RO1 are arranged on the third arm.
  • Eight elements RA2, RD2, RF2, RG2, RJ2, RK2, RM2, RP2 are arranged on the fourth arm.
  • each arm has 2 p-1 elements.
  • the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit.

Abstract

This rotation angle detector is provided with a rotating body having N poles and S poles alternatingly magnetized along a peripheral face at a magnetization width λ, and first and second magnetic detectors for sensing a magnetic field generated by the rotating body. The first magnetic detector and second magnetic detector are set apart by a distance L. The first and second magnetic detectors, which are connected in series, are arranged between a first reference potential and a second reference potential. A signal corresponding to the rotation angle of the rotating body is outputted on the basis of the midpoint potential of the first magnetic detector and second magnetic detector, and the relation L=2λ/n (where n is an integer greater than or equal to 2) is satisfied.

Description

回転角度検出装置Rotation angle detector
 本発明は、磁気抵抗効果素子を用いて回転軸等の回転角度を検出する回転角度検出装置に関する。 The present invention relates to a rotation angle detection device that detects a rotation angle of a rotation shaft or the like using a magnetoresistive effect element.
 外部から印加された磁界を検出する磁界磁電変換素子として、ホール素子のほかに磁気抵抗効果素子が知られている。磁気抵抗効果素子には、AMR(Anisotropic Magneto-Resistance:異方性磁気抵抗効果)素子、GMR(Giant Magneto-Resistance:巨大磁気抵抗効果)素子、及びTMR(Tunnel Magneto-Resistance:トンネル磁気抵抗効果)素子などがある。特に、他に比べて大きなMR比が得られるGMR素子及びTMR素子が注目されている。 A magnetoresistive element is known in addition to a Hall element as a magnetic field magnetoelectric conversion element that detects a magnetic field applied from the outside. Magnetoresistive elements include AMR (Anisotropic Magneto-Resistance) elements, GMR (Giant Magneto-Resistance) elements, and TMR (Tunnel Magneto-Resistance) elements. There are elements. In particular, GMR elements and TMR elements that can obtain a larger MR ratio than others are drawing attention.
 特許文献1において、スピンバルブ構造を有するGMR素子及びTMR素子が開示されている。一般に、スピンバルブ構造の磁気抵抗効果素子は、非磁性の薄膜層によって仕切られた、強磁性体の第1薄膜層(自由層)及び第2薄膜層(固着層)を有する。強磁性体の第2薄膜層の磁化方向は固定されている。第2薄膜層の磁化方向を固定させるために、反強磁性体の薄膜層が強磁性体の第2薄膜層に付着される。代替構造として、反強磁性体の薄膜層を、高飽和保磁力かつ高電気抵抗を有する強磁性の層にすることもできる。 Patent Document 1 discloses a GMR element and a TMR element having a spin valve structure. In general, a magnetoresistive effect element having a spin valve structure includes a ferromagnetic first thin film layer (free layer) and a second thin film layer (fixed layer) which are partitioned by a nonmagnetic thin film layer. The magnetization direction of the ferromagnetic second thin film layer is fixed. In order to fix the magnetization direction of the second thin film layer, an antiferromagnetic thin film layer is attached to the ferromagnetic second thin film layer. As an alternative structure, the antiferromagnetic thin film layer may be a ferromagnetic layer having high coercivity and high electrical resistance.
 次に、スピンバルブ構造を有する磁気抵抗効果素子を用いた回転角度検出装置の動作原理について説明する。周面を多極に着磁した円筒磁石を搭載した磁石回転子を、軸を中心にして回転させる。磁気抵抗効果素子を用いて磁石回転子の回転角度を検出する場合、図37に示すように、円筒磁石の周面から所定の距離r離れた位置にセンサデバイスを配置する。センサデバイスに円筒磁石の着磁幅λと同一の間隔で領域A,Bを設け、領域Aには磁気抵抗効果素子RA1,RA2を、領域Bには磁気抵抗効果素子RB1,RB2を配置する。図38に示すように、RA1,RA2,RB1,RB2は、ブリッジ回路を構成するように接続する。 Next, the operation principle of the rotation angle detection device using a magnetoresistive effect element having a spin valve structure will be described. A magnet rotor equipped with a cylindrical magnet whose peripheral surface is multipolarized is rotated about an axis. When detecting the rotation angle of the magnet rotor using the magnetoresistive effect element, as shown in FIG. 37, the sensor device is arranged at a position away from the peripheral surface of the cylindrical magnet by a predetermined distance r. Regions A and B are provided in the sensor device at the same interval as the magnetization width λ of the cylindrical magnet, the magnetoresistive elements RA1 and RA2 are arranged in the region A, and the magnetoresistive elements RB1 and RB2 are arranged in the region B. As shown in FIG. 38, RA1, RA2, RB1, and RB2 are connected to form a bridge circuit.
 図37では、磁石回転子の周面上の円筒磁石を模式的に直線状に記載している。この状態で磁石回転子が回転すると、センサデバイスに対して磁石回転子の周面が矢印の方向に移動する。 In FIG. 37, the cylindrical magnet on the circumferential surface of the magnet rotor is schematically described in a straight line. When the magnet rotor rotates in this state, the circumferential surface of the magnet rotor moves in the direction of the arrow with respect to the sensor device.
 ここで、図37に示す位相角度θは、領域Aと磁石回転子1の磁極との位相関係を示す。位相角度θは、領域Aにおける磁界の角度と一致する。また、図40に示す位相角度θ’は、領域Aと磁石回転子1の磁極との位相関係がθである場合の領域Bにおける磁界の角度を示す。 Here, the phase angle θ shown in FIG. 37 indicates the phase relationship between the region A and the magnetic poles of the magnet rotor 1. The phase angle θ coincides with the angle of the magnetic field in the region A. Further, the phase angle θ ′ shown in FIG. 40 indicates the angle of the magnetic field in the region B when the phase relationship between the region A and the magnetic pole of the magnet rotor 1 is θ.
 磁石回転子の移動に伴って、磁気抵抗効果素子RA1,RA2に対向する磁石回転子の周面の極性は、N極((a)θ=0°)から、N極,S極の境界((b)θ=90°)、S極((c)θ=180°)、S極,N極との境界((d)θ=270°)、N極((e)θ=360°)と変化する。従って、図39に示すように、領域Aに配置された磁気抵抗効果素子RA1,RA2が感知する磁界の角度θは、0°から360°に変化する。同様に、領域Bに配置された磁気抵抗効果素子RB1,RB2が感知する磁界の角度は、図40に示すように変化する。 With the movement of the magnet rotor, the polarity of the peripheral surface of the magnet rotor facing the magnetoresistive effect elements RA1 and RA2 changes from the N pole ((a) θ = 0 °) to the boundary between the N pole and the S pole ( (B) θ = 90 °), S pole ((c) θ = 180 °), boundary between S pole and N pole ((d) θ = 270 °), N pole ((e) θ = 360 °) And change. Therefore, as shown in FIG. 39, the angle θ of the magnetic field sensed by the magnetoresistive elements RA1 and RA2 arranged in the region A changes from 0 ° to 360 °. Similarly, the angle of the magnetic field sensed by the magnetoresistive effect elements RB1 and RB2 arranged in the region B changes as shown in FIG.
 スピンバルブ構造を有する磁気抵抗効果素子では、素子に印加された磁界の角度に対応して抵抗値が変化する。図41に示すように、磁気抵抗効果素子RA1,RA2及びRB1,RB2の抵抗値は、磁石回転子の回転に伴って、ほぼ正弦波状に変化する。従って、図38に示すブリッジ回路の中点電位V1,V2及びブリッジ出力Voutは、図42に示すような波形となる。 In a magnetoresistive effect element having a spin valve structure, the resistance value changes in accordance with the angle of the magnetic field applied to the element. As shown in FIG. 41, the resistance values of the magnetoresistive effect elements RA1, RA2 and RB1, RB2 change substantially sinusoidally with the rotation of the magnet rotor. Therefore, the midpoint potentials V1 and V2 and the bridge output Vout of the bridge circuit shown in FIG. 38 have waveforms as shown in FIG.
 図43は、従来の回転角度検出装置の磁界の角度を詳細に示す説明図である。通常、磁石回転子により生じる半径方向(図43のx軸方向)と回転方向(図43のy軸方向)の磁界は、それぞれ位相角度に対してほぼ正弦波状に変化する。しかしながら、図43に示すように、回転方向と半径方向とでは、磁界の振幅は異なる。半径方向の磁界の振幅Pは、回転方向の磁界の振幅Qの1~2倍になるのが一般的である。従って、位相角度θにおける磁界のx軸成分Hx及びy軸成分Hyは、下記の式(1)(2)で表すことができる。よって、位相角度θにおける磁界の方向を表すtanα及び磁界の方向αは、それぞれ下記の式(3)(4)で表すことができる。 FIG. 43 is an explanatory diagram showing in detail the angle of the magnetic field of the conventional rotation angle detection device. Normally, the magnetic fields generated by the magnet rotor in the radial direction (x-axis direction in FIG. 43) and in the rotation direction (y-axis direction in FIG. 43) change substantially sinusoidally with respect to the phase angle. However, as shown in FIG. 43, the magnetic field amplitude differs between the rotational direction and the radial direction. The amplitude P of the magnetic field in the radial direction is generally 1 to 2 times the amplitude Q of the magnetic field in the rotation direction. Therefore, the x-axis component Hx and the y-axis component Hy of the magnetic field at the phase angle θ can be expressed by the following equations (1) and (2). Therefore, tan α representing the direction of the magnetic field at the phase angle θ and the direction α of the magnetic field can be represented by the following equations (3) and (4), respectively.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図44は、従来の回転角度検出装置の、位相角度θと磁気抵抗効果素子が感知する磁界の角度αの関係を、半径方向と回転方向の磁界の大きさの振幅の比が異なる場合について示す図である。通常は、上述のように、Q/P=1~0.5である。図44に示すように、Q/P=1、即ち回転方向と半径方向の磁界の大きさの振幅とが等しい場合は、θ=αとなる。一方、半径方向の磁界の大きさの振幅が、回転方向の磁界の大きさの振幅より大きくなる場合、例えばQ/P=0.7又はQ/P=0.5の場合、図44に示すような関係となる。従って、磁石回転子の回転に伴い、各磁気抵抗効果素子の抵抗値は、図45に示すように、三角波状に変化する。 FIG. 44 shows the relationship between the phase angle θ and the magnetic field angle α sensed by the magnetoresistive effect element in the conventional rotation angle detection device when the ratio of the amplitudes of the magnetic field magnitudes in the radial direction and the rotation direction is different. FIG. Usually, as described above, Q / P = 1 to 0.5. As shown in FIG. 44, when Q / P = 1, that is, when the amplitude of the magnitude of the magnetic field in the rotation direction and the radial direction is equal, θ = α. On the other hand, when the amplitude of the magnitude of the magnetic field in the radial direction is larger than the amplitude of the magnitude of the magnetic field in the rotation direction, for example, when Q / P = 0.7 or Q / P = 0.5, it is shown in FIG. It becomes such a relationship. Therefore, as the magnet rotor rotates, the resistance value of each magnetoresistive element changes in a triangular wave shape as shown in FIG.
 図46及び図47は、従来の回転角度検出装置の出力電圧の変化を、半径方向と回転方向の磁界の大きさの振幅の比が異なる場合について示す波形図である。図45に示したように磁気抵抗効果素子の抵抗値が三角波状の波形を示すと、ブリッジ回路の出力電圧Voutに3次の高調波成分が付加され、出力波形が歪む。5次以降の高調波の影響は小さく、3次の高調波成分が歪みの主な原因となる。出力波形が歪んで、図46のような三角波、或いは図47のような台形波となった場合は、正確な角度情報が得られない。 46 and 47 are waveform diagrams showing changes in the output voltage of the conventional rotation angle detection device when the amplitude ratio of the magnitude of the magnetic field in the radial direction is different from that in the rotation direction. As shown in FIG. 45, when the resistance value of the magnetoresistive element has a triangular waveform, a third-order harmonic component is added to the output voltage Vout of the bridge circuit, and the output waveform is distorted. The influence of the fifth and higher harmonics is small, and the third harmonic component is the main cause of distortion. If the output waveform is distorted and becomes a triangular wave as shown in FIG. 46 or a trapezoidal wave as shown in FIG. 47, accurate angle information cannot be obtained.
 特許文献2においては、検出した半径方向,回転方向の磁界の大きさをアナログ-デジタル(A-D)変換してそれぞれVx信号,Vy信号を得て、それぞれの振幅が同じになるように、回転方向の検出信号に補正係数kを乗算し、歪みなく回転角度を検出することができる回転角度検出装置が開示されている。 In Patent Document 2, analog-digital (AD) conversion is performed on the detected magnetic field magnitudes in the radial and rotational directions to obtain Vx signals and Vy signals, respectively, so that the amplitudes thereof are the same. A rotation angle detection device is disclosed that can detect a rotation angle without distortion by multiplying a rotation direction detection signal by a correction coefficient k.
特公平8-21166号公報Japanese Examined Patent Publication No. 8-21166 国際公開第2009/099054号International Publication No. 2009/099054 特開昭63-279101号公報JP 63-279101 A 特開平2-24512号公報JP-A-2-24512 特開平2-194316号公報Japanese Patent Laid-Open No. 2-194316 特開2009-210550号公報JP 2009-210550 A
 上述のように、周面を多極に着磁した円筒磁石を搭載した磁石回転子を、軸を中心にして回転させて、その回転角度を検出する場合、半径方向と回転方向の磁界の大きさの振幅が異なれば、検出した出力波形に、主に3次の高調波成分による歪が印加される。そのため、正確な角度情報が得られない。特許文献2による回転角度検出装置を用いれば、半径方向と回転方向の磁界の大きさの振幅が同一になり、検出出力波形に印加される3次高調波成分が抑制され、正確な角度情報が得られるようになる。しかし、この回転角度検出装置を得るためには、A-D変換器、係数kを演算するための回路、及び係数kを乗算するための乗算器が必要になるため、回路規模が大きくなる。 As described above, when rotating a magnet rotor equipped with a cylindrical magnet whose peripheral surface is magnetized with multiple poles around the axis and detecting the rotation angle, the magnitude of the magnetic field in the radial direction and the rotational direction is large. If the amplitudes are different, distortion caused mainly by the third harmonic component is applied to the detected output waveform. Therefore, accurate angle information cannot be obtained. If the rotation angle detection device according to Patent Document 2 is used, the amplitudes of the magnetic field magnitudes in the radial direction and the rotation direction are the same, the third harmonic component applied to the detection output waveform is suppressed, and accurate angle information is obtained. It will be obtained. However, in order to obtain this rotation angle detection device, an AD converter, a circuit for calculating the coefficient k, and a multiplier for multiplying the coefficient k are required, so that the circuit scale increases.
 本発明の目的は、回路規模を小さくしつつ、正確な角度情報が得られる回転角度検出装置を提供することである。 An object of the present invention is to provide a rotation angle detection device capable of obtaining accurate angle information while reducing the circuit scale.
 上記目的を達成するために、本発明の一態様は、回転角度検出装置であって、N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、回転体が発生する磁界を感知する第1磁気検出部及び第2磁気検出部とを備え、第1磁気検出部と第2磁気検出部とは距離L隔てて配置され、第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部及び第2磁気検出部が配置され、第1磁気検出部と第2磁気検出部の中点電位を基に、回転体の回転角度に対応した信号を出力し、L=2λ/n(nは2以上の整数)の関係を満たす。 In order to achieve the above object, one aspect of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width λ, A first magnetic detection unit and a second magnetic detection unit that sense a magnetic field generated by the rotating body are provided, the first magnetic detection unit and the second magnetic detection unit are arranged at a distance L, and the first reference potential and the first magnetic detection unit Between the two reference potentials, a first magnetic detection unit and a second magnetic detection unit connected in series are arranged, and the rotating body rotates based on the midpoint potential of the first magnetic detection unit and the second magnetic detection unit. A signal corresponding to the angle is output, and the relationship of L = 2λ / n (n is an integer of 2 or more) is satisfied.
 また、本発明の一態様は、回転角度検出装置であって、N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、回転体が発生する磁界を感知する第1~第4磁気検出部とを備え、第1磁気検出部及び第4磁気検出部は、第1検出位置に配置され、第2磁気検出部及び第3磁気検出部は、第2検出位置に配置され、第1検出位置と第2検出位置とは距離L隔てて設けられ、第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部及び第3磁気検出部と、直列接続された第2磁気検出部及び第4磁気検出部とが並列接続され、第1~第4磁気検出部は、ブリッジ回路を構成し、第1磁気検出部と第4磁気検出部、第2磁気検出部と第3磁気検出部とが、それぞれブリッジ回路の交差するアームに配置され、第1磁気検出部と第3磁気検出部の中点電位V1と、第2磁気検出部と第4磁気検出部の中点電位V2との差Vout(=V2-V1)を基に、回転体の回転角度に対応した信号を出力し、L=2λ/n(nは2以上の整数)の関係を満たす。 Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width λ, and a magnetic field generated by the rotor First to fourth magnetic detectors for detecting the first magnetic detector, the first magnetic detector and the fourth magnetic detector are disposed at the first detection position, and the second magnetic detector and the third magnetic detector are The first magnetic detection unit and the second detection position are arranged at two detection positions, the first detection position and the second detection position are provided at a distance L, and are connected in series between the first reference potential and the second reference potential. The third magnetic detection unit, the second magnetic detection unit and the fourth magnetic detection unit connected in series are connected in parallel, and the first to fourth magnetic detection units constitute a bridge circuit, and the first magnetic detection unit and the first magnetic detection unit The 4 magnetic detector, the second magnetic detector, and the third magnetic detector are respectively arranged on the arms where the bridge circuit intersects, and the first magnet Based on the difference Vout (= V2−V1) between the midpoint potential V1 of the detection unit and the third magnetic detection unit and the midpoint potential V2 of the second magnetic detection unit and the fourth magnetic detection unit, the rotation angle of the rotating body And satisfy the relationship of L = 2λ / n (n is an integer of 2 or more).
 また、本発明の一態様は、回転角度検出装置であって、N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、回転体が発生する磁界を感知する第1~第8磁気検出部とを備え、第1磁気検出部及び第4磁気検出部は、第1検出位置に配置され、第2磁気検出部及び第3磁気検出部は、第2検出位置に配置され、第5磁気検出部及び第8磁気検出部は、第3検出位置に配置され、第6磁気検出部及び第7磁気検出部は、第4検出位置に配置され、第1検出位置と第2検出位置とは距離L12隔てて設けられ、第3検出位置と第4検出位置とは距離L12隔てて設けられ、第1検出位置と第3検出位置とは距離L13隔てて設けられ、第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部及び第3磁気検出部と、直列接続された第2磁気検出部及び第4磁気検出部とが並列接続され、第1~第4磁気検出部は、ブリッジ回路を構成し、第1磁気検出部と第4磁気検出部、第2磁気検出部と第3磁気検出部とが、それぞれブリッジ回路の交差するアームに配置され、第3基準電位と第4基準電位との間に、直列接続された第5磁気検出部及び第7磁気検出部と、直列接続された第6磁気検出部及び第8磁気検出部とが配置され、第5~第8磁気検出部は、ブリッジ回路を構成し、第5磁気検出部と第8磁気検出部、第6磁気検出部と第7磁気検出部とが、それぞれブリッジ回路の交差するアームに配置され、第1磁気検出部と第3磁気検出部の中点電位V1と、第2磁気検出部と第4磁気検出部の中点電位V2との差V12(=V2-V1)と、第5磁気検出部と第7磁気検出部の中点電位V3と、第6磁気検出部と第8磁気検出部の中点電位V4との差V34(=V4-V3)との差Vout(=V34-V12)を基に、回転体の回転角度に対応した信号を出力し、L12=2λ/n1(n1は2以上の整数)、L13=2λ/n2(n2は2以上の整数)の関係を満たす。 Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width λ, and a magnetic field generated by the rotor First to eighth magnetic detectors for detecting the first magnetic detector, the first magnetic detector and the fourth magnetic detector are disposed at the first detection position, and the second magnetic detector and the third magnetic detector are The fifth magnetic detection unit and the eighth magnetic detection unit are disposed at the third detection position, the sixth magnetic detection unit and the seventh magnetic detection unit are disposed at the fourth detection position, The first detection position and the second detection position are provided at a distance L12, the third detection position and the fourth detection position are provided at a distance L12, and the first detection position and the third detection position are separated by a distance L13. A first magnetic detection unit and a third magnetic detection unit which are provided and connected in series between the first reference potential and the second reference potential The second magnetic detection unit and the fourth magnetic detection unit connected in series are connected in parallel, and the first to fourth magnetic detection units constitute a bridge circuit, and the first magnetic detection unit and the fourth magnetic detection unit, The second magnetic detection unit and the third magnetic detection unit are respectively disposed on the intersecting arms of the bridge circuit, and are connected in series between the third reference potential and the fourth reference potential. 7 magnetic detection units and a sixth magnetic detection unit and an eighth magnetic detection unit connected in series are arranged, and the fifth to eighth magnetic detection units constitute a bridge circuit, and the fifth magnetic detection unit and the eighth magnetic detection unit The magnetic detection unit, the sixth magnetic detection unit, and the seventh magnetic detection unit are respectively disposed on the arms where the bridge circuit intersects, the midpoint potential V1 of the first magnetic detection unit and the third magnetic detection unit, and the second magnetic The difference V12 (= V2−V1) between the midpoint potential V2 of the detection unit and the fourth magnetic detection unit and the fifth magnetism The difference Vout (= V34−) between the midpoint potential V3 of the gas detection unit and the seventh magnetic detection unit and the difference V34 (= V4−V3) between the midpoint potential V4 of the sixth magnetic detection unit and the eighth magnetic detection unit. Based on V12), a signal corresponding to the rotation angle of the rotating body is output, and the relationship of L12 = 2λ / n1 (n1 is an integer of 2 or more) and L13 = 2λ / n2 (n2 is an integer of 2 or more) is satisfied. .
 また、本発明の一態様は、回転角度検出装置であって、N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、回転体が発生する磁界を感知する第1~第8磁気検出部とを備え、第1磁気検出部及び第4磁気検出部は、第1検出位置に配置され、第2磁気検出部及び第3磁気検出部は、第2検出位置に配置され、第6磁気検出部及び第7磁気検出部は、第3検出位置に配置され、第5磁気検出部及び第8磁気検出部は、第4検出位置に配置され、第1検出位置と第2検出位置とは距離L12隔てて設けられ、第3検出位置と第4検出位置とは距離L12隔てて設けられ、第1検出位置と第3検出位置とは距離L13隔てて設けられ、第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部、第5磁気検出部、第3磁気検出部及び第7磁気検出部と、直列接続された第2磁気検出部、第6磁気検出部、第4磁気検出部及び第8磁気検出部とが並列接続され、第1~第8磁気検出部は、ブリッジ回路を構成し、ブリッジ回路の第1アームには、第1磁気検出部及び第5磁気検出部が配置され、ブリッジ回路の第2アームには、第2磁気検出部及び第6磁気検出部が配置され、ブリッジ回路の第3アームには、第3磁気検出部及び第7磁気検出部が配置され、ブリッジ回路の第4アームには、第4磁気検出部及び第8磁気検出部が配置され、第1アームと第4アームとが、ブリッジ回路の交差する位置に配置され、第2アームと第3アームとが、ブリッジ回路の交差する位置に配置され、第1アームと第3アームの中点電位V1と、第2アームと第4アームの中点電位V2との差Vout(=V2-V1)を基に、回転体の回転角度に対応した信号を出力し、L12=2λ/n1(n1は2以上の整数)、L13=2λ/n2(n2は2以上の整数)の関係を満たす。 Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width λ, and a magnetic field generated by the rotor First to eighth magnetic detectors for detecting the first magnetic detector, the first magnetic detector and the fourth magnetic detector are disposed at the first detection position, and the second magnetic detector and the third magnetic detector are The sixth magnetic detection unit and the seventh magnetic detection unit are arranged at the third detection position, the fifth magnetic detection unit and the eighth magnetic detection unit are arranged at the fourth detection position, The first detection position and the second detection position are provided at a distance L12, the third detection position and the fourth detection position are provided at a distance L12, and the first detection position and the third detection position are separated by a distance L13. A first magnetic detection unit, a fifth magnetic detection unit, which are provided and connected in series between the first reference potential and the second reference potential; The third magnetic detection unit and the seventh magnetic detection unit are connected in parallel with the second magnetic detection unit, the sixth magnetic detection unit, the fourth magnetic detection unit, and the eighth magnetic detection unit that are connected in series. The magnetic detection unit constitutes a bridge circuit. The first magnetic detection unit and the fifth magnetic detection unit are arranged on the first arm of the bridge circuit, and the second magnetic detection unit and the second magnetic detection unit are arranged on the second arm of the bridge circuit. A sixth magnetic detector is disposed, a third magnetic detector and a seventh magnetic detector are disposed on the third arm of the bridge circuit, and a fourth magnetic detector and an eighth are disposed on the fourth arm of the bridge circuit. A magnetic detection unit is disposed, the first arm and the fourth arm are disposed at a position where the bridge circuit intersects, and the second arm and the third arm are disposed at a position where the bridge circuit intersects, and the first arm And the middle point potential V1 of the third arm, the second arm and the fourth arm Based on the difference Vout (= V2−V1) with respect to the midpoint potential V2, a signal corresponding to the rotation angle of the rotating body is output, and L12 = 2λ / n1 (n1 is an integer of 2 or more), L13 = 2λ / The relationship of n2 (n2 is an integer of 2 or more) is satisfied.
 また、本発明の一態様は、回転角度検出装置であって、N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、回転体が発生する磁界を感知する2p+1個の磁気検出部とを備え、磁気検出部は、2p個の検出位置にそれぞれ2つずつ配置され、第i検出位置(iは1以上の整数)と第j検出位置(jは1以上の整数)との間の距離はLijであって、第1基準電位と第2基準電位との間に、直列接続された2p個の磁気検出部と、直列接続された2p個の磁気検出部とが並列接続され、2p+1個の磁気検出部は、ブリッジ回路を構成し、ブリッジ回路の各アームには、2p-1個の磁気検出部がそれぞれ配置され、第1アームと第4アームとが、ブリッジ回路の交差する位置に配置され、第2アームと第3アームとが、ブリッジ回路の交差する位置に配置され、同じ検出位置に配置された磁気検出部は、ブリッジ回路の交差するアームに配置され、第1アームと第3アームの中点電位V1と、第2アームと第4アームの中点電位V2との差Vout(=V2-V1)を基に、回転体の回転角度に対応した信号を出力し、Lij=2λ/nk(nkは2以上の整数)の関係を満たす。 Another embodiment of the present invention is a rotation angle detection device, in which a north pole and a south pole are alternately magnetized along a circumferential surface with a magnetization width λ, and a magnetic field generated by the rotor 2p + 1 magnetic detection units, each having two magnetic detection units arranged at 2p detection positions, i-th detection position (i is an integer of 1 or more) and j-th detection position (j Is an integer greater than or equal to 1), Lij, and between the first reference potential and the second reference potential, 2p magnetic detection units connected in series and 2p pieces connected in series The magnetic detection units are connected in parallel, and the 2p + 1 magnetic detection units constitute a bridge circuit, and 2p-1 magnetic detection units are arranged on each arm of the bridge circuit. The arm is arranged at a position where the bridge circuit intersects, and the second arm and the third arm are The magnetic detection units arranged at the positions where the ridge circuit intersects and at the same detection position are arranged at the arms where the bridge circuit intersects, the midpoint potential V1 of the first arm and the third arm, the second arm, Based on the difference Vout (= V2−V1) from the midpoint potential V2 of the fourth arm, a signal corresponding to the rotation angle of the rotating body is output, and Lij = 2λ / nk (nk is an integer of 2 or more) Meet.
 本発明によれば、L=2λ/n(nは2以上の整数)の関係を満たす距離Lを隔てて配置された第1磁気検出部及び第2磁気検出部の中点電位を基に、回転体の回転角度に対応した信号を出力する。その結果、n次の高調波成分が抑制された出力信号を得ることができるため、回転体の正確な角度情報を得ることができる。 According to the present invention, based on the midpoint potential of the first magnetic detection unit and the second magnetic detection unit arranged with a distance L satisfying the relationship of L = 2λ / n (n is an integer of 2 or more), A signal corresponding to the rotation angle of the rotating body is output. As a result, an output signal in which the nth-order harmonic component is suppressed can be obtained, so that accurate angle information of the rotating body can be obtained.
本発明の回転角度検出装置の構成図である。It is a block diagram of the rotation angle detection apparatus of this invention. 本発明の実施の形態1による、センサデバイスに設けた領域の配置図である。FIG. 3 is a layout diagram of regions provided in the sensor device according to the first embodiment of the present invention. 本発明の実施の形態1による回転角度検出装置における、磁気抵抗効果素子の配線図である。It is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による回転角度検出装置の、磁気抵抗効果素子の抵抗値の変化を示す波形図である。It is a wave form diagram which shows the change of the resistance value of a magnetoresistive effect element of the rotation angle detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による回転角度検出装置の出力電位の変化を、磁気抵抗効果素子の配置間隔が異なる場合について示す波形図である。It is a wave form diagram which shows the change of the output electric potential of the rotation angle detection apparatus by Embodiment 1 of this invention about the case where the arrangement space | interval of a magnetoresistive effect element differs. 図5の出力電位と、直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。FIG. 6 is a waveform diagram showing a difference between the output potential of FIG. 5 and a sine wave whose DC component, amplitude, frequency, and phase are adjusted. 本発明の実施の形態1による回転角度検出装置の、5次の高調波成分が付加された場合の、磁気抵抗効果素子の抵抗値、及び出力電位の変化を示す波形図である。It is a wave form diagram which shows the resistance value of a magnetoresistive effect element, and the change of an output potential when the 5th-order harmonic component of the rotation angle detection apparatus by Embodiment 1 of this invention is added. 本発明の実施の形態1による回転角度検出装置の、5次の高調波成分が付加された場合の出力電位の変化を、磁気抵抗効果素子の配置間隔が異なる場合について示す波形図である。It is a wave form diagram which shows the change of the output potential when the 5th-order harmonic component is added of the rotation angle detection apparatus according to Embodiment 1 of the present invention when the arrangement intervals of the magnetoresistive effect elements are different. 図8の出力電位と、直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。FIG. 9 is a waveform diagram showing a difference between the output potential of FIG. 8 and a sine wave whose DC component, amplitude, frequency, and phase are adjusted. 本発明の実施の形態2による回転角度検出装置における、磁気抵抗効果素子の配線図である。It is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による回転角度検出装置の、磁気抵抗効果素子の抵抗値及び中点電位の変化を示す波形図である。It is a wave form diagram which shows the change of the resistance value of a magnetoresistive effect element, and a midpoint potential of the rotation angle detection apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による回転角度検出装置の出力電圧の変化を、磁気抵抗効果素子の配置間隔が異なる場合について示す波形図である。It is a wave form diagram which shows the change of the output voltage of the rotation angle detection apparatus by Embodiment 2 of this invention about the case where the arrangement intervals of a magnetoresistive effect element differ. 図12の出力電圧と、直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。FIG. 13 is a waveform diagram showing a difference between the output voltage of FIG. 12 and a sine wave whose DC component, amplitude, frequency, and phase are adjusted. 本発明の実施の形態2による回転角度検出装置の、5次の高調波成分が付加された場合の、磁気抵抗効果素子の抵抗値及び中点電位の変化を示す波形図である。It is a wave form diagram which shows the change of the resistance value of a magnetoresistive effect element, and a midpoint potential when the 5th-order harmonic component of the rotation angle detection apparatus by Embodiment 2 of this invention is added. 本発明の実施の形態2による回転角度検出装置の、5次の高調波成分が付加された場合の出力電圧の変化を、磁気抵抗効果素子の配置間隔が異なる場合について示す波形図である。It is a wave form diagram which shows the change of the output voltage when the 5th-order harmonic component is added of the rotation angle detection apparatus by Embodiment 2 of this invention about the case where arrangement intervals of a magnetoresistive effect element differ. 図15の出力電圧と、直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。It is a wave form diagram which shows the difference of the output voltage of FIG. 15, and the sine wave which adjusted the direct current | flow component, the amplitude, the frequency, and the phase. 本発明の実施の形態3による回転角度検出装置における、磁気抵抗効果素子の配線図である。It is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置図である。It is a layout drawing of the area | region provided in the sensor device of the rotation angle detection apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による回転角度検出装置の、ブリッジ回路Aが含む磁気抵抗効果素子の抵抗値、中点電位及び差動電圧の変化を、図18の配置について示す波形図である。FIG. 19 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge circuit A in the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 18. 本発明の実施の形態3による回転角度検出装置の、ブリッジ回路Bが含む磁気抵抗効果素子の抵抗値、中点電位及び差動電圧の変化を、図18の配置について示す波形図である。FIG. 19 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge circuit B of the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 18. 本発明の実施の形態3による回転角度検出装置の、差動電圧及び出力電圧の変化を、図18の配置について示す波形図である。It is a wave form diagram which shows the change of a differential voltage and an output voltage of the rotation angle detection apparatus by Embodiment 3 of this invention about the arrangement | positioning of FIG. 図21の差動電圧及び出力電圧と、直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。It is a wave form diagram which shows the difference of the differential voltage and output voltage of FIG. 21, and the sine wave which adjusted the direct current | flow component, the amplitude, the frequency, and the phase. 本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。It is an alternative figure of arrangement | positioning of the area | region provided in the sensor device of the rotation angle detection apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。It is an alternative figure of arrangement | positioning of the area | region provided in the sensor device of the rotation angle detection apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による回転角度検出装置の、ブリッジAが含む磁気抵抗効果素子の抵抗値、中点電位及び差動電圧の変化を、図24の配置について示す波形図である。FIG. 25 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge A in the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 24. 本発明の実施の形態3による回転角度検出装置の、ブリッジBが含む磁気抵抗効果素子の抵抗値、中点電位及び差動電圧の変化を、図24の配置について示す波形図である。FIG. 25 is a waveform diagram showing changes in the resistance value, midpoint potential, and differential voltage of the magnetoresistive effect element included in the bridge B of the rotation angle detection device according to the third embodiment of the present invention with respect to the arrangement in FIG. 24. 本発明の実施の形態3による回転角度検出装置の、差動電圧及び出力電圧の変化を、図18の配置について示す波形図である。It is a wave form diagram which shows the change of a differential voltage and an output voltage of the rotation angle detection apparatus by Embodiment 3 of this invention about the arrangement | positioning of FIG. 図27の差動電圧及び出力電圧と、直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。It is a wave form diagram which shows the difference of the differential voltage and output voltage of FIG. 27, and the sine wave which adjusted DC component, an amplitude, a frequency, and a phase. 本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。It is an alternative figure of arrangement | positioning of the area | region provided in the sensor device of the rotation angle detection apparatus by Embodiment 3 of this invention. 本発明の実施の形態4による回転角度検出装置における、磁気抵抗効果素子の配線図である。It is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus by Embodiment 4 of this invention. 本発明の実施の形態4による回転角度検出装置の、磁気抵抗効果素子の抵抗値及び中点電位の変化を示す波形図である。It is a wave form diagram which shows the resistance value of a magnetoresistive effect element, and the change of a midpoint potential of the rotation angle detection apparatus by Embodiment 4 of this invention. 図31の中点電位、及び出力電圧と直流成分、振幅、周波数及び位相を調整した正弦波との差分を示す波形図である。FIG. 32 is a waveform diagram showing the midpoint potential of FIG. 31 and the difference between the output voltage and a sine wave whose DC component, amplitude, frequency and phase are adjusted. 本発明の実施の形態4による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。It is an alternative figure of arrangement | positioning of the area | region provided in the sensor device of the rotation angle detection apparatus by Embodiment 4 of this invention. 本発明の実施の形態4による回転角度検出装置における、磁気抵抗効果素子の配線図である。It is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus by Embodiment 4 of this invention. 本発明の実施の形態4による回転角度検出装置の、p種類の高調波成分を抑制可能な、各領域の配置間隔及び各磁気抵抗効果素子の配線の例を示す表である。It is a table | surface which shows the example of the arrangement | positioning space | interval of each area | region and wiring of each magnetoresistive effect element which can suppress p types of harmonic components of the rotation angle detection apparatus by Embodiment 4 of this invention. 本発明の回転角度検出装置の構成の代替図である。It is an alternative figure of the structure of the rotation angle detection apparatus of this invention. 従来の回転角度検出装置による、センサデバイスに設けた領域の配置図である。It is the layout of the area | region provided in the sensor device by the conventional rotation angle detection apparatus. 従来の回転角度検出装置における、磁気抵抗効果素子の配線図である。It is a wiring diagram of a magnetoresistive effect element in the conventional rotation angle detection apparatus. 従来の回転角度検出装置の領域Aにおける磁界の角度を示す説明図である。It is explanatory drawing which shows the angle of the magnetic field in the area | region A of the conventional rotation angle detection apparatus. 従来の回転角度検出装置の領域Bにおける磁界の角度を示す説明図である。It is explanatory drawing which shows the angle of the magnetic field in the area | region B of the conventional rotation angle detection apparatus. 従来の回転角度検出装置の、磁気抵抗効果素子の抵抗値の変化を示す波形図である。It is a wave form diagram which shows the change of the resistance value of a magnetoresistive effect element of the conventional rotation angle detection apparatus. 従来の回転角度検出装置の中点電位及び出力電圧の変化を示す波形図である。It is a wave form diagram which shows the change of the midpoint potential and output voltage of the conventional rotation angle detection apparatus. 従来の回転角度検出装置の磁界の角度を詳細に示す説明図である。It is explanatory drawing which shows the angle of the magnetic field of the conventional rotation angle detection apparatus in detail. 従来の回転角度検出装置の、位相角度θと磁気抵抗効果素子が感知する磁界の角度αの関係を、半径方向と回転方向の磁界の大きさの振幅の比が異なる場合について示す図である。It is a figure which shows the relationship between phase angle (theta) and angle (alpha) of the magnetic field which a magnetoresistive effect element senses in the case where the ratio of the amplitude of the magnetic field magnitude of a radial direction and a rotation direction differs in the conventional rotation angle detection apparatus. 従来の回転角度検出装置の磁気抵抗効果素子の抵抗値の変化を、半径方向と回転方向の磁界の大きさの振幅の比が異なる場合について示す波形図である。It is a wave form diagram which shows the change of the resistance value of the magnetoresistive effect element of the conventional rotation angle detection apparatus about the case where the ratio of the amplitude of the magnitude | size of the magnetic field of a radial direction and a rotation direction differs. 従来の回転角度検出装置の出力電圧の変化を、半径方向と回転方向の磁界の大きさの振幅の比が異なる場合について示す波形図である。It is a wave form diagram which shows the change of the output voltage of the conventional rotation angle detection apparatus about the case where the ratio of the amplitude of the magnitude | size of the magnetic field of a radial direction and a rotation direction differs. 従来の回転角度検出装置の出力電圧の変化を、半径方向と回転方向の磁界の大きさの振幅の比が異なる場合について示す別の波形図である。It is another waveform diagram which shows the change of the output voltage of the conventional rotation angle detection apparatus about the case where the ratio of the amplitude of the magnitude | size of the magnetic field of a radial direction and a rotation direction differs.
 1 磁石回転子、 2 円筒磁石、 3 センサデバイス、 4、4a~4c 差動増幅器、 5 信号処理部。 1 magnet rotor, 2 cylindrical magnets, 3 sensor devices, 4, 4a to 4c differential amplifier, 5 signal processing section.
 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施
の形態において、同様の構成要素については同一の符号を付している。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.
 以下の実施形態において、磁石回転子の回転に伴って変化する磁界を検出するための磁気検出部として、印加される磁界の方向によって抵抗の大きさが変化する磁気抵抗効果素子を用いた場合について説明する。しかし、他の磁気検出部を用いた場合でも同様の効果を得ることが可能である。以下、磁気抵抗効果素子を単に「素子」と記載する。 In the following embodiment, a case where a magnetoresistive effect element whose magnitude of resistance changes depending on the direction of an applied magnetic field is used as a magnetic detection unit for detecting a magnetic field that changes as the magnet rotor rotates. explain. However, the same effect can be obtained even when other magnetic detection units are used. Hereinafter, the magnetoresistive effect element is simply referred to as “element”.
実施の形態1.
 図1は、本発明の回転角度検出装置の構成図である。回転角度検出装置10は、円筒磁石2を搭載した磁石回転子1と、円筒磁石2により生じる磁界を感知するセンサデバイス3とを備える。円筒磁石2は、N極及びS極が周面に沿って着磁幅λで交互に着磁された2m極(mは1以上の整数)を有する。図1は、m=5とした場合の構成図を示している。センサデバイス3は、磁石回転子1から所定の距離を隔てて配置している。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a rotation angle detection device of the present invention. The rotation angle detection device 10 includes a magnet rotor 1 on which a cylindrical magnet 2 is mounted, and a sensor device 3 that senses a magnetic field generated by the cylindrical magnet 2. The cylindrical magnet 2 has 2 m poles (m is an integer of 1 or more) in which N and S poles are alternately magnetized with a magnetization width λ along the circumferential surface. FIG. 1 shows a configuration diagram when m = 5. The sensor device 3 is arranged at a predetermined distance from the magnet rotor 1.
 図2は、本発明の実施の形態1による、センサデバイスに設けた領域の配置図である。図2に示すように、センサデバイス3に、距離Lを隔てて領域A及び領域Bを設ける。領域Aに素子RAを、領域Bに素子RBをそれぞれ配置し、素子RAとRBとの間の距離もLとなるようにする。以下でも同様に、領域間の距離は、該領域に配置された素子間の距離に等しいものとする。 FIG. 2 is a layout diagram of regions provided in the sensor device according to the first embodiment of the present invention. As shown in FIG. 2, the sensor device 3 is provided with a region A and a region B with a distance L therebetween. The element RA is arranged in the region A, the element RB is arranged in the region B, and the distance between the elements RA and RB is also set to L. Similarly, the distance between regions is assumed to be equal to the distance between elements arranged in the region.
 図3は、本発明の実施の形態1による回転角度検出装置における、磁気抵抗効果素子の配線図である。図3に示すように、直流電源(VCC)とグラウンド(GND)との間に、素子RA,RBが直列接続されている。センサデバイス3はまた、検出部RAとRBの中点電位(=出力電位)Voutを基に、磁石回転子1の回転角度を出力する信号処理部5を備える。円筒磁石2の着磁幅をλとして、距離Lは下記の式(5)で表される。 FIG. 3 is a wiring diagram of the magnetoresistive effect element in the rotation angle detection apparatus according to the first embodiment of the present invention. As shown in FIG. 3, elements RA and RB are connected in series between a DC power supply (VCC) and a ground (GND). The sensor device 3 also includes a signal processing unit 5 that outputs the rotation angle of the magnet rotor 1 based on the midpoint potential (= output potential) Vout of the detection units RA and RB. The distance L is expressed by the following formula (5), where λ is the magnetization width of the cylindrical magnet 2.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上述のように磁石回転子1の磁界の大きさの振幅が、半径方向と回転方向で異なる場合、検出信号Voutに3次の高調波成分の歪が生じる。また、3次の高調波成分が検出信号Voutの歪の最も大きな原因となる。よって、以下でn=3、n=5場合を例に挙げて、各素子の抵抗値及び出力電位Voutの挙動について説明する。 As described above, when the amplitude of the magnitude of the magnetic field of the magnet rotor 1 is different between the radial direction and the rotational direction, third-order harmonic component distortion occurs in the detection signal Vout. Further, the third-order harmonic component causes the largest distortion of the detection signal Vout. Therefore, the behavior of the resistance value and the output potential Vout of each element will be described below by taking n = 3 and n = 5 as an example.
 (n=3の場合)
 図1において、磁石回転子1が矢印の方向に回転すると、図2に示すように、センサデバイス3に対して磁極が矢印の方向へ移動する。磁極の移動に伴い、素子RA,RBが感知する磁界の方向が変化し、それに伴って素子RA,RBの抵抗値も図4に示すように変化する。
(When n = 3)
In FIG. 1, when the magnet rotor 1 rotates in the direction of the arrow, the magnetic pole moves in the direction of the arrow with respect to the sensor device 3 as shown in FIG. As the magnetic pole moves, the direction of the magnetic field sensed by the elements RA and RB changes, and the resistance values of the elements RA and RB also change as shown in FIG.
 半径方向の磁界の大きさPと回転方向の該振幅Qとが等しい場合、即ちQ/P=1の場合、素子RA,RBの抵抗値は、図4に細線で示すように、正弦波状に変化する。一方、回転方向の磁界の大きさの振幅Qが半径方向の該振幅Pより小さい場合、例えばQ/P=0.7の場合、素子RA,RBの抵抗値は、図4に太線で示すように、三角波状に変化する。 When the magnitude P of the magnetic field in the radial direction is equal to the amplitude Q in the rotation direction, that is, when Q / P = 1, the resistance values of the elements RA and RB are sinusoidal as shown by thin lines in FIG. Change. On the other hand, when the amplitude Q of the magnitude of the magnetic field in the rotational direction is smaller than the amplitude P in the radial direction, for example, when Q / P = 0.7, the resistance values of the elements RA and RB are as shown by bold lines in FIG. It changes to a triangular wave shape.
 素子RA,RBは、図2に示すように、距離L(=2λ/n(n=3))を隔てて配置する。よって、素子RA,RBの抵抗値は、図4に示すように、120°(=180°×2/3)の位相差を有する。ここで、図4中のθは、磁石回転子1の位相角度を表しており、周面上の着磁1極対で360°となる。これは、他の図でも同様である。 The elements RA and RB are arranged at a distance L (= 2λ / n (n = 3)) as shown in FIG. Therefore, the resistance values of the elements RA and RB have a phase difference of 120 ° (= 180 ° × 2/3) as shown in FIG. Here, θ in FIG. 4 represents the phase angle of the magnet rotor 1, and is 360 ° for a magnetized single pole pair on the circumferential surface. The same applies to other drawings.
 図5の太線、細線は、それぞれL=λとした場合、L=2/3λとした場合の、出力電位Voutの波形である。また、図6は、図5に示す出力電位Voutの波形と正弦波との差分信号を表す。ここでいう「正弦波」は、出力電位Voutとの差分が最も小さくなるように、直流成分、振幅、周波数及び位相を調整した正弦波である。これは、図9、図13、図16、図22、図28、図32でも同様である。 The thick and thin lines in FIG. 5 are the waveforms of the output potential Vout when L = λ and L = 2 / 3λ, respectively. FIG. 6 shows a difference signal between the waveform of the output potential Vout shown in FIG. 5 and a sine wave. The “sine wave” here is a sine wave in which the direct current component, amplitude, frequency, and phase are adjusted so that the difference from the output potential Vout is minimized. The same applies to FIG. 9, FIG. 13, FIG. 16, FIG. 22, FIG.
 図6で、L=λの場合とL=2λ/3の場合を比較すると、L=2λ/3の場合、即ち素子RA,RBを円筒磁石2の着磁幅λの2/3倍の距離を隔てて配置した場合に、より出力電位Voutが正弦波に近づくことがわかる。よって、L=2λ/3の場合に、3次の高調波成分が抑制され、歪のレベルが小さくなっているといえる。 In FIG. 6, when L = λ is compared with L = 2λ / 3, when L = 2λ / 3, that is, the elements RA and RB are 2/3 times the magnetization width λ of the cylindrical magnet 2. It can be seen that the output potential Vout is closer to a sine wave when arranged apart from each other. Therefore, when L = 2λ / 3, it can be said that the third-order harmonic component is suppressed and the level of distortion is reduced.
 (n=5の場合)
 図7には、5次の高調波成分を付加した素子RA,RBの抵抗値が示されている。素子RA,RBの抵抗値は、図7に示すように、72°(=180°×2/5)の位相差を有する。素子RA,RBの抵抗値は5次の高調波成分が付加され歪んでいるが、出力電位Voutは正弦波に近いものとなっていることがわかる。
(When n = 5)
FIG. 7 shows resistance values of the elements RA and RB to which the fifth-order harmonic component is added. The resistance values of the elements RA and RB have a phase difference of 72 ° (= 180 ° × 2/5) as shown in FIG. It can be seen that the resistance values of the elements RA and RB are distorted by adding a fifth-order harmonic component, but the output potential Vout is close to a sine wave.
 また、図8に、L=λとした場合、L=2/5λとした場合の、出力電位Voutの波形を示す。また、図9は、図8に示す出力電位Voutの波形と正弦波との差分信号を表す。図8で、L=λの場合とL=2λ/5の場合を比較すると、L=2λ/5の場合、即ち素子RA,RBを円筒磁石2の着磁幅λの2/5倍の距離を隔てて配置した場合に、より出力電位Voutが正弦波に近づくことがわかる。よって、L=2λ/5の場合に、5次の高調波成分が抑制され、歪のレベルが小さくなっているといえる。 FIG. 8 shows the waveform of the output potential Vout when L = λ and L = 2 / 5λ. FIG. 9 shows a difference signal between the waveform of the output potential Vout and the sine wave shown in FIG. In FIG. 8, when L = 2λ and L = 2λ / 5 are compared, when L = 2λ / 5, that is, the elements RA and RB are 2/5 times the magnetization width λ of the cylindrical magnet 2. It can be seen that the output potential Vout is closer to a sine wave when arranged apart from each other. Therefore, when L = 2λ / 5, it can be said that the fifth-order harmonic component is suppressed and the level of distortion is reduced.
 以上のように、素子RA,RBを着磁幅λの2/n倍の距離を隔てて配置し、図3に示すように素子を配置、接続することにより、歪の原因となるn次の高調波成分を抑制することができることがわかった。 As described above, the elements RA and RB are arranged at a distance of 2 / n times the magnetization width λ, and the elements are arranged and connected as shown in FIG. It was found that harmonic components can be suppressed.
 尚、図1等に示すように、本実施形態では、周方向に磁束密度分布を作る磁界を生じるように着磁された円筒磁石2を使用したが、図36に示すように、軸方向に磁束密度分布を作る磁界を生じるように着磁された円筒磁石2を使用してもよい。その場合、センサデバイス3は、軸方向を上下方向として、磁極の上又は下に配置する。これは、以下の実施形態についても同様である。 As shown in FIG. 1 and the like, in this embodiment, the cylindrical magnet 2 magnetized so as to generate a magnetic field that creates a magnetic flux density distribution in the circumferential direction is used. However, as shown in FIG. You may use the cylindrical magnet 2 magnetized so that the magnetic field which produces magnetic flux density distribution may be produced. In that case, the sensor device 3 is disposed above or below the magnetic pole with the axial direction as the vertical direction. The same applies to the following embodiments.
実施の形態2.
 図10は、本発明の実施の形態2による回転角度検出装置における、磁気抵抗効果素子の配線図である。本実施形態による回転角度検出装置は、領域A,Bにそれぞれ2つの素子を配置し、4つの素子で構成したブリッジ回路を有する点で実施形態1の構成と異なる。また、ブリッジ回路に差動増幅器4を設ける。その他の構成は、実施形態1と同様である。
Embodiment 2. FIG.
FIG. 10 is a wiring diagram of the magnetoresistive effect element in the rotation angle detecting device according to the second embodiment of the present invention. The rotation angle detection device according to the present embodiment is different from the configuration of the first embodiment in that two elements are arranged in the regions A and B, respectively, and a bridge circuit configured by four elements is provided. Further, a differential amplifier 4 is provided in the bridge circuit. Other configurations are the same as those of the first embodiment.
 本実施形態に係る回転角度検出装置10において、センサデバイス3の領域Aに2つの素子RA1,RA2を、領域Bに2つの素子RB1,RB2をそれぞれ配置する。素子RA1及びRA2は、大きさ、向きが同じ磁界を円筒磁石1から感知するように配置する。これは以下で、同じ領域に2つの素子を配置した場合も同様である。 In the rotation angle detection apparatus 10 according to the present embodiment, two elements RA1 and RA2 are arranged in the area A of the sensor device 3, and two elements RB1 and RB2 are arranged in the area B, respectively. The elements RA1 and RA2 are arranged so as to sense from the cylindrical magnet 1 magnetic fields having the same size and direction. This also applies to the case where two elements are arranged in the same region.
 図10に示すように、ブリッジ回路の第1アームArm1~第4アームArm4に、素子RA1,RB2,RB1,RA2をそれぞれ配置する。ブリッジ回路は、第1アームと第4アームが交差し、第2アームと第3アームが交差する構成を有する。即ち、同じ領域に配置した素子は、ブリッジ回路の交差するアームに配置する。また、直流電源(VCC)とグラウンド(GND)との間に第1アームと第3アームとを直列接続し、同じく直流電源(VCC)とグラウンド(GND)との間に第2アームと第4アームとを直列接続する。第1アーム及び第3アームと、第2アーム及び第4アームとは並列接続する。 As shown in FIG. 10, elements RA1, RB2, RB1, and RA2 are arranged in the first arm Arm1 to the fourth arm Arm4 of the bridge circuit, respectively. The bridge circuit has a configuration in which the first arm and the fourth arm intersect and the second arm and the third arm intersect. That is, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit. The first arm and the third arm are connected in series between the DC power supply (VCC) and the ground (GND), and the second arm and the fourth arm are similarly connected between the DC power supply (VCC) and the ground (GND). Connect the arm in series. The first arm and the third arm are connected in parallel with the second arm and the fourth arm.
 第1アームと第3アームの中点電位をV1、第2アームと第4アームの中点電位をV2とする。第1アームと第3アームの中点を差動増幅器4の反転入力端子(-)に接続し、第2アームと第4アームの中点を差動増幅器4の非反転入力端子(+)に接続する。差動増幅器4は、電圧Vout(=V2-V1)を出力する。信号処理部5は、出力電圧Voutを基に、磁石回転子1の回転角度を出力する。 Suppose that the midpoint potential of the first and third arms is V1, and the midpoint potential of the second and fourth arms is V2. The midpoint of the first arm and the third arm is connected to the inverting input terminal (−) of the differential amplifier 4, and the midpoint of the second arm and the fourth arm is connected to the non-inverting input terminal (+) of the differential amplifier 4. Connecting. The differential amplifier 4 outputs a voltage Vout (= V2−V1). The signal processing unit 5 outputs the rotation angle of the magnet rotor 1 based on the output voltage Vout.
 本実施形態においても、素子RA1,RA2及びRB1,RB2を円筒磁石2の着磁幅λの2/n倍の距離を隔てて配置することにより、出力電圧Voutのうち、n次の高調波成分を抑制することができる。実施形態1の場合と同様に、n=3の場合、n=5の場合について説明する。 Also in this embodiment, by arranging the elements RA1, RA2 and RB1, RB2 at a distance 2 / n times the magnetization width λ of the cylindrical magnet 2, the nth-order harmonic component of the output voltage Vout. Can be suppressed. As in the case of the first embodiment, the case where n = 3 and n = 5 will be described.
 (n=3の場合)
 回転方向の磁界の大きさの振幅Pが半径方向の該振幅Qより小さい場合、例えばQ/P=0.7の場合、図11に細線で示すように、素子RA1,RB1の抵抗値は三角波状に変化する。本実施形態において、素子RA1,RA2、素子RB1,RB2は、それぞれ大きさ、向きが同じ磁界を円筒磁石1から感知するように配置しているので、素子RA1とRA2の抵抗値は等しく、素子RB1とRB2の抵抗値は等しい。
(When n = 3)
When the amplitude P of the magnitude of the magnetic field in the rotational direction is smaller than the amplitude Q in the radial direction, for example, Q / P = 0.7, the resistance values of the elements RA1 and RB1 are triangular as shown by thin lines in FIG. It changes in a wave shape. In the present embodiment, the elements RA1 and RA2 and the elements RB1 and RB2 are arranged so as to sense magnetic fields having the same magnitude and direction from the cylindrical magnet 1, so that the resistance values of the elements RA1 and RA2 are equal. The resistance values of RB1 and RB2 are equal.
 また、素子RA1,RB1の中点電位V1は、実施形態1の素子RA,RBの中点電位Voutに対応している。図5に太線で示した出力電圧Voutは、正弦波に近い形であった。これと同様に、中点電位V2は、図11に太線で示すように、正弦波に近い形となることがわかる。これは、素子RA2,RB2の中点電位V2も同様である。従って、図12に示すように、出力電圧Vout(=V2-V1)でも、L=λの場合(細線)とL=2λ/3の場合(太線)を比較すると、L=2λ/3の場合、即ち素子RA,RBを円筒磁石2の着磁幅λの2/3倍の距離を隔てて配置した場合に、より出力電圧Voutが正弦波に近づくことがわかる。よって、L=2λ/3の場合に、3次の高調波成分が抑制され、歪のレベルが小さくなっているといえる。これは、出力電圧Voutと正弦波との差分を示した図13においても確認できる。 Further, the midpoint potential V1 of the elements RA1 and RB1 corresponds to the midpoint potential Vout of the elements RA and RB of the first embodiment. The output voltage Vout indicated by a bold line in FIG. 5 has a shape close to a sine wave. Similarly, it can be seen that the midpoint potential V2 has a shape close to a sine wave as shown by a thick line in FIG. The same applies to the midpoint potential V2 of the elements RA2 and RB2. Therefore, as shown in FIG. 12, even when the output voltage Vout (= V2−V1), when L = λ (thin line) and L = 2λ / 3 (thick line) are compared, when L = 2λ / 3 That is, when the elements RA and RB are arranged at a distance 2/3 times the magnetization width λ of the cylindrical magnet 2, the output voltage Vout is closer to a sine wave. Therefore, when L = 2λ / 3, it can be said that the third-order harmonic component is suppressed and the level of distortion is reduced. This can also be confirmed in FIG. 13 showing the difference between the output voltage Vout and the sine wave.
 (n=5の場合)
 図14に、5次の高調波成分を付加した、素子RA1,RA2及び素子RB1,RB2の抵抗値を示す。素子RA1,RA2及びRB1,RB2の抵抗値は、n=3の場合と同様に、5次の高調波成分が付加され歪んでいるが、中点電位V1,V2は正弦波に近いものとなっていることがわかる。
(When n = 5)
FIG. 14 shows resistance values of the elements RA1 and RA2 and the elements RB1 and RB2 to which a fifth-order harmonic component is added. The resistance values of the elements RA1, RA2 and RB1, RB2 are distorted by adding fifth-order harmonic components as in the case of n = 3, but the midpoint potentials V1, V2 are close to sine waves. You can see that
 また図15に、L=λとした場合、L=2/5λとした場合の、出力電圧Vout(V2-V1)の波形を示す。また、図16は、図15に示す出力電圧Voutの波形と正弦波との差分信号を表す。図15で、L=λの場合とL=2λ/5の場合を比較すると、L=2λ/5の場合、即ち素子RA,RBを円筒磁石2の着磁幅λの2/5倍の距離を隔てて配置した場合に、より出力電圧Voutが正弦波に近づくことがわかる。よって、よって、L=2λ/5の場合に、5次の高調波成分が抑制され、歪のレベルが小さくなっているといえる。 FIG. 15 shows the waveform of the output voltage Vout (V2−V1) when L = λ and L = 2 / 5λ. FIG. 16 shows a difference signal between the waveform of the output voltage Vout shown in FIG. 15 and a sine wave. In FIG. 15, when L = λ and L = 2λ / 5 are compared, when L = 2λ / 5, that is, the elements RA and RB are 2/5 times the magnetization width λ of the cylindrical magnet 2. It can be seen that the output voltage Vout is closer to a sine wave when arranged apart from each other. Therefore, it can be said that when L = 2λ / 5, the fifth-order harmonic component is suppressed and the level of distortion is reduced.
 次に、ブリッジ回路を構成したことによる利点を説明する。本実施形態においては、同一の磁界を感知する、素子RA1,RA2及び素子RB1,素子RB2をそれぞれ交差するアームに配置して、ブリッジ回路を構成している。よって、中間電位V1及びV2に付加される高調波成分のうち、偶数次の高調波は、V1とV2で位相が逆になる。出力電圧VoutはV1とV2の差動出力ゆえ、偶数次の高調波は打ち消し合う。これにより、回転方向と半径方向で磁界の大きさの振幅が異なることに起因する出力電圧Voutの高調波成分は、奇数次のみを考えればよい。さらに、外部ノイズが出力電圧Voutに付加された場合も、2次の高調波成分に相当するノイズを抑制することができる。 Next, the advantages of configuring a bridge circuit will be described. In the present embodiment, elements RA1 and RA2 and elements RB1 and RB2 that sense the same magnetic field are arranged on the intersecting arms to constitute a bridge circuit. Therefore, out of the harmonic components added to the intermediate potentials V1 and V2, even-order harmonics have phases reversed between V1 and V2. Since the output voltage Vout is a differential output of V1 and V2, even-order harmonics cancel each other. Thereby, only the odd order should be considered for the harmonic component of the output voltage Vout resulting from the difference in amplitude of the magnetic field magnitude between the rotational direction and the radial direction. Further, even when external noise is added to the output voltage Vout, noise corresponding to the second harmonic component can be suppressed.
 以上、本実施形態の構成を有する場合でも、実施形態1と同様に、領域A,Bを円筒磁石2の着磁幅λの2/3倍の距離を隔てて配置することにより、3次の高調波成分が抑制され、歪のレベルを小さくすることができることがわかった。さらに、ブリッジ回路を構成しているので、外部ノイズなど、2次の高調波成分も抑制できる。 As described above, even in the case of the configuration of the present embodiment, as in the first embodiment, the regions A and B are arranged at a distance of 2/3 times the magnetization width λ of the cylindrical magnet 2, thereby providing a third order. It was found that harmonic components are suppressed and the level of distortion can be reduced. Furthermore, since the bridge circuit is configured, second harmonic components such as external noise can be suppressed.
実施の形態3.
 図17は、本発明の実施の形態3による回転角度検出装置における、磁気抵抗効果素子の配線図である。本実施形態においては、例えば図18に示すように、センサデバイス3にA~Dの4つの領域を設け、各領域には、それぞれ2つの素子を配置する。本実施形態による回転角度検出装置は、2系統のブリッジ回路を有し、3つの差動増幅器4A~4Cを使用する点で実施形態2の構成と異なる。その他の構成は、実施形態2と同様である。
Embodiment 3 FIG.
FIG. 17 is a wiring diagram of the magnetoresistive effect element in the rotation angle detecting device according to the third embodiment of the present invention. In the present embodiment, for example, as shown in FIG. 18, the sensor device 3 is provided with four regions A to D, and two elements are arranged in each region. The rotation angle detection device according to the present embodiment is different from the configuration of the second embodiment in that it has two bridge circuits and uses three differential amplifiers 4A to 4C. Other configurations are the same as those of the second embodiment.
 本実施形態に係る回転角度検出装置10において、センサデバイス3の領域Aに素子RA1,RA2を、領域Bに素子RB1,RB2を、領域Cに素子RC1,RC2を、領域Dに素子RD1,RD2をそれぞれ配置する。 In the rotation angle detection apparatus 10 according to the present embodiment, the elements RA1 and RA2 are disposed in the region A of the sensor device 3, the elements RB1 and RB2 are disposed in the region B, the elements RC1 and RC2 are disposed in the region C, and the elements RD1 and RD2 are disposed in the region D. Are arranged respectively.
 素子RA1,RB1,RA2,RB2の4つの素子を用いて、図10に示すブリッジ回路Aを構成する。さらに、素子RC1,RD1,RC2,RD2の4つの素子を用いて、ブリッジ回路Aと同様にブリッジ回路Bを構成する。図17に示すように、同じ領域に配置した素子は、ブリッジ回路の交差するアームに配置する。 The bridge circuit A shown in FIG. 10 is configured using four elements RA1, RB1, RA2, and RB2. Further, the bridge circuit B is configured in the same manner as the bridge circuit A using the four elements RC1, RD1, RC2, and RD2. As shown in FIG. 17, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit.
 ブリッジ回路Aには、差動増幅器4Aを設け、ブリッジ回路Bには、差動増幅器4Bを設ける。差動増幅器4Aは、素子RA1,RB1の中間電位V1と素子RA2,RB2の中間電位V2との差動電圧V12(=V2-V1)を出力し、差動増幅器4Bは、素子RC1,RD1の中間電位V3と素子RC2,RD2の中間電位V4との差動電圧V34(=V4-V3)を出力する。さらに、差動増幅器4Aを、差動増幅器4Cの反転入力端子(-)に接続し、差動増幅器4Bを、差動増幅器4Cの非反転入力端子(+)に接続する。差動増幅器4Cは、電圧Vout(=V34-V12)を出力する。信号処理部5は、出力電圧Voutを基に、磁石回転子1の回転角度を出力する。 The bridge circuit A is provided with a differential amplifier 4A, and the bridge circuit B is provided with a differential amplifier 4B. The differential amplifier 4A outputs a differential voltage V12 (= V2−V1) between the intermediate potential V1 of the elements RA1 and RB1 and the intermediate potential V2 of the elements RA2 and RB2, and the differential amplifier 4B includes the elements RC1 and RD1. A differential voltage V34 (= V4-V3) between the intermediate potential V3 and the intermediate potential V4 of the elements RC2 and RD2 is output. Further, the differential amplifier 4A is connected to the inverting input terminal (−) of the differential amplifier 4C, and the differential amplifier 4B is connected to the non-inverting input terminal (+) of the differential amplifier 4C. The differential amplifier 4C outputs a voltage Vout (= V34−V12). The signal processing unit 5 outputs the rotation angle of the magnet rotor 1 based on the output voltage Vout.
 次に、それぞれの領域間の距離について説明する。本実施形態では、n1及びn2の2種類の次数の高調波成分を抑制できるように、領域の配置を決定する。 Next, the distance between each area will be described. In the present embodiment, the arrangement of the regions is determined so that harmonic components of two kinds of orders n1 and n2 can be suppressed.
 以下、n1>n2の場合の一例として、n1=3及びn2=2、即ち2次及び3次の高調波成分を抑制可能な配置について説明する。以下、領域Aと領域Bとの間の距離をLABのように記載する。 Hereinafter, as an example of n1> n2, n1 = 3 and n2 = 2, that is, an arrangement capable of suppressing the second-order and third-order harmonic components will be described. Hereinafter, the distance between the region A and the region B is described as L AB .
 (配置例3-1)
 図18は、本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置図である。本配置例において、領域A~領域Dは、LAB=LCD=2λ/n1(n1=3)、LAC=2λ/n2(n2=2)を満たすように配置する。これにより、2次及び3次の高調波成分を抑制することができる。
(Arrangement example 3-1)
FIG. 18 is a layout diagram of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention. In this arrangement example, the areas A to D are arranged so as to satisfy L AB = L CD = 2λ / n1 (n1 = 3) and L AC = 2λ / n2 (n2 = 2). Thereby, the secondary and tertiary harmonic components can be suppressed.
 図19は、ブロック回路Aの各素子の抵抗値、中点電位V1,V2及び差動増幅器4Aが出力する差動電圧V12(=V2-V1)を示している。図20は、ブロック回路Bの各素子の抵抗値、中点電位V3,V4及び差動増幅器4Bが出力する差動電圧V34(=V4-V3)を示している。LAB=LCD=2λ/3ゆえ、差動電圧V12及びV34は、3次の高調波成分が抑制された波形である。また、図21には、差動増幅器4Cの出力電圧Vout(=V4-V3)を示している。LAC=LBD=λゆえ、出力電圧Voutは、2次の好調波がさらに抑制された波形である。出力電圧Voutは、3次及び2次の高調波成分が抑制されて正弦波に近い波形となっている。これは、V12、V34及びVoutと正弦波との差分を示した図22においても確認できる。 FIG. 19 shows the resistance values of the elements of the block circuit A, the midpoint potentials V1 and V2, and the differential voltage V12 (= V2−V1) output from the differential amplifier 4A. FIG. 20 shows the resistance value of each element of the block circuit B, the midpoint potentials V3 and V4, and the differential voltage V34 (= V4−V3) output from the differential amplifier 4B. Since L AB = L CD = 2λ / 3, the differential voltages V12 and V34 are waveforms in which third-order harmonic components are suppressed. FIG. 21 shows the output voltage Vout (= V4−V3) of the differential amplifier 4C. Since L AC = L BD = λ, the output voltage Vout is a waveform in which the second order harmonic wave is further suppressed. The output voltage Vout has a waveform close to a sine wave with the third and second harmonic components suppressed. This can also be confirmed in FIG. 22 showing the difference between V12, V34 and Vout and the sine wave.
 図23は、本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。図23に示すように、領域A~Dを、LAB=2λ/n1(n1=3)、LAC=LBD=2λ/n2(n2=2)を満たすように配置しても図18の配置と同様の効果が得られる。即ち、領域Cと領域Dの並びが逆の場合は、各領域間の距離は、(2λ-2λ/n1)に等しい。同様に領域Aと領域Bの並びが逆の場合は、各領域間の距離は、(2λ-2λ/n1)に等しい。さらに、領域Aと領域Cの並びが逆の場合は、各領域間の距離は、(2λ-2λ/n2)に等しい。 FIG. 23 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention. As shown in FIG. 23, even if the regions A to D are arranged so as to satisfy L AB = 2λ / n1 (n1 = 3) and L AC = L BD = 2λ / n2 (n2 = 2), The same effect as the arrangement can be obtained. That is, when the arrangement of the areas C and D is reversed, the distance between the areas is equal to (2λ−2λ / n1). Similarly, when the arrangement of the areas A and B is reversed, the distance between the areas is equal to (2λ−2λ / n1). Furthermore, when the arrangement of the areas A and C is reversed, the distance between the areas is equal to (2λ−2λ / n2).
 (配置例3-2)
 上記では、n1>n2として、2次及び3次の高調波成分を抑制する場合について説明した。逆に、n1<n2の場合も、同様の効果が得られる。以下、n1=2、n2=3として、2次及び3次の高調波成分を抑制する場合について説明する。
(Arrangement Example 3-2)
In the above description, a case where n1> n2 and second-order and third-order harmonic components are suppressed has been described. Conversely, the same effect can be obtained when n1 <n2. Hereinafter, the case where the second-order and third-order harmonic components are suppressed with n1 = 2 and n2 = 3 will be described.
 図24は、本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。本配置例において、領域A~領域Dは、LAB=LCD=2λ/n1(n1=2)、LAC=2λ/n2(n2=3)を満たすように配置する。 FIG. 24 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention. In this arrangement example, the areas A to D are arranged so as to satisfy L AB = L CD = 2λ / n1 (n1 = 2) and L AC = 2λ / n2 (n2 = 3).
 図25は、ブロック回路Aの各素子の抵抗値、中点電位V1,V2及び差動増幅器4Aが出力する差動電圧V12(=V2-V1)を示している。図26は、ブロック回路Bの各素子の抵抗値、中点電位V3,V4及び差動増幅器4Bが出力する差動電圧V34(=V4-V3)を示している。LAB=LCD=λゆえ、差動電圧V12及びV34は、2次の高調波成分が抑制された波形である。また、図27には、差動増幅器4Cの出力電圧Vout(=V4-V3)を示している。LAC=LBD=2λ/3ゆえ、出力電圧Voutは、3次の好調波がさらに抑制された波形である。出力電圧Voutは、3次及び2次の高調波成分が抑制されて正弦波に近い波形となっている。これは、V12、V34及びVoutと正弦波との差分を示した図28においても確認できる。 FIG. 25 shows the resistance values of the elements of the block circuit A, the midpoint potentials V1 and V2, and the differential voltage V12 (= V2−V1) output from the differential amplifier 4A. FIG. 26 shows the resistance values of the elements of the block circuit B, the midpoint potentials V3 and V4, and the differential voltage V34 (= V4-V3) output from the differential amplifier 4B. Since L AB = L CD = λ, the differential voltages V12 and V34 are waveforms in which second-order harmonic components are suppressed. FIG. 27 shows the output voltage Vout (= V4−V3) of the differential amplifier 4C. Since L AC = L BD = 2λ / 3, the output voltage Vout is a waveform in which the third-order harmonic wave is further suppressed. The output voltage Vout has a waveform close to a sine wave with the third and second harmonic components suppressed. This can also be confirmed in FIG. 28 showing the difference between V12, V34 and Vout and the sine wave.
 図29は、本発明の実施の形態3による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。図29に示すように、領域A~Dを、LAB=LCD=2λ/n1(n1=2)、LAC=2λ/n2(n2=3)を満たすように配置しても図24の配置と同様の効果が得られる。即ち、領域Aと領域Bの並びが逆の場合は、各領域間の距離は(2λ-2λ/n1)に等しい。同様に領域Cと領域Dの並びが逆の場合は、各領域間の距離は(2λ-2λ/n1)に等しい。さらに、領域Aと領域Cの並びが逆の場合は、各領域間の距離は(2λ-2λ/n2)に等しい。 FIG. 29 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the third embodiment of the present invention. As shown in FIG. 29, even if the regions A to D are arranged so as to satisfy L AB = L CD = 2λ / n1 (n1 = 2) and L AC = 2λ / n2 (n2 = 3), The same effect as the arrangement can be obtained. That is, when the arrangement of the areas A and B is reversed, the distance between the areas is equal to (2λ−2λ / n1). Similarly, when the arrangement of regions C and D is reversed, the distance between the regions is equal to (2λ−2λ / n1). Further, when the arrangement of the areas A and C is reversed, the distance between the areas is equal to (2λ−2λ / n2).
実施の形態4.
 図30は、本発明の実施の形態4による回転角度検出装置における、磁気抵抗効果素子の配線図である。本実施形態では、センサデバイス3に設ける領域の数を増加させて、抑制可能な高調波成分の数p(pは1以上の整数)を増加させる。図30に示すように、本実施形態による回転角度検出装置は、ブリッジ回路を1つ有し、ブリッジ回路の各アームに複数の素子を配置する点で実施形態2と異なる。本実施形態のその他の構成は、実施形態2と同様である。
Embodiment 4 FIG.
FIG. 30 is a wiring diagram of magnetoresistive elements in the rotation angle detection device according to the fourth embodiment of the present invention. In the present embodiment, the number of regions provided in the sensor device 3 is increased to increase the number p of harmonic components that can be suppressed (p is an integer of 1 or more). As shown in FIG. 30, the rotation angle detection device according to the present embodiment is different from the second embodiment in that it has one bridge circuit and a plurality of elements are arranged in each arm of the bridge circuit. Other configurations of the present embodiment are the same as those of the second embodiment.
 (p=2の場合)
 実施形態3と同様に、センサデバイス3にA~Dの4つの領域を設け、各領域には、それぞれ2つの素子を配置する。センサデバイス3の領域Aに素子RA1,RA2を、領域Bに素子RB1,RB2を、領域Cに素子RC1,RC2を、領域Dに素子RD1,RD2をそれぞれ配置する。
(When p = 2)
Similar to the third embodiment, the sensor device 3 is provided with four regions A to D, and two elements are arranged in each region. Elements RA1 and RA2 are arranged in area A of sensor device 3, elements RB1 and RB2 are arranged in area B, elements RC1 and RC2 are arranged in area C, and elements RD1 and RD2 are arranged in area D, respectively.
 図30に示すように、ブリッジ回路の第1アームに素子RA1,RD1を、第2アームに素子RB2,RC2を、第3アームに素子RB1,RC1を、第4アームに素子RA2、RD2をそれぞれ配置する。ブリッジ回路は、第1アームと第4アームが交差し、第2アームと第3アームが交差する構成を有する。即ち、同じ領域に配置した素子は、ブリッジ回路の交差するアームに配置する。また、直流電源(VCC)とグラウンド(GND)との間に第1アームと第3アームとを直列接続し、同じく直流電源(VCC)とグラウンド(GND)との間に第2アームと第4アームとをそれぞれ直列接続する。第1アーム及び第3アームと、第2アーム及び第4アームとは並列接続する。尚、同一アーム内であれば、素子を接続する順序は入れ替えてもよい。 As shown in FIG. 30, elements RA1 and RD1 are provided in the first arm of the bridge circuit, elements RB2 and RC2 are provided in the second arm, elements RB1 and RC1 are provided in the third arm, and elements RA2 and RD2 are provided in the fourth arm. Deploy. The bridge circuit has a configuration in which the first arm and the fourth arm intersect and the second arm and the third arm intersect. That is, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit. The first arm and the third arm are connected in series between the DC power supply (VCC) and the ground (GND), and the second arm and the fourth arm are similarly connected between the DC power supply (VCC) and the ground (GND). Each arm is connected in series. The first arm and the third arm are connected in parallel with the second arm and the fourth arm. In addition, as long as it exists in the same arm, you may replace the order which connects an element.
 第1アームと第3アームの中点電位をV1、第2アームと第4アームの中点電位をV2とする。第1アームと第3アームの中点を差動増幅器4の反転入力端子(-)に接続し、第2アームと第4アームの中点を差動増幅器4の非反転入力端子(+)に接続する。差動増幅器4は、電圧Vout(=V2-V1)を出力する。信号処理部5は、出力電圧Voutを基に、磁石回転子1の回転角度を出力する。 Suppose that the midpoint potential of the first and third arms is V1, and the midpoint potential of the second and fourth arms is V2. The midpoint of the first arm and the third arm is connected to the inverting input terminal (−) of the differential amplifier 4, and the midpoint of the second arm and the fourth arm is connected to the non-inverting input terminal (+) of the differential amplifier 4. Connecting. The differential amplifier 4 outputs a voltage Vout (= V2−V1). The signal processing unit 5 outputs the rotation angle of the magnet rotor 1 based on the output voltage Vout.
 実施形態3と同様に、例えば図18、図23、図24又は図29のように、センサデバイス3に領域A~領域Dを設けることで、n1及びn2の2種類の次数の高調波成分を抑制できる。 Similarly to the third embodiment, for example, as shown in FIG. 18, FIG. 23, FIG. 24, or FIG. 29, by providing regions A to D in the sensor device 3, harmonic components of two kinds of orders of n1 and n2 Can be suppressed.
 例として、n1=3、n2=2とした場合の、各素子の抵抗値及び中点電位V1,V2を図31に示す。また、図32は、差動増幅器4の出力電圧Vout及びVoutと正弦波との差分を示している。出力電圧Voutは、ほぼ正弦波に近い波形であることがわかる。 As an example, FIG. 31 shows resistance values and midpoint potentials V1 and V2 of each element when n1 = 3 and n2 = 2. FIG. 32 shows the difference between the output voltages Vout and Vout of the differential amplifier 4 and the sine wave. It can be seen that the output voltage Vout has a waveform substantially similar to a sine wave.
 本実施形態の構成により、2種類の次数の高調波成分を抑制することができる。さらに、実施形態3と比較して、差動増幅器の個数を減らすことができるという利点がある。 The configuration of this embodiment can suppress two types of harmonic components. Furthermore, there is an advantage that the number of differential amplifiers can be reduced as compared with the third embodiment.
 (p=3の場合)
 図33は、本発明の実施の形態4による回転角度検出装置の、センサデバイスに設けた領域の配置の代替図である。図30では8つの素子を配置した。その2倍の16個の素子を使用することにより、3種類の次数の高調波成分を抑制することができる。図33に示すように、センサデバイス3にA~Hの8つの領域を設ける。センサデバイス3の領域Aに素子RA1,RA2を、領域Bに素子RB1,RB2を、領域Cに素子RC1,RC2を、領域Dに素子RD1,RD2を、領域Eに素子RE1,RE2を、領域Fに素子RF1,RF2を、領域Gに素子RG1,RG2を、領域Hに素子RH1,RH2をそれぞれ配置する。
(When p = 3)
FIG. 33 is an alternative view of the arrangement of regions provided in the sensor device of the rotation angle detection device according to the fourth embodiment of the present invention. In FIG. 30, eight elements are arranged. By using twice as many as 16 elements, harmonic components of three kinds of orders can be suppressed. As shown in FIG. 33, the sensor device 3 is provided with eight regions A to H. In the area A of the sensor device 3, the elements RA1, RA2, the elements RB1, RB2 in the area B, the elements RC1, RC2 in the area C, the elements RD1, RD2 in the area D, the elements RE1, RE2 in the area E, the area Elements RF1 and RF2 are arranged in F, elements RG1 and RG2 are arranged in area G, and elements RH1 and RH2 are arranged in area H, respectively.
 例えば、図33に示すように、領域A~Hを、LAB=LCD=LEF=LGH=2λ/n1、LAC=LEG=2λ/n2、LAE=2λ/n3(n3は2以上の整数)を満たすように配置することができる。 For example, as shown in FIG. 33, regions A to H are divided into L AB = L CD = L EF = L GH = 2λ / n1, L AC = L EG = 2λ / n 2 and L AE = 2λ / n 3 (n 3 is (Integer of 2 or more).
 図34は、本発明の実施の形態4による回転角度検出装置における、磁気抵抗効果素子の配線図である。ブリッジ回路の第1アーム~第4アームに図34に示すように素子を配置する。尚、同一アーム内であれば、素子を接続する順序は入れ替えてもよい。 FIG. 34 is a wiring diagram of the magnetoresistive effect element in the rotation angle detection device according to the fourth embodiment of the present invention. Elements are arranged on the first to fourth arms of the bridge circuit as shown in FIG. In addition, as long as it exists in the same arm, you may replace the order which connects an element.
 p=2の場合と同様に、差動増幅器4は、電圧Vout(=V2-V1)を出力する。これにより、n1次、n2次及びn3次の3つの次数の高調波成分が抑制された電圧が出力される。そして、信号処理部5により歪みが抑制された磁石回転子1の正確な回転角度を得ることができる。 As in the case of p = 2, the differential amplifier 4 outputs the voltage Vout (= V2−V1). As a result, a voltage in which harmonic components of three orders of n1, n2 and n3 are suppressed is output. And the exact rotation angle of the magnet rotor 1 by which distortion was suppressed by the signal processing part 5 can be obtained.
 (p≧4の場合)
 図35は、本発明の実施の形態4による回転角度検出装置の、p種類の高調波成分を抑制可能な、各領域の配置間隔及び各磁気抵抗効果素子の配線の例を示す表である。この規則に従えば、4種類以上の次数の高調波成分も抑制可能である。尚、同一アーム内であれば、素子を接続する順序は入れ替えてもよい。配置間隔及び配線は一例にすぎず、他の構成によっても、p種類の好調波成分を抑制可能である。
(When p ≧ 4)
FIG. 35 is a table showing an example of the arrangement interval of each region and the wiring of each magnetoresistive element that can suppress p types of harmonic components in the rotation angle detection device according to the fourth embodiment of the present invention. According to this rule, harmonic components of four or more orders can be suppressed. In addition, as long as it exists in the same arm, you may replace the order which connects an element. The arrangement interval and the wiring are only examples, and the p-type harmonic wave components can be suppressed by other configurations.
 まず、領域の配置について説明する。センサデバイス3上に、領域(1)~領域(2)を設ける。また、図35の規則に従うと、領域(2m-(2-1))と領域(2m-(2-1)+2k-1)とは、距離L隔てて配置する(k,mは1以上の整数)。領域(j)には、2つの素子R(j)及び素子R(j)を配置する(jは1以上の整数)。距離Lは、下記の式(6)で表される。 First, the arrangement of regions will be described. Regions (1) to (2 p ) are provided on the sensor device 3. Further, according to the rules of FIG. 35, the region (2 k m- (2 k -1 )) and region (2 k m- (2 k -1 ) +2 k-1), is disposed at a distance L k (K and m are integers of 1 or more). In the region (j), two elements R (j) 1 and element R (j) 2 are arranged (j is an integer of 1 or more). The distance L k is expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 素子R(1)~R(2、素子R(1)~R(2は、ブリッジ回路を構成する。ブリッジ回路は、第1アームと第4アームが交差し、第2アームと第3アームが交差する構成を有する。素子の配置について、例として、p=4の場合を考える。尚、素子R(1)~R(16)が素子RA1~RP1に、素子R(1)~R(16)が素子RA2~RP2にそれぞれ対応するものとする。ブリッジ回路の第1アームには、8個の直列接続した素子RA1,RD1,RF1,RG1,RJ1,RK1,RM1,RP1を配置する。第2アームには、8個の素子RB2,RC2,RE2,RH2,RI2,RL2,RN2,RO2を配置する。第3アームには、8個の素子RB1,RC1,RE1,RH1,RI1,RL1,RN1,RO1を配置する。第4アームには、8個の素子RA2,RD2,RF2,RG2,RJ2,RK2,RM2,RP2を配置する。 The elements R (1) 1 to R (2 p ) 1 and elements R (1) 2 to R (2 p ) 2 constitute a bridge circuit. The bridge circuit has a configuration in which the first arm and the fourth arm intersect and the second arm and the third arm intersect. As an example of the arrangement of elements, consider the case of p = 4. Note that the elements R (1) 1 to R (16) 1 correspond to the elements RA1 to RP1, and the elements R (1) 2 to R (16) 2 correspond to the elements RA2 to RP2, respectively. In the first arm of the bridge circuit, eight elements RA1, RD1, RF1, RG1, RJ1, RK1, RM1, RP1 connected in series are arranged. Eight elements RB2, RC2, RE2, RH2, RI2, RL2, RN2, and RO2 are arranged on the second arm. Eight elements RB1, RC1, RE1, RH1, RI1, RL1, RN1, and RO1 are arranged on the third arm. Eight elements RA2, RD2, RF2, RG2, RJ2, RK2, RM2, RP2 are arranged on the fourth arm.
 p≧5の場合も同様に、第1~第4アームに、上記順序で素子を配置する。各アームには、それぞれ2p-1個の素子が配置される。また、同じ領域に配置した素子は、ブリッジ回路の交差するアームに配置する。 Similarly, when p ≧ 5, the elements are arranged in the above order on the first to fourth arms. Each arm has 2 p-1 elements. In addition, the elements arranged in the same region are arranged on the intersecting arms of the bridge circuit.
 p=2,3の場合と同様に、直流電源(VCC)とグラウンド(GND)との間に、直列接続した2個の素子R(1)~R(2を配置する。また、直流電源(VCC)とグラウンド(GND)との間に、直列接続した2個の素子R(1)~R(2を配置する。第1アーム及び第3アームと、第2アーム及び第4アームとは並列接続する。 As in the case of p = 2, 3, 2 p elements R (1) 1 to R (2 p ) 1 connected in series are arranged between the DC power supply (VCC) and the ground (GND). Further, 2 p elements R (1) 2 to R (2 p ) 2 connected in series are arranged between the DC power supply (VCC) and the ground (GND). The first arm and the third arm are connected in parallel with the second arm and the fourth arm.
 差動増幅器4は、p種類の次数の高調波成分が抑制された電圧Vout(=V2-V1)を出力する。そして、信号処理部5により、歪みが抑制された磁石回転子1の正確な回転角度を得ることができる。 The differential amplifier 4 outputs a voltage Vout (= V2−V1) in which p-type harmonic components are suppressed. And the exact rotation angle of the magnet rotor 1 by which distortion was suppressed by the signal processing part 5 can be obtained.

Claims (5)

  1.  N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、
     回転体が発生する磁界を感知する第1磁気検出部及び第2磁気検出部とを備え、
     第1磁気検出部と第2磁気検出部とは距離L隔てて配置され、
     第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部及び第2磁気検出部が配置され、
     第1磁気検出部と第2磁気検出部の中点電位を基に、回転体の回転角度に対応した信号を出力し、
    Figure JPOXMLDOC01-appb-M000001
    の関係を満たすことを特徴とする回転角度検出装置。
    A rotating body in which N and S poles are alternately magnetized along a circumferential surface with a magnetization width λ;
    A first magnetic detection unit and a second magnetic detection unit for sensing a magnetic field generated by the rotating body;
    The first magnetic detection unit and the second magnetic detection unit are disposed at a distance L,
    Between the first reference potential and the second reference potential, a first magnetic detection unit and a second magnetic detection unit connected in series are arranged,
    Based on the midpoint potential of the first magnetic detection unit and the second magnetic detection unit, a signal corresponding to the rotation angle of the rotating body is output,
    Figure JPOXMLDOC01-appb-M000001
    A rotation angle detecting device satisfying the relationship:
  2.  N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、
     回転体が発生する磁界を感知する第1~第4磁気検出部とを備え、
     第1磁気検出部及び第4磁気検出部は、第1検出位置に配置され、
     第2磁気検出部及び第3磁気検出部は、第2検出位置に配置され、
     第1検出位置と第2検出位置とは距離L隔てて設けられ、
     第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部及び第3磁気検出部と、直列接続された第2磁気検出部及び第4磁気検出部とが並列接続され、
     第1~第4磁気検出部は、ブリッジ回路を構成し、
     第1磁気検出部と第4磁気検出部、第2磁気検出部と第3磁気検出部とが、それぞれブリッジ回路の交差するアームに配置され、
     第1磁気検出部と第3磁気検出部の中点電位Vと、第2磁気検出部と第4磁気検出部の中点電位Vとの差Vout(=V-V)を基に、回転体の回転角度に対応した信号を出力し、
    Figure JPOXMLDOC01-appb-M000002
    の関係を満たすことを特徴とする回転角度検出装置。
    A rotating body in which N and S poles are alternately magnetized along a circumferential surface with a magnetization width λ;
    Comprising first to fourth magnetic detection units for sensing a magnetic field generated by a rotating body,
    The first magnetic detection unit and the fourth magnetic detection unit are arranged at the first detection position,
    The second magnetic detection unit and the third magnetic detection unit are disposed at the second detection position,
    The first detection position and the second detection position are provided at a distance L,
    Between the first reference potential and the second reference potential, the first magnetic detection unit and the third magnetic detection unit connected in series, and the second magnetic detection unit and the fourth magnetic detection unit connected in series are connected in parallel. And
    The first to fourth magnetic detection units constitute a bridge circuit,
    The first magnetic detection unit and the fourth magnetic detection unit, the second magnetic detection unit and the third magnetic detection unit are respectively disposed on the arms where the bridge circuit intersects,
    A first magnetic detection portion and the middle point potential V 1 of the third magnetic detection portion, the second magnetic detection portion and the difference between Vout (= V 2 -V 1) a group of the middle point potential V 2 of the fourth magnetic detection unit To output a signal corresponding to the rotation angle of the rotating body,
    Figure JPOXMLDOC01-appb-M000002
    A rotation angle detecting device satisfying the relationship:
  3.  N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、
     回転体が発生する磁界を感知する第1~第8磁気検出部とを備え、
     第1磁気検出部及び第4磁気検出部は、第1検出位置に配置され、
     第2磁気検出部及び第3磁気検出部は、第2検出位置に配置され、
     第5磁気検出部及び第8磁気検出部は、第3検出位置に配置され、
     第6磁気検出部及び第7磁気検出部は、第4検出位置に配置され、
     第1検出位置と第2検出位置とは距離L12隔てて設けられ、
     第3検出位置と第4検出位置とは距離L12隔てて設けられ、
     第1検出位置と第3検出位置とは距離L13隔てて設けられ、
     第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部及び第3磁気検出部と、直列接続された第2磁気検出部及び第4磁気検出部とが並列接続され、
     第1~第4磁気検出部は、ブリッジ回路を構成し、
     第1磁気検出部と第4磁気検出部、第2磁気検出部と第3磁気検出部とが、それぞれブリッジ回路の交差するアームに配置され、
     第3基準電位と第4基準電位との間に、直列接続された第5磁気検出部及び第7磁気検出部と、直列接続された第6磁気検出部及び第8磁気検出部とが配置され、
     第5~第8磁気検出部は、ブリッジ回路を構成し、
     第5磁気検出部と第8磁気検出部、第6磁気検出部と第7磁気検出部とが、それぞれブリッジ回路の交差するアームに配置され、
     第1磁気検出部と第3磁気検出部の中点電位Vと、第2磁気検出部と第4磁気検出部の中点電位Vとの差V12(=V-V)と、第5磁気検出部と第7磁気検出部の中点電位Vと、第6磁気検出部と第8磁気検出部の中点電位Vとの差V34(=V-V)との差Vout(=V34-V12)を基に、回転体の回転角度に対応した信号を出力し、
    Figure JPOXMLDOC01-appb-M000003
    の関係を満たすことを特徴とする回転角度検出装置。
    A rotating body in which N and S poles are alternately magnetized along a circumferential surface with a magnetization width λ;
    Comprising first to eighth magnetic detectors for sensing a magnetic field generated by a rotating body,
    The first magnetic detection unit and the fourth magnetic detection unit are arranged at the first detection position,
    The second magnetic detection unit and the third magnetic detection unit are disposed at the second detection position,
    The fifth magnetic detection unit and the eighth magnetic detection unit are disposed at the third detection position,
    The sixth magnetic detection unit and the seventh magnetic detection unit are arranged at the fourth detection position,
    The first detection position and a second detection position provided apart distance L 12,
    And the third detection position and a fourth detection position provided apart distance L 12,
    The first detection position and the third detection position provided apart distance L 13,
    Between the first reference potential and the second reference potential, the first magnetic detection unit and the third magnetic detection unit connected in series, and the second magnetic detection unit and the fourth magnetic detection unit connected in series are connected in parallel. And
    The first to fourth magnetic detection units constitute a bridge circuit,
    The first magnetic detection unit and the fourth magnetic detection unit, the second magnetic detection unit and the third magnetic detection unit are respectively disposed on the arms where the bridge circuit intersects,
    Between the third reference potential and the fourth reference potential, a fifth magnetic detection unit and a seventh magnetic detection unit connected in series, and a sixth magnetic detection unit and an eighth magnetic detection unit connected in series are arranged. ,
    The fifth to eighth magnetic detectors constitute a bridge circuit,
    The fifth magnetic detection unit and the eighth magnetic detection unit, the sixth magnetic detection unit and the seventh magnetic detection unit are respectively arranged on the arms where the bridge circuit intersects,
    A first magnetic detection portion and the middle point potential V 1 of the third magnetic detection unit, the difference V 12 (= V 2 -V 1 ) of the second magnetic detection portion and the midpoint potential V 2 of the fourth magnetic detection unit and a fifth magnetic detection portion and the seventh magnetic detectors midpoint potential V 3 of the difference V 34 (= V 4 -V 3 ) the sixth magnetic detection portion and the midpoint potential V 4 of the 8 magnetic detection unit And a signal corresponding to the rotation angle of the rotating body based on the difference Vout (= V 34 −V 12 )
    Figure JPOXMLDOC01-appb-M000003
    A rotation angle detecting device satisfying the relationship:
  4.  N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、
     回転体が発生する磁界を感知する第1~第8磁気検出部とを備え、
     第1磁気検出部及び第4磁気検出部は、第1検出位置に配置され、
     第2磁気検出部及び第3磁気検出部は、第2検出位置に配置され、
     第6磁気検出部及び第7磁気検出部は、第3検出位置に配置され、
     第5磁気検出部及び第8磁気検出部は、第4検出位置に配置され、
     第1検出位置と第2検出位置とは距離L12隔てて設けられ、
     第3検出位置と第4検出位置とは距離L12隔てて設けられ、
     第1検出位置と第3検出位置とは距離L13隔てて設けられ、
     第1基準電位と第2基準電位との間に、直列接続された第1磁気検出部、第5磁気検出部、第3磁気検出部及び第7磁気検出部と、直列接続された第2磁気検出部、第6磁気検出部、第4磁気検出部及び第8磁気検出部とが並列接続され、
     第1~第8磁気検出部は、ブリッジ回路を構成し、
     ブリッジ回路の第1アームには、第1磁気検出部及び第5磁気検出部が配置され、
     ブリッジ回路の第2アームには、第2磁気検出部及び第6磁気検出部が配置され、
     ブリッジ回路の第3アームには、第3磁気検出部及び第7磁気検出部が配置され、
     ブリッジ回路の第4アームには、第4磁気検出部及び第8磁気検出部が配置され、
     第1アームと第4アームとが、ブリッジ回路の交差する位置に配置され、第2アームと第3アームとが、ブリッジ回路の交差する位置に配置され、
     第1アームと第3アームの中点電位Vと、第2アームと第4アームの中点電位Vとの差Vout(=V-V)を基に、回転体の回転角度に対応した信号を出力し、
    Figure JPOXMLDOC01-appb-M000004
    の関係を満たすことを特徴とする回転角度検出装置。
    A rotating body in which N and S poles are alternately magnetized along a circumferential surface with a magnetization width λ;
    Comprising first to eighth magnetic detectors for sensing a magnetic field generated by a rotating body,
    The first magnetic detection unit and the fourth magnetic detection unit are arranged at the first detection position,
    The second magnetic detection unit and the third magnetic detection unit are disposed at the second detection position,
    The sixth magnetic detection unit and the seventh magnetic detection unit are disposed at the third detection position,
    The fifth magnetic detection unit and the eighth magnetic detection unit are disposed at the fourth detection position,
    The first detection position and a second detection position provided apart distance L 12,
    And the third detection position and a fourth detection position provided apart distance L 12,
    The first detection position and the third detection position provided apart distance L 13,
    Between the first reference potential and the second reference potential, the first magnetic detection unit, the fifth magnetic detection unit, the third magnetic detection unit, and the seventh magnetic detection unit connected in series, and the second magnetism connected in series The detection unit, the sixth magnetic detection unit, the fourth magnetic detection unit, and the eighth magnetic detection unit are connected in parallel.
    The first to eighth magnetic detection units constitute a bridge circuit,
    The first arm of the bridge circuit is provided with a first magnetic detector and a fifth magnetic detector,
    The second arm of the bridge circuit has a second magnetic detector and a sixth magnetic detector,
    A third magnetic detection unit and a seventh magnetic detection unit are arranged on the third arm of the bridge circuit,
    The fourth arm of the bridge circuit has a fourth magnetic detector and an eighth magnetic detector,
    The first arm and the fourth arm are arranged at a position where the bridge circuit intersects, and the second arm and the third arm are arranged at a position where the bridge circuit intersects,
    Based the midpoint potential V 1 of the first arm and the third arm, the second arm and the difference between Vout of the midpoint potential V 2 of the fourth arm (= V 2 -V 1), the angle of rotation of the rotor The corresponding signal is output,
    Figure JPOXMLDOC01-appb-M000004
    A rotation angle detecting device satisfying the relationship:
  5.  N極及びS極が、着磁幅λで周面に沿って交互に着磁された回転体と、
     回転体が発生する磁界を感知する2p+1個の磁気検出部とを備え、
     磁気検出部は、2個の検出位置にそれぞれ2つずつ配置され、
     第i検出位置(iは1以上の整数)と第j検出位置(jは1以上の整数)との間の距離はLijであって、
     第1基準電位と第2基準電位との間に、直列接続された2個の磁気検出部と、直列接続された2個の磁気検出部とが並列接続され、
     2p+1個の磁気検出部は、ブリッジ回路を構成し、
     ブリッジ回路の各アームには、2p-1個の磁気検出部がそれぞれ配置され、
     第1アームと第4アームとが、ブリッジ回路の交差する位置に配置され、第2アームと第3アームとが、ブリッジ回路の交差する位置に配置され、
     同じ検出位置に配置された磁気検出部は、ブリッジ回路の交差するアームに配置され、
     第1アームと第3アームの中点電位Vと、第2アームと第4アームの中点電位Vとの差Vout(=V-V)を基に、回転体の回転角度に対応した信号を出力し、
    Figure JPOXMLDOC01-appb-M000005
    の関係を満たすことを特徴とする回転角度検出装置。
    A rotating body in which N and S poles are alternately magnetized along a circumferential surface with a magnetization width λ;
    2 p + 1 magnetic detectors for sensing the magnetic field generated by the rotating body,
    Two magnetic detection units are arranged at 2 p detection positions, respectively.
    The distance between the i th detection position (i is an integer of 1 or more) and the j th detection position (j is an integer of 1 or more) is L ij ,
    Between the first reference potential and second reference potential, and 2 p pieces of the magnetic detector connected in series, and a 2 p pieces of the magnetic detector connected in series are connected in parallel,
    2 p + 1 magnetic detection units constitute a bridge circuit,
    Each arm of the bridge circuit is provided with 2 p-1 magnetic detectors,
    The first arm and the fourth arm are arranged at a position where the bridge circuit intersects, and the second arm and the third arm are arranged at a position where the bridge circuit intersects,
    Magnetic detection units arranged at the same detection position are arranged on the intersecting arms of the bridge circuit,
    Based the midpoint potential V 1 of the first arm and the third arm, the second arm and the difference between Vout of the midpoint potential V 2 of the fourth arm (= V 2 -V 1), the angle of rotation of the rotor The corresponding signal is output,
    Figure JPOXMLDOC01-appb-M000005
    A rotation angle detecting device satisfying the relationship:
PCT/JP2012/063421 2011-12-20 2012-05-25 Rotation angle detector WO2013094236A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012005322.2T DE112012005322B4 (en) 2011-12-20 2012-05-25 rotation angle detecting device
JP2013550143A JP5762567B2 (en) 2011-12-20 2012-05-25 Rotation angle detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011277803 2011-12-20
JP2011-277803 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013094236A1 true WO2013094236A1 (en) 2013-06-27

Family

ID=48668145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063421 WO2013094236A1 (en) 2011-12-20 2012-05-25 Rotation angle detector

Country Status (3)

Country Link
JP (1) JP5762567B2 (en)
DE (1) DE112012005322B4 (en)
WO (1) WO2013094236A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008439A1 (en) * 2013-07-17 2015-01-22 株式会社デンソー Rotation sensor
JP2018503803A (en) * 2014-11-24 2018-02-08 ゼンジテック ゲゼルシャフト ミット ベシュレンクテル ハフツングSensitec GmbH Magnetoresistive Wheatstone bridge and angle sensor having at least two bridges
EP3385680A1 (en) * 2014-03-10 2018-10-10 DMG Mori Seiki Co. Ltd. Position detecting device
CN111693909A (en) * 2019-03-12 2020-09-22 Ntn-Snr轴承股份有限公司 System for determining at least one rotation parameter of a rotating member
JP2022082687A (en) * 2017-11-15 2022-06-02 株式会社デンソー Rotation detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507725A (en) * 2000-08-22 2004-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング A magnetoresistive sensor that scans a magnetic multipole wheel
JP2006145220A (en) * 2004-11-16 2006-06-08 Shicoh Eng Co Ltd Magnetic position detector
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204118A (en) 1986-03-05 1987-09-08 Hitachi Ltd Magnetically detecting device for position or speed
JPS63279101A (en) 1987-05-11 1988-11-16 Nippon Denso Co Ltd Non-contact displacement detector
US4893071A (en) 1988-05-24 1990-01-09 American Telephone And Telegraph Company, At&T Bell Laboratories Capacitive incremental position measurement and motion control
JPH0690046B2 (en) 1989-01-23 1994-11-14 エスエムシー株式会社 Displacement detection device
US5206590A (en) 1990-12-11 1993-04-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
DE4203073C2 (en) 1992-02-04 1994-12-15 Heidenhain Gmbh Dr Johannes Position measuring device
JP2001012967A (en) * 1999-04-28 2001-01-19 Asahi Optical Co Ltd Encoder and surveying instrument carrying magnetic encoder
US6600308B2 (en) 2001-02-05 2003-07-29 Pentax Corporation Magnetic encoder and method for reducing harmonic distortion thereof
DE102007029819B4 (en) 2007-06-28 2012-02-02 Infineon Technologies Ag Sensor and sensor arrangement
WO2009099054A1 (en) 2008-02-07 2009-08-13 Hitachi Metals, Ltd. Rotation angle detection device, rotary machine, and rotation angle detection method
JP2009210550A (en) 2008-02-29 2009-09-17 Ribekkusu:Kk Chain position-speed detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507725A (en) * 2000-08-22 2004-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング A magnetoresistive sensor that scans a magnetic multipole wheel
JP2006145220A (en) * 2004-11-16 2006-06-08 Shicoh Eng Co Ltd Magnetic position detector
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008439A1 (en) * 2013-07-17 2015-01-22 株式会社デンソー Rotation sensor
JP2015021795A (en) * 2013-07-17 2015-02-02 株式会社デンソー Rotation sensor
DE112014003316B4 (en) 2013-07-17 2019-07-11 Denso Corporation rotation sensor
EP3385680A1 (en) * 2014-03-10 2018-10-10 DMG Mori Seiki Co. Ltd. Position detecting device
JP2018503803A (en) * 2014-11-24 2018-02-08 ゼンジテック ゲゼルシャフト ミット ベシュレンクテル ハフツングSensitec GmbH Magnetoresistive Wheatstone bridge and angle sensor having at least two bridges
JP2022082687A (en) * 2017-11-15 2022-06-02 株式会社デンソー Rotation detector
JP7226624B2 (en) 2017-11-15 2023-02-21 株式会社デンソー Rotation detector
CN111693909A (en) * 2019-03-12 2020-09-22 Ntn-Snr轴承股份有限公司 System for determining at least one rotation parameter of a rotating member

Also Published As

Publication number Publication date
DE112012005322T5 (en) 2014-10-02
JP5762567B2 (en) 2015-08-12
DE112012005322B4 (en) 2022-02-10
JPWO2013094236A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5752322B2 (en) Magnetic position detector
JP5064492B2 (en) Magnetic rotation angle detector
US8193805B2 (en) Magnetic sensor
JP5062450B2 (en) Rotating magnetic field sensor
JP5105200B2 (en) Angle detection apparatus and angle detection method
JP4324813B2 (en) Rotation angle detector and rotating machine
JP5105201B2 (en) Angle detection apparatus and angle detection method
JP5013146B2 (en) Magnetic position detector
US10690515B2 (en) Dual Z-axis magnetoresistive angle sensor
JP5762567B2 (en) Rotation angle detector
JP6969581B2 (en) Rotation angle detector
JP2014020888A (en) Magnetic sensor system
JP5201493B2 (en) Position detection device and linear drive device
JP4900838B2 (en) Position detection device and linear drive device
JP7463593B2 (en) Magnetic sensor system and lens position detection device
JP2012230021A (en) Rotation angle measuring device
JP5566871B2 (en) Rotation detector
JP2015049046A (en) Angle detector
JP7156249B2 (en) Position detector
JP2020016438A (en) Angle sensor correction device and angle sensor
JP2019190873A (en) Encoder
JP5013135B2 (en) Magnetic position detector
WO2012153554A1 (en) Torque detection device
JP2014010033A (en) Angle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550143

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012005322

Country of ref document: DE

Ref document number: 1120120053222

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859368

Country of ref document: EP

Kind code of ref document: A1