WO2015008439A1 - Rotation sensor - Google Patents

Rotation sensor Download PDF

Info

Publication number
WO2015008439A1
WO2015008439A1 PCT/JP2014/003436 JP2014003436W WO2015008439A1 WO 2015008439 A1 WO2015008439 A1 WO 2015008439A1 JP 2014003436 W JP2014003436 W JP 2014003436W WO 2015008439 A1 WO2015008439 A1 WO 2015008439A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive effect
effect elements
pair
rotation
rotating body
Prior art date
Application number
PCT/JP2014/003436
Other languages
French (fr)
Japanese (ja)
Inventor
孝昌 金原
紀博 車戸
泰行 奥田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112014003316.2T priority Critical patent/DE112014003316B4/en
Publication of WO2015008439A1 publication Critical patent/WO2015008439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale

Definitions

  • the present disclosure relates to a rotation sensor that detects a rotation state of a rotating body based on a change in magnetic flux whose direction periodically changes as the rotating body rotates.
  • Patent Document 1 a magnetic member in which N poles and S poles are alternately arranged, and one or more pairs of vector detection type magnetoresistive effect elements facing the magnetic pole arrangement surface of the magnetic member, Have been proposed.
  • One or a plurality of pairs of vector detection type magnetoresistive elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction of the magnetic member. Thereby, the phase of the magnetic flux which permeate
  • each vector detection type magnetoresistive effect element since the facing distance between each vector detection type magnetoresistive effect element and the magnetic member is different, the intensity of the magnetic flux passing through each vector detection type magnetoresistive effect element is different. Therefore, it may be difficult to detect the rotation state of the magnetic member (rotating body) with high accuracy based on an electric signal that depends on the resistance value of each vector detection type magnetoresistive element.
  • This disclosure is intended to provide a rotation sensor with improved detection accuracy of the rotation state of a rotating body.
  • a rotation sensor is a rotation sensor that detects a rotation state of a rotating body based on a change in magnetic flux whose direction periodically changes with the rotation of the rotating body.
  • Each of the plurality of magnetoelectric conversion units includes a pair of magnetoresistive elements.
  • Each of the pair of magnetoresistive effect elements includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a non-layer provided between the pinned layer and the free layer.
  • a magnetic intermediate layer, and the resistance value varies depending on the magnetization directions of the pinned layer and the free layer.
  • the magnetization directions of the pinned layers of the magnetoresistive elements forming a pair are different from each other by 180 °.
  • the magnetoresistive effect elements forming a pair included in each of the plurality of magnetoelectric conversion units are arranged side by side along the rotation direction of the rotating body, and extend from the rotation axis of the rotating body so as to be orthogonal to the rotation direction. They are arranged symmetrically with lines.
  • a bridge circuit is formed by each of the magnetoresistive effect elements forming a pair, and a midpoint potential of the bridge circuit is set as a signal based on the rotation state of the rotating body.
  • the rotation sensor can improve the detection accuracy of the rotating state of the rotating body by utilizing the midpoint potential of the bridge circuit as a signal based on the rotating state of the rotating body.
  • FIG. 1 is a perspective view schematically showing positions of a rotation sensor and a rotating body according to the first embodiment.
  • FIG. 2 is a top view schematically showing positions of the rotation sensor and the rotating body.
  • FIG. 3 is a schematic diagram showing the magnetization direction of the pinned layer.
  • FIG. 4 is a circuit diagram showing a bridge circuit assembled by magnetoresistive elements.
  • FIG. 5 is a timing chart showing the midpoint potential and the pulse signal.
  • FIG. 6 is a schematic diagram showing a reference magnetic flux passing through an intersection.
  • FIG. 7 is a graph showing fluctuations in resistance values of the magnetoresistive effect element and the midpoint.
  • FIG. 8 is a top view illustrating a modification of the magnetoelectric conversion unit.
  • FIG. 9 is a top view illustrating a modification of the magnetoelectric conversion unit.
  • FIG. 10 is a top view illustrating a modification of the magnetoelectric conversion unit.
  • FIG. 11 is a circuit diagram showing the first full bridge circuit.
  • FIG. 12 is a circuit diagram showing a second full bridge circuit.
  • a rotation sensor according to this embodiment will be described with reference to FIGS.
  • a plane at the same height position where the rotator 200 and the rotation sensor 100 are arranged is defined as a specified plane, and a direction perpendicular to the specified plane and passing through the rotation center RC of the rotator 200 is indicated as an axial direction.
  • a direction around the axial direction is indicated as a rotation direction, and a direction extending from the rotation center RC along the prescribed plane is indicated as a radial direction.
  • the rotation axis is along the axial direction.
  • the rotation sensor 100 detects the rotation state of the rotating body 200 based on a change in magnetic flux whose direction periodically changes as the rotating body 200 rotates.
  • the rotating body 200 has an annular shape, and an N pole 210 and an S pole 220 are formed on the outer ring surface at equal intervals along the rotation direction. As shown in FIGS. 1 and 2, the N pole 210 and the S pole 220 are alternately formed, and a magnetic flux flows from the N pole 210 to the S pole 220. The magnetic flux between the adjacent N pole 210 and S pole 220 flows so as to draw a semicircular locus.
  • the rotation sensor 100 detects a periodic change due to the rotation of the magnetic flux that draws this semicircular locus.
  • the rotation sensor 100 includes a first magnetoelectric conversion unit 10 and a second magnetoelectric conversion unit 20 that convert changes in the direction of magnetic flux into electrical signals.
  • the 1st magnetoelectric conversion part 10 has the magnetoresistive effect elements 11 and 12 which make a pair
  • the 2nd magnetoelectric conversion part 20 has the magnetoresistive effect elements 21 and 22 which make a pair.
  • the magnetoresistive effect elements 11 and 12 forming a pair and the magnetoresistive effect elements 21 and 22 forming a pair are arranged side by side along the rotation direction as shown in FIGS. Are symmetrically arranged on a reference line BL extending in the radial direction from the center.
  • the magnetoresistive elements 11 and 12 forming a pair are rotated in the rotational direction (strictly speaking, the rotation of the rotating body 200 at the intersection CP in the rotational direction where the reference line BL and the magnetoresistive elements 11 and 12 are arranged).
  • the magnetoresistive elements 21 and 22 forming a pair are arranged in the rotational direction (strictly, the tangential direction) via the magnetoresistive elements 11 and 12.
  • the parallel direction corresponds to the tangential direction described above.
  • the lateral widths of the magnetoresistive elements 11, 12, 21, and 22 in the rotational direction are the same. Therefore, if the lateral width of the magnetoresistive effect elements 11, 12, 21, and 22 is L, the center of each of the magnetoresistive effect elements 11 and 12 is L / 2 in the rotational direction (tangential direction) from the reference line BL (intersection CP). It is separated. The centers of the magnetoresistive elements 21 and 22 are separated from the reference line BL (intersection CP) by 3L / 2 in the rotational direction (tangential direction). Thus, each of the magnetoresistive effect elements 11, 12, 21, and 22 is separated from the reference line BL (intersection CP) by the width. Therefore, there is a phase difference between the magnetic flux that passes through the centers of the magnetoresistive elements 11, 12, 21, and 22 and the magnetic flux that passes through the intersection CP.
  • the magnetoresistive elements 11 and 21 are located on the left side of the drawing with respect to the reference line BL, and the magnetoresistive elements 12 and 22 are located on the right side of the drawing with respect to the reference line BL. Therefore, when the rotating body 200 rotates counterclockwise, the magnetoresistive effect elements 11 and 21 are positioned upstream of the reference line BL, and the magnetoresistive effect elements 12 and 22 are positioned downstream of the reference line BL. It becomes.
  • the magnetic flux that passes through the magnetoresistive effect element 21 has a phase that is 3L / 2 faster than the reference magnetic flux that passes through the reference line BL, and the magnetic flux that passes through the magnetoresistive effect element 11 has a phase that is L / 2 faster than the reference magnetic flux.
  • the magnetic flux passing through the magnetoresistive effect element 12 is delayed in phase by L / 2 than the reference magnetic flux, and the magnetic flux passing through the magnetoresistive effect element 22 is delayed in phase by 3 L / 2 from the reference magnetic flux. .
  • the magnetoresistive effect elements 12 and 22 are located upstream from the reference line BL, and the magnetoresistive effect elements 11 and 21 are located downstream from the reference line BL. Will be located. Therefore, the magnetic flux that passes through the magnetoresistive effect element 22 has a phase that is 3L / 2 faster than the reference magnetic flux, and the magnetic flux that passes through the magnetoresistive effect element 12 has a phase that is L / 2 faster than the reference magnetic flux.
  • the magnetic flux passing through the magnetoresistive effect element 11 is delayed in phase by L / 2 from the reference magnetic flux, and the magnetic flux passing through the magnetoresistive effect element 21 is delayed in phase by 3 L / 2 from the reference magnetic flux.
  • the rotating body 200 rotates counterclockwise will be described. When the rotating body 200 rotates clockwise, the above-described relationship is established, and thus the description thereof is omitted.
  • each of the magnetoresistive effect elements 11, 12, 21, and 22 includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a pinned layer and a free layer. And a nonmagnetic intermediate layer provided on the substrate.
  • the resistance value fluctuates depending on the magnetization direction of each of the pinned layer and the free layer.
  • the resistance value fluctuates the lowest when the magnetization directions of the free layer and the pinned layer are parallel, and the resistance value varies most when the magnetization directions are antiparallel. Highly fluctuating.
  • the intermediate layer has conductivity
  • each of the magnetoresistive elements 11, 12, 21, and 22 is a giant magnetoresistive element.
  • the magnetization directions of the pinned layers of each of the magnetoresistive effect elements 11, 12, 21, and 22 are along the prescribed plane, and the magnetization directions of the pinned layers of each of the magnetoresistive effect elements 11 and 12 forming a pair are in the radial direction.
  • the magnetization direction of the pinned layer of each of the magnetoresistive effect elements 21 and 22 that form a pair is along the rotational direction (strictly, the tangential direction thereof). Therefore, the magnetization direction of the pinned layer included in each of the magnetoresistive effect elements 11 and 12 forming a pair is different from the magnetization direction of the pinned layer included in each of the magnetoresistive effect elements 21 and 22 forming a pair by 90 ° (270 °). Yes.
  • the magnetization directions of the pin layers of the magnetoresistive elements 11 and 12 forming a pair are different from each other by 180 °, and the magnetization directions of the pin layers of the magnetoresistive elements 21 and 22 forming a pair are different from each other by 180 °. Yes.
  • the magnetoresistive effect element 11 has a magnetization direction of the pinned layer of 0 °
  • the magnetoresistive effect element 12 is The magnetization direction of the pinned layer is 180 °.
  • the magnetoresistive element 21 has a pinned layer with a magnetization direction of 90 °
  • the magnetoresistive element 22 has a pinned layer with a magnetization direction of 270 °.
  • the magnetization directions of the magnetoresistive effect elements 11 and 12 forming a pair are antiparallel to each other, and the magnetization directions of the magnetoresistive effect elements 21 and 22 forming a pair are antiparallel to each other. For this reason, when the resistance values of the two magnetoresistive elements are opposite to each other and one of the two magnetoelectric transducers has a small resistance value, the other resistance value is large.
  • a bridge circuit is formed by the magnetoresistive effect elements 11 and 12 and the magnetoresistive effect elements 21 and 22 that form a pair, and the midpoint potential is changed to the rotational state of the rotating body 200. As a signal based on this, it is input to a processing circuit (not shown) located in the subsequent stage.
  • the first half-bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 that form a pair of the first magnetoelectric conversion unit 10, and the magnetoresistive effect element 21 that forms a pair of the second magnetoelectric conversion unit 20. , 22 form a second half bridge circuit.
  • the magnetization direction of the pinned layer included in each of the paired magnetoresistive effect elements 11 and 12 and the magnetization direction of the pinned layer included in each of the paired magnetoresistive effect elements 21 and 22 are 90 ° (270 °). ) Is different. Therefore, the phase difference between the midpoint potential of the first half bridge circuit (hereinafter referred to as the first midpoint potential) and the midpoint potential of the second half bridge circuit (hereinafter referred to as the second midpoint potential) is 90 °. (270 °). Therefore, if the first midpoint potential is a sine wave, the second midpoint potential is a cosine wave.
  • the processing circuit described above has a threshold value (broken line shown in FIG. 5). By comparing this threshold value with the midpoint potential, the first midpoint potential is set as the first pulse signal, and the second midpoint potential is set as the second potential. Convert to 2-pulse signal.
  • the magnetoresistive effect elements 11, 12, 21, and 22 are arranged side by side along the rotation direction (the tangential direction of the intersection CP). According to this, unlike the configuration in which a plurality of magnetoresistive elements are arranged in the radial direction perpendicular to the rotational direction instead of the rotational direction, the strength of the magnetic flux transmitted through each magnetoresistive element is the same. It becomes. However, in the case of this configuration, as described above, due to its own lateral width, there is a phase difference between the magnetic flux passing through the magnetoresistive effect elements 11, 12, 21, and 22 and the reference magnetic flux passing through the intersection CP.
  • the angle around the intersection CP from the reference line BL in the reference magnetic flux is a.
  • the resistance value of the magnetoresistive effect element 11 constituting the first half bridge circuit (hereinafter referred to as the first resistance value) is as shown by a broken line in FIG.
  • the behavior of a sine wave depending on the angle a is shown.
  • the first resistance value exhibits a behavior in which the phase is deviated from the sine wave as shown by the solid line in FIG.
  • the center of the magnetoresistive effect element 12 is at the intersection CP, as indicated by a broken line in FIG.
  • the resistance value of the magnetoresistive effect element 12 constituting the first half bridge circuit (hereinafter referred to as the second resistance value). Indicates a behavior of a cosine wave depending on the angle a. However, since the center of the magnetoresistive effect element 12 is deviated from the intersection CP, the second resistance value exhibits a behavior in which the phase is deviated from the cosine wave as shown by the solid line in FIG.
  • each of the first resistance value and the second resistance value behaves with a phase shift from the angle a.
  • the first half bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 forming a pair
  • the second half bridge circuit is assembled by the magnetoresistive effect elements 21 and 22 forming the pair
  • the midpoint potential is rotated.
  • the signal is based on the rotation state of the body 200. According to this, the phase shift can be eliminated for the following reason.
  • the reference magnetic flux angle is a.
  • An angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the centers of the paired magnetoresistive elements 11 and 12 is defined as b.
  • the center value of the resistance value of each of the magnetoresistive effect elements forming the pair is Rc
  • the amplitude of the resistance change amount of each of the magnetoresistive effect elements 11 and 12 forming the pair is R0
  • the voltage supplied to the first half bridge circuit is V
  • the first midpoint potential is expressed as (R0 ⁇ sin (ab) + Rc) V / (R0 ⁇ sin (ab) + Rc + R0 ⁇ sin (a + b + 180 °) + Rc).
  • the midpoint potential of the first half-bridge circuit is ( ⁇ V / 2) (sin (a) ⁇ cos (b) / (cos (a) ⁇ sin (b) ⁇ Rc) ⁇ 1).
  • the first midpoint resistance depends only on a in terms of time, and FIG. 7 shows the behavior indicated by the alternate long and short dash line. That is, it shows behavior similar to a sine wave without phase shift.
  • the first midpoint potential is a value at which the phase shift is eliminated. Therefore, by using the first midpoint potential as a signal based on the rotation state of the rotator 200, the detection accuracy of the rotation state of the rotator 200 is improved.
  • the same argument can be applied to the magnetoresistive elements 21 and 22 forming a pair.
  • the same argument can be advanced by setting the angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the centers of the paired magnetoresistive effect elements 21 and 22 to c.
  • the resistance at the midpoint (hereinafter referred to as the second midpoint resistance) is a value with no phase shift. Therefore, by using the second midpoint potential as a signal based on the rotation state of the rotator 200, the detection accuracy of the rotation state of the rotator 200 is improved.
  • the magnetoresistive effect elements 11 and 12 forming a pair are arranged in the rotational direction (tangential direction) without any intervening therebetween, and the magnetoresistive effect elements 21 and 22 forming the pair are magnetoresistive effect elements 11 and 12.
  • the magnetoresistive elements 21 and 22 forming a pair are arranged in the rotational direction (tangential direction) without any intervening elements, and the magnetoresistive elements 11 and 12 forming a pair are magnetoresistive elements. It is also possible to adopt a configuration in which the rotation direction (tangential direction) is arranged via 21 and 22.
  • the first magnetoelectric conversion unit 10 includes a pair of magnetoresistive effect elements 11 and 12
  • the second magnetoelectric conversion unit 20 includes a pair of magnetoresistive effect elements 21 and 22.
  • An example is shown.
  • the number of pairs of magnetoresistive effect elements forming a pair included in each of the magnetoelectric conversion units 10 and 20 is not limited to the above example, and a plurality of pairs may be used.
  • the first magnetoelectric conversion unit 10 includes magnetoresistive effect elements 11 to 14 that form two pairs
  • the second magnetoelectric conversion unit 20 forms a magnetoresistance that forms two pairs.
  • a configuration having effect elements 21 to 24 can also be adopted. In this case, as shown in FIGS.
  • two first half-bridge circuits are formed by the two pairs of magnetoresistive effect elements 11 to 14, and thereby the first full-bridge circuit is formed.
  • two second half-bridge circuits are formed by the magnetoresistive effect elements 21 to 24 forming two pairs, and the second full-bridge circuit is formed by these.
  • the lateral widths of the magnetoresistive elements 11, 12, 21, and 22 in the rotational direction are the same.
  • the lateral widths in the rotational direction (tangential direction) of the magnetoresistive elements forming a pair are equal and the distances from the reference line BL (intersection CP) of the magnetoresistive elements forming the pair may be equal. Therefore, the lateral widths of all the magnetoresistive elements need not be equal.
  • the intermediate layer has conductivity, and each of the magnetoresistive elements 11, 12, 21, and 22 is a giant magnetoresistive element.
  • each of the magnetoresistive effect elements 11, 12, 21, and 22 is a tunnel magnetoresistive effect element.

Abstract

A rotation sensor has a plurality of magnetoelectric conversion units (10, 20), and each of the magnetoelectric conversion units has paired magnetoresistance effect elements (11-14, 21-24). The magnetization directions of the pinned layers provided to each of the paired magnetoresistance effect elements are different from each other by 180°. The paired magnetoresistance effect elements provided to each of the magnetoelectric conversion units are disposed side-by-side along the rotation direction of a rotating body and are disposed so as to be symmetrical in relation to a reference line extending from the axis of rotation of the rotating body so as to be perpendicular to the rotation direction. The paired magnetoresistance effect elements form bridge circuits, and the midpoint potentials of the bridge circuits are made to be signals based on the rotation state of the rotating body.

Description

回転センサRotation sensor 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年7月17日に出願された日本出願番号2013-148785号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2013-148785 filed on July 17, 2013, the contents of which are incorporated herein.
 本開示は、回転体の回転に伴って周期的に向きが変動する磁束の変化に基づいて、回転体の回転状態を検出する回転センサに関するものである。 The present disclosure relates to a rotation sensor that detects a rotation state of a rotating body based on a change in magnetic flux whose direction periodically changes as the rotating body rotates.
 従来、例えば特許文献1に示されるように、N極とS極が交互に配列された磁気部材と、磁気部材の磁極配列面に対向する1対又は複数対のベクトル検知型磁気抵抗効果素子と、を有する磁気式位置検出装置が提案されている。1対又は複数対のベクトル検知型磁気抵抗効果素子は、磁気部材の磁極配列方向に対して略垂直に1列配置されている。これにより、全てのベクトル検知型磁気抵抗効果素子を透過する磁束の位相が同一となっている。 Conventionally, for example, as shown in Patent Document 1, a magnetic member in which N poles and S poles are alternately arranged, and one or more pairs of vector detection type magnetoresistive effect elements facing the magnetic pole arrangement surface of the magnetic member, Have been proposed. One or a plurality of pairs of vector detection type magnetoresistive elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction of the magnetic member. Thereby, the phase of the magnetic flux which permeate | transmits all the vector detection type | mold magnetoresistive effect elements is the same.
 しかしながら、前記磁気式位置検出装置では、各ベクトル検知型磁気抵抗効果素子と磁気部材との対向間隔が異なるために、各ベクトル検知型磁気抵抗効果素子を透過する磁束の強度が異なることとなる。そのため、各ベクトル検知型磁気抵抗効果素子の抵抗値に依存する電気信号に基づいて磁気部材(回転体)の回転状態を高精度に検出することが困難となる虞がある。 However, in the magnetic position detection device, since the facing distance between each vector detection type magnetoresistive effect element and the magnetic member is different, the intensity of the magnetic flux passing through each vector detection type magnetoresistive effect element is different. Therefore, it may be difficult to detect the rotation state of the magnetic member (rotating body) with high accuracy based on an electric signal that depends on the resistance value of each vector detection type magnetoresistive element.
日本特開2006-23179号公報Japanese Unexamined Patent Publication No. 2006-23179
 本開示は、回転体の回転状態の検出精度が向上された回転センサを提供することを目的とする。 This disclosure is intended to provide a rotation sensor with improved detection accuracy of the rotation state of a rotating body.
 本開示の一態様に係る回転センサは、回転体の回転に伴って周期的に向きが変動する磁束の変化に基づいて、回転体の回転状態を検出する回転センサであって、周期的に向きが変動する磁束の変化を電気信号に変換する複数の磁電変換部を有する。前記複数の磁電変換部それぞれは、対を成す磁気抵抗効果素子を有する。対を成す前記磁気抵抗効果素子それぞれは、磁化方向が固定されたピン層と、磁化方向が外部磁界に応じて変動する自由層と、前記ピン層と前記自由層との間に設けられた非磁性の中間層と、を有し、前記ピン層と前記自由層それぞれの前記磁化方向に応じて抵抗値が変動する性質を有する。対を成す前記磁気抵抗効果素子それぞれが有する前記ピン層の磁化方向は互いに180°異なっている。前記複数の磁電変換部それぞれが有する対を成す前記磁気抵抗効果素子は、前記回転体の回転方向に沿って並んで配置され、前記回転体の回転軸から前記回転方向に直交するように延びる基準線にて対称配置されている。対を成す前記磁気抵抗効果素子それぞれによってブリッジ回路が組まれ、前記ブリッジ回路の中点電位を前記回転体の前記回転状態に基づく信号とする。 A rotation sensor according to an aspect of the present disclosure is a rotation sensor that detects a rotation state of a rotating body based on a change in magnetic flux whose direction periodically changes with the rotation of the rotating body. Has a plurality of magnetoelectric conversion units that convert the change in magnetic flux that fluctuates into an electrical signal. Each of the plurality of magnetoelectric conversion units includes a pair of magnetoresistive elements. Each of the pair of magnetoresistive effect elements includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a non-layer provided between the pinned layer and the free layer. A magnetic intermediate layer, and the resistance value varies depending on the magnetization directions of the pinned layer and the free layer. The magnetization directions of the pinned layers of the magnetoresistive elements forming a pair are different from each other by 180 °. The magnetoresistive effect elements forming a pair included in each of the plurality of magnetoelectric conversion units are arranged side by side along the rotation direction of the rotating body, and extend from the rotation axis of the rotating body so as to be orthogonal to the rotation direction. They are arranged symmetrically with lines. A bridge circuit is formed by each of the magnetoresistive effect elements forming a pair, and a midpoint potential of the bridge circuit is set as a signal based on the rotation state of the rotating body.
 前記回転センサは、前記ブリッジ回路の前記中点電位を前記回転体の前記回転状態に基づく信号として活用することで、前記回転体の前記回転状態の検出精度を向上することができる。 The rotation sensor can improve the detection accuracy of the rotating state of the rotating body by utilizing the midpoint potential of the bridge circuit as a signal based on the rotating state of the rotating body.
 本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、第1実施形態に係る回転センサと回転体の位置を概略的に示す斜視図である。 図2は、回転センサと回転体の位置を概略的に示す上面図である。 図3は、ピン層の磁化方向を示す模式図である。 図4は、磁気抵抗効果素子によって組まれたブリッジ回路を示す回路図である。 図5は、中点電位とパルス信号を示すタイミングチャートである。 図6は、交差点を貫く基準磁束を示す模式図である。 図7は、磁気抵抗効果素子、および、中点それぞれの抵抗値の変動を示すグラフ図である。 図8は、磁電変換部の変形例を示す上面図である。 図9は、磁電変換部の変形例を示す上面図である。 図10は、磁電変換部の変形例を示す上面図である。 図11は、第1フルブリッジ回路を示す回路図である。 図12は、第2フルブリッジ回路を示す回路図である。
The above and other objects, configurations, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the following drawings. In the drawing
FIG. 1 is a perspective view schematically showing positions of a rotation sensor and a rotating body according to the first embodiment. FIG. 2 is a top view schematically showing positions of the rotation sensor and the rotating body. FIG. 3 is a schematic diagram showing the magnetization direction of the pinned layer. FIG. 4 is a circuit diagram showing a bridge circuit assembled by magnetoresistive elements. FIG. 5 is a timing chart showing the midpoint potential and the pulse signal. FIG. 6 is a schematic diagram showing a reference magnetic flux passing through an intersection. FIG. 7 is a graph showing fluctuations in resistance values of the magnetoresistive effect element and the midpoint. FIG. 8 is a top view illustrating a modification of the magnetoelectric conversion unit. FIG. 9 is a top view illustrating a modification of the magnetoelectric conversion unit. FIG. 10 is a top view illustrating a modification of the magnetoelectric conversion unit. FIG. 11 is a circuit diagram showing the first full bridge circuit. FIG. 12 is a circuit diagram showing a second full bridge circuit.
 以下、本開示の実施形態を図に基づいて説明する。
(第1実施形態)
 図1~図7に基づいて、本実施形態に係る回転センサを説明する。以下においては、回転体200と回転センサ100それぞれが配置された同一の高さ位置における平面を規定平面、規定平面に直交し、回転体200の回転中心RCを貫く方向を軸方向と示す。また、軸方向の周りの方向を回転方向と示し、規定平面に沿い、回転中心RCから延びる方向を径方向と示す。なお、回転軸は軸方向に沿っている。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
(First embodiment)
A rotation sensor according to this embodiment will be described with reference to FIGS. In the following, a plane at the same height position where the rotator 200 and the rotation sensor 100 are arranged is defined as a specified plane, and a direction perpendicular to the specified plane and passing through the rotation center RC of the rotator 200 is indicated as an axial direction. A direction around the axial direction is indicated as a rotation direction, and a direction extending from the rotation center RC along the prescribed plane is indicated as a radial direction. The rotation axis is along the axial direction.
 回転センサ100は、回転体200の回転に伴って周期的に向きが変動する磁束の変化に基づいて、回転体200の回転状態を検出するものである。回転体200は円環状を成し、その外環面に回転方向に沿って等間隔にN極210およびS極220が形成されている。図1および図2に示すように、N極210およびS極220が交互に形成され、N極210からS極220へとの磁束が流れる。隣接するN極210,S極220間の磁束は、半円形の軌跡を描くように流れる。回転センサ100は、この半円形の軌跡を描く磁束の回転による周期的な変化を検出する。 The rotation sensor 100 detects the rotation state of the rotating body 200 based on a change in magnetic flux whose direction periodically changes as the rotating body 200 rotates. The rotating body 200 has an annular shape, and an N pole 210 and an S pole 220 are formed on the outer ring surface at equal intervals along the rotation direction. As shown in FIGS. 1 and 2, the N pole 210 and the S pole 220 are alternately formed, and a magnetic flux flows from the N pole 210 to the S pole 220. The magnetic flux between the adjacent N pole 210 and S pole 220 flows so as to draw a semicircular locus. The rotation sensor 100 detects a periodic change due to the rotation of the magnetic flux that draws this semicircular locus.
 回転センサ100は、磁束の向きの変化を電気信号に変換する第1磁電変換部10および第2磁電変換部20を有する。第1磁電変換部10は1組の対を成す磁気抵抗効果素子11,12を有し、第2磁電変換部20は1組の対を成す磁気抵抗効果素子21,22を有する。対を成す磁気抵抗効果素子11,12および対を成す磁気抵抗効果素子21,22それぞれは、図1および図2に示すように回転方向に沿って並んで配置され、回転体200の回転中心RCから径方向に沿って延びる基準線BLにて対称配置されている。対を成す磁気抵抗効果素子11,12は間に何も介さずに回転方向(厳密には基準線BLと磁気抵抗効果素子11,12の配置された回転方向の交差点CPにおける回転体200の回転の接線方向)に並び、対を成す磁気抵抗効果素子21,22は磁気抵抗効果素子11,12を介して回転方向(厳密には接線方向)に並んでいる。なお、並列方向は、上記した接線方向に相当する。 The rotation sensor 100 includes a first magnetoelectric conversion unit 10 and a second magnetoelectric conversion unit 20 that convert changes in the direction of magnetic flux into electrical signals. The 1st magnetoelectric conversion part 10 has the magnetoresistive effect elements 11 and 12 which make a pair, and the 2nd magnetoelectric conversion part 20 has the magnetoresistive effect elements 21 and 22 which make a pair. The magnetoresistive effect elements 11 and 12 forming a pair and the magnetoresistive effect elements 21 and 22 forming a pair are arranged side by side along the rotation direction as shown in FIGS. Are symmetrically arranged on a reference line BL extending in the radial direction from the center. The magnetoresistive elements 11 and 12 forming a pair are rotated in the rotational direction (strictly speaking, the rotation of the rotating body 200 at the intersection CP in the rotational direction where the reference line BL and the magnetoresistive elements 11 and 12 are arranged). The magnetoresistive elements 21 and 22 forming a pair are arranged in the rotational direction (strictly, the tangential direction) via the magnetoresistive elements 11 and 12. The parallel direction corresponds to the tangential direction described above.
 本実施形態では磁気抵抗効果素子11,12,21,22それぞれの回転方向の横幅が同一となっている。そのため、磁気抵抗効果素子11,12,21,22の横幅をLとすると、磁気抵抗効果素子11,12それぞれの中心は基準線BL(交差点CP)から回転方向(接線方向)にL/2だけ離間している。そして、磁気抵抗効果素子21,22それぞれの中心は基準線BL(交差点CP)から回転方向(接線方向)に3L/2だけ離間している。このように、磁気抵抗効果素子11,12,21,22それぞれは、基準線BL(交差点CP)に対して、横幅の分、離間している。そのため、磁気抵抗効果素子11,12,21,22それぞれの中心を透過する磁束と交差点CPを透過する磁束とには位相差がある。 In the present embodiment, the lateral widths of the magnetoresistive elements 11, 12, 21, and 22 in the rotational direction are the same. Therefore, if the lateral width of the magnetoresistive effect elements 11, 12, 21, and 22 is L, the center of each of the magnetoresistive effect elements 11 and 12 is L / 2 in the rotational direction (tangential direction) from the reference line BL (intersection CP). It is separated. The centers of the magnetoresistive elements 21 and 22 are separated from the reference line BL (intersection CP) by 3L / 2 in the rotational direction (tangential direction). Thus, each of the magnetoresistive effect elements 11, 12, 21, and 22 is separated from the reference line BL (intersection CP) by the width. Therefore, there is a phase difference between the magnetic flux that passes through the centers of the magnetoresistive elements 11, 12, 21, and 22 and the magnetic flux that passes through the intersection CP.
 図2に示すように、磁気抵抗効果素子11,21は基準線BLよりも紙面左方に位置し、磁気抵抗効果素子12,22は基準線BLよりも紙面右方に位置している。したがって、回転体200が反時計回りに回転する場合、磁気抵抗効果素子11,21は基準線BLよりも上流に位置し、磁気抵抗効果素子12,22は基準線BLよりも下流に位置することとなる。したがって、磁気抵抗効果素子21を貫く磁束は、基準線BLを貫く基準磁束よりも3L/2だけ位相が速く、磁気抵抗効果素子11を貫く磁束は、基準磁束よりもL/2だけ位相が速くなる。これとは反対に、磁気抵抗効果素子12を貫く磁束は、基準磁束よりもL/2だけ位相が遅く、磁気抵抗効果素子22を貫く磁束は、基準磁束よりも3L/2だけ位相が遅くなる。これとは逆に、回転体200が時計回りに回転する場合、磁気抵抗効果素子12,22は基準線BLよりも上流に位置し、磁気抵抗効果素子11,21は基準線BLよりも下流に位置することとなる。したがって、磁気抵抗効果素子22を貫く磁束は基準磁束よりも3L/2だけ位相が速く、磁気抵抗効果素子12を貫く磁束は基準磁束よりもL/2だけ位相が速くなる。これとは反対に、磁気抵抗効果素子11を貫く磁束は基準磁束よりもL/2だけ位相が遅く、磁気抵抗効果素子21を貫く磁束は基準磁束よりも3L/2だけ位相が遅くなる。本実施形態では、回転体200が反時計回りに回転する場合を対象として話をする。回転体200が時計回りに回転する場合、上記した関係が成立するので、その説明を省略する。 As shown in FIG. 2, the magnetoresistive elements 11 and 21 are located on the left side of the drawing with respect to the reference line BL, and the magnetoresistive elements 12 and 22 are located on the right side of the drawing with respect to the reference line BL. Therefore, when the rotating body 200 rotates counterclockwise, the magnetoresistive effect elements 11 and 21 are positioned upstream of the reference line BL, and the magnetoresistive effect elements 12 and 22 are positioned downstream of the reference line BL. It becomes. Therefore, the magnetic flux that passes through the magnetoresistive effect element 21 has a phase that is 3L / 2 faster than the reference magnetic flux that passes through the reference line BL, and the magnetic flux that passes through the magnetoresistive effect element 11 has a phase that is L / 2 faster than the reference magnetic flux. Become. On the contrary, the magnetic flux passing through the magnetoresistive effect element 12 is delayed in phase by L / 2 than the reference magnetic flux, and the magnetic flux passing through the magnetoresistive effect element 22 is delayed in phase by 3 L / 2 from the reference magnetic flux. . On the contrary, when the rotating body 200 rotates clockwise, the magnetoresistive effect elements 12 and 22 are located upstream from the reference line BL, and the magnetoresistive effect elements 11 and 21 are located downstream from the reference line BL. Will be located. Therefore, the magnetic flux that passes through the magnetoresistive effect element 22 has a phase that is 3L / 2 faster than the reference magnetic flux, and the magnetic flux that passes through the magnetoresistive effect element 12 has a phase that is L / 2 faster than the reference magnetic flux. On the contrary, the magnetic flux passing through the magnetoresistive effect element 11 is delayed in phase by L / 2 from the reference magnetic flux, and the magnetic flux passing through the magnetoresistive effect element 21 is delayed in phase by 3 L / 2 from the reference magnetic flux. In the present embodiment, the case where the rotating body 200 rotates counterclockwise will be described. When the rotating body 200 rotates clockwise, the above-described relationship is established, and thus the description thereof is omitted.
 磁気抵抗効果素子11,12,21,22それぞれは、図示しないが、磁化方向が固定されたピン層と、磁化方向が外部磁界に応じて変動する自由層と、ピン層と自由層との間に設けられた非磁性の中間層と、を有する。ピン層と自由層それぞれの磁化方向に応じて抵抗値が変動する性質を有し、自由層とピン層それぞれの磁化方向が平行の場合に最も抵抗値が低く変動し、反平行の場合に最も高く変動する。本実施形態では中間層が導電性を有し、磁気抵抗効果素子11,12,21,22それぞれは巨大磁気抵抗効果素子である。 Although not shown, each of the magnetoresistive effect elements 11, 12, 21, and 22 includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a pinned layer and a free layer. And a nonmagnetic intermediate layer provided on the substrate. The resistance value fluctuates depending on the magnetization direction of each of the pinned layer and the free layer. The resistance value fluctuates the lowest when the magnetization directions of the free layer and the pinned layer are parallel, and the resistance value varies most when the magnetization directions are antiparallel. Highly fluctuating. In the present embodiment, the intermediate layer has conductivity, and each of the magnetoresistive elements 11, 12, 21, and 22 is a giant magnetoresistive element.
 磁気抵抗効果素子11,12,21,22それぞれが有するピン層の磁化方向は、規定平面に沿っており、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向は径方向に沿い、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向は回転方向(厳密にはその接線方向)に沿っている。そのため、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向と、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向とは90°(270°)異なっている。また、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向は互いに180°異なり、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向は互いに180°異なっている。 The magnetization directions of the pinned layers of each of the magnetoresistive effect elements 11, 12, 21, and 22 are along the prescribed plane, and the magnetization directions of the pinned layers of each of the magnetoresistive effect elements 11 and 12 forming a pair are in the radial direction. The magnetization direction of the pinned layer of each of the magnetoresistive effect elements 21 and 22 that form a pair is along the rotational direction (strictly, the tangential direction thereof). Therefore, the magnetization direction of the pinned layer included in each of the magnetoresistive effect elements 11 and 12 forming a pair is different from the magnetization direction of the pinned layer included in each of the magnetoresistive effect elements 21 and 22 forming a pair by 90 ° (270 °). Yes. In addition, the magnetization directions of the pin layers of the magnetoresistive elements 11 and 12 forming a pair are different from each other by 180 °, and the magnetization directions of the pin layers of the magnetoresistive elements 21 and 22 forming a pair are different from each other by 180 °. Yes.
 図3に示すように、径方向に沿う基準線BLから時計回りの角度θで磁化方向を表すと、磁気抵抗効果素子11はピン層の磁化方向が0°であり、磁気抵抗効果素子12はピン層の磁化方向が180°である。また、磁気抵抗効果素子21はピン層の磁化方向が90°であり、磁気抵抗効果素子22はピン層の磁化方向が270°である。このように、対を成す磁気抵抗効果素子11,12の磁化方向は互いに反平行となり、対を成す磁気抵抗効果素子21,22の磁化方向は互いに反平行となっている。そのため、2つの磁気抵抗効果素子の抵抗値の変化が反対となり、2つの磁電変換素子の内の一方の抵抗値が小さくなる場合、他方の抵抗値が大きくなる。 As shown in FIG. 3, when the magnetization direction is expressed by a clockwise angle θ from the reference line BL along the radial direction, the magnetoresistive effect element 11 has a magnetization direction of the pinned layer of 0 °, and the magnetoresistive effect element 12 is The magnetization direction of the pinned layer is 180 °. The magnetoresistive element 21 has a pinned layer with a magnetization direction of 90 °, and the magnetoresistive element 22 has a pinned layer with a magnetization direction of 270 °. Thus, the magnetization directions of the magnetoresistive effect elements 11 and 12 forming a pair are antiparallel to each other, and the magnetization directions of the magnetoresistive effect elements 21 and 22 forming a pair are antiparallel to each other. For this reason, when the resistance values of the two magnetoresistive elements are opposite to each other and one of the two magnetoelectric transducers has a small resistance value, the other resistance value is large.
 図4に示すように、対を成す磁気抵抗効果素子11,12、および、対を成す磁気抵抗効果素子21,22それぞれによってブリッジ回路が組まれ、その中点電位が回転体200の回転状態に基づく信号として、後段に位置する処理回路(図示略)に入力される。第1磁電変換部10の有する1組の対を成す磁気抵抗効果素子11,12によって第1ハーフブリッジ回路が組まれ、第2磁電変換部20の有する1組の対を成す磁気抵抗効果素子21,22によって第2ハーフブリッジ回路が組まれている。上記したように、対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向と、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向とは90°(270°)異なっている。そのため、第1ハーフブリッジ回路の中点電位(以下、第1中点電位と示す)と第2ハーフブリッジ回路の中点電位(以下、第2中点電位と示す)とは位相差が90°(270°)ある。したがって、第1中点電位を正弦波とすると、第2中点電位は余弦波となる。上記した処理回路は閾値(図5に示す破線)を有しており、この閾値と中点電位とを比較することで、第1中点電位を第1パルス信号、第2中点電位を第2パルス信号に変換する。 As shown in FIG. 4, a bridge circuit is formed by the magnetoresistive effect elements 11 and 12 and the magnetoresistive effect elements 21 and 22 that form a pair, and the midpoint potential is changed to the rotational state of the rotating body 200. As a signal based on this, it is input to a processing circuit (not shown) located in the subsequent stage. The first half-bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 that form a pair of the first magnetoelectric conversion unit 10, and the magnetoresistive effect element 21 that forms a pair of the second magnetoelectric conversion unit 20. , 22 form a second half bridge circuit. As described above, the magnetization direction of the pinned layer included in each of the paired magnetoresistive effect elements 11 and 12 and the magnetization direction of the pinned layer included in each of the paired magnetoresistive effect elements 21 and 22 are 90 ° (270 °). ) Is different. Therefore, the phase difference between the midpoint potential of the first half bridge circuit (hereinafter referred to as the first midpoint potential) and the midpoint potential of the second half bridge circuit (hereinafter referred to as the second midpoint potential) is 90 °. (270 °). Therefore, if the first midpoint potential is a sine wave, the second midpoint potential is a cosine wave. The processing circuit described above has a threshold value (broken line shown in FIG. 5). By comparing this threshold value with the midpoint potential, the first midpoint potential is set as the first pulse signal, and the second midpoint potential is set as the second potential. Convert to 2-pulse signal.
 以下、回転センサ100の特徴点とその作用効果について図6および図7に基づいて説明する。上記したように、磁気抵抗効果素子11,12,21,22は回転方向(交差点CPの接線方向)に沿って並んで配置されている。これによれば、複数の磁気抵抗効果素子が回転方向ではなく、回転方向に対して垂直な径方向に並んで配置された構成とは異なり、各磁気抵抗効果素子を透過する磁束の強度が同一となる。ただし本構成の場合、上記したように、自身の横幅のために、磁気抵抗効果素子11,12,21,22それぞれを透過する磁束と交差点CPを透過する基準磁束とに位相差が生じる。 Hereinafter, the characteristic points of the rotation sensor 100 and the effects thereof will be described with reference to FIGS. 6 and 7. As described above, the magnetoresistive effect elements 11, 12, 21, and 22 are arranged side by side along the rotation direction (the tangential direction of the intersection CP). According to this, unlike the configuration in which a plurality of magnetoresistive elements are arranged in the radial direction perpendicular to the rotational direction instead of the rotational direction, the strength of the magnetic flux transmitted through each magnetoresistive element is the same. It becomes. However, in the case of this configuration, as described above, due to its own lateral width, there is a phase difference between the magnetic flux passing through the magnetoresistive effect elements 11, 12, 21, and 22 and the reference magnetic flux passing through the intersection CP.
 図6に示すように、基準磁束における基準線BLから交差点CP周りの角度をaとする。磁気抵抗効果素子11の中心が交差点CPにある場合、図7に破線で示すように、第1ハーフブリッジ回路を構成する磁気抵抗効果素子11の抵抗値(以下、第1抵抗値と示す)は、角度aに依存する正弦波の振る舞いを示す。しかしながら磁気抵抗効果素子11の中心は交差点CPからズレているので、図7に実線で示すように、第1抵抗値は上記した正弦波から位相がズレた振る舞いを示す。同様にして、磁気抵抗効果素子12の中心が交差点CPにある場合、図7に破線で示すように、第1ハーフブリッジ回路を構成する磁気抵抗効果素子12の抵抗値(以下、第2抵抗値と示す)は角度aに依存する余弦波の振る舞いを示す。しかしながら磁気抵抗効果素子12の中心は交差点CPからズレているので、図7に実線で示すように、第2抵抗値は上記した余弦波から位相がズレた振る舞いを示す。 As shown in FIG. 6, the angle around the intersection CP from the reference line BL in the reference magnetic flux is a. When the center of the magnetoresistive effect element 11 is at the intersection CP, the resistance value of the magnetoresistive effect element 11 constituting the first half bridge circuit (hereinafter referred to as the first resistance value) is as shown by a broken line in FIG. The behavior of a sine wave depending on the angle a is shown. However, since the center of the magnetoresistive effect element 11 is deviated from the intersection CP, the first resistance value exhibits a behavior in which the phase is deviated from the sine wave as shown by the solid line in FIG. Similarly, when the center of the magnetoresistive effect element 12 is at the intersection CP, as indicated by a broken line in FIG. 7, the resistance value of the magnetoresistive effect element 12 constituting the first half bridge circuit (hereinafter referred to as the second resistance value). Indicates a behavior of a cosine wave depending on the angle a. However, since the center of the magnetoresistive effect element 12 is deviated from the intersection CP, the second resistance value exhibits a behavior in which the phase is deviated from the cosine wave as shown by the solid line in FIG.
 以上示したように、第1抵抗値と第2抵抗値それぞれは角度aから位相がズレた振る舞いを示す。これは、第2ハーフブリッジ回路を構成する磁気抵抗効果素子21,22の抵抗値についても同様である。しかしながら上記したように、対を成す磁気抵抗効果素子11,12によって第1ハーフブリッジ回路を組み、対を成す磁気抵抗効果素子21,22によって第2ハーフブリッジ回路を組み、その中点電位を回転体200の回転状態に基づく信号としている。これによれば、以下に示す理由により、位相ズレをなくすことができる。 As described above, each of the first resistance value and the second resistance value behaves with a phase shift from the angle a. The same applies to the resistance values of the magnetoresistive elements 21 and 22 constituting the second half bridge circuit. However, as described above, the first half bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 forming a pair, the second half bridge circuit is assembled by the magnetoresistive effect elements 21 and 22 forming the pair, and the midpoint potential is rotated. The signal is based on the rotation state of the body 200. According to this, the phase shift can be eliminated for the following reason.
 上記したように、基準磁束の角度をaとする。そして、対を成す磁気抵抗効果素子11,12それぞれの中心を透過する磁束の向きにおける基準磁束からの角度ズレをbとする。また、対を成す磁気抵抗効果素子それぞれの抵抗値の中心値をRc、対を成す磁気抵抗効果素子11,12それぞれの抵抗変化量の振幅をR0、第1ハーフブリッジ回路に供給する電圧をVとすると、第1中点電位は、(R0×sin(a-b)+Rc)V/(R0×sin(a-b)+Rc+R0×sin(a+b+180°)+Rc)と表される。これを整理すると、第1ハーフブリッジ回路の中点電位は、(-V/2)(sin(a)×cos(b)/(cos(a)×sin(b)-Rc)-1)となり、これは、第1ハーフブリッジ回路の中点における抵抗(以下、第1中点抵抗と示す)に相当する(sin(a)×cos(b)/(cos(a)×sin(b)-Rc)-1)に依存することがわかる。 As described above, the reference magnetic flux angle is a. An angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the centers of the paired magnetoresistive elements 11 and 12 is defined as b. Further, the center value of the resistance value of each of the magnetoresistive effect elements forming the pair is Rc, the amplitude of the resistance change amount of each of the magnetoresistive effect elements 11 and 12 forming the pair is R0, and the voltage supplied to the first half bridge circuit is V Then, the first midpoint potential is expressed as (R0 × sin (ab) + Rc) V / (R0 × sin (ab) + Rc + R0 × sin (a + b + 180 °) + Rc). To summarize this, the midpoint potential of the first half-bridge circuit is (−V / 2) (sin (a) × cos (b) / (cos (a) × sin (b) −Rc) −1). This corresponds to the resistance at the midpoint of the first half-bridge circuit (hereinafter referred to as the first midpoint resistance) (sin (a) × cos (b) / (cos (a) × sin (b) − It can be seen that it depends on Rc) -1).
 ここで、bとRcそれぞれは時間的に一定であるため、sin(b)、cos(b)、および、Rcそれぞれは一定値となる。このため、第1中点抵抗は時間的にaだけに依存することとなり、図7に一点鎖線で示す振る舞いを示す。すなわち、位相ズレのない正弦波に似通った振る舞いを示す。このように、対を成す磁気抵抗効果素子11,12を透過する磁束の位相が異なったとしても、第1中点電位はその位相ズレがなくなった値となる。そこで、この第1中点電位を回転体200の回転状態に基づく信号として活用することで、回転体200の回転状態の検出精度が向上される。 Here, since b and Rc are constant in time, sin (b), cos (b), and Rc each have a constant value. For this reason, the first midpoint resistance depends only on a in terms of time, and FIG. 7 shows the behavior indicated by the alternate long and short dash line. That is, it shows behavior similar to a sine wave without phase shift. As described above, even if the phases of the magnetic fluxes transmitted through the paired magnetoresistive elements 11 and 12 are different, the first midpoint potential is a value at which the phase shift is eliminated. Therefore, by using the first midpoint potential as a signal based on the rotation state of the rotator 200, the detection accuracy of the rotation state of the rotator 200 is improved.
 なお、もちろんではあるが、対を成す磁気抵抗効果素子21,22についても同様の議論を適用することができる。この場合、対を成す磁気抵抗効果素子21,22の中心を透過する磁束の向きにおける基準磁束からの角度ズレをcとすることで、同様の議論を進めることができ、第2ハーフブリッジ回路の中点における抵抗(以下、第2中点抵抗と示す)は位相ズレのなくなった値となる。したがって、第2中点電位を回転体200の回転状態に基づく信号として活用することで、回転体200の回転状態の検出精度が向上される。 Of course, the same argument can be applied to the magnetoresistive elements 21 and 22 forming a pair. In this case, the same argument can be advanced by setting the angle deviation from the reference magnetic flux in the direction of the magnetic flux passing through the centers of the paired magnetoresistive effect elements 21 and 22 to c. The resistance at the midpoint (hereinafter referred to as the second midpoint resistance) is a value with no phase shift. Therefore, by using the second midpoint potential as a signal based on the rotation state of the rotator 200, the detection accuracy of the rotation state of the rotator 200 is improved.
 以上、本開示の実施形態について説明したが、本開示は上記した実施形態になんら制限されることなく、種々変形して実施することが可能である。 Although the embodiment of the present disclosure has been described above, the present disclosure is not limited to the above-described embodiment, and can be implemented with various modifications.
 本実施形態では、対を成す磁気抵抗効果素子11,12は間に何も介さずに回転方向(接線方向)に並び、対を成す磁気抵抗効果素子21,22は磁気抵抗効果素子11,12を介して回転方向(接線方向)に並んでいる例を示した。しかしながら図8に示すように、対を成す磁気抵抗効果素子21,22が間に何も介さずに回転方向(接線方向)に並び、対を成す磁気抵抗効果素子11,12が磁気抵抗効果素子21,22を介して回転方向(接線方向)に並んだ構成を採用することもできる。 In the present embodiment, the magnetoresistive effect elements 11 and 12 forming a pair are arranged in the rotational direction (tangential direction) without any intervening therebetween, and the magnetoresistive effect elements 21 and 22 forming the pair are magnetoresistive effect elements 11 and 12. In the example shown in FIG. However, as shown in FIG. 8, the magnetoresistive elements 21 and 22 forming a pair are arranged in the rotational direction (tangential direction) without any intervening elements, and the magnetoresistive elements 11 and 12 forming a pair are magnetoresistive elements. It is also possible to adopt a configuration in which the rotation direction (tangential direction) is arranged via 21 and 22.
 本実施形態では、第1磁電変換部10は1組の対を成す磁気抵抗効果素子11,12を有し、第2磁電変換部20は1組の対を成す磁気抵抗効果素子21,22を有する例を示した。しかしながら、磁電変換部10,20それぞれが有する対を成す磁気抵抗効果素子の組数としては上記例に限定されず、複数でも良い。例えば図9および図10に示すように、第1磁電変換部10が2組の対を成す磁気抵抗効果素子11~14を有し、第2磁電変換部20が2組の対を成す磁気抵抗効果素子21~24を有する構成を採用することもできる。この場合、図11および図12に示すように、2組の対を成す磁気抵抗効果素子11~14によって第1ハーフブリッジ回路が2つ組まれ、これらによって第1フルブリッジ回路が組まれる。また、2組の対を成す磁気抵抗効果素子21~24によって第2ハーフブリッジ回路が2つ組まれ、これらによって第2フルブリッジ回路が組まれる。 In the present embodiment, the first magnetoelectric conversion unit 10 includes a pair of magnetoresistive effect elements 11 and 12, and the second magnetoelectric conversion unit 20 includes a pair of magnetoresistive effect elements 21 and 22. An example is shown. However, the number of pairs of magnetoresistive effect elements forming a pair included in each of the magnetoelectric conversion units 10 and 20 is not limited to the above example, and a plurality of pairs may be used. For example, as shown in FIGS. 9 and 10, the first magnetoelectric conversion unit 10 includes magnetoresistive effect elements 11 to 14 that form two pairs, and the second magnetoelectric conversion unit 20 forms a magnetoresistance that forms two pairs. A configuration having effect elements 21 to 24 can also be adopted. In this case, as shown in FIGS. 11 and 12, two first half-bridge circuits are formed by the two pairs of magnetoresistive effect elements 11 to 14, and thereby the first full-bridge circuit is formed. In addition, two second half-bridge circuits are formed by the magnetoresistive effect elements 21 to 24 forming two pairs, and the second full-bridge circuit is formed by these.
 本実施形態では磁気抵抗効果素子11,12,21,22それぞれの回転方向の横幅が同一となっている例を示した。しかしながら、対を成す磁気抵抗効果素子同士の回転方向(接線方向)の横幅が等しく、対を成す磁気抵抗効果素子同士の基準線BL(交差点CP)からの離間距離が等しければ良い。したがって、すべての磁気抵抗効果素子の横幅が一律に等しくなくともよい。 In the present embodiment, an example is shown in which the lateral widths of the magnetoresistive elements 11, 12, 21, and 22 in the rotational direction are the same. However, the lateral widths in the rotational direction (tangential direction) of the magnetoresistive elements forming a pair are equal and the distances from the reference line BL (intersection CP) of the magnetoresistive elements forming the pair may be equal. Therefore, the lateral widths of all the magnetoresistive elements need not be equal.
 本実施形態では中間層が導電性を有し、磁気抵抗効果素子11,12,21,22それぞれが巨大磁気抵抗効果素子である例を示した。しかしながら、中間層が絶縁性を有し、磁気抵抗効果素子11,12,21,22それぞれがトンネル磁気抵抗効果素子である構成を採用することもできる。 In the present embodiment, the intermediate layer has conductivity, and each of the magnetoresistive elements 11, 12, 21, and 22 is a giant magnetoresistive element. However, it is also possible to adopt a configuration in which the intermediate layer has insulating properties and each of the magnetoresistive effect elements 11, 12, 21, and 22 is a tunnel magnetoresistive effect element.

Claims (5)

  1.  回転体(200)の回転に伴って周期的に向きが変動する磁束の変化に基づいて、前記回転体の回転状態を検出する回転センサであって、
     周期的に向きが変動する磁束の変化を電気信号に変換する複数の磁電変換部(10,20)を有し、
     複数の前記磁電変換部それぞれは、対を成す磁気抵抗効果素子(11~14,21~24)を有し、
     対を成す前記磁気抵抗効果素子それぞれは、磁化方向が固定されたピン層と、磁化方向が外部磁界に応じて変動する自由層と、前記ピン層と前記自由層との間に設けられた非磁性の中間層と、を有し、前記ピン層と前記自由層それぞれの前記磁化方向に応じて抵抗値が変動する性質を有し、
     対を成す前記磁気抵抗効果素子それぞれが有する前記ピン層の磁化方向が互いに180°異なっており、
     複数の前記磁電変換部それぞれが有する対を成す前記磁気抵抗効果素子は、前記回転体の回転方向に沿って並んで配置され、前記回転体の回転軸から前記回転方向に直交するように延びる基準線(BL)にて対称配置されており、
     対を成す前記磁気抵抗効果素子それぞれによってブリッジ回路が組まれ、前記ブリッジ回路の中点電位を前記回転体の前記回転状態に基づく信号とする回転センサ。
    A rotation sensor that detects a rotation state of the rotating body based on a change in magnetic flux whose direction periodically changes as the rotating body (200) rotates.
    A plurality of magnetoelectric converters (10, 20) for converting a change in magnetic flux whose direction periodically changes into an electrical signal;
    Each of the plurality of magnetoelectric conversion units has a pair of magnetoresistive effect elements (11 to 14, 21 to 24),
    Each of the pair of magnetoresistive effect elements includes a pinned layer having a fixed magnetization direction, a free layer whose magnetization direction varies according to an external magnetic field, and a non-layer provided between the pinned layer and the free layer. A magnetic intermediate layer, and having a property that a resistance value varies according to the magnetization direction of each of the pinned layer and the free layer,
    The magnetization directions of the pinned layers of the magnetoresistive effect elements forming a pair are different from each other by 180 °,
    The magnetoresistive effect elements forming a pair included in each of the plurality of magnetoelectric conversion units are arranged side by side along the rotation direction of the rotating body and extend from the rotation axis of the rotating body so as to be orthogonal to the rotation direction. It is arranged symmetrically with the line (BL),
    A rotation sensor in which a bridge circuit is formed by each of the paired magnetoresistive effect elements, and a midpoint potential of the bridge circuit is a signal based on the rotation state of the rotating body.
  2.  対を成す前記磁気抵抗効果素子それぞれが並ぶ並列方向と前記基準線との交差点(CP)を透過する基準磁束の前記基準線からの前記交差点周りの角度をa、前記磁気抵抗効果素子の中心を透過する磁束の向きにおける前記基準磁束からの角度ズレをb、対を成す前記磁気抵抗効果素子それぞれの抵抗値の中心値をRcとすると、前記ブリッジ回路の前記中点電位は、sin(a)×cos(b)/(cos(a)×sin(b)-Rc)-1に依存する請求項1に記載の回転センサ。 The angle around the intersection from the reference line of the reference magnetic flux that passes through the intersection (CP) between the parallel direction in which each of the magnetoresistive elements forming a pair and the reference line passes is a, and the center of the magnetoresistive effect element is Assuming that the angle deviation from the reference magnetic flux in the direction of the transmitted magnetic flux is b and the central value of the resistance value of each of the magnetoresistive effect elements forming a pair is Rc, the midpoint potential of the bridge circuit is sin (a) The rotation sensor according to claim 1, which depends on x cos (b) / (cos (a) x sin (b) -Rc) -1.
  3.  複数の前記磁電変換部は、前記ピン層の磁化方向が前記回転軸に直交する径方向に沿う第1磁電変換部と、前記ピン層の磁化方向が前記回転体の回転の接線方向に直交する第2磁電変換部と、を含み、
     前記第1磁電変換部の有する1組の対を成す磁気抵抗効果素子(11,12)によって第1ハーフブリッジ回路が組まれ、前記第2磁電変換部の有する1組の対を成す磁気抵抗効果素子(21,22)によって第2ハーフブリッジ回路が組まれている請求項2に記載の回転センサ。
    The plurality of magnetoelectric converters includes a first magnetoelectric converter along a radial direction in which the magnetization direction of the pinned layer is orthogonal to the rotation axis, and a magnetization direction of the pinned layer orthogonal to a tangential direction of rotation of the rotating body. A second magnetoelectric converter,
    A first half bridge circuit is assembled by a pair of magnetoresistive effect elements (11, 12) included in the first magnetoelectric conversion unit, and a pair of magnetoresistive effect included in the second magnetoelectric conversion unit. The rotation sensor according to claim 2, wherein the second half bridge circuit is assembled by the elements (21, 22).
  4.  前記第1磁電変換部の有する2組の対を成す磁気抵抗効果素子(11~14)によって前記第1ハーフブリッジ回路が2つ組まれ、前記2つの第1ハーフブリッジ回路によって第1フルブリッジ回路が組まれており、
     前記第2磁電変換部の有する2組の対を成す磁気抵抗効果素子(21~24)によって前記第2ハーフブリッジ回路が2つ組まれ、前記2つの第2ハーフブリッジ回路によって第2フルブリッジ回路が組まれている請求項3に記載の回転センサ。
    Two first half-bridge circuits are assembled by two pairs of magnetoresistive effect elements (11 to 14) of the first magnetoelectric converter, and the first full-bridge circuit is formed by the two first half-bridge circuits. Is assembled,
    Two second half-bridge circuits are assembled by two pairs of magnetoresistive effect elements (21 to 24) of the second magnetoelectric conversion unit, and a second full-bridge circuit is formed by the two second half-bridge circuits. The rotation sensor according to claim 3, wherein
  5.  前記ブリッジ回路の前記中点電位を前記回転体の前記回転状態に基づく前記信号として検出する処理回路をさらに備える請求項1~4のいずれか一項に記載の回転センサ。 The rotation sensor according to any one of claims 1 to 4, further comprising a processing circuit that detects the midpoint potential of the bridge circuit as the signal based on the rotation state of the rotating body.
PCT/JP2014/003436 2013-07-17 2014-06-27 Rotation sensor WO2015008439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014003316.2T DE112014003316B4 (en) 2013-07-17 2014-06-27 rotation sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-148785 2013-07-17
JP2013148785A JP6064816B2 (en) 2013-07-17 2013-07-17 Rotation sensor

Publications (1)

Publication Number Publication Date
WO2015008439A1 true WO2015008439A1 (en) 2015-01-22

Family

ID=52345923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003436 WO2015008439A1 (en) 2013-07-17 2014-06-27 Rotation sensor

Country Status (3)

Country Link
JP (1) JP6064816B2 (en)
DE (1) DE112014003316B4 (en)
WO (1) WO2015008439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230243A1 (en) * 2017-06-16 2018-12-20 株式会社デンソー Position sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector
WO2010029684A1 (en) * 2008-09-12 2010-03-18 日立金属株式会社 Self-pinned spin valve magnetoresistance effect film and magnetic sensor using the same, and rotation angle detection device
WO2013094236A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Rotation angle detector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561368A (en) * 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
DE10028640B4 (en) * 2000-06-09 2005-11-03 Institut für Physikalische Hochtechnologie e.V. Wheatstone bridge, including bridge elements, consisting of a spin valve system, and a method for their production
JP3839697B2 (en) * 2001-10-17 2006-11-01 アルプス電気株式会社 Rotation angle sensor
JP2005049097A (en) * 2003-07-29 2005-02-24 Alps Electric Co Ltd Fault detection circuit
JP4582298B2 (en) 2004-07-08 2010-11-17 Tdk株式会社 Magnetic position detector
JP2007199007A (en) 2006-01-30 2007-08-09 Alps Electric Co Ltd Magnetic encoder
JP4820182B2 (en) * 2006-02-14 2011-11-24 アルプス電気株式会社 Magnetic encoder
WO2008081797A1 (en) * 2006-12-28 2008-07-10 Alps Electric Co., Ltd. Magnetic detector
JP2010286236A (en) 2007-09-20 2010-12-24 Alps Electric Co Ltd Origin detection device
JP5177197B2 (en) * 2010-10-13 2013-04-03 Tdk株式会社 Rotating magnetic field sensor
JP2013148785A (en) 2012-01-20 2013-08-01 Kaneka Corp Image display device and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector
WO2010029684A1 (en) * 2008-09-12 2010-03-18 日立金属株式会社 Self-pinned spin valve magnetoresistance effect film and magnetic sensor using the same, and rotation angle detection device
WO2013094236A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Rotation angle detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230243A1 (en) * 2017-06-16 2018-12-20 株式会社デンソー Position sensor
CN110741230A (en) * 2017-06-16 2020-01-31 株式会社电装 Position sensor
CN110741230B (en) * 2017-06-16 2023-01-17 株式会社电装 Position sensor
US11733063B2 (en) 2017-06-16 2023-08-22 Denso Corporation Position sensor

Also Published As

Publication number Publication date
DE112014003316T5 (en) 2016-03-31
JP2015021795A (en) 2015-02-02
DE112014003316B4 (en) 2019-07-11
JP6064816B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6345235B2 (en) Magnetic position detection device and magnetic position detection method
JP5590349B2 (en) Magnetic sensor system
US8193805B2 (en) Magnetic sensor
US10648787B2 (en) Rotating field sensor
JP5013146B2 (en) Magnetic position detector
JP4319153B2 (en) Magnetic sensor
JP6049570B2 (en) Rotation detector
US9200884B2 (en) Magnetic sensor system including three detection circuits
JP4582298B2 (en) Magnetic position detector
US9400194B2 (en) Magnetic detection device and on-vehicle rotation detection device equipped with the same
US20140292314A1 (en) Magnetic sensor system including two detection circuits
US10403813B2 (en) Method for forming a magnetoresistive device
JP2012032234A (en) Rotation angle detector
JP5989257B2 (en) Magnetic detector
WO2015056439A1 (en) Rotation angle sensor
WO2015008439A1 (en) Rotation sensor
US10048328B2 (en) Redundant magnetic angle sensor with improved accuracy
JP6455314B2 (en) Rotation detector
US20150061653A1 (en) Angle detection device
JP5158867B2 (en) Rotation angle detector
JP2015021795A5 (en)
JP6540010B2 (en) Magnetic sensor unit
JP5013135B2 (en) Magnetic position detector
JP2016109472A (en) Magnetic sensor
JP2012119518A (en) Rotation angle sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003316

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825842

Country of ref document: EP

Kind code of ref document: A1