JP4582298B2 - Magnetic position detector - Google Patents

Magnetic position detector Download PDF

Info

Publication number
JP4582298B2
JP4582298B2 JP2004201228A JP2004201228A JP4582298B2 JP 4582298 B2 JP4582298 B2 JP 4582298B2 JP 2004201228 A JP2004201228 A JP 2004201228A JP 2004201228 A JP2004201228 A JP 2004201228A JP 4582298 B2 JP4582298 B2 JP 4582298B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic member
pairs
magnetoresistive effect
gmr1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004201228A
Other languages
Japanese (ja)
Other versions
JP2006023179A (en
Inventor
きみ子 大井
誠二 福岡
利尚 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004201228A priority Critical patent/JP4582298B2/en
Publication of JP2006023179A publication Critical patent/JP2006023179A/en
Application granted granted Critical
Publication of JP4582298B2 publication Critical patent/JP4582298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁気抵抗効果素子を用いた磁気式位置検出装置に関し、特に磁気式のスケールやロータリーエンコーダ等に用いて好適な磁気式位置検出装置に関するものである。   The present invention relates to a magnetic position detection apparatus using a magnetoresistive effect element, and more particularly to a magnetic position detection apparatus suitable for use in a magnetic scale, a rotary encoder, or the like.

従来の磁気式位置検出装置として、下記特許文献1のように、N極とS極が交互に着磁された磁気部材1の磁極配列方向と平行に磁気抵抗効果素子2を2箇所以上に離間配置したものが知られている。   As a conventional magnetic position detection device, as shown in Patent Document 1 below, the magnetoresistive effect element 2 is separated at two or more locations in parallel with the magnetic pole arrangement direction of the magnetic member 1 in which the N pole and the S pole are alternately magnetized. The arrangement is known.

特開2003−106866号公報この場合、磁気抵抗効果素子2の配置間隔は、図9(A)のように磁気部材1の着磁ピッチ(磁極配列ピッチ)Pに適合した間隔となっている。すなわち、着磁ピッチ=Pに対して、nを整数とした場合、配置間隔L=nP士(1/8)Pが最適であるとしている。前述の磁気抵抗効果素子2の配置により、磁気式位置検出装置の出力信号は図10(A)のように位相が90°ずれた2相の正弦波形[sinθ,sin(θ+90°)=cosθ]となり、この信号から磁気部材1の磁気情報を得るのに必要な角度θを求めることができる。このように、従来の磁気式位置検出装置は磁気抵抗効果素子2を2箇所以上に離間配置することで、磁気部材1の位置を検出するものである。In this case, the arrangement interval of the magnetoresistive element 2 is an interval suitable for the magnetization pitch (magnetic pole arrangement pitch) P of the magnetic member 1 as shown in FIG. That is, when n is an integer with respect to the magnetization pitch = P, the arrangement interval L = nP (1/8) P is optimal. Due to the arrangement of the magnetoresistive effect element 2 described above, the output signal of the magnetic position detecting device is a two-phase sine waveform [sinθ, sin (θ + 90 °) = cosθ] whose phase is shifted by 90 ° as shown in FIG. Thus, the angle θ necessary for obtaining the magnetic information of the magnetic member 1 can be obtained from this signal. As described above, the conventional magnetic position detecting device detects the position of the magnetic member 1 by disposing the magnetoresistive effect element 2 at two or more locations.

ところで、従来の磁気式位置検出装置では、最適な信号を得るために、図9(A)のように磁気抵抗効果素子2を、磁気部材1の着磁ピッチPに対して素子間隔L=nP士(1/8)Pで配置する必要がある(nは整数)。磁気部材1の変更等により着磁ピッチが変わると各磁気抵抗効果素子から得られる出力信号の位相がずれるため、最適な信号を得ることができなくなってしまう。例えば、磁気部材において図9(B)のように着磁ピッチがPからP×2になった時、同一特性の離間配置した磁気抵抗効果素子の組{磁気抵抗効果素子の配置間隔L=nP±(1/8)P}を使用した場合、各磁気抵抗効果素子による出力信号は図10(B)のよう位相が45°ずれた2相の正弦波形[sinθ,sin(θ+45°)≠cosθ]となり、磁気情報を得るのに必要な角度θを求めることは困難になる。また、外部環境の変化により、磁気部材及び離間配置した磁気抵抗効果素子の材料が変化(伸縮)して相互の検知ピッチがずれた場合でも、磁気式位置検出装置の出力信号の位相がずれることになる。   By the way, in the conventional magnetic position detecting device, in order to obtain an optimum signal, the magnetoresistive effect element 2 is arranged with respect to the magnetization pitch P of the magnetic member 1 as shown in FIG. (1/8) P (N is an integer). If the magnetization pitch is changed by changing the magnetic member 1 or the like, the phase of the output signal obtained from each magnetoresistive element is shifted, so that an optimum signal cannot be obtained. For example, in the magnetic member, when the magnetization pitch is changed from P to P × 2 as shown in FIG. 9B, a set of magnetoresistive effect elements having the same characteristics and spaced apart {arrangement interval of magnetoresistive effect elements L = nP When ± (1/8) P} is used, the output signal from each magnetoresistive element is a two-phase sinusoidal waveform [sinθ, sin (θ + 45 °) ≠ cosθ with a phase shift of 45 ° as shown in FIG. It becomes difficult to obtain the angle θ necessary for obtaining magnetic information. Also, even if the materials of the magnetic member and the magnetoresistive effect element that are spaced apart are changed (stretched) due to changes in the external environment and the mutual detection pitch is shifted, the phase of the output signal of the magnetic position detection device is shifted. become.

本発明は、上記の点に鑑み、磁気部材の磁極配列方向に対して同一位置にベクトル検知型磁気抵抗効果素子を少なくとも1対に配置することで、磁気部材の磁極配列ピッチに依存せず、任意の磁極配列ピッチの磁気部材に対して適正な出力信号が得られる磁気式位置検出装置を提供することを目的とする。   In the present invention, in consideration of the above points, by arranging at least one pair of vector detection type magnetoresistive effect elements at the same position with respect to the magnetic pole arrangement direction of the magnetic member, it does not depend on the magnetic pole arrangement pitch of the magnetic member, It is an object of the present invention to provide a magnetic position detection device capable of obtaining an appropriate output signal for a magnetic member having an arbitrary magnetic pole arrangement pitch.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明に係る磁気式位置検出装置は、N極とS極が交互にに配列された磁気部材と、前記磁気部材の磁極配列面に対向する1対又は複数対のベクトル検知型磁気抵抗効果素子とを有していて、
前記1対又は複数対のベクトル検知型磁気抵抗効果素子を、前記磁気部材による外部磁界に対して感磁面が略平行で、かつ対をなす前記ベクトル検知型磁気抵抗効果素子同士のピン層磁化方向が互いに略90°ずれるように配置するとともに、前記磁気部材の磁極配列方向に対しては同一位置に全ての前記ベクトル検知型磁気抵抗効果素子を配置したことを特徴としている。
In order to achieve the above object, a magnetic position detection apparatus according to the present invention includes a magnetic member in which N poles and S poles are alternately arranged, and one or more pairs facing the magnetic pole arrangement surface of the magnetic member. And a vector detection type magnetoresistive effect element,
The one or more pairs of vector detection type magnetoresistive effect elements are configured such that the pinned layer magnetization of the vector detection type magnetoresistive effect elements that form a pair and have a magnetosensitive surface substantially parallel to an external magnetic field by the magnetic member. It is characterized in that the directions are shifted from each other by approximately 90 °, and all the vector detection type magnetoresistive elements are arranged at the same position with respect to the magnetic pole arrangement direction of the magnetic member.

前記磁気式位置検出装置において、前記複数対のベクトル検知型磁気抵抗効果素子のうちの少なくとも1対と残りの対とではピン層磁化方向が逆方向となった構成にするとよい。   In the magnetic position detection device, at least one of the plurality of pairs of vector detection type magnetoresistive effect elements and the remaining pair may be configured such that the pinned layer magnetization direction is opposite.

前記磁気式位置検出装置において、前記1対又は複数対のベクトル検知型磁気抵抗効果素子を、前記磁気部材の磁極配列方向に対して略垂直に1列配置した構成であるとよい。あるいは、前記1対又は複数対のベクトル検知型磁気抵抗効果素子を、それぞれ前記磁気部材の磁極配列方向に対して略垂直でかつ互いに重ねて配置した構成であってもよい。さらには、前記複数対のベクトル検知型磁気抵抗効果素子を、前記磁気部材の磁極配列方向に対して略垂直に複数列配置しかつ各列を互いに重ねて配置した構成でもよい。   In the magnetic position detection device, the one or more pairs of vector detection type magnetoresistive effect elements may be arranged in a line substantially perpendicular to the magnetic pole arrangement direction of the magnetic member. Alternatively, the one or a plurality of pairs of vector detection type magnetoresistive elements may be arranged so as to be substantially perpendicular to the magnetic pole arrangement direction of the magnetic members and overlap each other. Further, the plurality of pairs of vector detection type magnetoresistive elements may be arranged in a plurality of rows substantially perpendicular to the magnetic pole arrangement direction of the magnetic member, and the rows may be arranged to overlap each other.

前記磁気式位置検出装置において、対をなす前記ベクトル検知型磁気抵抗効果素子の一方を用いた第1の出力信号と、他方を用いた第2の出力信号とは互いに位相が90°ずれた2相の正弦波形であるとよい。   In the magnetic position detection device, the first output signal using one of the vector detection type magnetoresistive effect elements forming a pair and the second output signal using the other are 2 out of phase by 90 °. It may be a sinusoidal waveform of the phase.

前記磁気部材の磁極配列面は平面又は曲面であるとよい。   The magnetic pole array surface of the magnetic member may be a flat surface or a curved surface.

前記ベクトル検知型磁気抵抗効果素子として、スピンバルブ型巨大磁気抵抗効果素子を用いることができる。   As the vector detection type magnetoresistance effect element, a spin valve type giant magnetoresistance effect element can be used.

本発明に係る磁気式位置検出装置によれば、1対又は複数対のベクトル検知型磁気抵抗効果素子を、磁気部材による外部磁界に対して感磁面が略平行で、かつ対をなす前記ベクトル検知型磁気抵抗効果素子同士のピン層磁化方向が互いに略90°ずれるように配置するとともに、前記磁気部材のN極とS極の磁極配列方向に対しては同一位置に全ての前記ベクトル検知型磁気抵抗効果素子を配置するようにしたので、前記磁気部材の磁極配列ピッチに依存せずに、任意の磁極配列ピッチの磁気部材に対して適正な出力信号が得られる。   According to the magnetic position detecting device of the present invention, the vector detection type magnetoresistive effect element of one or more pairs is arranged such that the magnetosensitive surface is substantially parallel to the external magnetic field by the magnetic member and makes a pair. The pinned layer magnetization directions of the sensing type magnetoresistive elements are arranged so as to be shifted from each other by approximately 90 °, and all the vector sensing types are located at the same position with respect to the magnetic pole arrangement direction of the N pole and S pole of the magnetic member. Since the magnetoresistive effect element is arranged, an appropriate output signal can be obtained for a magnetic member having an arbitrary magnetic pole arrangement pitch without depending on the magnetic pole arrangement pitch of the magnetic member.

また、外部環境の影響により前記磁気部材及び前記磁気抵抗効果素子に変化(伸縮)があっても、出力信号にはほとんど影響がなく、常に最適な出力信号を得ることができる。   Even if the magnetic member and the magnetoresistive element are changed (expanded / contracted) due to the influence of the external environment, the output signal is hardly affected, and an optimum output signal can always be obtained.

さらに、前記磁気抵抗効果素子を前記磁気部材の磁極配列方向に対して離間配置しないことにより、前記磁気部材に対するセンサ面が小さくなるため、センス領域が広がる(従来の離間配置ではセンス領域を磁気部材の両端部にまで広げることはできない)。   Furthermore, since the magnetoresistive effect element is not spaced apart from the magnetic pole arrangement direction of the magnetic member, the sensor surface with respect to the magnetic member is reduced, so that the sense region is widened. Cannot be extended to both ends).

以下、本発明を実施するための最良の形態として、磁気式位置検出装置の実施の形態を図面に従って説明する。   Hereinafter, as the best mode for carrying out the present invention, an embodiment of a magnetic position detection device will be described with reference to the drawings.

図1乃至図4で本発明に係る磁気式位置検出装置の実施の形態1を説明する。図1において、1はN極とS極が交互に着磁された検知対象となる磁気部材であり、N極とS極が交互に現れる磁極配列面1aは平面であって、磁極配列方向は磁気部材の長手方向で、各磁極は直線的に配列されている。   A first embodiment of a magnetic position detection apparatus according to the present invention will be described with reference to FIGS. In FIG. 1, reference numeral 1 denotes a magnetic member to be detected in which N poles and S poles are alternately magnetized. A magnetic pole array surface 1a in which N poles and S poles appear alternately is a flat surface, and the magnetic pole array direction is The magnetic poles are linearly arranged in the longitudinal direction of the magnetic member.

一方、前記磁気部材1の磁極配列面1aに対向するように、2対のベクトル検知型磁気抵抗効果素子としてのスピンバルブ型巨大磁気抵抗効果素子SV-GMR1〜SV-GMR4が、磁気部材1の磁極配列方向に対して垂直に1列配置されている。この結果、磁気部材1の磁極配列方向に対しては同一位置に全てのSV-GMR1〜SV-GMR4が配置されることになる。なお、図1では解りやすくするためにSV-GMR1〜SV-GMR4を磁気部材1に比較して大きく図示したが、実際には微小寸法である。また、図4で後述するが、SV-GMR1〜SV-GMR4の感磁面は外部磁界に対して平行となるように配置されている。   On the other hand, the spin valve type giant magnetoresistive effect elements SV-GMR1 to SV-GMR4 as the two pairs of vector detection type magnetoresistive effect elements are arranged so as to face the magnetic pole array surface 1a of the magnetic member 1. One row is arranged perpendicular to the magnetic pole arrangement direction. As a result, all SV-GMR1 to SV-GMR4 are arranged at the same position with respect to the magnetic pole array direction of the magnetic member 1. In FIG. 1, SV-GMR1 to SV-GMR4 are shown larger than the magnetic member 1 for easy understanding, but in actuality, they are very small. As will be described later with reference to FIG. 4, the magnetic sensitive surfaces of SV-GMR1 to SV-GMR4 are arranged so as to be parallel to the external magnetic field.

磁気式位置検出装置を構成するために、磁気部材1と2対のSV-GMR1〜SV-GMR4の少なくとも一方は磁気部材1の磁極配列方向に直線移動可能である。つまり、磁気部材1と2対のSV-GMR1〜SV-GMR4の両者は磁極配列方向に相対移動自在に設けられている。   In order to configure the magnetic position detecting device, at least one of the magnetic member 1 and the two pairs of SV-GMR1 to SV-GMR4 is linearly movable in the magnetic pole arrangement direction of the magnetic member 1. That is, both the magnetic member 1 and the two pairs of SV-GMR1 to SV-GMR4 are provided so as to be relatively movable in the magnetic pole arrangement direction.

ここで、図1で用いるスピンバルブ型巨大磁気抵抗効果素子(以下、スピンバルブ型GMR素子という)は、図4(A)の膜構成に示すように、磁化方向が一方向に固定された強磁性体のピン層と、電流が主として流れる非磁性層と、磁化方向が外部磁界方向(外部磁束方向)に一致する強磁性体のフリー層とで構成されている。ピン層磁化方向と外部磁界のベクトル方向が一致するときは図4(B)の状態a(低抵抗状態)となり、スピンバルブ型GMR素子面内において外部磁界のベクトル方向を回転させると、ピン層磁化方向となす角度により抵抗値が変化し、角度90°では状態b(中抵抗状態)で外部磁界による抵抗値変化が実質ゼロで、反対方向のとき状態c(高抵抗状態)となる。この特性が図4(C)に示すスピンバルブ型GMR素子の面内磁気特性であり、スピンバルブ型GMR素子の感磁面(フリー層が存在する平面)に平行な外部磁界が存在する条件下で、外部磁界を感磁面に垂直な回転中心軸にて回転させ、ピン層磁化方向に対する回転角度と抵抗変化率(ΔR/R)との関係を示したものである。この場合、抵抗変化率(ΔR/R)は正弦波形でなだらかに変化する。   Here, the spin-valve giant magnetoresistive element (hereinafter referred to as a spin-valve GMR element) used in FIG. 1 has a strong magnetization direction fixed in one direction as shown in the film configuration of FIG. A magnetic pinned layer, a nonmagnetic layer through which a current mainly flows, and a ferromagnetic free layer whose magnetization direction coincides with the external magnetic field direction (external magnetic flux direction). When the pinned layer magnetization direction and the vector direction of the external magnetic field coincide with each other, the state a (low resistance state) shown in FIG. 4B is obtained, and when the vector direction of the external magnetic field is rotated in the plane of the spin valve GMR element, The resistance value changes depending on the angle formed with the magnetization direction. At an angle of 90 °, the resistance value change due to the external magnetic field is substantially zero in the state b (medium resistance state), and the state c (high resistance state) is obtained in the opposite direction. This characteristic is the in-plane magnetic characteristic of the spin-valve GMR element shown in FIG. 4C, under the condition that there is an external magnetic field parallel to the magnetosensitive surface (plane where the free layer exists) of the spin-valve GMR element. The relationship between the rotation angle and the resistance change rate (ΔR / R) with respect to the pinned layer magnetization direction is shown by rotating the external magnetic field around the rotation center axis perpendicular to the magnetosensitive surface. In this case, the rate of change in resistance (ΔR / R) changes gently in a sinusoidal waveform.

図1の場合、各SV-GMR1〜SV-GMR4の感磁面は磁極配列面1aに垂直でかつ磁気部材1による外部磁界に平行であり、外部磁界の向きの変化に応じて図4(C)に示したように抵抗変化率(ΔR/R)は変化する。また、各SV-GMR1〜SV-GMR4に図示した矢印はピン層磁化方向を表し、対をなすSV-GMR1,SV-GMR2のうち、一方のSV-GMR1のピン層磁化方向は磁極配列方向に垂直で、他方のSV-GMR2のピン層磁化方向は磁極配列方向に平行である。つまり、対をなすSV-GMR1,SV-GMR2のピン層磁化方向は互いに90°ずれた配置である。同様に対をなすSV-GMR3,SV-GMR4のピン層磁化方向は互いに90°ずれた配置であるが、SV-GMR1,SV-GMR2の対とはピン層磁化方向が逆向きとなっている。   In the case of FIG. 1, the magnetosensitive surfaces of each of the SV-GMR1 to SV-GMR4 are perpendicular to the magnetic pole array surface 1a and parallel to the external magnetic field by the magnetic member 1, and FIG. 4 (C The resistance change rate (ΔR / R) changes as shown in FIG. The arrows shown in each of the SV-GMR1 to SV-GMR4 indicate the pinned layer magnetization direction, and the pinned layer magnetization direction of one of the SV-GMR1 and SV-GMR2 of the pair SV-GMR1 and SV-GMR2 is in the magnetic pole arrangement direction. The pinned layer magnetization direction of the other SV-GMR2 is perpendicular to the magnetic pole arrangement direction. That is, the pin layer magnetization directions of the SV-GMR1 and SV-GMR2 forming a pair are shifted by 90 ° from each other. Similarly, the pin layer magnetization directions of SV-GMR3 and SV-GMR4 that make a pair are shifted by 90 ° from each other, but the pin layer magnetization direction is opposite to that of the pair of SV-GMR1 and SV-GMR2. .

図2は2対のスピンバルブ型GMR素子SV-GMR1〜SV-GMR4を配置した場合に、2相の出力信号Vout1,Vout2を取り出すための回路構成を示す。供給電圧Vinに対しSV-GMR1,SV-GMR3が直列に接続され、両者の接続点から出力信号Vout1が取り出され、供給電圧Vinに対しSV-GMR2,SV-GMR4が直列に接続され、両者の接続点から出力信号Vout2が取り出される。   FIG. 2 shows a circuit configuration for extracting two-phase output signals Vout1 and Vout2 when two pairs of spin-valve GMR elements SV-GMR1 to SV-GMR4 are arranged. SV-GMR1 and SV-GMR3 are connected in series to the supply voltage Vin, an output signal Vout1 is taken out from the connection point between them, and SV-GMR2 and SV-GMR4 are connected in series to the supply voltage Vin. An output signal Vout2 is extracted from the connection point.

本発明の実施の形態1の動作を図1(A)のように磁気部材1の着磁ピッチ(磁極配列ピッチ)=Pの場合について説明する。   The operation of Embodiment 1 of the present invention will be described in the case where the magnetization pitch (magnetic pole arrangement pitch) of the magnetic member 1 = P as shown in FIG.

検知対象としての磁気部材1のN極の中心に近接対向して1列配置のSV-GMR1〜SV-GMR4が位置する時、SV-GMRl〜SV-GMR4のフリー層の磁化方向は磁気部材1の反対方向を向く。従って、SV-GMRl〜SV-GMR4の抵抗値は、SV-GMRl最大値、SV-GMR3最小値、SV-GMR2,SV-GMR4中間値となる。   When SV-GMR1 to SV-GMR4 arranged in one row are located close to and opposite to the center of the north pole of the magnetic member 1 as the detection target, the magnetization directions of the free layers of SV-GMR1 to SV-GMR4 are the magnetic member 1. Turn in the opposite direction. Therefore, the resistance values of SV-GMR1 to SV-GMR4 are SV-GMR1 maximum value, SV-GMR3 minimum value, SV-GMR2 and SV-GMR4 intermediate values.

磁気部材1のS極の中心に近接対向して1列配置のSV-GMR1〜SV-GMR4が位置する時、SV-GMRl〜SV-GMR4のフリー層の磁化方向は磁気部材1の方を向く。従って、SV-GMRl〜SV-GMR4の抵抗値は、SV-GMRl最小値、SV-GMR3最大値、SV-GMR2,SV-GMR4中間値となる。   When one row of SV-GMR1 to SV-GMR4 is positioned close to and opposite to the center of the S pole of the magnetic member 1, the magnetization directions of the free layers of SV-GMR1 to SV-GMR4 are directed toward the magnetic member 1. . Accordingly, the resistance values of SV-GMR1 to SV-GMR4 are SV-GMR1 minimum value, SV-GMR3 maximum value, SV-GMR2, and SV-GMR4 intermediate values.

また、磁気部材1におけるS−N間(S極とN極の境界)に近接対向して1列配置のSV-GMR1〜SV-GMR4が位置する時、SV-GMRl〜SV-GMR4のフリー層の磁化方向はS←Nの方を向く。SV-GMRl〜SV-GMR4の抵抗値は、SV-GMR2最大値、SV-GMR4最小値、SV-GMRl,SV-GMR3中間値となる。   In addition, when the SV-GMR1 to SV-GMR4 arranged in a single row are positioned in close proximity to each other between S and N (boundary between the S pole and the N pole) in the magnetic member 1, the free layers of SV-GMR1 to SV-GMR4 The magnetization direction of S is directed to S ← N. The resistance values of SV-GMR1 to SV-GMR4 are SV-GMR2 maximum value, SV-GMR4 minimum value, SV-GMR1 and SV-GMR3 intermediate values.

磁気部材1におけるN−S間(N極とS極の境界)に近接対向して1列配置のSV-GMR1〜SV-GMR4が位置する時、SV-GMRl〜SV-GMR4のフリー層の磁化方向はN→Sの方を向く。SV-GMRl〜SV-GMR4の抵抗値は、SV-GMR2最小値、SV-GMR4最大値、SV-GMRl,SV-GMR3中間値となる。   When the SV-GMR1 to SV-GMR4 in a single row are positioned in close proximity to each other between NS on the magnetic member 1 (the boundary between the N pole and the S pole), the magnetization of the free layers of SV-GMR1 to SV-GMR4 The direction is N → S. The resistance values of SV-GMR1 to SV-GMR4 are SV-GMR2 minimum value, SV-GMR4 maximum value, and SV-GMR1 and SV-GMR3 intermediate values.

このため、図2の回路構成から得られる出力信号Vout1,Vout2は図3(A)のように互いに位相が90°ずれた2相の正弦波形出力となり、着磁ピッチP分の相対移動が図3(A)の0°〜360°に対応する。   Therefore, the output signals Vout1 and Vout2 obtained from the circuit configuration of FIG. 2 are two-phase sine waveform outputs whose phases are shifted from each other by 90 ° as shown in FIG. This corresponds to 0 ° to 360 ° of 3 (A).

次に、図1(B)のように磁気部材1の着磁ピッチ(磁極配列ピッチ)=P×2の場合について検討すると、SV-GMRl〜SV-GMR4が1列配置で、磁気部材1の磁極配列方向に対しては同一位置にあるため、磁気部材1のN極又はS極の中心に近接対向して1列配置のSV-GMR1〜SV-GMR4が位置する時も、S−N間(S極とN極の境界)又はN−S間(N極とS極の境界)に近接対向して1列配置のSV-GMR1〜SV-GMR4が位置する時も図1(A)と全く同じ動作となり、図3(B)の出力信号Vout1,Vout2が得られる。つまり、磁気部材1の磁極配列ピッチに依存せずに、任意の磁極配列ピッチの磁気部材に対して適正な出力信号、すなわち互いに位相が90°ずれた2相の正弦波形出力が得られることが判る。   Next, considering the case where the magnetization pitch (magnetic pole arrangement pitch) of the magnetic member 1 = P × 2 as shown in FIG. 1B, SV-GMR1 to SV-GMR4 are arranged in one row, and the magnetic member 1 Since they are at the same position with respect to the magnetic pole arrangement direction, even when SV-GMR1 to SV-GMR4 arranged in one row are located close to and opposed to the center of the N-pole or S-pole of the magnetic member 1, between S-N When the SV-GMR1 to SV-GMR4 arranged in a single row are located in close proximity to each other (boundary between S pole and N pole) or between NS (boundary between N pole and S pole), FIG. The operation is exactly the same, and the output signals Vout1 and Vout2 shown in FIG. 3B are obtained. That is, it is possible to obtain an appropriate output signal for a magnetic member having an arbitrary magnetic pole arrangement pitch, that is, a two-phase sine waveform output that is 90 ° out of phase with each other without depending on the magnetic pole arrangement pitch of the magnetic member 1. I understand.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) 4個のスピンバルブ型GMR素子SV-GMR1〜SV-GMR4を磁気部材1による外部磁界に対して感磁面が平行となるように配置し、SV-GMR1,SV-GMR2の対及びSV-GMR3,SV-GMR4の対のピン層磁化方向を相互に90°ずらして配置し、一方のSV-GMR1,SV-GMR2の対のピン層磁化方向に対して他方のSV-GMR3,SV-GMR4の対のピン層磁化方向を逆向きとし、さらに、4個のSV-GMR1〜SV-GMR4を磁気部材1の磁極配列方向に対して垂直方向に1列配置している。この結果、磁気部材1の磁極配列方向に対しては4個のSV-GMR1〜SV-GMR4が同一位置となり、磁気部材1の磁極配列ピッチに依存せずに、任意の磁極配列ピッチの磁気部材に対して適正な出力信号Vout1,Vout2が得られる。 (1) Four spin-valve GMR elements SV-GMR1 to SV-GMR4 are arranged so that the magnetic sensitive surfaces are parallel to the external magnetic field by the magnetic member 1, and the pair of SV-GMR1 and SV-GMR2 The pin layer magnetization directions of the SV-GMR3 and SV-GMR4 pairs are shifted by 90 ° from each other. The other SV-GMR3 and SV-GMR3 and SV-GMR2 pairs are opposite to each other. The pin layer magnetization direction of the pair of -GMR4 is reversed, and four SV-GMR1 to SV-GMR4 are arranged in a line perpendicular to the magnetic pole arrangement direction of the magnetic member 1. As a result, the four SV-GMR1 to SV-GMR4 are located at the same position with respect to the magnetic pole arrangement direction of the magnetic member 1, and the magnetic member has an arbitrary magnetic pole arrangement pitch without depending on the magnetic pole arrangement pitch of the magnetic member 1. In this case, appropriate output signals Vout1 and Vout2 are obtained.

(2) スピンバルブ型GMR素子の感磁面に平行な外部磁界が存在する条件下で、磁気部材1が1列配置のSV-GMR1〜SV-GMR4に対して磁極配列方向に移動するのに従い外部磁界の方向が変化するため、図4(C)に示すスピンバルブ型GMR素子の面内磁気特性を利用することになり、図2の回路構成を用いることで互いに位相が90°ずれた2相の正弦波形の出力信号Vout1,Vout2が得られる。 (2) As the magnetic member 1 moves in the direction of the magnetic pole arrangement with respect to SV-GMR1 to SV-GMR4 arranged in a single row under the condition that an external magnetic field parallel to the magnetosensitive surface of the spin valve type GMR element exists. Since the direction of the external magnetic field changes, the in-plane magnetic characteristics of the spin valve type GMR element shown in FIG. 4C are used, and the phases are shifted by 90 ° from each other by using the circuit configuration of FIG. Output signals Vout1 and Vout2 having a sinusoidal waveform are obtained.

(3) 外部環境の影響により磁気部材1に変化(伸縮)があっても、出力信号Vout1,Vout2にはほとんど影響がなく、常に最適な出力信号を得ることができる。 (3) Even if the magnetic member 1 is changed (expanded / contracted) due to the influence of the external environment, the output signals Vout1 and Vout2 are hardly affected and an optimum output signal can always be obtained.

(4) SV-GMR1〜SV-GMR4を磁気部材1の磁極配列方向に対して離間配置しないことにより、磁気部材1に対するセンサ面が小さくなるため、センス領域が広がる。つまり、従来の離間配置ではセンス領域を磁気部材の両端部にまで広げることはできないが、本実施の形態では磁気部材1の端まで有効に利用できる。 (4) Since the SV-GMR1 to SV-GMR4 are not arranged apart from the magnetic pole arrangement direction of the magnetic member 1, the sensor surface with respect to the magnetic member 1 is reduced, and the sense region is expanded. That is, in the conventional separation arrangement, the sense region cannot be extended to both ends of the magnetic member, but in the present embodiment, it can be effectively used up to the end of the magnetic member 1.

図5は本発明の実施の形態2であって、各スピンバルブ型GMR素子SV-GMR1〜SV-GMR4は磁気部材1の磁極配列面1aに対向し、磁気部材1の磁極配列方向に対して垂直でかつ磁気部材1の磁極配列方向に対しては同一位置となるように互いに重ねて配置されている。SV-GMR1〜SV-GMR4のピン層磁化方向は前述の実施の形態1と同じ設定である。   FIG. 5 shows a second embodiment of the present invention, in which each of the spin valve GMR elements SV-GMR1 to SV-GMR4 faces the magnetic pole array surface 1a of the magnetic member 1 and is in the direction of the magnetic pole array of the magnetic member 1. The magnetic members 1 are arranged so as to overlap each other so as to be in the same position with respect to the magnetic pole arrangement direction of the magnetic member 1. The pinned layer magnetization directions of SV-GMR1 to SV-GMR4 are the same as those in the first embodiment.

なお、その他の構成及び作用効果は前述した実施の形態1と同様であり、同一又は相当部分に同一符号を付して説明を省略する。   Other configurations and operational effects are the same as those of the first embodiment described above, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.

図6は本発明の実施の形態3であって、4個のスピンバルブ型GMR素子SV-GMR1〜SV-GMR4は磁気部材1の磁極配列面1aに対向して2列、2段重ね配置となっている。すなわち、対をなすスピンバルブ型GMR素子SV-GMR1,SV-GMR2の列と、対をなすスピンバルブ型GMR素子SV-GMR3,SV-GMR4の列とが、磁気部材1の磁極配列方向に対してそれぞれ垂直でかつ磁気部材1の磁極配列方向に対しては同一位置となるように互いに重ねて配置されている。SV-GMR1〜SV-GMR4のピン層磁化方向は前述の実施の形態1と同じ設定である。   FIG. 6 shows a third embodiment of the present invention, in which four spin-valve GMR elements SV-GMR1 to SV-GMR4 are arranged in two rows and two tiers so as to face the magnetic pole array surface 1a of the magnetic member 1. It has become. In other words, the pair of spin valve GMR elements SV-GMR1 and SV-GMR2 and the pair of spin valve GMR elements SV-GMR3 and SV-GMR4 form a pair with respect to the magnetic pole arrangement direction of the magnetic member 1. Are arranged so as to be perpendicular to each other and at the same position with respect to the magnetic pole arrangement direction of the magnetic member 1. The pinned layer magnetization directions of SV-GMR1 to SV-GMR4 are the same as those in the first embodiment.

なお、その他の構成及び作用効果は前述した実施の形態1と同様であり、同一又は相当部分に同一符号を付して説明を省略する。   Other configurations and operational effects are the same as those of the first embodiment described above, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.

図7は本発明の実施の形態4であって、2個(1対)のスピンバルブ型GMR素子SV-GMR1,SV-GMR2を磁気部材1の磁極配列面1aに対向配置した例である。この場合、SV-GMR1,SV-GMR2は磁気部材1の磁極配列方向に対して垂直に1列配置され、磁気部材1の磁極配列方向に対しては同一位置にSV-GMR1,SV-GMR2が位置している。SV-GMR1,SV-GMR2のピン層磁化方向等は前述した実施の形態1と同様である。   FIG. 7 shows a fourth embodiment of the present invention, which is an example in which two (one pair) spin valve type GMR elements SV-GMR1, SV-GMR2 are arranged opposite to the magnetic pole array surface 1a of the magnetic member 1. FIG. In this case, SV-GMR1 and SV-GMR2 are arranged in one line perpendicular to the magnetic pole arrangement direction of the magnetic member 1, and the SV-GMR1 and SV-GMR2 are located at the same position with respect to the magnetic pole arrangement direction of the magnetic member 1. positioned. The pinned layer magnetization directions of SV-GMR1 and SV-GMR2 are the same as those in the first embodiment.

図8は実施の形態4のように1対のスピンバルブ型GMR素子SV-GMR1,SV-GMR2を配置した場合に、2相の出力信号Vout1,Vout2を取り出すための回路構成を示す。この場合、前述の実施の形態1の場合のSV-GMR3,SV-GMR4に代えて抵抗R3,R4を用いている。すなわち、供給電圧Vinに対しSV-GMR1,R3が直列に接続され、両者の接続点から出力信号Vout1が取り出され、供給電圧Vinに対しSV-GMR2,R4が直列に接続され、両者の接続点から出力信号Vout2が取り出される。この場合にも、互いに位相が90°ずれた2相の正弦波形の出力信号Vout1,Vout2が得られる。   FIG. 8 shows a circuit configuration for extracting two-phase output signals Vout1 and Vout2 when a pair of spin-valve GMR elements SV-GMR1 and SV-GMR2 are arranged as in the fourth embodiment. In this case, resistors R3 and R4 are used in place of SV-GMR3 and SV-GMR4 in the first embodiment. That is, SV-GMR1 and R3 are connected in series to the supply voltage Vin, the output signal Vout1 is taken out from the connection point of both, and SV-GMR2 and R4 are connected in series to the supply voltage Vin. Output signal Vout2. Also in this case, two-phase sinusoidal output signals Vout1 and Vout2 that are 90 ° out of phase with each other are obtained.

なお、各実施の形態において、外部磁界に対する各スピンバルブ型GMR素子SV-GMR1〜SV-GMR4の感磁面の平行度の多少のずれは実用上許容でき、各SV-GMR1〜SV-GMR4の感磁面が外部磁界に略平行であればよい。また、SV-GMR1,SV-GMR2の対、及びSV-GMR3,SV-GMR4の対におけるピン層磁化方向の直交度の多少のずれは実用上許容でき、互いに略90°ずれていればよい。さらに、実施の形態1,3,4において、複数のスピンバルブ型GMR素子からなる列は、磁気部材1の磁極配列方向に垂直配置であるが、多少のずれは実用上許容でき、略垂直に配置されていればよい。   In each of the embodiments, a slight deviation in the parallelism of the magnetosensitive surfaces of the spin valve GMR elements SV-GMR1 to SV-GMR4 with respect to an external magnetic field is practically acceptable, and each of the SV-GMR1 to SV-GMR4 It is sufficient that the magnetosensitive surface is substantially parallel to the external magnetic field. Further, a slight deviation in the orthogonality of the pinned layer magnetization directions in the SV-GMR1 and SV-GMR2 pairs and the SV-GMR3 and SV-GMR4 pairs can be allowed practically, and it is sufficient that they are substantially 90 ° apart from each other. Further, in the first, third, and fourth embodiments, the row of the plurality of spin valve GMR elements is arranged perpendicular to the magnetic pole arrangement direction of the magnetic member 1, but some deviation is practically acceptable and substantially vertical. It only has to be arranged.

また、各実施の形態においては、磁気部材1の磁極配列面1aが平面であったが、磁気部材の磁極配列面が円周面、半円周面等の曲面であって、該曲面の周面方向にN極及びS極が交互に配列されたものであってもよい。   In each embodiment, the magnetic pole array surface 1a of the magnetic member 1 is a flat surface, but the magnetic pole array surface of the magnetic member is a curved surface such as a circumferential surface or a semicircular surface. N poles and S poles may be alternately arranged in the plane direction.

さらに、前述の実施の形態1,2,3では2対のスピンバルブ型GMR素子を用いたが、検出感度向上等を目的として3対以上のスピンバルブ型GMR素子を用いても良い。   Furthermore, in the first, second, and third embodiments, two pairs of spin valve GMR elements are used. However, for the purpose of improving detection sensitivity, three or more pairs of spin valve GMR elements may be used.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る磁気式位置検出装置の実施の形態1であって、(A)は磁気部材の着磁ピッチ=Pのときの斜視図、(B)は磁気部材の着磁ピッチ=P×2のときの斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a first embodiment of a magnetic position detection apparatus according to the present invention, where (A) is a perspective view when a magnetization pitch of a magnetic member = P, and (B) is a magnetization pitch of the magnetic member = P × 2. It is a perspective view at the time of. 実施の形態1において、互いに位相が90°ずれた2相の正弦波形の出力信号Vout1,Vout2を取り出すための回路図である。In Embodiment 1, it is a circuit diagram for taking out the output signals Vout1 and Vout2 having a two-phase sine waveform whose phases are shifted from each other by 90 °. 出力信号Vout1,Vout2の電圧波形であって、(A)は磁気部材の着磁ピッチ=Pのときの波形図、(B)は磁気部材の着磁ピッチ=P×2のときの波形図である。FIG. 6A is a waveform diagram of the output signals Vout1 and Vout2, where FIG. 5A is a waveform diagram when the magnetization pitch of the magnetic member is P, and FIG. 5B is a waveform diagram when the magnetization pitch of the magnetic member is P × 2. is there. 本発明の実施の形態で用いるスピンバルブ型GMR素子の膜構成及び磁気特性であって、(A)は膜構成の概略斜視図、(B)は低抵抗状態、中抵抗状態及び高抵抗状態となるときのピン層磁化方向とフリー層磁化方向との関係を示す説明図、(C)はスピンバルブ型GMR素子の面内磁気特性(ピン層磁化方向とフリー層磁化方向の成す角度と抵抗変化率との関係)を示す波形図である。FIG. 4 is a film configuration and magnetic characteristics of a spin valve type GMR element used in an embodiment of the present invention, where (A) is a schematic perspective view of the film configuration, and (B) is a low resistance state, a medium resistance state, and a high resistance state. FIG. 6C is an explanatory diagram showing the relationship between the pinned layer magnetization direction and the free layer magnetization direction, and (C) is an in-plane magnetic characteristic of the spin valve type GMR element (an angle formed by the pinned layer magnetization direction and the free layer magnetization direction and resistance change) It is a wave form diagram which shows a relationship). 本発明の実施の形態2を示す斜視図である。It is a perspective view which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す斜視図である。It is a perspective view which shows Embodiment 3 of this invention. 本発明の実施の形態4を示す斜視図である。It is a perspective view which shows Embodiment 4 of this invention. 実施の形態4において、互いに位相が90°ずれた2相の正弦波形の出力信号Vout1,Vout2を取り出すための回路図である。In Embodiment 4, it is a circuit diagram for taking out the output signals Vout1 and Vout2 having a two-phase sine waveform whose phases are shifted from each other by 90 °. 従来技術の概略構成であって、(A)は磁気部材の着磁ピッチ=Pのときの概略構成図、(B)は磁気部材の着磁ピッチ=P×2のときの概略構成図である。FIG. 2A is a schematic configuration diagram of a related art, and FIG. 3A is a schematic configuration diagram when the magnetization pitch of a magnetic member is P, and FIG. 2B is a schematic configuration diagram when the magnetization pitch of the magnetic member is P × 2. . 図9の従来技術における2相の出力信号の電圧波形であって、(A)は磁気部材の着磁ピッチ=Pのときの波形図、(B)は磁気部材の着磁ピッチ=P×2のときの波形図である。FIG. 9 is a voltage waveform of a two-phase output signal in the prior art of FIG. 9, where (A) is a waveform diagram when the magnetization pitch of the magnetic member = P, and (B) is a magnetization pitch of the magnetic member = P × 2. It is a wave form chart at the time of.

符号の説明Explanation of symbols

1 磁気部材
1a 磁極配列面
2 磁気抵抗効果素子
SV-GMR1〜SV-GMR4 スピンバルブ型GMR素子
R3,R4 抵抗
DESCRIPTION OF SYMBOLS 1 Magnetic member 1a Magnetic pole arrangement surface 2 Magnetoresistive element SV-GMR1-SV-GMR4 Spin valve type GMR element R3, R4 Resistance

Claims (8)

N極とS極が交互に配列された磁気部材と、前記磁気部材の磁極配列面に対向する1対又は複数対のベクトル検知型磁気抵抗効果素子とを有する磁気式位置検出装置であって、
前記1対又は複数対のベクトル検知型磁気抵抗効果素子を、前記磁気部材による外部磁界に対して感磁面が略平行で、かつ対をなす前記ベクトル検知型磁気抵抗効果素子同士のピン層磁化方向が互いに略90°ずれるように配置するとともに、前記磁気部材の磁極配列方向に対しては同一位置に全ての前記ベクトル検知型磁気抵抗効果素子を配置したことを特徴とする磁気式位置検出装置。
A magnetic position detection device having a magnetic member in which N poles and S poles are alternately arranged, and one or more pairs of vector sensing magnetoresistive elements facing the magnetic pole arrangement surface of the magnetic member,
The one or more pairs of vector detection type magnetoresistive effect elements are configured such that the pinned layer magnetization of the vector detection type magnetoresistive effect elements that form a pair and have a magnetosensitive surface substantially parallel to an external magnetic field by the magnetic member. The magnetic position detecting device is arranged so that the directions are deviated from each other by about 90 °, and all the vector detection type magnetoresistive effect elements are arranged at the same position with respect to the magnetic pole arrangement direction of the magnetic member. .
前記複数対のベクトル検知型磁気抵抗効果素子のうちの少なくとも1対と残りの対とではピン層磁化方向が逆方向となっていることを特徴とする請求項1記載の磁気式位置検出装置。   2. The magnetic position detecting device according to claim 1, wherein at least one pair of the plurality of pairs of vector detection type magnetoresistive elements and the remaining pairs have opposite directions of pinned layer magnetization. 前記1対又は複数対のベクトル検知型磁気抵抗効果素子を、前記磁気部材の磁極配列方向に対して略垂直に1列配置したことを特徴とする請求項1又は2記載の磁気式位置検出装置。   3. The magnetic position detecting device according to claim 1, wherein the one or more pairs of vector detection type magnetoresistive effect elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction of the magnetic member. . 前記1対又は複数対のベクトル検知型磁気抵抗効果素子を、それぞれ前記磁気部材の磁極配列方向に対して略垂直でかつ互いに重ねて配置したことを特徴とする請求項1又は2記載の磁気式位置検出装置。   3. The magnetic type according to claim 1, wherein the one or more pairs of vector detection type magnetoresistive elements are arranged substantially perpendicular to the magnetic pole arrangement direction of the magnetic members and overlap each other. Position detection device. 前記複数対のベクトル検知型磁気抵抗効果素子を、前記磁気部材の磁極配列方向に対して略垂直に複数列配置しかつ各列を互いに重ねて配置したことを特徴とする請求項1又は2記載の磁気式位置検出装置。   3. The plurality of pairs of vector-detecting magnetoresistive elements are arranged in a plurality of rows substantially perpendicular to the magnetic pole arrangement direction of the magnetic member, and the rows are arranged to overlap each other. Magnetic position detector. 対をなす前記ベクトル検知型磁気抵抗効果素子の一方を用いた第1の出力信号と、他方を用いた第2の出力信号とは互いに位相が90°ずれた2相の正弦波形であることを特徴とする請求項1,2,3,4又は5記載の磁気式位置検出装置。   The first output signal using one of the vector sensing magnetoresistive effect elements forming a pair and the second output signal using the other are two-phase sine waveforms that are 90 ° out of phase with each other. 6. A magnetic position detecting device according to claim 1, 2, 3, 4 or 5. 前記磁気部材の磁極配列面が平面又は曲面であることを特徴とする請求項1,2,3,4,5又は6記載の磁気式位置検出装置。   7. The magnetic position detecting device according to claim 1, wherein the magnetic pole array surface of the magnetic member is a flat surface or a curved surface. 前記ベクトル検知型磁気抵抗効果素子は、スピンバルブ型巨大磁気抵抗効果素子であることを特徴とする請求項1,2,3,4,5,6又は7記載の磁気式位置検出装置。   8. The magnetic position detecting device according to claim 1, wherein the vector detection type magnetoresistive effect element is a spin valve type giant magnetoresistive effect element.
JP2004201228A 2004-07-08 2004-07-08 Magnetic position detector Expired - Lifetime JP4582298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201228A JP4582298B2 (en) 2004-07-08 2004-07-08 Magnetic position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201228A JP4582298B2 (en) 2004-07-08 2004-07-08 Magnetic position detector

Publications (2)

Publication Number Publication Date
JP2006023179A JP2006023179A (en) 2006-01-26
JP4582298B2 true JP4582298B2 (en) 2010-11-17

Family

ID=35796552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201228A Expired - Lifetime JP4582298B2 (en) 2004-07-08 2004-07-08 Magnetic position detector

Country Status (1)

Country Link
JP (1) JP4582298B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232808B2 (en) 2006-09-19 2009-03-04 日立金属株式会社 Magnetic encoder device
WO2008062778A1 (en) * 2006-11-21 2008-05-29 Hitachi Metals, Ltd. Rotation angle detection device, rotation device, and rotation angle detection method
WO2008081797A1 (en) * 2006-12-28 2008-07-10 Alps Electric Co., Ltd. Magnetic detector
WO2008143347A1 (en) * 2007-05-24 2008-11-27 Alps Electric Co., Ltd. Gmr sensor
EP2244070A4 (en) * 2008-02-07 2017-07-12 Hitachi Metals, Ltd. Rotation angle detection device, rotary machine, and rotation angle detection method
JP4900838B2 (en) * 2008-05-16 2012-03-21 日立金属株式会社 Position detection device and linear drive device
JP5144373B2 (en) * 2008-05-29 2013-02-13 アルプス電気株式会社 Magnetic detection type encoder
WO2010098472A1 (en) * 2009-02-26 2010-09-02 日立金属株式会社 Angle detector and position detector
US20110101964A1 (en) 2009-11-05 2011-05-05 Udo Ausserlechner Magnetic Encoder Element for Position Measurement
JP5013146B2 (en) 2009-12-03 2012-08-29 Tdk株式会社 Magnetic position detector
JP5896912B2 (en) * 2009-12-04 2016-03-30 ヒルシュマン オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングHirschmann Automotive GmbH For example, a Hall effect-based rotation angle measurement system for manually operated accelerator rotation grips
JP5249281B2 (en) * 2010-04-23 2013-07-31 Tdk株式会社 Magnetic position detector
JP2012208112A (en) * 2011-03-11 2012-10-25 Alps Electric Co Ltd Position sensor, magnet member and manufacturing method for magnet member
JP5201493B2 (en) * 2011-09-26 2013-06-05 日立金属株式会社 Position detection device and linear drive device
JP6064816B2 (en) 2013-07-17 2017-01-25 株式会社デンソー Rotation sensor
JP6107589B2 (en) * 2013-10-15 2017-04-05 株式会社デンソー Rotation angle sensor
JP5721804B2 (en) 2013-10-29 2015-05-20 三菱電機株式会社 Magnetic detection device and vehicle rotation detection device equipped with the same
JP6207978B2 (en) * 2013-11-11 2017-10-04 浜松光電株式会社 Rotation detector
JP6464907B2 (en) 2015-04-20 2019-02-06 Tdk株式会社 POSITION DETECTION DEVICE AND USE STRUCTURE OF POSITION DETECTION DEVICE
US11327127B2 (en) 2019-07-10 2022-05-10 Allegro Microsystems, Llc Magnetic field sensor with reduced influence of external stray magnetic fields

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226960A (en) * 1994-11-04 1996-09-03 Internatl Business Mach Corp <Ibm> Magnetic field sensor and manufacture thereof
JP2002305336A (en) * 2001-04-09 2002-10-18 Alps Electric Co Ltd Spin-valve-type thin-film element and its manufacturing method
JP2003121197A (en) * 2001-10-17 2003-04-23 Alps Electric Co Ltd Rotation angle sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226960A (en) * 1994-11-04 1996-09-03 Internatl Business Mach Corp <Ibm> Magnetic field sensor and manufacture thereof
JP2002305336A (en) * 2001-04-09 2002-10-18 Alps Electric Co Ltd Spin-valve-type thin-film element and its manufacturing method
JP2003121197A (en) * 2001-10-17 2003-04-23 Alps Electric Co Ltd Rotation angle sensor

Also Published As

Publication number Publication date
JP2006023179A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4582298B2 (en) Magnetic position detector
US6107793A (en) Magnetic sensing device unaffected by positioning error of magnetic field sensing elements
JP4259937B2 (en) Angle detection sensor
US8736256B2 (en) Rotating field sensor
TWI393867B (en) Magnetic rotation angle detector
JP4807535B2 (en) Magnetic sensor
JP4319153B2 (en) Magnetic sensor
US9200884B2 (en) Magnetic sensor system including three detection circuits
US20170045380A1 (en) Rotary sensing device
JP4873709B2 (en) Current sensor
JP2008277834A (en) Magnetic field angle sensor and magnetic tunnel junction element, and method for manufacturing the magnetic field angle sensor
JP2011503540A (en) Omni-directional magnetic field angle sensor
JP2005534199A (en) Use of GMR sensor elements and GMR sensor elements
JP2011145300A (en) Magnetization method for mr sensor
JP2018151181A (en) Magnetic position detecting device
US20090251830A1 (en) Magnetic detector
EP3764115A2 (en) Magnetic field sensor with magnetoresistance elements arranged in a bridge and having a common reference direction and opposite bias directions
KR101825313B1 (en) Magnetic detection apparatus
JP2008008699A (en) Rotation detecting apparatus
JP4973869B2 (en) Moving body detection device
JP2010286238A (en) Magnetic sensor
JP2010133851A (en) Rotation angle sensor
JP2005351656A (en) Magnetism detector
JP2004109113A (en) Magnetism detection device
JP7534146B2 (en) Magnetic sensor system and lens position detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Ref document number: 4582298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

EXPY Cancellation because of completion of term