JP2022160054A - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
JP2022160054A
JP2022160054A JP2021064560A JP2021064560A JP2022160054A JP 2022160054 A JP2022160054 A JP 2022160054A JP 2021064560 A JP2021064560 A JP 2021064560A JP 2021064560 A JP2021064560 A JP 2021064560A JP 2022160054 A JP2022160054 A JP 2022160054A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
rotation angle
circumferential direction
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021064560A
Other languages
Japanese (ja)
Other versions
JP7183330B2 (en
Inventor
靖久 田中
Yasuhisa Tanaka
晃司 西澤
Koji Nishizawa
立男 西村
Tatsuo Nishimura
尚登 梅丸
Naoto Umemaru
誠 水田
Makoto Mizuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021064560A priority Critical patent/JP7183330B2/en
Priority to CN202210288774.3A priority patent/CN115200467A/en
Publication of JP2022160054A publication Critical patent/JP2022160054A/en
Application granted granted Critical
Publication of JP7183330B2 publication Critical patent/JP7183330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Abstract

To provide a small size and precise rotation angle detector.SOLUTION: The rotation angle detector includes: a rotor 2 that has a concavo-convex portion 21 in which the diameter of the outer peripheral surface 2fo changes periodically; a bias magnetic field generator 31 facing rotor 2 with a gap, which generates a magnetic field between the concavo-convex portion 21 and itself; and a stationary part 3 that has multiple magnetic flux density detectors 32 for detecting the generated magnetic field, which is placed along an opposing surface 31fc in a circumferential direction Dc. On the outer part in the circumferential direction Dc of the opposing surface 31fc, a protruding portion 31p protruding in the radial direction so as to be closer to rotating shaft 22 than the portion where magnetic flux density detector 32 located at the end is arranged.SELECTED DRAWING: Figure 1

Description

本願は、回転角度検出装置に関するものである。 The present application relates to a rotation angle detection device.

周方向に沿って径が変化する回転子の外周面に対し、周方向に延びるバイアス磁界発生部と、周方向に沿って複数の磁束密度検出部を配置した固定子を対向配置し、磁気抵抗の変化から回転角度を検出する回転角度検出装置が知られている。その際、バイアス磁界発生部とその背面側に設けた磁性体の周方向における設置範囲を規定することで、重量を増加させずに検出精度を向上させる回転角度検出装置が開示されている(例えば、特許文献1参照。)。 A stator having a bias magnetic field generating section extending in the circumferential direction and a plurality of magnetic flux density detecting sections arranged along the circumferential direction are arranged opposite to the outer peripheral surface of the rotor whose diameter changes along the circumferential direction. A rotation angle detection device is known that detects a rotation angle from a change in . At that time, a rotation angle detection device is disclosed that improves detection accuracy without increasing the weight by defining the installation range in the circumferential direction of the bias magnetic field generation unit and the magnetic material provided on the back side thereof (for example, , see Patent Document 1).

特開2019-109053号公報(段落0009~0020、図1~図3)JP 2019-109053 A (paragraphs 0009 to 0020, FIGS. 1 to 3)

しかしながら、上述した磁気センサでは、バイアス磁界発生部の周方向端部に磁束密度ベクトルの乱れが発生し、周方向端部の磁束密度検出部において信号成分である磁束密度の径方向成分が減少する。これにより、周方向端部と周方向中央部の磁束密度検出部において磁束密度の検出値に不平衡が発生し、角度検出精度が悪化するという課題があった。 However, in the magnetic sensor described above, disturbance of the magnetic flux density vector occurs at the circumferential end of the bias magnetic field generating portion, and the radial component of the magnetic flux density, which is a signal component, decreases at the magnetic flux density detecting portion at the circumferential end. . As a result, an imbalance occurs in the detected values of the magnetic flux density between the magnetic flux density detecting portions at the circumferential end portions and the circumferential central portion, resulting in a problem of degraded angle detection accuracy.

本願は、上記のような課題を解決するための技術を開示するものであり、小型で正確な回転角度検出装置を得ることを目的とする。 The present application discloses a technique for solving the above problems, and an object of the present application is to obtain a compact and accurate rotation angle detection device.

本願に開示される回転角度検出装置は、外周面の径が周期的に変化する磁性体の凹凸部を有し、回転軸を中心に回転自在に支持された回転子、および前記回転子の前記外周面の周方向における一部に対して間隔をあけて対向し、前記凹凸部との間に磁界を発生させるバイアス磁界発生部と、前記バイアス磁界発生部の前記回転子への対向面に前記周方向に沿って配置され、前記発生させた磁界を検出する複数の磁束密度検出部を有する固定子を備え、前記対向面の前記周方向における前記複数の磁束密度検出部が配置された部分よりも外側の部分には、前記複数の磁束密度検出部のうち、前記周方向における端部に位置する磁束密度検出部が配置された部分よりも前記回転軸に近づくように径方向において突出する突出部が形成されていることを特徴とする。 A rotation angle detection device disclosed in the present application includes: a rotor having irregularities made of a magnetic material whose outer peripheral surface diameter periodically changes and supported so as to be rotatable about a rotation shaft; A bias magnetic field generating section that faces a part of the outer peripheral surface in the circumferential direction with a gap therebetween and generates a magnetic field between itself and the uneven portion; A stator having a plurality of magnetic flux density detection units that are arranged along the circumferential direction and detect the generated magnetic field, and from a portion of the facing surface where the plurality of magnetic flux density detection units are arranged in the circumferential direction At the outermost portion, a protrusion that protrudes in the radial direction so as to be closer to the rotating shaft than the portion where the magnetic flux density detecting portion located at the end in the circumferential direction is arranged among the plurality of magnetic flux density detecting portions A part is formed.

本願に開示される回転角度検出装置によれば、周方向端部における磁束密度ベクトルの乱れを低減することで、各磁束密度検出部における磁束密度の検出値の不均衡を低減し、小型で正確な回転角度検出装置を得ることができる。 According to the rotation angle detection device disclosed in the present application, by reducing the disturbance of the magnetic flux density vector at the ends in the circumferential direction, the imbalance in the detected value of the magnetic flux density in each magnetic flux density detection unit is reduced, and the small and accurate It is possible to obtain an excellent rotation angle detection device.

実施の形態1にかかる回転角度検出装置の全体構成を示す模式図である。1 is a schematic diagram showing the overall configuration of a rotation angle detection device according to a first embodiment; FIG. 実施の形態1にかかる回転角度検出装置の構成を説明するための機能ブロック図である。1 is a functional block diagram for explaining the configuration of a rotation angle detection device according to a first embodiment; FIG. 図3Aと図3Bは、実施の形態1にかかる回転角度検出装置のそれぞれ倍率の異なる部分拡大模式図である。3A and 3B are partially enlarged schematic diagrams with different magnifications of the rotation angle detection device according to the first embodiment. 実施の形態1にかかる回転角度検出装置と比較例にかかる回転角度検出装置での信号成分に対する二次高調波成分の割合を比較した棒グラフ形式の図である。FIG. 5 is a bar graph format comparing ratios of secondary harmonic components to signal components in the rotation angle detection device according to the first embodiment and the rotation angle detection device according to the comparative example; 実施の形態1の変形例にかかる回転角度検出装置の部分拡大模式図である。FIG. 5 is a partially enlarged schematic diagram of a rotation angle detection device according to a modification of the first embodiment; 第二比較例にかかる回転角度検出装置の部分拡大模式図である。FIG. 11 is a partially enlarged schematic diagram of a rotation angle detection device according to a second comparative example; 比較例と第二比較例にかかる回転角度検出装置での信号成分に対する二次高調波成分の割合を比較した棒グラフ形式の図である。FIG. 10 is a bar graph format comparing ratios of secondary harmonic components to signal components in rotation angle detection devices according to a comparative example and a second comparative example; 実施の形態1の第二変形例にかかる回転角度検出装置の部分拡大模式図である。8 is a partially enlarged schematic diagram of the rotation angle detection device according to the second modification of the first embodiment; FIG. 実施の形態1にかかる回転角度検出装置の回転角度の演算処理を実行する部分の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a part that executes rotation angle calculation processing of the rotation angle detection device according to the first embodiment; 実施の形態2にかかる回転角度検出装置の部分拡大模式図である。FIG. 8 is a partially enlarged schematic diagram of the rotation angle detection device according to the second embodiment; 図11Aと図11Bは、それぞれ実施の形態3にかかる回転角度検出装置、およびその変形例にかかる回転角度検出装置の部分拡大模式図である。11A and 11B are partially enlarged schematic diagrams of a rotation angle detection device according to Embodiment 3 and a rotation angle detection device according to a modification thereof, respectively. 実施の形態3にかかる回転角度検出装置と比較例にかかる回転角度検出装置での信号成分に対する二次高調波成分の割合を比較した棒グラフ形式の図である。FIG. 10 is a bar graph format comparing ratios of secondary harmonic components to signal components in the rotation angle detection device according to the third embodiment and the rotation angle detection device according to the comparative example; 実施の形態4にかかる回転角度検出装置の部分拡大模式図である。FIG. 11 is a partially enlarged schematic diagram of a rotation angle detection device according to a fourth embodiment; 図14Aと図14Bは、それぞれ実施の形態5にかかる回転角度検出装置、およびその変形例にかかる回転角度検出装置の部分拡大模式図である。14A and 14B are partially enlarged schematic diagrams of a rotation angle detection device according to Embodiment 5 and a rotation angle detection device according to a modification thereof, respectively. 実施の形態5の第二変形例にかかる回転角度検出装置の部分拡大模式図である。FIG. 11 is a partially enlarged schematic diagram of a rotation angle detection device according to a second modification of the fifth embodiment;

実施の形態1.
図1~図4は、実施の形態1にかかる回転角度検出装置の構成および動作について説明するためのものであり、図1は回転角度検出装置の全体構成として、回転子と固定子の軸方向に垂直な面方向における位置関係を示す断面形状と回転角度演算処理部との信号のつながりを示す模式図であり、図2は固定子と角度演算部とのつながりを示す機能ブロック図である。そして図3は図1における回転角度検出装置の回転子と固定子が対向している部分近傍の拡大模式図(図3A)と、固定子の周方向の端部部分を再拡大した拡大模式図(図3B)である。また、図4は実施の形態1にかかる回転角度検出装置の効果を説明するための実施例1と比較例(比較例1)それぞれの回転角度検出装置での、3つの磁束密度検出部の信号成分に対する二次高調波成分の割合を中央の磁束密度検出部の信号を基準として比較した棒グラフである。
Embodiment 1.
FIGS. 1 to 4 are for explaining the configuration and operation of the rotation angle detection device according to the first embodiment. FIG. 1 shows the overall configuration of the rotation angle detection device. 2 is a schematic diagram showing the connection of signals between a cross-sectional shape showing a positional relationship in a plane direction perpendicular to the axis and a rotation angle calculation processing unit, and FIG. 2 is a functional block diagram showing the connection between a stator and an angle calculation unit. FIG. 3 is an enlarged schematic diagram (FIG. 3A) of the vicinity of the portion where the rotor and the stator of the rotation angle detection device in FIG. (Fig. 3B). FIG. 4 shows signals of three magnetic flux density detection units in each of the rotation angle detection devices of Example 1 and Comparative Example (Comparative Example 1) for explaining the effect of the rotation angle detection device according to Embodiment 1. 4 is a bar graph comparing ratios of secondary harmonic components to components with reference to the signal of the central magnetic flux density detector.

以下、図に基づいて説明するが、本願の特徴的な構成の説明の前に、回転角度検出装置としての基本的な構成と回転角度の演算について説明する。回転角度検出装置1は、例えば、回転電機のシャフト等に直結され、回転電機の回転角度、あるいは回転数等を検出し、回転制御、計測等に用いるものである。実施の形態1にかかる回転角度検出装置1は、図1に示すように、機械的な構成として回転軸22を中心に回転する回転子2と、回転子2の外周面2foに対向配置された固定子3とを備えている。そして、演算処理を行う構成として、固定子3の複数の磁束密度検出部32それぞれから出力された信号を処理して、回転角度を演算する角度演算部5を備えている。 Before describing the characteristic configuration of the present application, the basic configuration of the rotation angle detection device and the calculation of the rotation angle will be described below with reference to the drawings. The rotation angle detection device 1 is directly connected to, for example, a shaft of a rotating electric machine, detects the rotation angle or the number of rotations of the rotating electric machine, and uses it for rotation control, measurement, and the like. As shown in FIG. 1, the rotation angle detection device 1 according to the first embodiment has a rotor 2 that rotates around a rotation shaft 22 as a mechanical configuration, and an outer peripheral surface 2fo of the rotor 2 that is arranged to face the rotor 2. A stator 3 is provided. As a configuration for performing arithmetic processing, an angle calculator 5 is provided for processing the signals output from each of the plurality of magnetic flux density detectors 32 of the stator 3 and calculating the rotation angle.

回転子2は、円柱形状の回転軸22と、回転軸22の径方向外側に設けられた凹凸部21とを有している。凹凸部21は、磁性体で構成され、回転軸22の中心X2からの距離が周期的に滑らかに変化するように形成される。図1では、凹凸部21には、24個の凹凸が形成され、回転子2が回転軸22を中心に1回転する間に、凹凸が24回周期的に変化する場合を示している。 The rotor 2 has a cylindrical rotating shaft 22 and uneven portions 21 provided radially outwardly of the rotating shaft 22 . The uneven portion 21 is made of a magnetic material, and is formed such that the distance from the center X2 of the rotating shaft 22 periodically and smoothly changes. FIG. 1 shows a case where 24 unevennesses are formed in the unevenness portion 21 and the unevennesses change periodically 24 times while the rotor 2 makes one rotation about the rotating shaft 22 .

固定子3は、回転子2の径方向外側において、凹凸部21(外周面2fo)の周方向Dcにおける一部に対して対向して設けられており、周方向Dcに沿って延びる1個のバイアス磁界発生部31と、複数の磁束密度検出部32を有している。バイアス磁界発生部31は、磁束密度検出部32の径方向外側に重ねられて周方向Dcに沿って延びるように設置されている。磁束密度検出部32は、凹凸部21と隙間をあけて対向するように、回転軸22の中心X2から等距離の円弧上に等間隔で複数個配置される。なお、図1、および図2では角度演算部5と固定子3を別物として記載しているが、角度演算部5を固定子3に設けるようにしてもよい。 The stator 3 is provided on the radially outer side of the rotor 2 so as to face a portion of the uneven portion 21 (outer peripheral surface 2fo) in the circumferential direction Dc, and extends along the circumferential direction Dc. It has a bias magnetic field generator 31 and a plurality of magnetic flux density detectors 32 . The bias magnetic field generating section 31 is installed so as to overlap with the magnetic flux density detecting section 32 radially outward and extend along the circumferential direction Dc. A plurality of magnetic flux density detection units 32 are arranged at equal intervals on an arc equidistant from the center X2 of the rotation shaft 22 so as to face the uneven portion 21 with a gap therebetween. 1 and 2 show the angle calculator 5 and the stator 3 as separate components, the angle calculator 5 may be provided in the stator 3. FIG.

複数の磁束密度検出部32それぞれは、バイアス磁界発生部31と凹凸部21との間の空隙の変化によるパーミアンスの変化に従って略正弦波状に変動する磁束密度を電気信号に変換して出力する。図では、3個の磁束密度検出部32を凹凸部21の各凹凸の1/3周期(120°)間隔で配置した場合を示している。 Each of the plurality of magnetic flux density detectors 32 converts the magnetic flux density, which fluctuates substantially sinusoidally in accordance with changes in permeance caused by changes in the air gap between the bias magnetic field generator 31 and the concave-convex portion 21, into an electric signal and outputs the electric signal. The drawing shows a case where three magnetic flux density detection units 32 are arranged at intervals of ⅓ period (120°) of each unevenness of the uneven portion 21 .

この場合、3個の磁束密度検出部32は、位相が1/3周期毎にずれた3個の略正弦波信号であるそれぞれ信号Aと信号Bと信号Cを出力する。角度演算部5は、磁束密度検出部32で得られた複数の出力を2相変換し、逆正接関数を演算することで回転角度を算出する。例えば、上述した配置の場合、磁束密度検出部32の出力信号である信号Aと信号Bと信号Cを式(1)によって2相変換し、式(2)の逆正接関数によって回転子2の回転角度θを算出できる。 In this case, the three magnetic flux density detectors 32 output signal A, signal B, and signal C, which are three substantially sinusoidal signals whose phases are shifted every 1/3 cycle. The angle calculator 5 performs two-phase conversion on the multiple outputs obtained by the magnetic flux density detector 32, and calculates the rotation angle by calculating an arctangent function. For example, in the case of the arrangement described above, the signal A, the signal B, and the signal C, which are the output signals of the magnetic flux density detection unit 32, are two-phase-converted by equation (1), and the rotor 2 is converted by the arctangent function of equation (2). A rotation angle θ can be calculated.

Figure 2022160054000002
Figure 2022160054000002

磁束密度検出部32の個数が3個の場合は、信号Aと信号Bと信号Cの信号成分Sに対して3倍の周波数を持つ高調波成分がのっていたとしても、2相変換時に打ち消し合って除去されるため、最終的な角度演算結果に影響を及ぼさない。したがって、3次の高調波成分に対するロバスト性を持たせることができる。 When the number of the magnetic flux density detection units 32 is three, even if a harmonic component having a frequency three times higher than the signal component S of the signal A, the signal B, and the signal C is present, during the two-phase conversion Since they cancel each other out and are removed, they do not affect the final angle calculation result. Therefore, it is possible to provide robustness against the third harmonic component.

上述した基本構成を踏まえ、本願の特徴的な構成と動作について説明する。図3A、図3Bに示すように、バイアス磁界発生部31の周方向Dcにおける両端部(周方向端部)に、回転子2への対向面31fcが、磁束密度検出部32が配置された部分よりも回転軸22の中心X2に近づくように突出する突出部31pを設けた。 Based on the basic configuration described above, the characteristic configuration and operation of the present application will be described. As shown in FIGS. 3A and 3B, at both ends (circumferential direction ends) of the bias magnetic field generating portion 31 in the circumferential direction Dc, a surface 31fc facing the rotor 2 is formed, and a portion where the magnetic flux density detecting portion 32 is arranged. A protruding portion 31p protruding closer to the center X2 of the rotating shaft 22 is provided.

突出部31pを周方向端部に設けることにより、バイアス磁界発生部31の周囲において磁束密度の乱れ成分である周方向成分が存在する領域が周方向端部に限定されるため、バイアス磁界発生部31は周方向Dcの広範囲にわたって均一な磁束密度を発生させることができる。その結果、磁束密度の乱れ成分が周方向端部に位置する磁束密度検出部32へ与える影響が低減されるため、各磁束密度検出部32の出力信号の信号成分Sと高調波成分の振幅の不均衡が低減され、角度検出精度を向上させることができる。 By providing the protruding portion 31p at the circumferential end portion, the region in which the circumferential component, which is the turbulent component of the magnetic flux density, exists around the bias magnetic field generating portion 31 is limited to the circumferential end portion. 31 can generate a uniform magnetic flux density over a wide range in the circumferential direction Dc. As a result, the influence of the disturbance component of the magnetic flux density on the magnetic flux density detection units 32 located at the ends in the circumferential direction is reduced. The imbalance is reduced and the angle detection accuracy can be improved.

その効果について、バイアス磁界発生部31の周方向端部に図3Aで説明した突出部31pを設けた実施例1と、バイアス磁界発生部に突出部がない比較例1(図示せず)の特性を比較した結果について図4を用いて説明する。図4において、横軸は出力信号を出力した磁束密度検出部の位置を示し、縦軸は各磁束密度検出部の信号成分Sに対する2倍の周波数を持つ二次高調波成分Hsの割合を示す。ただし、磁束密度検出部の個数が3個の場合であり、信号Aと信号Cは周方向端部に位置する磁束密度検出部の出力信号、信号Bは周方向中央に位置する磁束密度検出部の出力信号であり、信号Bを基準としたときの差分値を示している。 Regarding the effect, the characteristics of Example 1 in which the protrusion 31p described with reference to FIG. will be described with reference to FIG. In FIG. 4, the horizontal axis indicates the position of the magnetic flux density detection section that outputs the output signal, and the vertical axis indicates the ratio of the second harmonic component Hs having a double frequency to the signal component S of each magnetic flux density detection section. . However, this is the case where the number of magnetic flux density detection units is three. Signals A and C are the output signals of the magnetic flux density detection units located at the ends in the circumferential direction, and signal B is the output signal of the magnetic flux density detection unit located in the center in the circumferential direction. , and shows the difference value when the signal B is used as a reference.

図4に示す通り、突出部31pの有無に関わらず、信号Aと信号Cには、二次高調波成分(信号Bとの差分)が発生しているが、実施例1の場合は、比較例1の1.9%よりも0.5%低い1.4%と、比較例1に対して差分値が26%も減少している。すなわち、バイアス磁界発生部31の周方向端部に突出部31pが存在することで、各磁束密度検出部32の出力信号の不平衡が低減される。 As shown in FIG. 4, secondary harmonic components (differences from signal B) are generated in signals A and C regardless of the presence or absence of protrusion 31p. The difference is 1.4%, which is 0.5% lower than 1.9% in Example 1, and the difference value is reduced by 26% compared to Comparative Example 1. That is, the existence of the projecting portion 31p at the circumferential end portion of the bias magnetic field generating portion 31 reduces the imbalance of the output signals of the magnetic flux density detecting portions 32. FIG.

ここで、突出量について説明する。図3Bでは、突出部31pの対向面31fcからの突出量Hpが、磁束密度検出部32の回転子2への対向面32fcの高さよりも大きく、磁束密度検出部32の厚み以上に設定する例について説明した。このような突出量Hpの設定により、突出部31pが発生させる突出方向と平行な磁束密度成分が、突出方向と垂直な磁束密度成分よりも十分に大きい領域に磁束密度検出部32が位置するようになる。 Here, the protrusion amount will be described. In FIG. 3B, the protrusion amount Hp from the facing surface 31fc of the protrusion 31p is larger than the height of the facing surface 32fc of the magnetic flux density detection unit 32 facing the rotor 2, and is set to the thickness of the magnetic flux density detection unit 32 or more. explained. By setting the amount of protrusion Hp as described above, the magnetic flux density detection unit 32 is positioned in an area in which the magnetic flux density component parallel to the protrusion direction generated by the protrusion 31p is sufficiently larger than the magnetic flux density component perpendicular to the protrusion direction. become.

これにより、磁束密度検出部32における磁束密度の周方向成分(乱れ成分)が低減し、磁束密度の径方向成分(信号成分)が増加する。その結果、信号成分Sに対する二次高調波成分Hsがより小さくなるため、角度誤差をより低減できる。さらに、信号成分S自体が大きくなるため、対ノイズ性がより向上する。 As a result, the circumferential component (disturbance component) of the magnetic flux density in the magnetic flux density detection section 32 is reduced, and the radial component (signal component) of the magnetic flux density is increased. As a result, since the second harmonic component Hs with respect to the signal component S becomes smaller, the angle error can be further reduced. Furthermore, since the signal component S itself is increased, the noise resistance is further improved.

なお、出力信号の不平衡を低減する効果は、突出部31pの対向面31fcからの突出量Hpが、磁束密度検出部32の回転子2への対向面32fcの高さよりも大きく、ΔHが正の値を示す場合に限られることはない。基本的には、バイアス磁界発生部31の対向面31fcにおいて、突出部31pの方が両端部の磁束密度検出部32の配置される部分より僅かであっても、中心X2に近づいていればよい。 The effect of reducing the imbalance of the output signal is that the protrusion amount Hp from the facing surface 31fc of the protrusion 31p is larger than the height of the facing surface 32fc of the magnetic flux density detection unit 32 facing the rotor 2, and ΔH is positive. It is not limited to showing the value of Basically, on the facing surface 31fc of the bias magnetic field generator 31, even if the protruding portion 31p is slightly smaller than the portions where the magnetic flux density detectors 32 are arranged at both ends, it is sufficient if it is closer to the center X2. .

ただし、ΔHが負の値、突出部31pの突出量Hpを磁束密度検出部32の厚みより小さい値に設定する場合、加工精度により生じ得る突出よりも大きく設定することが望ましい。具体的には、対向面31fcの表面を円弧に加工する際の加工精度バラツキを超える値に突出量Hpを設定することが望ましい。そうすることにより、製品間での出力信号の不平衡にばらつきがなく、低減効果が安定した信頼性の高い回転角度検出装置1を得ることができる。 However, when ΔH is a negative value and the protrusion amount Hp of the protruding portion 31p is set to a value smaller than the thickness of the magnetic flux density detecting portion 32, it is desirable to set the protruding amount to be larger than the protruding amount that may occur due to processing accuracy. Specifically, it is desirable to set the amount of protrusion Hp to a value that exceeds the variation in processing accuracy when processing the surface of the opposing surface 31fc into an arc. By doing so, it is possible to obtain a highly reliable rotation angle detection device 1 in which there is no variation in output signal imbalance between products and the reduction effect is stable.

つまり、突出量Hpが正であれば、各磁束密度検出部32における磁束密度の出力信号の不均衡の低減において、最低限の効果は得られる。ただし、製品としての信頼性を考慮すると、少なくとも加工精度バラツキを超え、有意差を有する突出量Hpに設定することが望ましい。より望ましい形態としては、少なくとも両端部の磁束密度検出部32の回転子2への対向面32fcよりも、中心X2に近くなる(中心X2に向かって突出する)ように、突出部31pを設けると良い。 That is, if the protrusion amount Hp is positive, the minimum effect is obtained in reducing the imbalance of the output signals of the magnetic flux densities of the magnetic flux density detectors 32 . However, considering the reliability of the product, it is desirable to set the protrusion amount Hp to at least exceed the variations in processing accuracy and have a significant difference. A more desirable form is to provide the projecting portion 31p so as to be closer to the center X2 (project toward the center X2) than at least the surfaces 32fc of the magnetic flux density detecting portions 32 at both ends facing the rotor 2. good.

検出精度への影響に関しては、突出量Hpが大きくなることに特段の制約はない。ただし、回転子2との干渉を防ぐ必要があるため、回転子2の外周面2foと接触しない程度に抑える必要がある。具体的には、回転子2とバイアス磁界発生部31それぞれの加工精度、公差、および回転子2と固定子3との間の位置決め精度などを考慮したうえで、回転子2の外周面2foとの隙間が確保される値を突出量Hpの上限として設定することが必要である。 Regarding the influence on the detection accuracy, there is no particular restriction on the increase in the protrusion amount Hp. However, since it is necessary to prevent interference with the rotor 2 , it is necessary to suppress contact with the outer peripheral surface 2fo of the rotor 2 . Specifically, considering the machining accuracy and tolerance of each of the rotor 2 and the bias magnetic field generating section 31, and the positioning accuracy between the rotor 2 and the stator 3, the outer peripheral surface 2fo of the rotor 2 and the It is necessary to set the upper limit of the amount of protrusion Hp to a value that ensures a gap of .

以降の各実施の形態における突出部31pの突出量Hpについても、そのように設けられており、突出部31pを設けたことによる各磁束密度検出部32の出力信号の不平衡を低減する作用について、より顕著となる構成が採られている。 The projecting amount Hp of the projecting portion 31p in each of the following embodiments is also provided in such a manner. , a more conspicuous configuration is adopted.

第一変形例.
上記例では、突出部を周方向端部に設けた例を示した。本第一変形例および以下の比較例2においては、突出部の配置位置について検討する。本第一変形例では、突出部を周方向端部よりも内側部分に設けた例について説明する。図5は、第一変形例にかかる回転角度検出装置の構成について説明するためのものであり、回転角度検出装置の回転子と固定子が対向している部分近傍の図3Aに対応する拡大模式図である。
First modification.
In the above example, an example in which the protruding portions are provided at the circumferential ends is shown. In the present first modified example and the following comparative example 2, the arrangement position of the protruding portion will be examined. In this first modified example, an example in which the projecting portion is provided inside the circumferential end portion will be described. FIG. 5 is for explaining the configuration of the rotation angle detection device according to the first modification, and is an enlarged schematic diagram corresponding to FIG. It is a diagram.

第一変形例にかかる回転角度検出装置1では、図5に示すように、周方向端部の付近、つまり両端の磁束密度検出部32と周方向端部の間に突出部31pを設けた。突出部31pはバイアス磁界発生部31の周方向端部でなくても、周方向端部の付近(両端の磁束密度検出部32よりも外側)に位置すれば、周方向端部に設けたときと同様の効果を得られる。 In the rotation angle detection device 1 according to the first modification, as shown in FIG. 5, protrusions 31p are provided near the circumferential ends, that is, between the magnetic flux density detectors 32 at both ends and the circumferential ends. Even if the protruding portion 31p is not located at the circumferential end of the bias magnetic field generating portion 31, if it is positioned near the circumferential end (outer than the magnetic flux density detecting portions 32 at both ends), it can be formed at the circumferential end. You can get the same effect as

比較例2.
比較例2として、突出部を磁束密度検出部の設置部分、つまり、磁束密度検出部の根元側に設けた例を示す。図6は、比較例2にかかる回転角度検出装置の構成について説明するためのものであり、回転角度検出装置の回転子と固定子が対向している部分近傍の図3Aに対応する拡大模式図である。また、図7は比較例1と比較例2それぞれの回転角度検出装置での、3つの磁束密度検出部の信号成分に対する二次高調波成分の割合を中央の磁束密度検出部の信号を基準として比較した棒グラフである。なお、比較例2の部材のうち、実施例1との比較対象となる構成が異なる部材については符号の末尾に「R」を付している。
Comparative example 2.
As Comparative Example 2, an example in which the projecting portion is provided at the installation portion of the magnetic flux density detection portion, that is, at the root side of the magnetic flux density detection portion is shown. FIG. 6 is for explaining the configuration of the rotation angle detection device according to Comparative Example 2, and is an enlarged schematic diagram corresponding to FIG. is. 7 shows the ratio of the secondary harmonic component to the signal components of the three magnetic flux density detectors in each of the rotation angle detectors of Comparative Examples 1 and 2, using the signal of the central magnetic flux density detector as a reference. It is a comparative bar graph. Among the members of Comparative Example 2, the members having different structures to be compared with those of Example 1 are denoted by "R" at the end of the reference numerals.

比較例2にかかる回転角度検出装置では、図6に示すように、突出部31pRを磁束密度検出部32の根元部分に設けた。図7に示すように、突出部31pRを磁束密度検出部32の位置に設置した比較例2の場合は、突出部31pRを設けたことで、逆に、信号Aと信号CのHs/Sの差分値が0.6%増加し、各磁束密度検出部32の出力信号の不平衡が増加している。 In the rotation angle detection device according to Comparative Example 2, as shown in FIG. As shown in FIG. 7, in the case of Comparative Example 2 in which the protruding portion 31pR is installed at the position of the magnetic flux density detecting portion 32, the provision of the protruding portion 31pR causes the Hs/S ratio of the signals A and C to The difference value increases by 0.6%, and the imbalance of the output signal of each magnetic flux density detector 32 increases.

以上より、磁束密度検出部32の出力信号の不平衡を低減するためには、突出部31pを少なくとも磁束密度検出部32よりも周方向Dcにおける外側に配置する必要がある。このように、配置位置と突出量Hpを設定することで、バイアス磁界発生部31を周方向に小型化しても、磁束密度分布は周方向に広範囲にわたって均一になるため、各磁束密度検出部32の出力信号の不均衡が低減され、角度検出精度の悪化を抑えられる。 As described above, in order to reduce the imbalance of the output signal of the magnetic flux density detection section 32, it is necessary to arrange the projecting portion 31p at least outside the magnetic flux density detection section 32 in the circumferential direction Dc. By setting the arrangement position and the amount of protrusion Hp in this way, even if the bias magnetic field generating section 31 is made smaller in the circumferential direction, the magnetic flux density distribution becomes uniform over a wide range in the circumferential direction. output signal imbalance is reduced, and deterioration of angle detection accuracy can be suppressed.

そのため、例えば、特開2020-176853号公報に開示されている、磁束密度発生部を凹凸部に対して半周期未満の範囲に配置して小型化するような構成に対して、とくに顕著な効果を発揮することが可能となる。 Therefore, for example, the configuration disclosed in JP-A-2020-176853, in which the magnetic flux density generating portion is arranged in a range of less than half a cycle with respect to the uneven portion to reduce the size, has a particularly remarkable effect. It is possible to demonstrate

なお、実施の形態1では、突出部31pが形成された部分は、バイアス磁界発生部31の磁束密度検出部32の配置される位置における径方向の厚みよりも厚くなっている例を示した。周方向端部あるいはその付近の厚みを厚くする構成では、中心X2に近づくことで得られる効果に加え、周方向Dcにおける両端に位置する磁束密度検出部32の出力波形の振幅を増加させ、耐ノイズ性を向上させる効果も奏している。 In the first embodiment, the portion where the protruding portion 31p is formed is thicker than the radial thickness at the position where the magnetic flux density detecting portion 32 of the bias magnetic field generating portion 31 is arranged. In the configuration in which the thickness at or near the ends in the circumferential direction is increased, in addition to the effect obtained by approaching the center X2, the amplitude of the output waveform of the magnetic flux density detection units 32 located at both ends in the circumferential direction Dc is increased, and the resistance is increased. It also has the effect of improving noise resistance.

第二変形例.
上記例では、バイアス磁界発生部と磁束密度検出部とで固定子を構成する例を示した。本第二変形例では、バイアス磁界発生部の径方向の外側(背面側)部分に磁性体を設けた例について説明する。図8は、第二変形例にかかる回転角度検出装置の構成について説明するためのものであり、回転角度検出装置の回転子と固定子が対向している部分近傍の図3Aに対応する拡大模式図である。
Second modification.
In the above example, the stator is composed of the bias magnetic field generating section and the magnetic flux density detecting section. In the second modified example, an example in which a magnetic body is provided on the radially outer (back side) portion of the bias magnetic field generating portion will be described. FIG. 8 is for explaining the configuration of the rotation angle detection device according to the second modification, and is an enlarged schematic diagram corresponding to FIG. It is a diagram.

第二変形例にかかる回転角度検出装置1では、図8に示すように、バイアス磁界発生部31の周方向における一端側から他端側にかけて径方向外側を囲むように磁性体33を設けた。これにより、バイアス磁界発生部31から発生する磁束が通る磁路が形成され、磁束密度検出部32で得られる出力波形の振幅が大きくなるため、耐ノイズ性が向上する。 In the rotation angle detection device 1 according to the second modification, as shown in FIG. 8, a magnetic body 33 is provided so as to surround the radially outer side of the bias magnetic field generating portion 31 from one end side to the other end side in the circumferential direction. As a result, a magnetic path is formed through which the magnetic flux generated by the bias magnetic field generating section 31 passes, and the amplitude of the output waveform obtained by the magnetic flux density detecting section 32 increases, thereby improving noise resistance.

バイアス磁界発生部31は、磁性粒子を熱可塑性樹脂とともに射出成型したプラスティックマグネットを使用しても良い。それにより、薄肉形状でも部材の強度を確保することができる。また、表面凹凸などを設けた比較的複雑な表面形状を有したバイアス磁界発生部31を容易に成形することが可能であり、本願の回転角度検出装置1に用いるバイアス磁界発生部31を構成する材料として好適に用いることができる。 The bias magnetic field generator 31 may use a plastic magnet obtained by injection-molding magnetic particles together with a thermoplastic resin. Thereby, the strength of the member can be ensured even in a thin shape. In addition, it is possible to easily form the bias magnetic field generating section 31 having a relatively complicated surface shape provided with unevenness on the surface, and the bias magnetic field generating section 31 used in the rotation angle detecting device 1 of the present application is constructed. It can be suitably used as a material.

なお、実施の形態1および以降の実施の形態で開示する回転角度検出装置1において、角度演算部5については、例えば、図9に示すように、プロセッサ501と記憶装置502を備えたハードウェア500として、表記することができる。記憶装置502は、図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ501は、記憶装置502から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ501にプログラムが入力される。また、プロセッサ501は、演算結果等のデータを記憶装置502の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。 In the rotation angle detection device 1 disclosed in Embodiment 1 and subsequent embodiments, the angle calculation unit 5 includes, for example, hardware 500 including a processor 501 and a storage device 502 as shown in FIG. can be written as The storage device 502 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory (not shown). Also, an auxiliary storage device such as a hard disk may be provided instead of the flash memory. Processor 501 executes a program input from storage device 502 . In this case, the program is input from the auxiliary storage device to the processor 501 via the volatile storage device. Further, the processor 501 may output data such as calculation results to the volatile storage device of the storage device 502, or may store the data in an auxiliary storage device via the volatile storage device.

実施の形態2.
実施の形態1においては、バイアス磁界発生部の周方向端部に他の部分から突起状に突出する突出部を設ける例を示したが、これに限ることはない。本実施の形態2においては、対向面を中心からの距離を半径とする円弧よりも大きな曲率にすることで突出部を形成した例について説明する。図10は、実施の形態2にかかる回転角度検出装置の構成について説明するためのものであり、回転角度検出装置の回転子と固定子が対向している部分近傍の、実施の形態1の説明に用いた図3Aに対応する拡大模式図である。なお、本実施の形態2、および以降の実施の形態においては、実施の形態1、または関連する態様等との相違点を中心に説明し、同様部分についての説明は適宜省略する。また、実施の形態1で用いた図1、図2、図4等を援用する。
Embodiment 2.
In Embodiment 1, an example is shown in which a protruding portion protruding from other portions is provided at the circumferential end portion of the bias magnetic field generating portion, but the present invention is not limited to this. In the second embodiment, an example will be described in which the protruding portion is formed by making the facing surface have a larger curvature than the arc whose radius is the distance from the center. FIG. 10 is for explaining the configuration of the rotation angle detection device according to the second embodiment. 3B is an enlarged schematic diagram corresponding to FIG. 3A used in FIG. It should be noted that in the second embodiment and subsequent embodiments, the description will focus on the differences from the first embodiment and related aspects, and the description of the same portions will be omitted as appropriate. In addition, FIGS. 1, 2, 4, etc. used in Embodiment 1 are used.

実施の形態2にかかる回転角度検出装置1では、図10に示すように、バイアス磁界発生部31の回転子2への対向面31fcと反対側の面(背面31fo)の回転軸に垂直な断面形状は、それぞれ曲率が異なる円弧、つまり円柱面の一部である。そして、対向面31fcの曲率を中心X2からの距離を半径とする円よりも大きくすることで、周方向Dcにおける両端の磁束密度検出部32の対向面32fcよりも突出する突出部31pを形成した。 In the rotation angle detection device 1 according to the second embodiment, as shown in FIG. 10, the surface (back surface 31fo) of the bias magnetic field generating unit 31 opposite to the surface 31fc facing the rotor 2 is cross-sectionally perpendicular to the rotation axis. The shape is a segment of a circular arc, ie, a cylindrical surface, each with a different curvature. Then, by making the curvature of the facing surface 31fc larger than that of a circle whose radius is the distance from the center X2, the protruding portion 31p that protrudes from the facing surface 32fc of the magnetic flux density detecting portion 32 at both ends in the circumferential direction Dc is formed. .

これにより、周方向端部に対向面32fcよりも中心X2に近い部分(突出部31p)を有することになるため、実施の形態1と同様に各磁束密度検出部32の出力信号の不平衡を低減する効果を得られる。また、対向面31fcの曲率を大きくすることで突出部31pが形成されるので、バイアス磁界発生部31に局所的な突起構造を設ける必要がなく、生産性と部材強度が向上する。 As a result, a portion (protruding portion 31p) closer to the center X2 than the facing surface 32fc is provided at the end in the circumferential direction. A reduction effect can be obtained. Moreover, since the projecting portion 31p is formed by increasing the curvature of the facing surface 31fc, there is no need to provide a local projecting structure in the bias magnetic field generating portion 31, thereby improving productivity and member strength.

さらに、背面31foの曲率を対向面31fcの曲率よりも小さくすることで、周方向Dcにおける中央から端部に向かって径方向厚みが厚くなっていく構造が形成できる。そのため、周方向Dcにおける両端に位置する磁束密度検出部32の出力波形の振幅を増加させ、耐ノイズ性を向上させる効果も奏することができる。 Furthermore, by making the curvature of the back surface 31fo smaller than the curvature of the opposing surface 31fc, it is possible to form a structure in which the radial thickness increases from the center toward the ends in the circumferential direction Dc. Therefore, it is possible to increase the amplitude of the output waveform of the magnetic flux density detectors 32 located at both ends in the circumferential direction Dc, and to improve the noise resistance.

実施の形態3.
上記実施の形態1、2では、周方向両端部、あるいはその付近のみに計2か所の突出部を形成する例について説明した。本実施の形態3においては、両端部と各磁束密度検出部の間部分に突出部を設ける例について説明する。図11Aと図11Bは、それぞれ実施の形態3、およびその変形例にかかる回転角度検出装置の回転子と固定子が対向している部分近傍の、実施の形態1の説明に用いた図3Aに対応する拡大模式図である。また、図12は実施の形態3にかかる回転角度検出装置の効果を説明するための実施例2と比較例1それぞれの回転角度検出装置での、3つの磁束密度検出部の信号成分に対する二次高調波成分の割合を中央の磁束密度検出部の信号を基準として比較した棒グラフである。
Embodiment 3.
In Embodiments 1 and 2 above, an example in which a total of two projecting portions are formed only at or near both ends in the circumferential direction has been described. In the third embodiment, an example in which protrusions are provided between both ends and each magnetic flux density detection unit will be described. FIGS. 11A and 11B show the vicinity of the portion where the rotor and the stator of the rotation angle detection device according to Embodiment 3 and its modification are opposed to FIG. 3A used for explanation of Embodiment 1, respectively. It is a corresponding enlarged schematic diagram. Further, FIG. 12 is a diagram showing the second order for the signal components of the three magnetic flux density detection units in each of the rotation angle detection devices of Example 2 and Comparative Example 1 for explaining the effect of the rotation angle detection device according to Embodiment 3. 4 is a bar graph comparing the ratio of harmonic components with the signal from the center magnetic flux density detection unit as a reference.

実施の形態3にかかる回転角度検出装置1では、図11Aに示すように、バイアス磁界発生部31の回転子2への対向面31fcに、磁束密度検出部32が配置された部分が凹部になるように、周方向Dcに沿って凹凸を形成した。バイアス磁界発生部31の磁束密度検出部32が配置された部分が凹部となり、その間の区間、および両端の凸部となった部分が突出部31pとなる。 In the rotation angle detection device 1 according to the third embodiment, as shown in FIG. 11A, the surface 31fc of the bias magnetic field generation unit 31 facing the rotor 2 has a concave portion where the magnetic flux density detection unit 32 is arranged. As shown, unevenness was formed along the circumferential direction Dc. A portion of the bias magnetic field generating portion 31 where the magnetic flux density detecting portion 32 is arranged becomes a concave portion, and a section therebetween and convex portions at both ends become a projecting portion 31p.

磁束密度検出部32の間の部分にも突出部31pを形成した場合でも、実施の形態1と同様に、周方向Dcにおける両端部の突出部31pを有するため、実施の形態1と同様に各磁束密度検出部32の出力信号の不平衡を低減する効果を得られる。また、隣接するバイアス磁界発生部31間に突出部31pが形成されているので、各磁束密度検出部32の出力波形の振幅が増加し、耐ノイズ性が向上する。また、全ての磁束密度検出部32の周方向Dcにおける近傍(隣接する磁束密度検出部よりも近い部分)に突出部31pが位置するため、各磁束密度検出部32の周囲の磁束密度分布が同等になる。その結果、各磁束密度検出部32の出力信号の不均衡がさらに低減され、角度検出精度を向上させることができる。 Even when the projecting portions 31p are formed also in the portion between the magnetic flux density detecting portions 32, as in the first embodiment, the projecting portions 31p are provided at both ends in the circumferential direction Dc. The effect of reducing the imbalance of the output signal of the magnetic flux density detector 32 can be obtained. Moreover, since the protruding portion 31p is formed between the adjacent bias magnetic field generating portions 31, the amplitude of the output waveform of each magnetic flux density detecting portion 32 increases, thereby improving the noise resistance. In addition, since the protruding portion 31p is located in the vicinity of all the magnetic flux density detection portions 32 in the circumferential direction Dc (a portion closer than the adjacent magnetic flux density detection portions), the magnetic flux density distribution around each magnetic flux density detection portion 32 is the same. become. As a result, the imbalance between the output signals of the magnetic flux density detectors 32 is further reduced, and the angle detection accuracy can be improved.

その効果について、隣接する磁束密度検出部32の間にも突出部31pを設けた実施例2(図11A)と、図4の説明で用いたバイアス磁界発生部に突出部がない比較例1の特性を比較した結果について、図12を用いて説明する。図12に示す通り、突出部31pの有無に関わらず、信号Aと信号Cには、二次高調波成分(信号Bとの差分)が発生しているが、実施例2の場合は、比較例1の1.9%よりも0.3%低い1.6%と、比較例1に対して差分値が16%も減少している。すなわち、隣接する部分に突出部31pを設けた場合でも、バイアス磁界発生部31の周方向端部、あるいはその付近に突出部31pが存在することで、各磁束密度検出部32の出力信号の不平衡が低減される。 As for the effect, Example 2 (FIG. 11A) in which a projecting portion 31p is also provided between the adjacent magnetic flux density detecting portions 32 and Comparative Example 1 in which the bias magnetic field generating portion used in the explanation of FIG. The result of comparing the characteristics will be described with reference to FIG. 12 . As shown in FIG. 12, secondary harmonic components (differences from signal B) are generated in signals A and C regardless of the presence or absence of protrusion 31p. The difference is 1.6%, which is 0.3% lower than 1.9% in Example 1, and the difference value is reduced by 16% compared to Comparative Example 1. That is, even if the projecting portion 31p is provided in the adjacent portion, the presence of the projecting portion 31p at or near the circumferential end of the bias magnetic field generating portion 31 may cause the output signal of each magnetic flux density detecting portion 32 to become inconsistent. Equilibrium is reduced.

変形例.
図12では、バイアス磁界発生部の回転子への対向面に、周方向に沿って矩形状に凹凸を形成した実施例2の回転角度検出装置1の効果について説明した。本変形例においては、図11Bに示すように、対向面31fcに、周方向Dcに沿って曲線状の凹凸を形成した。この場合でも、図11Aで説明した矩形状の凹凸と同様に、各磁束密度検出部32の出力信号の不平衡を低減する効果、および各磁束密度検出部32の出力信号の不均衡がさらに低減され、角度検出精度を向上させる効果を得ることができる。
Modification.
In FIG. 12, the effect of the rotation angle detection device 1 of the second embodiment in which rectangular irregularities are formed along the circumferential direction on the surface of the bias magnetic field generating section facing the rotor has been described. In this modified example, as shown in FIG. 11B, curved unevenness is formed on the facing surface 31fc along the circumferential direction Dc. Even in this case, similarly to the rectangular unevenness described in FIG. 11A, the effect of reducing the imbalance of the output signal of each magnetic flux density detection unit 32 and the imbalance of the output signal of each magnetic flux density detection unit 32 are further reduced. It is possible to obtain the effect of improving the angle detection accuracy.

実施の形態4.
上記各実施の形態においては、バイアス磁界発生部において、突出部が形成された部分は径方向の厚みが突出に応じて厚くなる例について説明した。本実施の形態4、および以降の実施の形態においては、対向面側の突出に伴う厚み変化を補償するように、背面側に陥没した部分を設けた例について説明する。図13は、実施の形態4にかかる回転角度検出装置の構成について説明するためのものであり、回転角度検出装置の回転子と固定子が対向している部分近傍の、実施の形態1の説明に用いた図3Aに対応する拡大模式図である。
Embodiment 4.
In each of the above-described embodiments, examples have been described in which, in the bias magnetic field generating portion, the thickness in the radial direction of the portion where the projecting portion is formed increases in accordance with the projecting portion. In the fourth embodiment and the following embodiments, an example in which a recessed portion is provided on the rear surface side so as to compensate for the thickness change due to the protrusion on the opposing surface side will be described. FIG. 13 is for explaining the configuration of the rotation angle detection device according to the fourth embodiment. 3B is an enlarged schematic diagram corresponding to FIG. 3A used in FIG.

実施の形態4にかかる回転角度検出装置1では、図13に示すように、対向面31fcにおける突出部31pの形成に対応し、バイアス磁界発生部31の背面31foに、磁束密度検出部32の配置される部分よりも中心X2に近づく陥没部31dを形成した。陥没部31dは突出部31pが設けられることによるバイアス磁界発生部31の体積(厚み)増加を補償するように、対向面31fcにおける突出部31pの突出量Hpと同程度の深さの陥没量に設定するとよい。例えば、突出部31pと陥没部31dが設けられる領域と他の領域でバイアス磁界発生部31の径方向での厚みが同じになるように、若しくは同等になるように設けると良い。 In the rotation angle detection device 1 according to the fourth embodiment, as shown in FIG. 13, the magnetic flux density detection section 32 is arranged on the back surface 31fo of the bias magnetic field generation section 31 corresponding to the formation of the projecting section 31p on the facing surface 31fc. A recessed portion 31d is formed which is closer to the center X2 than the portion where the recessed portion is formed. The recessed portion 31d has a depth equivalent to the protrusion Hp of the projecting portion 31p on the facing surface 31fc so as to compensate for the increase in volume (thickness) of the bias magnetic field generating portion 31 due to the provision of the projecting portion 31p. This should be set. For example, the thickness in the radial direction of the bias magnetic field generating portion 31 may be the same or the same in the region in which the projecting portion 31p and the recessed portion 31d are provided and in other regions.

実施の形態4における回転角度検出装置1は、バイアス磁界発生部31の周方向端部に突出部31pを有するため、実施の形態1と同様に、各磁束密度検出部32の出力信号の不平衡を低減する効果が得られる。さらに、突出部31pの突出量に対応した陥没量の陥没部31dを背面31fo側に設けることにより、バイアス磁界発生部31の体積を増加させず、資源をより有効に利用することができる。 Since the rotation angle detection device 1 according to the fourth embodiment has the projecting portion 31p at the circumferential end of the bias magnetic field generating portion 31, as in the first embodiment, the output signals of the magnetic flux density detecting portions 32 are unbalanced. can be obtained. Further, by providing the recessed portion 31d having a recessed amount corresponding to the amount of protrusion of the projecting portion 31p on the back surface 31fo side, the volume of the bias magnetic field generating portion 31 is not increased, and resources can be used more effectively.

実施の形態5.
上記実施の形態4では、実施の形態1で例示した突出部の配置に対応して、背面に陥没部を形成する例について説明したが、これに限ることはない。本実施の形態5においては、実施の形態3で例示した隣接する磁束密度検出部の間に配置した突出部にも対応して陥没部を形成する例について説明する。
Embodiment 5.
In the above-described Embodiment 4, an example in which recessed portions are formed on the back surface corresponding to the arrangement of the projecting portions illustrated in Embodiment 1 has been described, but the present invention is not limited to this. In the fifth embodiment, an example will be described in which recessed portions are formed corresponding to the protruding portions arranged between the adjacent magnetic flux density detecting portions as exemplified in the third embodiment.

図14Aと図14Bは、それぞれ実施の形態5、およびその変形例にかかる回転角度検出装置の回転子と固定子が対向している部分近傍の、実施の形態1の説明に用いた図3Aに対応する拡大模式図である。また、図15は実施の形態5の第二変形例にかかる回転角度検出装置の回転子と固定子が対向している部分近傍の、実施の形態1の説明に用いた図3Aに対応する拡大模式図である。 FIGS. 14A and 14B show the vicinity of the portion where the rotor and the stator of the rotation angle detection device according to the fifth embodiment and its modification are opposed to each other, which is shown in FIG. 3A used for explaining the first embodiment. It is a corresponding enlarged schematic diagram. 15 is an enlarged view corresponding to FIG. 3A used for explaining the first embodiment, in the vicinity of a portion where the rotor and the stator of the rotation angle detection device according to the second modification of the fifth embodiment face each other. It is a schematic diagram.

実施の形態5にかかる回転角度検出装置1では、図14Aに示すように、回転子2への対向面31fcには、実施の形態3の図11Aと同様に、両端部に加えて隣接する磁束密度検出部32の間にも配置され、3か所以上に突出部31pが形成されている。そして、背面31foには、3つ以上の突出部31pそれぞれに対応し、磁束密度検出部32の配置される部分よりも中心X2に近づく陥没部31dを形成している。 In the rotation angle detection device 1 according to the fifth embodiment, as shown in FIG. 14A, the surface 31fc facing the rotor 2 has adjacent magnetic fluxes in addition to both ends, as in FIG. 11A of the third embodiment. It is also arranged between the density detection units 32, and three or more projections 31p are formed. Further, recessed portions 31d are formed on the rear surface 31fo so as to correspond to the three or more projecting portions 31p and to be closer to the center X2 than the portion where the magnetic flux density detecting portion 32 is arranged.

3か所以上の突出部31pそれぞれに対応する陥没部31dも、突出部31pが設けられることによるバイアス磁界発生部31の体積(厚み)増加を補償するように、対向面31fcにおける突出部31pの突出量Hpと同程度の深さに設定するとよい。 The recessed portions 31d corresponding to the three or more projecting portions 31p are also formed in such a manner as to compensate for the increase in volume (thickness) of the bias magnetic field generating portion 31 due to the provision of the projecting portions 31p. It is preferable to set the depth to the same extent as the amount of protrusion Hp.

実施の形態5にかかる回転角度検出装置は、バイアス磁界発生部31の周方向端部、あるいはその付近に突出部31pを有するため、実施の形態1と同様に、各磁束密度検出部32の出力信号の不平衡を低減する効果が得られる。さらに、隣接する磁束密度検出部32の間にも、突出部31pを有するため、実施の形態3と同様に、各磁束密度検出部32の出力波形の振幅が増加し、耐ノイズ性が向上する効果が得られる。そして、突出部31pによる厚み増加を補償するように陥没部31dを設けたので、実施の形態4と同様に、バイアス磁界発生部31の体積を増加させずに実施の形態3と同様の効果を得られる。 Since the rotation angle detection device according to the fifth embodiment has the projecting portion 31p at or near the circumferential end of the bias magnetic field generating portion 31, as in the first embodiment, the output of each magnetic flux density detecting portion 32 is This has the effect of reducing signal imbalance. Furthermore, since the protruding portions 31p are also provided between the adjacent magnetic flux density detection portions 32, the amplitude of the output waveform of each magnetic flux density detection portion 32 is increased and the noise resistance is improved as in the third embodiment. effect is obtained. Since the depressed portion 31d is provided so as to compensate for the increase in thickness due to the projecting portion 31p, the same effect as in the third embodiment can be obtained without increasing the volume of the bias magnetic field generating portion 31, as in the fourth embodiment. can get.

変形例.
図14Aでは、実施の形態3(図11A)に対応して、周方向に沿って矩形状に形成された突出部に対応する陥没部の形成につて説明した。本変形例においては、図14Bに示すように、実施の形態3の変形例(図11B)に対応して、周方向Dcに沿って曲線状に形成された突出部31pに対応して陥没部31dを形成した。この場合でも、各磁束密度検出部32の出力信号の不平衡を低減する効果、各磁束密度検出部32の出力信号の不均衡がさらに低減され、角度検出精度を向上させる効果、およびバイアス磁界発生部31の体積を増加させずにそれらの効果を奏することができる。
Modification.
In FIG. 14A, corresponding to the third embodiment (FIG. 11A), the formation of recessed portions corresponding to rectangular protrusions formed along the circumferential direction has been described. In this modification, as shown in FIG. 14B, corresponding to the modification of the third embodiment (FIG. 11B), recessed portions corresponding to protruding portions 31p formed in a curved shape along the circumferential direction Dc 31d was formed. Even in this case, the effect of reducing the imbalance of the output signal of each magnetic flux density detection unit 32, the effect of further reducing the imbalance of the output signal of each magnetic flux density detection unit 32, the effect of improving the angle detection accuracy, and the effect of generating a bias magnetic field These effects can be obtained without increasing the volume of the portion 31 .

第二変形例.
第二変形例では、周方向に沿って曲線状に形成された突出部に対応した陥没部を有するバイアス磁界発生部に対し、実施の形態1の第二変形例で説明した磁性体を配置した例について説明する。実施の形態5の第二変形例においては、図15に示すように、陥没部31dによって曲線状に変化する背面31foに合わせ、バイアス磁界発生部31の背面31fo側に周方向に延びるように磁性体33を配置した。
Second modification.
In the second modification, the magnetic body described in the second modification of the first embodiment is arranged in the bias magnetic field generating portion having recesses corresponding to the projections curved along the circumferential direction. An example will be described. In the second modification of the fifth embodiment, as shown in FIG. 15, the magnetic field is circumferentially extended toward the back surface 31fo of the bias magnetic field generating unit 31 in accordance with the back surface 31fo that is curved by the recessed portion 31d. A body 33 has been placed.

それにより、バイアス磁界発生部31から発生する磁束が通る磁路が形成され、磁束密度検出部32で得られる出力波形の振幅が大きくなるため、耐ノイズ性が向上する。また、厚みが一定な曲線状のバイアス磁界発生部31を形成する場合、湾曲可能なマグネットシートを用いてバイアス磁界発生部31を構成し、予め成型した磁性体33の内周面33fiの曲線に合わせるようにバイアス磁界発生部31を変形させて貼り付けてもよい。 As a result, a magnetic path is formed through which the magnetic flux generated by the bias magnetic field generating section 31 passes, and the amplitude of the output waveform obtained by the magnetic flux density detecting section 32 increases, thereby improving the noise resistance. When forming the bias magnetic field generating portion 31 having a curved shape with a constant thickness, the bias magnetic field generating portion 31 is formed using a bendable magnet sheet, and the curve of the inner peripheral surface 33fi of the preformed magnetic body 33 is formed. The bias magnetic field generating section 31 may be deformed and attached so as to match.

さらに、本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Furthermore, while this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more of the embodiments may lie in particular embodiments. The embodiments can be applied singly or in various combinations. Therefore, numerous variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, modification, addition or omission of at least one component, extraction of at least one component, and combination with components of other embodiments shall be included.

以上のように、本願の回転角度検出装置1によれば、外周面2foの径が周期的に変化する磁性体の凹凸部21を有し、回転軸22を中心に回転自在に支持された回転子2、および回転子2の外周面2foの周方向Dcにおける一部に対して間隔をあけて対向し、凹凸部21との間に磁界を発生させるバイアス磁界発生部31と、バイアス磁界発生部31の回転子2への対向面31fcに周方向Dcに沿って配置され、発生させた磁界を検出する複数の磁束密度検出部32を有する固定子3を備え、対向面31fcの周方向Dcにおける複数の磁束密度検出部32が配置された部分よりも外側の部分には、複数の磁束密度検出部32のうち、周方向Dcにおける端部に位置する磁束密度検出部32が配置された部分よりも回転軸22(の中心X2)に近づくように径方向において突出する突出部31pが形成されているように構成した。これにより、周方向端部における磁束密度ベクトルの乱れを低減することで、各磁束密度検出部32における磁束密度の検出値の不均衡が低減され、小型で正確な回転角度検出装置1を得ることができる。 As described above, according to the rotation angle detection device 1 of the present application, the rotation angle detecting device 1 has the concave and convex portion 21 of the magnetic material in which the diameter of the outer peripheral surface 2fo periodically changes, and is rotatably supported around the rotating shaft 22. A bias magnetic field generating section 31 that faces the child 2 and a part of the outer peripheral surface 2fo of the rotor 2 in the circumferential direction Dc with a gap therebetween and generates a magnetic field between itself and the concave-convex portion 21, and a bias magnetic field generating section. A stator 3 having a plurality of magnetic flux density detection units 32 arranged along the circumferential direction Dc on the surface 31fc of the rotor 31 facing the rotor 2 and detecting the generated magnetic field, and in the circumferential direction Dc of the facing surface 31fc In the portion outside the portion where the plurality of magnetic flux density detection units 32 are arranged, out of the plurality of magnetic flux density detection units 32, the portion where the magnetic flux density detection unit 32 located at the end in the circumferential direction Dc is arranged Also, a protruding portion 31p protruding in the radial direction so as to approach (the center X2 of) the rotating shaft 22 is formed. As a result, by reducing the disturbance of the magnetic flux density vector at the ends in the circumferential direction, the imbalance in the magnetic flux density detection values of the magnetic flux density detection units 32 is reduced, and a compact and accurate rotation angle detection device 1 can be obtained. can be done.

このとき、突出部31pは、端部に位置する磁束密度検出部32(の対向面32fc)よりも回転軸22(の中心X2)に近づくように形成されていれば、磁束密度検出部32における磁束密度の周方向成分(乱れ成分)が低減し、磁束密度の径方向成分(信号成分)が増加する。その結果、信号成分Sに対する二次高調波成分Hsがより小さくなるため、角度誤差をより低減できる。さらに、信号成分S自体も大きくなるため、対ノイズ性がより向上する。 At this time, if the projecting portion 31p is formed closer to (the center X2 of) the rotating shaft 22 than (the facing surface 32fc of) the magnetic flux density detecting portion 32 located at the end, the magnetic flux density detecting portion 32 The circumferential component (disturbance component) of the magnetic flux density is reduced, and the radial component (signal component) of the magnetic flux density is increased. As a result, since the second harmonic component Hs with respect to the signal component S becomes smaller, the angle error can be further reduced. Furthermore, since the signal component S itself also increases, the noise resistance is further improved.

また、バイアス磁界発生部31の突出部31pが形成された部分は、径方向の厚みが他の部分よりも厚くなっているように構成すれば、中心X2に近づくことで得られる効果に加え、周方向Dcにおける両端に位置する磁束密度検出部32の出力波形の振幅を増加させ、耐ノイズ性も向上させることができる。 Further, if the portion of the bias magnetic field generating portion 31 where the projecting portion 31p is formed is configured to be thicker in the radial direction than the other portions, in addition to the effect obtained by approaching the center X2, It is possible to increase the amplitude of the output waveform of the magnetic flux density detectors 32 located at both ends in the circumferential direction Dc, and to improve the noise resistance.

あるいは、バイアス磁界発生部31の径方向における背面31foの、対向面31fcにおける突出部31pが形成された部分と周方向Dcにおける同じ位置の部分には、端部に位置する磁束密度検出部32が配置された部分と周方向Dcにおける同じ位置の部分よりも回転軸22に近づくように陥没する陥没部31dが形成されているように構成すれば、バイアス磁界発生部31の体積の増加を抑制し、資源を有効利用できる。 Alternatively, the magnetic flux density detection unit 32 positioned at the end is located at the same position in the circumferential direction Dc as the portion of the rear surface 31fo in the radial direction of the bias magnetic field generation unit 31 where the projecting portion 31p is formed on the opposing surface 31fc. If the recessed portion 31d is formed so as to be recessed closer to the rotating shaft 22 than the portion at the same position in the circumferential direction Dc as the arranged portion, an increase in the volume of the bias magnetic field generating portion 31 can be suppressed. , resources can be used effectively.

また、対向面31fcの回転軸22に垂直な断面形状が、回転軸22(中心X2)との距離を半径とする円よりも大きな曲率の円弧になっているので、容易に突出部31pを形成できる。 In addition, since the cross-sectional shape of the facing surface 31fc perpendicular to the rotating shaft 22 is an arc with a larger curvature than a circle whose radius is the distance from the rotating shaft 22 (center X2), the projecting portion 31p can be easily formed. can.

また、突出部31pは、複数の磁束密度検出部32のうち、周方向Dcにおいて隣接する磁束密度検出部32どうしの中間部分にも形成されているように構成すれば、各磁束密度検出部32の出力波形の振幅が増加し、耐ノイズ性が向上する。 Moreover, if the protruding portion 31p is also formed in an intermediate portion between the magnetic flux density detecting portions 32 adjacent to each other in the circumferential direction Dc among the plurality of magnetic flux density detecting portions 32, each magnetic flux density detecting portion 32 increases the amplitude of the output waveform, improving noise immunity.

固定子3は、周方向Dcに沿って延び、バイアス磁界発生部31の径方向における外側に配置された磁性体33を有するように構成すれば、バイアス磁界発生部31から発生する磁束が通る磁路が形成され、磁束密度検出部32で得られる出力波形の振幅が大きくなるため、耐ノイズ性が向上する。 If the stator 3 extends in the circumferential direction Dc and has a magnetic body 33 arranged radially outwardly of the bias magnetic field generating section 31, the magnetic flux generated from the bias magnetic field generating section 31 passes through. A path is formed, and the amplitude of the output waveform obtained by the magnetic flux density detection unit 32 increases, thereby improving noise resistance.

複数の磁束密度検出部32として3つの磁束密度検出部32が周方向Dcに沿って配置され、3つの磁束密度検出部32それぞれからの信号を2相変換し、逆正接関数によって回転子2の回転角度θを演算する角度演算部5を備えるように構成すれば、3次の高調波成分に対するロバスト性を持たせることができる。 Three magnetic flux density detectors 32 are arranged along the circumferential direction Dc as a plurality of magnetic flux density detectors 32. The signals from each of the three magnetic flux density detectors 32 are two-phase-converted, and the rotor 2 is detected by an arctangent function. Robustness against third-order harmonic components can be provided by providing the angle calculator 5 for calculating the rotation angle θ.

なお、磁束密度検出部32を3つ設けた場合については、上述のような効果が得られることから、より望ましい形態として各実施の形態では具体例として3つ設けた例について説明したが、磁束密度検出部32の数をさらに増やしても良い。磁束密度検出部32を少なくとも3つ以上設けていれば、特定の高周波成分に対してロバスト性を持たせることができる。また、磁束密度検出部32を複数設けていれば、各磁束密度検出部32の出力信号の不平衡を低減するという本願で開示する回転角度検出装置1の基本的な効果は共通して得ることができる。 In the case where three magnetic flux density detection units 32 are provided, the effects described above can be obtained. The number of density detection units 32 may be further increased. If at least three or more magnetic flux density detection units 32 are provided, it is possible to provide robustness to specific high frequency components. Further, if a plurality of magnetic flux density detection units 32 are provided, the basic effect of the rotation angle detection device 1 disclosed in the present application, which is to reduce the unbalance of the output signals of each magnetic flux density detection unit 32, can be obtained in common. can be done.

1:回転角度検出装置、 2:回転子、 21:凹凸部、 22:回転軸、 2fo:外周面、 3:固定子、 31:バイアス磁界発生部、 31d:陥没部、 31fc:対向面、 31fo:背面、 31p:突出部、 32:磁束密度検出部、 32fc:対向面、 33:磁性体、 33fi:内周面、 5:角度演算部、 Dc:周方向、 Hp:突出量、 X2:中心、 θ:回転角度。 1: Rotation angle detector 2: Rotor 21: Concavo-convex portion 22: Rotating shaft 2fo: Peripheral surface 3: Stator 31: Bias magnetic field generator 31d: Depression 31fc: Opposite surface 31fo : back surface 31p: protrusion 32: magnetic flux density detector 32fc: facing surface 33: magnetic material 33fi: inner peripheral surface 5: angle calculator Dc: circumferential direction Hp: amount of protrusion X2: center , θ: rotation angle.

本願に開示される回転角度検出装置は、外周面の径が周期的に滑らかに変化する磁性体の凹凸部を有し、回転軸を中心に回転自在に支持された回転子、および前記回転子の前記外周面の周方向における一部に対して間隔をあけて対向し、前記凹凸部との間に磁界を発生させるバイアス磁界発生部と、前記バイアス磁界発生部の前記回転子への対向面に前記周方向に沿って配置され、前記発生させた磁界を検出する複数の磁束密度検出部を有する固定子を備え、前記対向面の前記周方向における前記複数の磁束密度検出部が配置された部分よりも外側の部分には、前記複数の磁束密度検出部のうち、前記周方向における端部に位置する磁束密度検出部が配置された部分よりも前記回転軸に近づくように径方向において突出する突出部が形成されていることを特徴とする。
The rotation angle detection device disclosed in the present application includes a rotor having irregularities made of a magnetic material in which the diameter of the outer peripheral surface periodically and smoothly changes, and which is rotatably supported around a rotation shaft; and the rotor. a bias magnetic field generating portion that faces a part of the outer peripheral surface of the in the circumferential direction with a space therebetween and generates a magnetic field between itself and the uneven portion; and a surface of the bias magnetic field generating portion that faces the rotor. a stator having a plurality of magnetic flux density detection units arranged along the circumferential direction and detecting the generated magnetic field, wherein the plurality of magnetic flux density detection units are arranged in the circumferential direction of the facing surface Out of the plurality of magnetic flux density detection units, the outer portion protrudes in the radial direction so as to be closer to the rotating shaft than the portion where the magnetic flux density detection unit positioned at the end in the circumferential direction is arranged. characterized in that a projecting portion is formed to

Claims (8)

外周面の径が周期的に変化する磁性体の凹凸部を有し、回転軸を中心に回転自在に支持された回転子、および
前記回転子の前記外周面の周方向における一部に対して間隔をあけて対向し、前記凹凸部との間に磁界を発生させるバイアス磁界発生部と、前記バイアス磁界発生部の前記回転子への対向面に前記周方向に沿って配置され、前記発生させた磁界を検出する複数の磁束密度検出部を有する固定子を備え、
前記対向面の前記周方向における前記複数の磁束密度検出部が配置された部分よりも外側の部分には、前記複数の磁束密度検出部のうち、前記周方向における端部に位置する磁束密度検出部が配置された部分よりも前記回転軸に近づくように径方向において突出する突出部が形成されていることを特徴とする回転角度検出装置。
A rotor having irregularities made of a magnetic material whose diameter on the outer peripheral surface changes periodically, and is rotatably supported around a rotation axis; a bias magnetic field generating portion facing the uneven portion with a space therebetween and generating a magnetic field between the concave and convex portion; A stator having a plurality of magnetic flux density detection units that detect a magnetic field generated by
A magnetic flux density detector positioned at an end portion in the circumferential direction among the plurality of magnetic flux density detectors is provided in a portion of the facing surface outside the portion where the plurality of magnetic flux density detectors are arranged in the circumferential direction. A rotation angle detection device, wherein a protruding portion protruding in a radial direction is formed so as to be closer to the rotating shaft than a portion where the portion is arranged.
前記突出部は、前記端部に位置する磁束密度検出部よりも前記回転軸に近づくように形成されていることを特徴とする請求項1に記載の回転角度検出装置。 2. The rotation angle detection device according to claim 1, wherein the protruding portion is formed closer to the rotating shaft than the magnetic flux density detection portion positioned at the end portion. 前記バイアス磁界発生部の前記突出部が形成された部分は、前記径方向の厚みが他の部分よりも厚くなっていることを特徴とする請求項1または2に記載の回転角度検出装置。 3. The rotation angle detection device according to claim 1, wherein the portion of the bias magnetic field generating portion where the projecting portion is formed is thicker in the radial direction than other portions. 前記バイアス磁界発生部の前記径方向における背面の、前記対向面における前記突出部が形成された部分と前記周方向における同じ位置の部分には、前記端部に位置する磁束密度検出部が配置された部分と前記周方向における同じ位置の部分よりも前記回転軸に近づくように陥没する陥没部が形成されていることを特徴とする請求項1または2に記載の回転角度検出装置。 A magnetic flux density detection unit located at the end is arranged in a portion of the rear surface of the bias magnetic field generation unit in the radial direction, which is at the same position in the circumferential direction as the portion of the facing surface where the protrusion is formed. 3. The rotation angle detection device according to claim 1, further comprising a recessed portion that is recessed so as to be closer to the rotating shaft than the portion located at the same position in the circumferential direction. 前記対向面の前記回転軸に垂直な断面形状が、前記回転軸との距離を半径とする円よりも大きな曲率の円弧になっていることを特徴とする請求項1から3のいずれか1項に記載の回転角度検出装置。 4. A cross-sectional shape of the opposing surface perpendicular to the rotation axis is an arc having a larger curvature than a circle whose radius is the distance from the rotation axis. The rotation angle detection device according to . 前記突出部は、前記複数の磁束密度検出部のうち、前記周方向において隣接する磁束密度検出部どうしの中間部分にも形成されていることを特徴とする請求項1から5のいずれか1項に記載の回転角度検出装置。 6. The protruding portion is also formed in an intermediate portion between the magnetic flux density detecting portions adjacent in the circumferential direction among the plurality of magnetic flux density detecting portions. The rotation angle detection device according to . 前記固定子は、前記周方向に沿って延び、前記バイアス磁界発生部の前記径方向における外側に配置された磁性体を有することを特徴とする請求項1から6のいずれか1項に記載の回転角度検出装置。 7. The stator according to any one of claims 1 to 6, wherein the stator extends along the circumferential direction and has a magnetic body arranged outside the bias magnetic field generating portion in the radial direction. Rotation angle detector. 前記複数の磁束密度検出部として3つの磁束密度検出部が前記周方向に沿って配置され、
前記3つの磁束密度検出部それぞれからの信号を2相変換し、逆正接関数によって前記回転子の回転角度を演算する角度演算部を備えたことを特徴とする請求項1から7のいずれか1項に記載の回転角度検出装置。
Three magnetic flux density detection units are arranged along the circumferential direction as the plurality of magnetic flux density detection units,
8. The apparatus according to any one of claims 1 to 7, further comprising an angle calculation section that performs two-phase conversion on the signals from each of the three magnetic flux density detection sections and calculates the rotation angle of the rotor using an arctangent function. 4. A rotation angle detection device according to claim 1.
JP2021064560A 2021-04-06 2021-04-06 Rotation angle detector Active JP7183330B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021064560A JP7183330B2 (en) 2021-04-06 2021-04-06 Rotation angle detector
CN202210288774.3A CN115200467A (en) 2021-04-06 2022-03-23 Rotation angle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021064560A JP7183330B2 (en) 2021-04-06 2021-04-06 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2022160054A true JP2022160054A (en) 2022-10-19
JP7183330B2 JP7183330B2 (en) 2022-12-05

Family

ID=83575193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021064560A Active JP7183330B2 (en) 2021-04-06 2021-04-06 Rotation angle detector

Country Status (2)

Country Link
JP (1) JP7183330B2 (en)
CN (1) CN115200467A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573908U (en) * 1992-03-13 1993-10-08 富士通テン株式会社 Bias magnet for magnetic detection element
JPH08320327A (en) * 1995-05-26 1996-12-03 Nippondenso Co Ltd Magnetic sensor
JPH10318783A (en) * 1997-05-16 1998-12-04 Yazaki Corp Magnetic detector and magnetic detection signal processor
JP2002372402A (en) * 2001-06-13 2002-12-26 Alps Electric Co Ltd Seat position sensor
JP2006220506A (en) * 2005-02-09 2006-08-24 Denso Corp Device for detecting angle of rotation
JP2007059725A (en) * 2005-08-25 2007-03-08 Tokai Rika Co Ltd Magnetic sensor package and manufacturing method thereof
JP2010133851A (en) * 2008-12-05 2010-06-17 Mitsubishi Electric Corp Rotation angle sensor
WO2019138491A1 (en) * 2018-01-11 2019-07-18 三菱電機株式会社 Rotation angle detection device
JP2019198147A (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Rotary electric machine
JP2019211331A (en) * 2018-06-05 2019-12-12 三菱電機株式会社 Rotation angle detector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573908U (en) * 1992-03-13 1993-10-08 富士通テン株式会社 Bias magnet for magnetic detection element
JPH08320327A (en) * 1995-05-26 1996-12-03 Nippondenso Co Ltd Magnetic sensor
JPH10318783A (en) * 1997-05-16 1998-12-04 Yazaki Corp Magnetic detector and magnetic detection signal processor
JP2002372402A (en) * 2001-06-13 2002-12-26 Alps Electric Co Ltd Seat position sensor
JP2006220506A (en) * 2005-02-09 2006-08-24 Denso Corp Device for detecting angle of rotation
JP2007059725A (en) * 2005-08-25 2007-03-08 Tokai Rika Co Ltd Magnetic sensor package and manufacturing method thereof
JP2010133851A (en) * 2008-12-05 2010-06-17 Mitsubishi Electric Corp Rotation angle sensor
WO2019138491A1 (en) * 2018-01-11 2019-07-18 三菱電機株式会社 Rotation angle detection device
JP2019198147A (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Rotary electric machine
JP2019211331A (en) * 2018-06-05 2019-12-12 三菱電機株式会社 Rotation angle detector

Also Published As

Publication number Publication date
JP7183330B2 (en) 2022-12-05
CN115200467A (en) 2022-10-18

Similar Documents

Publication Publication Date Title
JP6997097B2 (en) Rotation angle detection device and rotation angle detection method
JP6549676B2 (en) Measurement of absolute angular position
CN105403233B (en) Linear and rotary position magnetic sensors, systems and methods
JP6997098B2 (en) Rotation angle detection device and rotation angle detection method
JP2009522567A (en) System for detecting absolute angular position by difference comparison, rolling bearing and rotating machine
JP5583151B2 (en) Metal seal
JP2012186988A (en) Resolver and rolling bearing device with resolver
JP7183330B2 (en) Rotation angle detector
JP2011257275A (en) Rotation angle sensor
JP2019060739A (en) Movable-side member
JP5195490B2 (en) Rotation information calculation device, rolling bearing with rotation information calculation device, and motor with rotation information calculation device
JP6532574B1 (en) Rotation angle detection device
JP6435811B2 (en) Magnetic position detector
CN111602030B (en) Rotation angle detecting device
CN105890833A (en) Axial flux focusing small diameter low cost torque sensor
JP6485822B1 (en) Rotation angle detector
JP6895940B2 (en) Manufacturing method of rotation angle detection device, rotation electric machine, automobile drive system, and rotation angle detection device
JP6652075B2 (en) Rotation angle detector
JP2020176853A (en) Rotation angle detecting device
JP6213536B2 (en) Magnetic field detection device and rotation detection device
JP4543728B2 (en) Magnetic encoder
US10648874B1 (en) Rotary device
JP2013198324A (en) Resolver
WO2019142739A1 (en) Rotation angle detection device
JP2019124545A (en) Rotation angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R151 Written notification of patent or utility model registration

Ref document number: 7183330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151