JP4737371B2 - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
JP4737371B2
JP4737371B2 JP2004334242A JP2004334242A JP4737371B2 JP 4737371 B2 JP4737371 B2 JP 4737371B2 JP 2004334242 A JP2004334242 A JP 2004334242A JP 2004334242 A JP2004334242 A JP 2004334242A JP 4737371 B2 JP4737371 B2 JP 4737371B2
Authority
JP
Japan
Prior art keywords
magnetic field
vector
substrate
elements
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004334242A
Other languages
Japanese (ja)
Other versions
JP2006145323A (en
Inventor
きみ子 大井
誠二 福岡
利尚 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004334242A priority Critical patent/JP4737371B2/en
Publication of JP2006145323A publication Critical patent/JP2006145323A/en
Application granted granted Critical
Publication of JP4737371B2 publication Critical patent/JP4737371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁気抵抗効果素子を用いて外部磁界の方向を検出する検出装置に関し、例えば内燃機関のスロットルバルブの回転軸等に取り付けられ、スロットル開度を検出する場合等に用いて好適な回転角度検出装置に関するものである。   The present invention relates to a detection device that detects the direction of an external magnetic field using a magnetoresistive effect element. For example, the rotation device is attached to a rotary shaft of a throttle valve of an internal combustion engine and is suitable for use in detecting the throttle opening. The present invention relates to an angle detection device.

この種の従来の回転角度検出装置としては、下記特許文献1の回転角度センサーが知られており、図7のように磁気抵抗効果素子1を有する第1素子基板2A〜第4素子基板2Dと、それらの素子基板2A〜2Dを接続して回路を構成する配線基板3とを有し、配線基板3の面上には、第1素子基板2A〜第4素子基板2Dが個別に配置されており、少なくとも1組の前記素子基板が80°〜100°傾くように配置されている。また、それらの磁気抵抗効果素子1を有する第1素子基板2A〜第4素子基板2Dに外部磁界を印加するための磁界発生手段5は、被検出物としての回転軸10と、この端部に一体化された円形部材11(歯車等でもよい)と、円形部材11の端面に180°間隔で固着された永久磁石12A,12Bとを有し、各第1素子基板2A〜第4素子基板2Dにほぼ一様な方向性を有する外部磁界を印加できる構成となっている。
特開2001−159542号公報
As this type of conventional rotation angle detection device, a rotation angle sensor of the following Patent Document 1 is known, and the first element substrate 2A to the fourth element substrate 2D having the magnetoresistive effect element 1 as shown in FIG. And a wiring board 3 that constitutes a circuit by connecting the element substrates 2A to 2D. On the surface of the wiring board 3, the first element substrate 2A to the fourth element substrate 2D are individually arranged. And at least one set of the element substrates is disposed so as to be inclined by 80 ° to 100 °. Further, the magnetic field generating means 5 for applying an external magnetic field to the first element substrate 2A to the fourth element substrate 2D having the magnetoresistive effect element 1 includes a rotating shaft 10 as an object to be detected and an end portion thereof. The integrated circular member 11 (which may be a gear or the like) and permanent magnets 12A and 12B fixed to the end face of the circular member 11 at intervals of 180 °, each of the first element substrate 2A to the fourth element substrate 2D. In this configuration, an external magnetic field having a substantially uniform direction can be applied.
JP 2001-159542 A

ところで、従来の回転角度検出装置では、磁気抵抗効果素子を有する第1〜第4素子基板が、前記配線基板の面上に個別に配置され、かつ少なくとも1組の前記素子基板が80°〜100°傾くようにするため、前記素子基板を配置するための工数が増える。また、前記素子基板の配置による位置ばらつき等により、磁界検出精度のばらつきも大きくなる問題があった。   By the way, in the conventional rotation angle detection apparatus, the 1st-4th element board | substrate which has a magnetoresistive effect element is separately arrange | positioned on the surface of the said wiring board, and at least 1 set of said element substrates is 80 degrees-100. In order to incline, the man-hour for arranging the element substrate increases. In addition, there is a problem that variation in magnetic field detection accuracy increases due to variation in position due to the arrangement of the element substrates.

本発明は、上記の点に鑑み、磁気抵抗効果素子としてベクトル検知型磁気抵抗効果素子を用い、ピン層磁化方向が略同一のベクトル検知型磁気抵抗効果素子を複数個同一素子基板上に設けることにより、前記素子基板を配線部材の取付面上に配置するための作業性を改善し、磁界検知精度の向上を図り、ひいては前記ベクトル検知型磁気抵抗効果素子に対して相対的に回転する磁界の回転角度検知精度の向上が可能な回転角度検出装置を提供することを目的とする。   In view of the above points, the present invention uses a vector detection type magnetoresistive effect element as a magnetoresistive effect element, and provides a plurality of vector detection type magnetoresistive effect elements having substantially the same pin layer magnetization direction on the same element substrate. Thus, the workability for arranging the element substrate on the mounting surface of the wiring member is improved, the magnetic field detection accuracy is improved, and as a result, the magnetic field rotating relative to the vector detection type magnetoresistive effect element is improved. An object of the present invention is to provide a rotation angle detection device capable of improving the rotation angle detection accuracy.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、第1の発明は、
磁界発生手段の磁界内に配置され当該磁界の方向に応じて抵抗値が変化する素子基板上のベクトル検知型磁気抵抗効果素子と、該ベクトル検知型磁気抵抗効果素子を接続して回路を構成する配線部材とを有し、被検出物であるスロットルバルブの回転軸の回転に伴って前記ベクトル検知型磁気抵抗効果素子に対して前記磁界が相対的に回転するスロットル開度検出用の回転角度検出装置であって、
ピン層磁化方向が略同一のベクトル検知型磁気抵抗効果素子が同一の素子基板上に個設けられており、前記素子基板が前記配線部材の取付面上に2個配置され、一方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第1素子と第2素子のピン層磁化方向は、他方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第3素子と第4素子のピン層磁化方向と略反平行であり、
前記第1素子と前記第3素子は、当該素子間に第1出力部を有して直列に接続されて第1直列回路をなし、前記第2素子と前記第4素子は、当該素子間に第2出力部を有して直列に接続されて第2直列回路をなし、前記第1及び第2直列回路は、前記第1素子と前記第2素子の側を共通の入力部とし且つ前記第3素子と前記第4素子の側を共通の電位に固定して並列に接続されることを特徴としている。
In order to achieve the above object, the first invention provides:
A vector detection type magnetoresistive effect element on an element substrate which is arranged in the magnetic field of the magnetic field generating means and whose resistance value changes according to the direction of the magnetic field, and the vector detection type magnetoresistive effect element are connected to form a circuit. Rotation angle detection for detecting a throttle opening degree in which the magnetic field rotates relative to the vector detection type magnetoresistive effect element with rotation of a rotation shaft of a throttle valve which is a detected object. A device,
Two vector-detecting magnetoresistive elements having substantially the same pin layer magnetization direction are provided on the same element substrate, and the two element substrates are arranged on the mounting surface of the wiring member , and one of the elements the first element and the pin layer magnetization direction of the second element is the vector-detecting magnetoresistive element on a substrate, the third element and the fourth is the vector-detecting magnetoresistive element of the other of said element substrate Is substantially antiparallel to the pin layer magnetization direction of the element ,
The first element and the third element have a first output portion between the elements and are connected in series to form a first series circuit, and the second element and the fourth element are between the elements. A second output circuit configured to be connected in series to form a second series circuit, the first and second series circuits having the first element and the second element side as a common input unit; 3 element and a side of said fourth element is fixed to a common potential are connected in parallel is characterized in Rukoto.

また、第2の発明は、
磁界発生手段の磁界内に配置され該磁界の方向に応じて抵抗値が変化する素子基板上のベクトル検知型磁気抵抗効果素子と、該ベクトル検知型磁気抵抗効果素子を接続して回路を構成する配線部材とを有し、被検出物であるスロットルバルブの回転軸の回転に伴って前記ベクトル検知型磁気抵抗効果素子に対して前記磁界が相対的に回転するスロットル開度検出用の回転角度検出装置であって、
ピン層磁化方向が略同一のベクトル検知型磁気抵抗効果素子が同一の素子基板上に個設けられており、前記素子基板が前記配線部材の取付面上に2個配置され、一方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第1素子と第2素子のピン層磁化方向と、他方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第3素子と第4素子のピン層磁化方向とが、互いに向き合う方向、又はその逆方向であり、
前記第1素子と前記第3素子は、当該素子間に第1出力部を有して直列に接続されて第1直列回路をなし、前記第2素子と前記第4素子は、当該素子間に第2出力部を有して直列に接続されて第2直列回路をなし、前記第1及び第2直列回路は、前記第1素子と前記第2素子の側を共通の入力部とし且つ前記第3素子と前記第4素子の側を共通の電位に固定して並列に接続されることを特徴としている。
In addition, the second invention,
A circuit by connecting the vector detection type magnetoresistive element of the element substrate on which resistance value changes according to the direction of those magnetic field is disposed in the magnetic field of the magnetic field generating means, the vector detecting magnetoresistive element A rotation angle for detecting a throttle opening, in which the magnetic field rotates relative to the vector detection type magnetoresistive effect element in accordance with rotation of a rotation shaft of a throttle valve which is a detected object. A detection device,
Two vector-detecting magnetoresistive elements having substantially the same pin layer magnetization direction are provided on the same element substrate, and the two element substrates are arranged on the mounting surface of the wiring member , and one of the elements and the pinned layer magnetization directions of the first element and the second element is the vector-detecting magnetoresistive element on a substrate, and the third element is the other of the vector detection type magnetoresistive element of the element substrate 4 The pinned layer magnetization direction of the element is a direction facing each other, or vice versa .
The first element and the third element have a first output portion between the elements and are connected in series to form a first series circuit, and the second element and the fourth element are between the elements. A second output circuit configured to be connected in series to form a second series circuit, the first and second series circuits having the first element and the second element side as a common input unit; 3 element and a side of said fourth element is fixed to a common potential are connected in parallel is characterized in Rukoto.

前記回転角度検出装置において、2個の前記素子基板の表面上に、ピン層磁化方向を判別する印を付加してもよい。 In the rotation angle detection device, a mark for determining the pinned layer magnetization direction may be added on the surfaces of the two element substrates.

前記回転角度検出装置において、前記ベクトル検知型磁気抵抗効果素子は、スピンバルブ型巨大磁気抵抗効果素子であるとよい。   In the rotation angle detection device, the vector detection type magnetoresistance effect element may be a spin valve type giant magnetoresistance effect element.

本発明に係る回転角度検出装置によれば、磁気抵抗効果素子としてベクトル検知型磁気抵抗効果素子を用い、ピン層磁化方向が略同一方向の複数のベクトル検知型磁気抵抗効果素子を、同一素子基板上に設けたので、配線部材の取付面上に前記素子基板を配置する作業性が良くなる。また、複数のベクトル検知型磁気抵抗効果素子を同一素子基板上に設けるため、1個の磁気抵抗効果素子を有する1個の素子基板を複数個配線部材に設ける場合に比べて、配線部材の取付面上に素子基板を配置したときの前記素子間の特性ばらつきや位置のばらつきがなくなり磁界方向の検知精度の向上が可能である。   According to the rotation angle detection device of the present invention, a vector detection type magnetoresistive effect element is used as the magnetoresistive effect element, and a plurality of vector detection type magnetoresistive effect elements having substantially the same pin layer magnetization direction are arranged on the same element substrate. Since it was provided above, the workability of arranging the element substrate on the mounting surface of the wiring member is improved. Further, since a plurality of vector detection type magnetoresistive effect elements are provided on the same element substrate, the wiring member is attached as compared with the case where a plurality of one element substrate having one magnetoresistive effect element is provided on the wiring member. It is possible to improve the detection accuracy in the direction of the magnetic field by eliminating the characteristic variation and the positional variation between the elements when the element substrate is arranged on the surface.

以下、本発明を実施するための最良の形態として、回転角度検出装置の実施の形態を図面に従って説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a rotation angle detection device will be described below with reference to the drawings as the best mode for carrying out the present invention.

図1〜図3で本発明に係る回転角度検出装置の実施の形態1を説明する。本実施の形態では、ベクトル検知型磁気抵抗効果素子としてスピンバルブ型巨大磁気抵抗効果素子(以下、SV−GMR素子)を用いている。このSV−GMR素子は、磁化方向が一方向に固定されたピン層(固定磁性層)と、電流が主として流れる非磁性層と、磁化方向が外部磁界方向(外部磁束方向)に一致するフリー層(自由層)とで構成され、ピン層磁化方向と外部磁界のベクトル方向が一致するときは低抵抗値、反対方向のときは高抵抗値となる(図8で動作の詳細は後述する)。   A first embodiment of a rotation angle detection device according to the present invention will be described with reference to FIGS. In the present embodiment, a spin-valve giant magnetoresistive element (hereinafter referred to as an SV-GMR element) is used as the vector detecting magnetoresistive element. This SV-GMR element includes a pinned layer (pinned magnetic layer) whose magnetization direction is fixed in one direction, a nonmagnetic layer through which a current mainly flows, and a free layer whose magnetization direction matches the external magnetic field direction (external magnetic flux direction). When the magnetization direction of the pinned layer coincides with the vector direction of the external magnetic field, the resistance value is low, and when the direction is opposite, the resistance value is high (details of the operation will be described later with reference to FIG. 8).

そして、図1(A),(B)及び図2に示すように、ピン層磁化方向が略同一のSV−GMR素子R1,R2を設けた素子基板21と、ピン層磁化方向が略同一のSV−GMR素子R3,R4を設けた素子基板22とを用い、これらの素子基板21,22を配線部材としての配線基板30の取付面にピン層磁化方向が互いに反平行(略反平行であってもよい)となるように配置、固定している。ここで、反平行とはベクトル同士が平行であるが、その向きが互いに反対向きであることを言う。なお、各素子基板21,22において、2個のSV−GMR素子はピン層磁化方向に沿って直線的に配列されており、各SV−GMR素子の感磁面は素子基板の上面と考えてよい。また、前記配線基板30は検出装置支持台31に固定されている。   As shown in FIGS. 1A, 1B, and 2, the pin substrate magnetization direction is substantially the same as the element substrate 21 provided with the SV-GMR elements R1, R2 having substantially the same pin layer magnetization direction. The element substrate 22 provided with the SV-GMR elements R3 and R4 is used, and the pin layer magnetization directions are antiparallel (substantially antiparallel to each other) on the mounting surface of the wiring board 30 serving as the wiring member. May be arranged and fixed. Here, anti-parallel means that the vectors are parallel but the directions are opposite to each other. In each of the element substrates 21 and 22, the two SV-GMR elements are linearly arranged along the pinned layer magnetization direction, and the magnetosensitive surface of each SV-GMR element is considered to be the upper surface of the element substrate. Good. The wiring board 30 is fixed to a detection device support 31.

なお、前記素子基板について述べると、1枚の大きな基板上で、ピン層を同一方向に磁化させた数万個のSV−GMR素子を同時に作製し、その大きな基板から、SV−GMR素子を複数個(本実施の形態では2個)並べて切り出したものを素子基板とする。   As for the element substrate, tens of thousands of SV-GMR elements having the pinned layer magnetized in the same direction are simultaneously manufactured on one large substrate, and a plurality of SV-GMR elements are formed from the large substrate. A device substrate (two in the present embodiment) cut out side by side is referred to as an element substrate.

一方、SV−GMR素子R1〜R4に対してほぼ一様な方向性をもった外部磁界を印加する磁界発生手段5は図7の従来技術の場合と同様でよく、被検出物としての回転軸10と、この端部に一体化された円形部材11(歯車等でもよい)と、円形部材11の端面に180°間隔で固着された永久磁石12A,12Bとを有している。従って、SV−GMR素子R1〜R4に印加される外部磁界の向きは一方の永久磁石12AのN極から他方の永久磁石12BのS極に向かう方向となり、回転軸10が1回転する間に外部磁界の向きも360°回転することになる。なお、前記回転軸10は、例えば内燃機関のスロットル開度を検出する回転角度検出装置にあっては、スロットルバルブの回転軸である。   On the other hand, the magnetic field generating means 5 for applying an external magnetic field having a substantially uniform direction to the SV-GMR elements R1 to R4 may be the same as in the prior art of FIG. 10 and a circular member 11 (which may be a gear or the like) integrated at the end, and permanent magnets 12A and 12B fixed to the end surface of the circular member 11 at intervals of 180 °. Therefore, the direction of the external magnetic field applied to the SV-GMR elements R1 to R4 is the direction from the N pole of one permanent magnet 12A to the S pole of the other permanent magnet 12B. The direction of the magnetic field is also rotated 360 °. The rotary shaft 10 is, for example, a rotary shaft of a throttle valve in a rotation angle detection device that detects the throttle opening of an internal combustion engine.

図1及び図2では、解りやすくするために、SV−GMR素子R1〜R4を配線基板30に比較して大きく図示したが、実際には微小寸法である。   In FIG. 1 and FIG. 2, the SV-GMR elements R <b> 1 to R <b> 4 are illustrated larger than the wiring substrate 30 for easy understanding, but in actuality, the dimensions are small.

図3のように、各SV−GMR素子は配線基板30が有する配線パターンにより相互に結線されており、4個のSV−GMR素子R1〜R4のうち、ピン層磁化方向が互いに逆向きのSV−GMR素子R1,R3は、当該素子間に第1出力部を有して直列に接続されて第1直列回路をなしている。また、ピン層磁化方向が前記SV−GMR素子R1と同方向のSV−GMR素子R2とピン層磁化方向が前記SV−GMR素子R3と同方向のSV−GMR素子R4は、当該素子間に第2出力部を有して直列に接続されて第2直列回路をなし、前記第1及び第2直列回路がSV−GMR素子R1とR2を入力部として並列に接続されている。SV−GMR素子R3とR4の一端はグランド(GND)に接続されている。そして、第1出力部とグランド間に出力1が得られ、第2出力部とグランド間に出力2が得られる。出力1及び出力2共に略正弦波となる(動作原理については以下の図8で説明する。)。   As shown in FIG. 3, the SV-GMR elements are connected to each other by the wiring pattern of the wiring board 30, and among the four SV-GMR elements R <b> 1 to R <b> 4, the SVs whose pinned layer magnetization directions are opposite to each other. -GMR elements R1 and R3 have a first output section between the elements and are connected in series to form a first series circuit. The SV-GMR element R2 whose pinned layer magnetization direction is the same as that of the SV-GMR element R1 and the SV-GMR element R4 whose pinned layer magnetization direction is the same direction as that of the SV-GMR element R3 are Two output units are connected in series to form a second series circuit, and the first and second series circuits are connected in parallel with SV-GMR elements R1 and R2 as input units. One ends of the SV-GMR elements R3 and R4 are connected to the ground (GND). An output 1 is obtained between the first output unit and the ground, and an output 2 is obtained between the second output unit and the ground. Both the output 1 and the output 2 are substantially sine waves (the operation principle will be described with reference to FIG. 8 below).

図8(A)のように、SV−GMR素子は、磁化方向が一方向に固定されたピン層(固定磁性層)と、電流が主として流れる非磁性層と、磁化方向が外部磁界方向(外部磁束方向)に一致するフリー層(自由層)とで構成されている。ピン層磁化方向と外部磁界のベクトル方向が一致するときは低抵抗値となり、SV−GMR素子面内において外部磁界のベクトル方向を回転させると、ピン層磁化方向となす角度により抵抗値が変化し、反対方向のとき高抵抗値となる。この特性が図8(B)に示すSV−GMR素子の面内磁気特性であり、SV−GMR素子の感磁面に平行な外部磁界が存在する条件下で、外部磁界を感磁面に垂直な回転中心軸にて回転させ、ピン層磁化方向に対する回転角度と抵抗変化率(ΔR/R)との関係を示したものである。この場合、抵抗変化率(ΔR/R)は正弦波に近い波形でなだらかに変化し、飽和領域は生じない。   As shown in FIG. 8A, the SV-GMR element has a pinned layer (pinned magnetic layer) whose magnetization direction is fixed in one direction, a nonmagnetic layer through which current mainly flows, and a magnetization direction in the external magnetic field direction (external). And a free layer (free layer) coinciding with the (magnetic flux direction). When the pin layer magnetization direction matches the external magnetic field vector direction, the resistance value is low. When the external magnetic field vector direction is rotated in the SV-GMR element plane, the resistance value changes depending on the angle formed with the pin layer magnetization direction. In the opposite direction, the resistance value is high. This characteristic is the in-plane magnetic characteristic of the SV-GMR element shown in FIG. 8B, and the external magnetic field is perpendicular to the magnetosensitive surface under the condition that an external magnetic field parallel to the magnetosensitive surface of the SV-GMR element exists. This shows the relationship between the rotation angle with respect to the pinned layer magnetization direction and the resistance change rate (ΔR / R). In this case, the rate of change in resistance (ΔR / R) changes gently with a waveform close to a sine wave, and no saturation region occurs.

本実施の形態では、図8(B)で示したSV−GMR素子の面内磁気特性を利用するものである。すなわち、図1(A),(B)の磁界発生手段5による外部磁界は回転軸10の回転に伴い回転し、回転軸10が1回転すると前記外部磁界も360°回転する。従って、回転軸10の1回転に伴い、1周期の略正弦波の電圧波形(実質的には正弦波と考えてよい)が図3の出力1−グランド間、及び出力2−グランド間にそれぞれ得られる。   In this embodiment, the in-plane magnetic characteristics of the SV-GMR element shown in FIG. 8B are used. That is, the external magnetic field generated by the magnetic field generating means 5 shown in FIGS. 1A and 1B rotates as the rotating shaft 10 rotates, and when the rotating shaft 10 rotates once, the external magnetic field also rotates 360 °. Therefore, with one rotation of the rotating shaft 10, a voltage waveform having a substantially sine wave of one cycle (substantially a sine wave) can be obtained between the output 1 and the ground and between the output 2 and the ground in FIG. can get.

この実施の形態1によれば、次の通りの効果を得ることができる。   According to the first embodiment, the following effects can be obtained.

(1) SV−GMR素子Rl,SV−GMR素子R2は同一素子基板21上に設けられており、配線基板30の取付面上に同時に配置することができるため、作業性が良い。また、SV−GMR素子R1,SV−GMR素子R2の両素子間において、配線基板30の取付面上に配置される際の位置ばらつき等は影響しないため、磁界検知精度が良くなる。SV−GMR素子R3,SV−GMR素子R4についても、同一素子基板22上に設けられており、同様の効果が得られる。 (1) Since the SV-GMR element Rl and the SV-GMR element R2 are provided on the same element substrate 21 and can be simultaneously disposed on the mounting surface of the wiring substrate 30, workability is good. Further, since the positional variation or the like when arranged on the mounting surface of the wiring board 30 is not affected between the SV-GMR element R1 and the SV-GMR element R2, the magnetic field detection accuracy is improved. The SV-GMR element R3 and the SV-GMR element R4 are also provided on the same element substrate 22, and the same effect can be obtained.

(2) 素子基板21,22は、1枚の大きな基板上で、ピン層を同一方向に磁化させた数万個のSV−GMR素子を同時に作製し、その大きな基板から、SV−GMR素子を複数個(2個)並べて切り出したものであり、同一素子基板上のSV−GMR素子は特性が揃っているから、この点でも磁界検知精度の向上が可能である。 (2) The element substrates 21 and 22 are produced by simultaneously producing tens of thousands of SV-GMR elements in which the pinned layers are magnetized in the same direction on one large substrate, and the SV-GMR elements are formed from the large substrates. A plurality of (two) elements are cut out side by side, and the SV-GMR elements on the same element substrate have the same characteristics. Therefore, the magnetic field detection accuracy can be improved in this respect as well.

図4は本発明の実施の形態2であって、ピン層磁化方向が略同一のSV−GMR素子R1,R2を平行に並べて設けた素子基板23と、ピン層磁化方向が略同一のSV−GMR素子R3,R4を平行に並べて設けた設けた素子基板24とを用いている。そして、配線基板30の取付面に素子基板23,24はSV−GMR素子のピン層磁化方向が互いに向き合う方向となるように配置、固定されている。   FIG. 4 shows a second embodiment of the present invention, in which an element substrate 23 in which SV-GMR elements R1 and R2 having substantially the same pinned layer magnetization direction are arranged in parallel and an SV− having substantially the same pinned layer magnetization direction are provided. An element substrate 24 provided with GMR elements R3 and R4 arranged in parallel is used. The element substrates 23 and 24 are arranged and fixed on the mounting surface of the wiring substrate 30 so that the pinned layer magnetization directions of the SV-GMR elements face each other.

その他の全体構成は図1と同様で、各SV−GMR素子相互の結線も図3の通りであり、この場合にも磁界発生手段による外部磁界の回転角度をSV−GMR素子R1〜R4で実施の形態1と同様に検知可能である。   The other overall configuration is the same as in FIG. 1, and the connections between the SV-GMR elements are as shown in FIG. 3. In this case as well, the rotation angle of the external magnetic field by the magnetic field generating means is implemented by the SV-GMR elements R1 to R4. Detection is possible in the same manner as in the first embodiment.

図5は本発明の実施の形態3であって、ピン層磁化方向が略同一のSV−GMR素子R1,R2を平行に並べて設けた素子基板23と、ピン層磁化方向が略同一のSV−GMR素子R3,R4を平行に並べて設けた設けた素子基板24とを用いている。そして、配線基板30の取付面に素子基板23,24はSV−GMR素子のピン層磁化方向が互いに向き合う方向の反対向きとなるように配置、固定されている。   FIG. 5 shows a third embodiment of the present invention, in which an element substrate 23 in which SV-GMR elements R1 and R2 having substantially the same pin layer magnetization direction are arranged in parallel and an SV− having substantially the same pin layer magnetization direction are provided. An element substrate 24 provided with GMR elements R3 and R4 arranged in parallel is used. The element substrates 23 and 24 are arranged and fixed on the mounting surface of the wiring board 30 so that the pin layer magnetization directions of the SV-GMR elements are opposite to each other.

その他の全体構成は図1と同様で、各SV−GMR素子相互の結線も図3の通りであり、この場合にも磁界発生手段による外部磁界の回転角度をSV−GMR素子R1〜R4で実施の形態1と同様に検知可能である。   The other overall configuration is the same as in FIG. 1, and the connections between the SV-GMR elements are as shown in FIG. 3. In this case as well, the rotation angle of the external magnetic field by the magnetic field generating means is implemented by the SV-GMR elements R1 to R4. Detection is possible in the same manner as in the first embodiment.

図6(A),(B)は実施の形態1で用いることのできる複数個のSV−GMR素子を有する素子基板21,22であって、ピン層磁化方向を判別するための判別印41,42を設けた構成を示す。   FIGS. 6A and 6B show element substrates 21 and 22 having a plurality of SV-GMR elements that can be used in the first embodiment, and are discriminating marks 41 for discriminating the pinned layer magnetization direction. The structure which provided 42 is shown.

また、図6(C),(D)は実施の形態2,3で用いることのできる複数個のSV−GMR素子を有する素子基板23,24であって、ピン層磁化方向を判別するための判別印43,44を設けた構成を示す。   6 (C) and 6 (D) show element substrates 23 and 24 having a plurality of SV-GMR elements that can be used in the second and third embodiments, for determining the pinned layer magnetization direction. The structure provided with the discrimination marks 43 and 44 is shown.

前記判別印41〜44は例えば図示のように三角形状であり、その頂点の向きがピン層磁化方向を示している。   The discrimination marks 41 to 44 have a triangular shape as shown in the figure, for example, and the direction of the apex indicates the pinned layer magnetization direction.

なお、判別印の具体的な形状はピン層磁化方向を表示可能であれば、種々変更可能である。   The specific shape of the discrimination mark can be variously changed as long as the pinned layer magnetization direction can be displayed.

上記各実施の形態において、配線部材として配線基板を用いた場合を示したが、リードフレーム等を配線部材として用いることも可能である。   In each of the above embodiments, the case where the wiring board is used as the wiring member has been described. However, a lead frame or the like can be used as the wiring member.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る回転角度検出装置の実施の形態1であって、(A)は正面図、(B)は平面図である。It is Embodiment 1 of the rotation angle detection apparatus which concerns on this invention, Comprising: (A) is a front view, (B) is a top view. 実施の形態1における素子基板を取り付けた配線基板の構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of a wiring board to which an element substrate is attached in the first embodiment. 実施の形態1における配線基板による各SV−GMR素子の結線を示す回路図である。FIG. 3 is a circuit diagram showing connection of each SV-GMR element by the wiring board in the first embodiment. 本発明の実施の形態2であって、素子基板を取り付けた配線基板の構成を示す斜視図である。It is Embodiment 2 of this invention, Comprising: It is a perspective view which shows the structure of the wiring board which attached the element substrate. 本発明の実施の形態3であって、素子基板を取り付けた配線基板の構成を示す斜視図である。It is Embodiment 3 of this invention, Comprising: It is a perspective view which shows the structure of the wiring board which attached the element substrate. 判別印を有する素子基板の例であって、(A)及び(B)は実施の形態1で使用可能な判別印を有する素子基板をそれぞれ示す斜視図、(C)及び(D)は実施の形態2,3で使用可能な判別印を有する素子基板をそれぞれ示す斜視図である。It is an example of the element board | substrate which has a discrimination mark, Comprising: (A) And (B) is a perspective view which respectively shows the element board | substrate which has a discrimination mark which can be used in Embodiment 1, (C) and (D) are implementation. It is a perspective view which shows each element substrate which has a discrimination mark which can be used with form 2 and 3. 従来の回転角度検出装置の1例を示す斜視図である。It is a perspective view which shows one example of the conventional rotation angle detection apparatus. SV−GMR素子の動作説明であって、(A)はSV−GMR素子の膜構成を示す説明図、(B)はSV−GMR素子の面内磁気特性を示す説明図である。FIG. 4A is a diagram for explaining the operation of the SV-GMR element. FIG. 4A is an explanatory diagram showing a film configuration of the SV-GMR element, and FIG. 4B is an explanatory diagram showing in-plane magnetic characteristics of the SV-GMR element.

符号の説明Explanation of symbols

1 磁気抵抗効果素子
2A〜2D,21〜24 素子基板
3,30 配線基板
10 回転軸
11 円形部材
12A,12B 永久磁石
31 検出装置支持台
41〜44 判別印
R1〜R4 SV−GMR素子
DESCRIPTION OF SYMBOLS 1 Magnetoresistance effect element 2A-2D, 21-24 Element board | substrate 3,30 Wiring board 10 Rotating shaft 11 Circular member 12A, 12B Permanent magnet 31 Detection apparatus support stand 41-44 Discrimination mark R1-R4 SV-GMR element

Claims (4)

磁界発生手段の磁界内に配置され当該磁界の方向に応じて抵抗値が変化する素子基板上のベクトル検知型磁気抵抗効果素子と、該ベクトル検知型磁気抵抗効果素子を接続して回路を構成する配線部材とを有し、被検出物であるスロットルバルブの回転軸の回転に伴って前記ベクトル検知型磁気抵抗効果素子に対して前記磁界が相対的に回転するスロットル開度検出用の回転角度検出装置であって、
ピン層磁化方向が略同一のベクトル検知型磁気抵抗効果素子が同一の素子基板上に個設けられており、前記素子基板が前記配線部材の取付面上に2個配置され、一方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第1素子と第2素子のピン層磁化方向は、他方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第3素子と第4素子のピン層磁化方向と略反平行であり、
前記第1素子と前記第3素子は、当該素子間に第1出力部を有して直列に接続されて第1直列回路をなし、前記第2素子と前記第4素子は、当該素子間に第2出力部を有して直列に接続されて第2直列回路をなし、前記第1及び第2直列回路は、前記第1素子と前記第2素子の側を共通の入力部とし且つ前記第3素子と前記第4素子の側を共通の電位に固定して並列に接続されることを特徴とする回転角度検出装置。
A vector detection type magnetoresistive effect element on an element substrate which is arranged in the magnetic field of the magnetic field generating means and whose resistance value changes according to the direction of the magnetic field, and the vector detection type magnetoresistive effect element are connected to form a circuit. Rotation angle detection for detecting a throttle opening degree in which the magnetic field rotates relative to the vector detection type magnetoresistive effect element with rotation of a rotation shaft of a throttle valve which is a detected object. A device,
Two vector-detecting magnetoresistive elements having substantially the same pin layer magnetization direction are provided on the same element substrate, and the two element substrates are arranged on the mounting surface of the wiring member , and one of the elements the first element and the pin layer magnetization direction of the second element is the vector-detecting magnetoresistive element on a substrate, the third element and the fourth is the vector-detecting magnetoresistive element of the other of said element substrate Is substantially antiparallel to the pin layer magnetization direction of the element ,
The first element and the third element have a first output portion between the elements and are connected in series to form a first series circuit, and the second element and the fourth element are between the elements. A second output circuit configured to be connected in series to form a second series circuit, the first and second series circuits having the first element and the second element side as a common input unit; 3 the rotation angle detecting device is connected to the element to a side of the fourth element in parallel and fixed to a common potential and said Rukoto.
磁界発生手段の磁界内に配置され該磁界の方向に応じて抵抗値が変化する素子基板上のベクトル検知型磁気抵抗効果素子と、該ベクトル検知型磁気抵抗効果素子を接続して回路を構成する配線部材とを有し、被検出物であるスロットルバルブの回転軸の回転に伴って前記ベクトル検知型磁気抵抗効果素子に対して前記磁界が相対的に回転するスロットル開度検出用の回転角度検出装置であって、
ピン層磁化方向が略同一のベクトル検知型磁気抵抗効果素子が同一の素子基板上に個設けられており、前記素子基板が前記配線部材の取付面上に2個配置され、一方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第1素子と第2素子のピン層磁化方向と、他方の前記素子基板上の前記ベクトル検知型磁気抵抗効果素子である第3素子と第4素子のピン層磁化方向とが、互いに向き合う方向、又はその逆方向であり、
前記第1素子と前記第3素子は、当該素子間に第1出力部を有して直列に接続されて第1直列回路をなし、前記第2素子と前記第4素子は、当該素子間に第2出力部を有して直列に接続されて第2直列回路をなし、前記第1及び第2直列回路は、前記第1素子と前記第2素子の側を共通の入力部とし且つ前記第3素子と前記第4素子の側を共通の電位に固定して並列に接続されることを特徴とする回転角度検出装置。
A circuit by connecting the vector detection type magnetoresistive element of the element substrate on which resistance value changes according to the direction of those magnetic field is disposed in the magnetic field of the magnetic field generating means, the vector detecting magnetoresistive element A rotation angle for detecting a throttle opening, in which the magnetic field rotates relative to the vector detection type magnetoresistive effect element in accordance with rotation of a rotation shaft of a throttle valve which is a detected object. A detection device,
Two vector-detecting magnetoresistive elements having substantially the same pin layer magnetization direction are provided on the same element substrate, and the two element substrates are arranged on the mounting surface of the wiring member , and one of the elements and the pinned layer magnetization directions of the first element and the second element is the vector-detecting magnetoresistive element on a substrate, and the third element is the other of the vector detection type magnetoresistive element of the element substrate 4 The pinned layer magnetization direction of the element is a direction facing each other, or vice versa .
The first element and the third element have a first output portion between the elements and are connected in series to form a first series circuit, and the second element and the fourth element are between the elements. A second output circuit configured to be connected in series to form a second series circuit, the first and second series circuits having the first element and the second element side as a common input unit; 3 the rotation angle detecting device is connected to the element to a side of the fourth element in parallel and fixed to a common potential and said Rukoto.
2個の前記素子基板の表面上に、ピン層磁化方向を判別する印を付加したことを特徴とする請求項1又は2記載の回転角度検出装置。 On the surface of two of said device substrate, the rotation angle detection apparatus according to claim 1 or 2, wherein the obtained by adding a mark to determine the pinned layer magnetization direction. 前記ベクトル検知型磁気抵抗効果素子は、スピンバルブ型巨大磁気抵抗効果素子であることを特徴とする請求項1,2又は3記載の回転角度検出装置。 The vector detecting magnetoresistive element is a rotational angle detecting device according to claim 1, 2 or 3, wherein the a spin-valve giant magnetoresistive element.
JP2004334242A 2004-11-18 2004-11-18 Rotation angle detector Active JP4737371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334242A JP4737371B2 (en) 2004-11-18 2004-11-18 Rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334242A JP4737371B2 (en) 2004-11-18 2004-11-18 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2006145323A JP2006145323A (en) 2006-06-08
JP4737371B2 true JP4737371B2 (en) 2011-07-27

Family

ID=36625193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334242A Active JP4737371B2 (en) 2004-11-18 2004-11-18 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP4737371B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147987A1 (en) * 2008-06-03 2009-12-10 アルプス電気株式会社 Position detecting device and lens device using the same
WO2009147988A1 (en) * 2008-06-03 2009-12-10 アルプス電気株式会社 Position detecting device and lens device using the same
JP5630247B2 (en) * 2010-12-01 2014-11-26 株式会社デンソー Rotation angle sensor
US9182456B2 (en) * 2012-03-06 2015-11-10 Allegro Microsystems, Llc Magnetic field sensor for sensing rotation of an object
JP2014044121A (en) * 2012-08-27 2014-03-13 Denso Corp Opening degree detecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
JP2003121197A (en) * 2001-10-17 2003-04-23 Alps Electric Co Ltd Rotation angle sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895556B2 (en) * 2001-04-03 2007-03-22 アルプス電気株式会社 Rotation angle detection sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
JP2003121197A (en) * 2001-10-17 2003-04-23 Alps Electric Co Ltd Rotation angle sensor

Also Published As

Publication number Publication date
JP2006145323A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US10060941B2 (en) Magnetoresistive gear tooth sensor
US10989769B2 (en) Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
US7508196B2 (en) Magnetic sensor for pointing device
JP4259937B2 (en) Angle detection sensor
CN105988092B (en) Magnetic Sensor
JP2014516406A (en) Single chip bridge type magnetic field sensor and manufacturing method thereof
US20050280411A1 (en) GMR sensor with flux concentrators
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP5843079B2 (en) Magnetic sensor and magnetic sensor system
US8174256B2 (en) Methods and systems for magnetic field sensing
US11037715B2 (en) Magnetic sensor including a plurality of magnetic detection elements and a plurality of magnetic field generators
JP2005534199A (en) Use of GMR sensor elements and GMR sensor elements
CN101672902A (en) Magnetic field sensor array for measuring spatial components of a magnetic field
JP2012127788A (en) Magnetic sensor
JP4582298B2 (en) Magnetic position detector
JP2018162994A (en) Angle sensor system
JP2010286236A (en) Origin detection device
JP4028971B2 (en) Assembling method of magnetic sensor
JP4874781B2 (en) Magnetic sensor and magnetic encoder using the same
JP4737371B2 (en) Rotation angle detector
JP2009133751A (en) Moving body detection device
JP5453198B2 (en) Magnetic sensor
JP2015133377A (en) Magnetic detection element and rotation detection device
KR20230101134A (en) Magnetic sensor using spin orbit torque and sensing method using same
JP2008014954A (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4737371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3