JP2010133851A - Rotation angle sensor - Google Patents

Rotation angle sensor Download PDF

Info

Publication number
JP2010133851A
JP2010133851A JP2008310929A JP2008310929A JP2010133851A JP 2010133851 A JP2010133851 A JP 2010133851A JP 2008310929 A JP2008310929 A JP 2008310929A JP 2008310929 A JP2008310929 A JP 2008310929A JP 2010133851 A JP2010133851 A JP 2010133851A
Authority
JP
Japan
Prior art keywords
rotation angle
pair
angle sensor
magnetic
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310929A
Other languages
Japanese (ja)
Other versions
JP5206962B2 (en
Inventor
Koichi Akiyama
浩一 秋山
Taisuke Furukawa
泰助 古川
Shingo Tomohisa
伸吾 友久
Takeharu Kuroiwa
丈晴 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008310929A priority Critical patent/JP5206962B2/en
Publication of JP2010133851A publication Critical patent/JP2010133851A/en
Application granted granted Critical
Publication of JP5206962B2 publication Critical patent/JP5206962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accurate rotation angle sensor. <P>SOLUTION: The rotation angle sensor includes a pair of bias magnets 1 and 2 rotating together with a rotating body, a substrate 5 provided between the bias magnets 1 and 2, and a pair of magnetic members 3 and 4 provided on an internal end surface of the bias magnets 1 and 2, respectively. Grooves 3a and 4a extending in a direction parallel to a rotation center line are formed respectively on the internal end surface of the magnetic members 3 and 4. Therefore, a uniform magnetic field can be applied to the substrate 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は回転角度センサに関し、特に、回転体の回転角度を検出する回転角度センサに関する。より特定的には、この発明は、自動車エンジンのカムシャフトの回転角度や、工作機器や電車車両などの各種機械のモーターの回転角度を磁気的に検出する回転角度センサに関する。   The present invention relates to a rotation angle sensor, and more particularly to a rotation angle sensor that detects a rotation angle of a rotating body. More specifically, the present invention relates to a rotation angle sensor that magnetically detects the rotation angle of a camshaft of an automobile engine and the rotation angle of motors of various machines such as machine tools and train cars.

近年、自動車エンジンのバルブの開閉状態をモニタするため、カムシャフトの回転角度を磁気的に検出する回転角度センサが使用されている。この回転角度センサでは、カム軸に固定されたバイアス磁石の回転に伴って変化する磁界を磁気抵抗素子によって検知する。磁気抵抗素子は、磁界変化に伴って抵抗値が変化する素子である。磁気抵抗素子としては、ホール素子、AMR(An-Isotropic Magnetro Resistance:異方性磁気抵抗)素子、GMR(Giant Magnetro Resistance:巨大磁気抵抗)素子などがある(たとえば、特許文献1参照)。   In recent years, a rotation angle sensor that magnetically detects the rotation angle of a camshaft has been used to monitor the open / closed state of a valve of an automobile engine. In this rotation angle sensor, a magnetic field that changes as the bias magnet fixed to the camshaft rotates is detected by a magnetoresistive element. A magnetoresistive element is an element whose resistance value changes with a change in magnetic field. Examples of the magnetoresistive element include a Hall element, an AMR (Anisotropic Magnetro Resistance) element, and a GMR (Giant Magnetro Resistance) element (see, for example, Patent Document 1).

また、磁気抵抗素子には、磁界の方向を検出する素子もあり、たとえば、先に示したスピンバルブ構造を利用したGMR素子でも磁界方向を検知することができる。また、TMR(Tunneling Magneto Resistance:トンネル磁気抵抗)素子やAMR(An-Isotropic Magneto Resistance:異方性磁気抵抗)素子が挙げられる。特に、TMR素子は、その抵抗変化率がホール素子、AMR素子、GMR素子の抵抗変化率よりも1から2桁も大きく、電気ノイズに対する許容度が大きな高感度の磁気抵抗素子である。
特開平2001−159542号公報
The magnetoresistive element also includes an element that detects the direction of the magnetic field. For example, the GMR element that uses the spin valve structure described above can also detect the direction of the magnetic field. Further, there are TMR (Tunneling Magneto Resistance) elements and AMR (An-Isotropic Magneto Resistance) elements. In particular, the TMR element is a highly sensitive magnetoresistive element whose resistance change rate is one to two orders of magnitude greater than the resistance change rates of the Hall element, AMR element, and GMR element, and has a high tolerance for electrical noise.
Japanese Patent Laid-Open No. 2001-159542

このような磁界の方向を検出する磁気抵抗素子を利用して被検出体の絶対角度位置を検出するためには、回転体にバイアス磁石を取り付ける際に取り付け誤差が発生したり、磁気抵抗素子を構成するチップのサイズが大きかったりする場合でも、磁界のゆがみによる検出誤差を抑制するために、回転体に固定されたバイアス磁石からの磁界の方位が広い範囲にわたって均一であることが必要である。したがって、磁気抵抗素子を用いた回転角度センサの開発には、方位が均一の磁界を磁気抵抗素子の周囲の空間に形成しなければならないという課題があった。   In order to detect the absolute angular position of the detected object using such a magnetoresistive element that detects the direction of the magnetic field, an attachment error occurs when the bias magnet is attached to the rotating body, or the magnetoresistive element is Even when the size of the chip to be configured is large, in order to suppress a detection error due to the distortion of the magnetic field, the direction of the magnetic field from the bias magnet fixed to the rotating body needs to be uniform over a wide range. Therefore, the development of a rotation angle sensor using a magnetoresistive element has a problem that a magnetic field having a uniform orientation must be formed in the space around the magnetoresistive element.

この発明の主たる目的は、高精度の回転角度センサを提供することである。   A main object of the present invention is to provide a highly accurate rotation angle sensor.

この発明に係る回転角度センサは、回転体の回転角度を検出する回転角度センサであって、1対のバイアス磁石と、磁気抵抗素子と、磁束ガイドを備えたものである。1対のバイアス磁石は、回転体の回転中心線と直交する直線に沿って回転中心線の両側に設けられ、回転体とともに回転する。磁気抵抗素子は、1対のバイアス磁石の間に設けられ、1対のバイアス磁石間の磁界の方向に応じて抵抗値が変化する。磁束ガイドは、1対のバイアス磁石間の磁界を均一化する。この磁束ガイドは、それぞれ1対のバイアス磁石に対応して設けられ、各々が対応するバイアス磁石の磁気抵抗素子側の端面に設けられた1対の磁性部材を含む。各磁性部材の磁気抵抗素子側の端面には、回転中心線と平行な方向に延在する溝が形成されている。   A rotation angle sensor according to the present invention is a rotation angle sensor that detects a rotation angle of a rotating body, and includes a pair of bias magnets, a magnetoresistive element, and a magnetic flux guide. The pair of bias magnets is provided on both sides of the rotation center line along a straight line orthogonal to the rotation center line of the rotating body, and rotates together with the rotating body. The magnetoresistive element is provided between the pair of bias magnets, and the resistance value changes according to the direction of the magnetic field between the pair of bias magnets. The magnetic flux guide equalizes the magnetic field between the pair of bias magnets. Each of the magnetic flux guides is provided corresponding to a pair of bias magnets, and includes a pair of magnetic members provided on end faces of the corresponding bias magnets on the magnetoresistive element side. A groove extending in a direction parallel to the rotation center line is formed on the end surface of each magnetic member on the magnetoresistive element side.

この発明に係る回転角度センサでは、1対のバイアス磁石間の磁界を均一化する磁束ガイドが設けられる。この磁束ガイドは、それぞれ1対のバイアス磁石に対応して設けられ、各々が対応するバイアス磁石の磁気抵抗素子側の端面に設けられた1対の磁性部材を含む。各磁性部材の磁気抵抗素子側の端面には、回転中心線と平行な方向に延在する溝が形成されている。したがって、磁気抵抗素子に均一な磁界を印加することができるので、高精度な回転角度センサを実現することができる。   In the rotation angle sensor according to the present invention, a magnetic flux guide for making the magnetic field between the pair of bias magnets uniform is provided. Each of the magnetic flux guides is provided corresponding to a pair of bias magnets, and includes a pair of magnetic members provided on end faces of the corresponding bias magnets on the magnetoresistive element side. A groove extending in a direction parallel to the rotation center line is formed on the end surface of each magnetic member on the magnetoresistive element side. Therefore, since a uniform magnetic field can be applied to the magnetoresistive element, a highly accurate rotation angle sensor can be realized.

以下の実施の形態では、磁界方向を検出するための磁気抵抗素子として、最も感度が高いTMR素子を用いた場合について説明するが、他の磁気抵抗素子を用いても同様の効果を得ることが可能である。   In the following embodiment, a case where a TMR element having the highest sensitivity is used as the magnetoresistive element for detecting the magnetic field direction will be described, but the same effect can be obtained even if other magnetoresistive elements are used. Is possible.

図1は、この発明の一実施の形態による回転角度センサの構成を示す斜視図であり、図2は、その上面図である。図1および図2において、この回転角度センサは、1対のバイアス磁石1,2、1対の磁性部材3,4、TMR素子基板5、および支持台6を備える。この回転角度センサは、たとえば、自動車エンジンのバルブの開閉状態をモニタするため、カムシャフトの回転角度を磁気的に検出する。   FIG. 1 is a perspective view showing a configuration of a rotation angle sensor according to an embodiment of the present invention, and FIG. 2 is a top view thereof. 1 and 2, this rotation angle sensor includes a pair of bias magnets 1, 2, a pair of magnetic members 3, 4, a TMR element substrate 5, and a support base 6. For example, the rotation angle sensor magnetically detects the rotation angle of the camshaft in order to monitor the opening / closing state of a valve of an automobile engine.

バイアス磁石1,2は、カムシャフトに固定されており、カムシャフトとともに回転する。バイアス磁石1,2は、カムシャフトの回転軸(Z軸)と直交する直線に沿ってZ軸の一方側および他方側にそれぞれ配置されている。バイアス磁石1,2のN極およびS極はZ軸と直交する直線の長さ方向に沿って配置され、バイアス磁石1のN極とバイアス磁石2のS極は対向して配置されている。   The bias magnets 1 and 2 are fixed to the camshaft and rotate together with the camshaft. The bias magnets 1 and 2 are arranged on one side and the other side of the Z axis along a straight line orthogonal to the rotation axis (Z axis) of the camshaft. The N poles and S poles of the bias magnets 1 and 2 are arranged along the length direction of a straight line orthogonal to the Z axis, and the N poles of the bias magnet 1 and the S pole of the bias magnet 2 are arranged to face each other.

磁性部材3,4は、それぞれバイアス磁石1,2の内側の端面に接合されている。磁性部材3,4は、バイアス磁石1,2間の磁界を均一化する磁束ガイドを構成する。磁性部材3,4の各々は、上方から見ると、魚の尾のような形状を有している。   The magnetic members 3 and 4 are joined to the inner end faces of the bias magnets 1 and 2, respectively. The magnetic members 3 and 4 constitute a magnetic flux guide that makes the magnetic field between the bias magnets 1 and 2 uniform. Each of the magnetic members 3 and 4 has a shape like a fish tail when viewed from above.

すなわち、磁性部材3は、上方から見ると、外側(バイアス磁石1側)の幅S1よりも内側(バイアス磁石2側)の幅S2の方が大きく形成されており、その内側の端面にはZ軸と平行な方向に延在するV字形の溝3aが形成されている。外側の幅S1は、バイアス磁石1の幅よりも大きく形成されている。溝3aの幅Lyは、磁性部材3,4間の距離Lxの半分程度に設定されている。   That is, when viewed from above, the magnetic member 3 is formed such that the inner side (bias magnet 2 side) width S2 is larger than the outer side (bias magnet 1 side) width S1, and Z on the inner end face thereof. A V-shaped groove 3a extending in a direction parallel to the axis is formed. The outer width S <b> 1 is formed larger than the width of the bias magnet 1. The width Ly of the groove 3 a is set to about half of the distance Lx between the magnetic members 3 and 4.

同様に、磁性部材4は、上方から見ると、外側(バイアス磁石2側)の幅S1よりも内側(バイアス磁石1側)の幅S2の方が大きく形成されており、その内側の端面にはZ軸と平行な方向に延在するV字形の溝4aが形成されている。外側の幅S1は、バイアス磁石2の幅よりも大きく形成されている。溝4aの幅Lyは、磁性部材3,4間の距離Lxの半分程度に設定されている。   Similarly, when viewed from above, the magnetic member 4 is formed such that the inner side (bias magnet 1 side) width S2 is larger than the outer side (bias magnet 2 side) width S1, and the inner end face thereof is formed. A V-shaped groove 4a extending in a direction parallel to the Z axis is formed. The outer width S <b> 1 is formed larger than the width of the bias magnet 2. The width Ly of the groove 4 a is set to about half of the distance Lx between the magnetic members 3 and 4.

TMR素子基板5は、バイアス磁石1,2の中間位置に設けられ、支持台6の表面に固定されている。TMR素子基板5は、そのピン方向が回転軸(Z軸)に対して垂直な平面(XY平面)内に位置するように支持台6上に固定されており、バイアス磁石1,2の回転に伴って変化する磁界の方向を検出する。   The TMR element substrate 5 is provided at an intermediate position between the bias magnets 1 and 2 and is fixed to the surface of the support base 6. The TMR element substrate 5 is fixed on the support base 6 so that its pin direction is located in a plane (XY plane) perpendicular to the rotation axis (Z axis). The direction of the magnetic field that changes with the detection is detected.

図3は、磁性部材3,4間の磁束の分布を示す図である。図3において、磁界は磁性部材3の溝3aの両側の縁付近から放出され、反対側の磁性部材4の溝4aの両側の縁付近で吸収される。TMR素子基板5が設置された回転中心軸付近では、磁界の方向は広い領域で均一にX軸方向を向いており、磁束密度は広い領域で均一化されている。また、磁性部材3,4の外側の幅S1をバイアス磁石1,2の幅よりも大きくしたので、TMR素子基板5付近の磁界強度を大きくすることができる。   FIG. 3 is a diagram showing the distribution of magnetic flux between the magnetic members 3 and 4. In FIG. 3, the magnetic field is emitted from the vicinity of both edges of the groove 3 a of the magnetic member 3 and absorbed near the edges of both sides of the groove 4 a of the opposite magnetic member 4. Near the rotation center axis on which the TMR element substrate 5 is installed, the direction of the magnetic field is uniformly directed in the X-axis direction in a wide region, and the magnetic flux density is made uniform in a wide region. Further, since the outer width S1 of the magnetic members 3 and 4 is made larger than the width of the bias magnets 1 and 2, the magnetic field strength near the TMR element substrate 5 can be increased.

図4(a)はTMR素子基板5の構成を示す図であり、同図(b)はその構成を示す回路図である。TMR素子基板5は、図4(a)に示すように、基板10と、その表面に形成された4つのTMR素子11〜14とを含む。TMR素子11,12は磁界の方向を検出するために使用され、TMR素子13,14は、たとえば、エンジンルームでの温度変化に伴なうTMR素子11,12の特性変化を補正するために設けられている。   4A is a diagram showing the configuration of the TMR element substrate 5, and FIG. 4B is a circuit diagram showing the configuration. As shown in FIG. 4A, the TMR element substrate 5 includes a substrate 10 and four TMR elements 11 to 14 formed on the surface thereof. The TMR elements 11 and 12 are used to detect the direction of the magnetic field, and the TMR elements 13 and 14 are provided, for example, for correcting characteristic changes of the TMR elements 11 and 12 due to temperature changes in the engine room. It has been.

これら4つのTMR素子11〜14により、図4(b)に示すようなブリッジ回路が構成され、基板10の上に配線されている。また、基板10の表面には、TMR素子11〜14の他に、ブリッジ回路からの電気信号を増幅するための差動アンプ15や信号処理回路(図示せず)なども形成され、外的環境による電気ノイズの低減を図っている。   A bridge circuit as shown in FIG. 4B is configured by these four TMR elements 11 to 14 and wired on the substrate 10. In addition to the TMR elements 11 to 14, a differential amplifier 15 for amplifying an electric signal from the bridge circuit, a signal processing circuit (not shown), and the like are formed on the surface of the substrate 10. Electric noise is reduced by this.

詳しく説明すると、TMR素子11,14は電源電圧Viのラインと接地電圧GNDのラインとの間に直列接続され、TMR素子13,12は電源電圧Viのラインと接地電圧GNDのラインとの間に直列接続されている。TMR素子11,14の間のノードは差動アンプの反転入力端子(−端子)に接続され、TMR素子13,12の間のノードは差動アンプの非反転入力端子(+端子)に接続される。これにより、磁界の方向が変化することによるTMR素子11〜14の抵抗値の変化は差動アンプ15の出力電圧VOに変換される。   More specifically, the TMR elements 11 and 14 are connected in series between the power supply voltage Vi line and the ground voltage GND line, and the TMR elements 13 and 12 are connected between the power supply voltage Vi line and the ground voltage GND line. They are connected in series. The node between the TMR elements 11 and 14 is connected to the inverting input terminal (− terminal) of the differential amplifier, and the node between the TMR elements 13 and 12 is connected to the non-inverting input terminal (+ terminal) of the differential amplifier. The Thereby, the change in the resistance value of the TMR elements 11 to 14 due to the change in the direction of the magnetic field is converted into the output voltage VO of the differential amplifier 15.

TMR素子11,12の各々の抵抗値をRsとし、TMR素子13,14の各々の抵抗値をRrとし、差動アンプ15の増幅率をGとすると、差動アンプ15の出力電圧VOは次式(1)で表わされる。
VO=GVi(Rs−Rr)/(Rs+Rr) …(1)
TMR素子11〜14の各々は、電子スピンの方向が固定されているピン層と、トンネル層と、電子スピンの方向が外部磁界方向に依存するフリー層との積層構造を有する。TMR素子11〜14の各々の抵抗値R(θ)は、外部磁界の方向によって次式(2)のように表わされる。
R(θ)≒Rα−Rβcosθ …(2)
ここで、cosθは、TMR素子11〜14の各々におけるピン層の電子スピンの方向(基準方向)と、外部磁界方向との成す角度の余弦である。RαとRβは外部磁界の大きさには依存しないので、R(θ)は外部磁界方向のみで決まる値である。ピン層の電子スピンの方向と外部磁界方向に依存するフリー層の電子スピンの方向が平行である場合はR(θ)は最小値|Rα−Rβ|となり、反平行である場合は(θ)は最大値(Rα+Rβ)となる。
When the resistance value of each of the TMR elements 11 and 12 is Rs, the resistance value of each of the TMR elements 13 and 14 is Rr, and the amplification factor of the differential amplifier 15 is G, the output voltage VO of the differential amplifier 15 is It is represented by Formula (1).
VO = GVi (Rs−Rr) / (Rs + Rr) (1)
Each of the TMR elements 11 to 14 has a stacked structure of a pinned layer in which the direction of electron spin is fixed, a tunnel layer, and a free layer in which the direction of electron spin depends on the external magnetic field direction. The resistance value R (θ) of each of the TMR elements 11 to 14 is represented by the following equation (2) depending on the direction of the external magnetic field.
R (θ) ≈Rα−Rβcosθ (2)
Here, cos θ is a cosine of an angle formed between the direction of the electron spin (reference direction) of the pinned layer in each of the TMR elements 11 to 14 and the direction of the external magnetic field. Since Rα and Rβ do not depend on the magnitude of the external magnetic field, R (θ) is a value determined only by the direction of the external magnetic field. When the direction of the electron spin of the pinned layer and the direction of the electron spin of the free layer depending on the direction of the external magnetic field are parallel, R (θ) is the minimum value | Rα−Rβ |, and when it is antiparallel, (θ) Is the maximum value (Rα + Rβ).

数式(1)(2)から、TMR素子11〜14における外部磁界方向と出力電圧VOの関係が決まる。この実施の形態においては、TMR素子11,12のピン層の電子スピンの方向と、TMR素子13,14のピン層の電子スピンの方向が180°反転した方向を向いている。このとき、一方向を向いた外部磁界においては、TMR素子11,12とTMR素子13,14では、数式(2)の第2項の符号が異なることになり、数式(1)の分母が外部磁界の方向cosθに依らない定数となるので、出力電圧はcosθに比例した波形を示す。   From the formulas (1) and (2), the relationship between the external magnetic field direction and the output voltage VO in the TMR elements 11 to 14 is determined. In this embodiment, the direction of the electron spin of the pinned layers of the TMR elements 11 and 12 and the direction of the electron spin of the pinned layers of the TMR elements 13 and 14 are directed in the direction reversed by 180 °. At this time, in the external magnetic field facing in one direction, the TMR elements 11 and 12 and the TMR elements 13 and 14 have different signs in the second term of the formula (2), and the denominator of the formula (1) is external. Since the constant does not depend on the magnetic field direction cos θ, the output voltage shows a waveform proportional to cos θ.

この結果、たとえば、図5に示すような正弦波状の出力波形が得られた。ただし、磁気抵抗比が20%のTMR素子11〜14を使用し、バイアス電圧Viを2Vとし、ゲインGが5の差動アンプ15を使用した。図5から分かるように、波形歪が極めて小さな出力波形を得ることができた。また、出力振幅に関しても、TMR素子は磁気抵抗比が大きいので、AMR素子を使用した場合と比べて、1桁以上大きな出力を得ることができた。回転の絶対角度は、このような正弦波の出力電圧VOをデジタル信号に変換することにより得られる。   As a result, for example, a sinusoidal output waveform as shown in FIG. 5 was obtained. However, TMR elements 11 to 14 having a magnetoresistance ratio of 20% were used, a bias voltage Vi was set to 2 V, and a differential amplifier 15 having a gain G of 5 was used. As can be seen from FIG. 5, an output waveform with extremely small waveform distortion could be obtained. As for the output amplitude, since the TMR element has a large magnetoresistance ratio, an output larger by one digit or more can be obtained as compared with the case where the AMR element is used. The absolute angle of rotation is obtained by converting such a sine wave output voltage VO into a digital signal.

次に、バイアス磁石1,2に対するTMR素子基板5の取り付け位置の誤差の影響について説明する。図6は、バイアス磁石1,2の回転の中心軸とTMR素子基板5との距離を変えた場合の出力波形の歪から見積もった角度誤差の一例を示す図である。これらのデータは、磁気抵抗比が20%のTMR素子11〜14を使用し、対向する2つの磁性部材3,4間の距離Lxを7mmとし、溝3a,4aの幅Lyを変えた場合のセンサの出力電圧VOの波形から見積もったものである。   Next, the influence of an error in the mounting position of the TMR element substrate 5 with respect to the bias magnets 1 and 2 will be described. FIG. 6 is a diagram illustrating an example of an angular error estimated from the distortion of the output waveform when the distance between the central axis of rotation of the bias magnets 1 and 2 and the TMR element substrate 5 is changed. These data are obtained when the TMR elements 11 to 14 having a magnetoresistance ratio of 20% are used, the distance Lx between the two opposing magnetic members 3 and 4 is 7 mm, and the width Ly of the grooves 3a and 4a is changed. This is estimated from the waveform of the output voltage VO of the sensor.

図6のデータから、TMR素子基板5がバイアス磁石1,2の回転の中心軸から離れるに従って、角度誤差が一様に増加することが分かる。また、特定の比(Ly/Lx=0.63)において角度誤差が小さくなることが分かる。   It can be seen from the data in FIG. 6 that the angular error increases uniformly as the TMR element substrate 5 moves away from the central axis of rotation of the bias magnets 1 and 2. It can also be seen that the angle error is small at a specific ratio (Ly / Lx = 0.63).

TMR素子基板5がバイアス磁石1,2の回転の中心軸から1mmだけ離れたとき、LxとLyの比を変えた場合の角度誤差をプロットしたデータを図7に示す。図7から、特定の比(Ly/Lx=0.63)において角度誤差が最小値を有し、検出角度の精度が向上することが分かる。このデータは、Lx=7mmの場合の結果であるが、Lxが他の値の場合でも、本実施の形態の形状の磁性部材3,4を用いた場合は、Ly/Lx=0.63で角度検出精度が最適となる.
以上のように、本実施の形態によれば、磁束方向の変化を検出する磁気抵抗素子としてTMR素子の特長を最大限に活かし、高感度で、かつ大出力であり、その取り付け精度の許容度を大幅に向上した回転角度センサを実現することが可能となる。
FIG. 7 shows data plotting the angle error when the ratio of Lx and Ly is changed when the TMR element substrate 5 is separated by 1 mm from the central axis of rotation of the bias magnets 1 and 2. FIG. 7 shows that the angle error has a minimum value at a specific ratio (Ly / Lx = 0.63), and the accuracy of the detected angle is improved. This data is a result when Lx = 7 mm. However, even when Lx has other values, when magnetic members 3 and 4 having the shape of the present embodiment are used, Ly / Lx = 0.63. Angle detection accuracy is optimal.
As described above, according to the present embodiment, the features of the TMR element are utilized to the maximum extent as a magnetoresistive element for detecting a change in the direction of magnetic flux, and the sensitivity is high and the output is high. It is possible to realize a rotation angle sensor that greatly improves the above.

また、図8は、この実施の形態の変更例を示す図であって、図2と対比される図である。ただし、TMR素子基板5および支持台6の図示は省略されている。図8において、この変更例では、磁性部材3,4がそれぞれ磁性部材21,22で置換される。磁性部材21,22の各々は、コの字形の断面を有する。磁性部材21,22の内側の端面には、Z軸と平行な方向に延在する角型の溝21a,22aがそれぞれ形成されている。この変更例でも、実施の形態と同じ効果が得られる。   FIG. 8 is a diagram showing a modified example of this embodiment, and is a diagram to be compared with FIG. However, the illustration of the TMR element substrate 5 and the support base 6 is omitted. In FIG. 8, in this modified example, the magnetic members 3 and 4 are replaced with magnetic members 21 and 22, respectively. Each of the magnetic members 21 and 22 has a U-shaped cross section. Square grooves 21a and 22a extending in the direction parallel to the Z-axis are formed on the inner end faces of the magnetic members 21 and 22, respectively. Even in this modified example, the same effect as the embodiment can be obtained.

なお、この変更例では、LxとLyの比Ly/Lxが実施の形態に比べてやや小さな値(0.5程度)のときに角度精度が向上する。また、図9に示すように、磁性部材21,22の各々の外側のZ軸と平行な角を斜めに削ってもよい。   In this modified example, the angle accuracy is improved when the ratio Ly / Lx between Lx and Ly is slightly smaller than the embodiment (about 0.5). Moreover, as shown in FIG. 9, you may cut off the angle | corner parallel to the Z axis | shaft of each outer side of the magnetic members 21 and 22 diagonally.

また、図10は、この実施の形態の他の変更例を示す図であって、図2と対比される図である。ただし、TMR素子基板5および支持台6の図示は省略されている。図10において、この変更例では、磁性部材3,4がそれぞれ磁性部材23,24で置換される。磁性部材23,24の各々は、楕円を2分割した形状を有し、U字形の断面を有する。磁性部材23,24の内側の端面には、Z軸と平行な方向に延在するU字形の溝23a,24aがそれぞれ形成されている。この変更例でも、実施の形態と同じ効果が得られる。   FIG. 10 is a diagram showing another modification of this embodiment, and is a diagram contrasted with FIG. However, the illustration of the TMR element substrate 5 and the support base 6 is omitted. In FIG. 10, in this modified example, the magnetic members 3 and 4 are replaced with magnetic members 23 and 24, respectively. Each of the magnetic members 23 and 24 has a shape obtained by dividing an ellipse into two parts, and has a U-shaped cross section. U-shaped grooves 23a and 24a extending in a direction parallel to the Z-axis are formed on the inner end faces of the magnetic members 23 and 24, respectively. Even in this modified example, the same effect as the embodiment can be obtained.

なお、この変更例でも、LxとLyの比Ly/Lxが実施の形態に比べてやや小さな値(0.5程度)のときに角度精度が向上する。また、図11に示すように、磁性部材23,24の各々が円を2分割した形状を有していてもよい。   Even in this modified example, the angle accuracy is improved when the ratio Ly / Lx between Lx and Ly is slightly smaller than the embodiment (about 0.5). Moreover, as shown in FIG. 11, each of the magnetic members 23 and 24 may have a shape obtained by dividing a circle into two.

また、この実施の形態では、磁界を検出する素子としてTMR素子を用いたが、磁気抵抗素子としてAMR素子やGMR素子を用いても、同じ効果を得ることができる。   In this embodiment, a TMR element is used as an element for detecting a magnetic field. However, the same effect can be obtained even when an AMR element or a GMR element is used as a magnetoresistive element.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の一実施の形態による回転角度センサの構成を示す斜視図である。It is a perspective view which shows the structure of the rotation angle sensor by one Embodiment of this invention. 図1に示した回転角度センサの構成を示す上面図である。It is a top view which shows the structure of the rotation angle sensor shown in FIG. 図1に示した1対の磁性部材間の磁束の分布を示す図である。It is a figure which shows distribution of the magnetic flux between a pair of magnetic members shown in FIG. 図1に示したTMR素子基板の構成を示す図である。It is a figure which shows the structure of the TMR element board | substrate shown in FIG. 図1に示した回転角度センサの角度と出力電圧の関係を示す図である。It is a figure which shows the relationship between the angle of the rotation angle sensor shown in FIG. 1, and output voltage. 図1に示した1対のバイアス磁石の回転軸とTMR素子基板との位置ずれと角度精度との関係を示す図である。It is a figure which shows the relationship between the positional offset and angle accuracy of the rotating shaft of a pair of bias magnet shown in FIG. 1, and a TMR element board | substrate. 図2に示したLy/Lxと角度精度との関係を示す図である。It is a figure which shows the relationship between Ly / Lx shown in FIG. 2, and angle accuracy. 実施の形態の変更例を示す図である。It is a figure which shows the example of a change of embodiment. 実施の形態の他の変更例を示す図である。It is a figure which shows the other example of a change of embodiment. 実施の形態のさらに他の変更例を示す図である。It is a figure which shows the further another example of a change of embodiment. 実施の形態のさらに他の変更例を示す図である。It is a figure which shows the further another example of a change of embodiment.

符号の説明Explanation of symbols

1,2 バイアス磁石、3,4,21〜24 磁性部材、3a,4a,21a〜24a 溝、5 TMR素子基板、6 支持台、10 基板、11〜14 TMR素子、15 差動アンプ。   1, 2 Bias magnet, 3, 4, 21-24 Magnetic member, 3a, 4a, 21a-24a Groove, 5 TMR element substrate, 6 Support base, 10 Substrate, 11-14 TMR element, 15 Differential amplifier.

Claims (3)

回転体の回転角度を検出する回転角度センサであって、
前記回転体の回転中心線と直交する直線に沿って前記回転中心線の両側に設けられ、前記回転体とともに回転する1対のバイアス磁石と、
前記一対のバイアス磁石の間に設けられ、前記1対のバイアス磁石間の磁界の方向に応じて抵抗値が変化する磁気抵抗素子と、
前記1対のバイアス磁石間の磁界を均一化する磁束ガイドとを備え、
前記磁束ガイドは、それぞれ前記1対のバイアス磁石に対応して設けられ、各々が対応するバイアス磁石の前記磁気抵抗素子側の端面に設けられた1対の磁性部材を含み、
各磁性部材の前記磁気抵抗素子側の端面には、前記回転中心線と平行な方向に延在する溝が形成されている、回転角度センサ。
A rotation angle sensor for detecting a rotation angle of a rotating body,
A pair of bias magnets provided on both sides of the rotation center line along a straight line orthogonal to the rotation center line of the rotation body, and rotating together with the rotation body;
A magnetoresistive element provided between the pair of bias magnets, the resistance value of which varies according to the direction of the magnetic field between the pair of bias magnets;
A magnetic flux guide for uniformizing the magnetic field between the pair of bias magnets,
Each of the magnetic flux guides is provided corresponding to the pair of bias magnets, each including a pair of magnetic members provided on an end surface of the corresponding bias magnet on the magnetoresistive element side,
A rotation angle sensor, wherein a groove extending in a direction parallel to the rotation center line is formed on an end face of each magnetic member on the magnetoresistive element side.
前記溝の幅は、前記1対の磁性部材間の距離の0.4〜0.8倍に設定されている、請求項1に記載の回転角度センサ。   The rotation angle sensor according to claim 1, wherein a width of the groove is set to 0.4 to 0.8 times a distance between the pair of magnetic members. 各磁性部材の対応するバイアス磁石側の端面の幅は、対応するバイアス磁石の幅よりも狭い、請求項1または請求項2に記載の回転角度センサ。   The rotation angle sensor according to claim 1 or 2, wherein a width of an end face of each magnetic member corresponding to the bias magnet is narrower than a width of the corresponding bias magnet.
JP2008310929A 2008-12-05 2008-12-05 Rotation angle sensor Expired - Fee Related JP5206962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310929A JP5206962B2 (en) 2008-12-05 2008-12-05 Rotation angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310929A JP5206962B2 (en) 2008-12-05 2008-12-05 Rotation angle sensor

Publications (2)

Publication Number Publication Date
JP2010133851A true JP2010133851A (en) 2010-06-17
JP5206962B2 JP5206962B2 (en) 2013-06-12

Family

ID=42345283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310929A Expired - Fee Related JP5206962B2 (en) 2008-12-05 2008-12-05 Rotation angle sensor

Country Status (1)

Country Link
JP (1) JP5206962B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109472A (en) * 2014-12-03 2016-06-20 浜松光電株式会社 Magnetic sensor
JP2020122721A (en) * 2019-01-31 2020-08-13 株式会社デンソー Position sensor
JP2022109020A (en) * 2021-01-14 2022-07-27 大銀微系統股▲分▼有限公司 Position detection mechanism
JP2022160054A (en) * 2021-04-06 2022-10-19 三菱電機株式会社 Rotation angle detector
US11543267B2 (en) 2021-01-05 2023-01-03 Hiwin Mikrosystem Corp. Position sensing mechanism
US11976948B2 (en) 2020-07-03 2024-05-07 Tdk Corporation Angle detection apparatus, angle detection system, park lock system, pedal system, and magnetic field generation module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540808U (en) * 1991-10-25 1993-06-01 富士通テン株式会社 Rotating magnetic circuit
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
JP2006208252A (en) * 2005-01-31 2006-08-10 Tdk Corp Angle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540808U (en) * 1991-10-25 1993-06-01 富士通テン株式会社 Rotating magnetic circuit
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
JP2006208252A (en) * 2005-01-31 2006-08-10 Tdk Corp Angle detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109472A (en) * 2014-12-03 2016-06-20 浜松光電株式会社 Magnetic sensor
JP2020122721A (en) * 2019-01-31 2020-08-13 株式会社デンソー Position sensor
JP7167739B2 (en) 2019-01-31 2022-11-09 株式会社デンソー position sensor
US11976948B2 (en) 2020-07-03 2024-05-07 Tdk Corporation Angle detection apparatus, angle detection system, park lock system, pedal system, and magnetic field generation module
US11543267B2 (en) 2021-01-05 2023-01-03 Hiwin Mikrosystem Corp. Position sensing mechanism
JP2022109020A (en) * 2021-01-14 2022-07-27 大銀微系統股▲分▼有限公司 Position detection mechanism
JP2022160054A (en) * 2021-04-06 2022-10-19 三菱電機株式会社 Rotation angle detector
JP7183330B2 (en) 2021-04-06 2022-12-05 三菱電機株式会社 Rotation angle detector

Also Published As

Publication number Publication date
JP5206962B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US10690515B2 (en) Dual Z-axis magnetoresistive angle sensor
US10533877B2 (en) Angle sensor with disturbance field suppression
JP4324813B2 (en) Rotation angle detector and rotating machine
US9429632B2 (en) Magnetic position detection device
JP5271448B2 (en) Magnetic position detector
WO2009099054A1 (en) Rotation angle detection device, rotary machine, and rotation angle detection method
JP5206962B2 (en) Rotation angle sensor
WO2009116365A1 (en) Origin position signal detector
US9091565B2 (en) Magnetic position detection apparatus
US20120098529A1 (en) Rotation angle detecting device
JP4947250B2 (en) Angle detector
JP2012127736A (en) Magnetic sensor
JP4973869B2 (en) Moving body detection device
JP7156249B2 (en) Position detector
JP4506960B2 (en) Moving body position detection device
JP2004109113A (en) Magnetism detection device
JP4737371B2 (en) Rotation angle detector
JP4737372B2 (en) Rotation angle detector
WO2022244734A1 (en) Magnetic sensor and magnetic detection system
JP4773066B2 (en) Gear sensor
JP2018105621A (en) Magnetic sensor device
JP2009121858A (en) Amplification circuit
WO2018173590A1 (en) Magnetic sensor unit and magnetic field direction detection method using same
JP5013135B2 (en) Magnetic position detector
JP2023083648A (en) Magnetic sensor, electric control device, correction method, and magnetic sensor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees