JP2009133751A - Moving body detection device - Google Patents

Moving body detection device Download PDF

Info

Publication number
JP2009133751A
JP2009133751A JP2007310757A JP2007310757A JP2009133751A JP 2009133751 A JP2009133751 A JP 2009133751A JP 2007310757 A JP2007310757 A JP 2007310757A JP 2007310757 A JP2007310757 A JP 2007310757A JP 2009133751 A JP2009133751 A JP 2009133751A
Authority
JP
Japan
Prior art keywords
moving body
magnetic field
convex portion
body detection
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007310757A
Other languages
Japanese (ja)
Other versions
JP4973869B2 (en
Inventor
Ichita Kyo
一太 許
Toshinao Kido
利尚 木戸
Seiji Fukuoka
誠二 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007310757A priority Critical patent/JP4973869B2/en
Publication of JP2009133751A publication Critical patent/JP2009133751A/en
Application granted granted Critical
Publication of JP4973869B2 publication Critical patent/JP4973869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moving body detection device, capable of detecting not only the movement information of a magnetic material moving body, but also the stop position information. <P>SOLUTION: A soft magnetic body gear 1 has at least one projection part or recessed part. SV-GMR elements R1-R4 are fixed and arranged in one row close to the inside of the thickness width W of the soft magnetic body gear 1 or to its periphery. A pin layer magnetization direction of the SV-GMR elements R1, R3 (first set) is in the direction reverse to the direction where the soft magnetic body gear 1 exists, and a pin layer magnetization direction of the SV-GMR elements R2, R4 (second set) is a direction where the soft magnetic body gear 1 exists. The magnetization direction of a bias magnet 5 is substantially vertical to the pin layer magnetization direction of the SV-GMR elements R1-R4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁性材移動体の移動に伴う磁界変化を検出する技術に関し、例えば工業用工作機械や自動車エンジン等に用いられる軟磁性体歯車の回転情報を検出するのに用いて好適な移動体検出装置に関する。   The present invention relates to a technique for detecting a change in a magnetic field associated with movement of a magnetic material moving body, and for example, a moving body suitable for use in detecting rotation information of a soft magnetic gear used in industrial machine tools, automobile engines, and the like. The present invention relates to a detection device.

本出願人は既に下記特許文献1において、スピンバルブ型巨大磁気抵抗素子(以下「SV−GMR素子」とも表記)を用いた移動体検出装置を提案している。図10に示されるように、特許文献1の移動体検出装置装置800は、軟磁性体歯車81と、バイアス磁石85と、前記軟磁性体歯車81で変化された磁界に対応して抵抗値が変化するSV−GMR素子R91〜R94とを備え、それらのスピンバルブ型巨大磁気抵抗素子R91〜R94でブリッジ回路を構成し、対をなすスピンバルブ型巨大磁気抵抗素子のピン層磁化方向が反平行となっている。軟磁性体歯車81は外周面に、回転中心Oからの角度で約45°ごとに1つ合計8つの凸部82を有する。
特開2005−098942号公報
The present applicant has already proposed a moving body detection device using a spin valve type giant magnetoresistive element (hereinafter also referred to as “SV-GMR element”) in Patent Document 1 below. As shown in FIG. 10, the moving body detection apparatus 800 of Patent Document 1 has a resistance value corresponding to a soft magnetic gear 81, a bias magnet 85, and a magnetic field changed by the soft magnetic gear 81. The spin-valve giant magnetoresistive elements R91 to R94, which change, form a bridge circuit with the spin-valve giant magnetoresistive elements R91 to R94, and the pin layer magnetization directions of the paired spin-valve giant magnetoresistive elements are antiparallel. It has become. The soft magnetic gear 81 has a total of eight convex portions 82 on the outer peripheral surface, one at every about 45 ° from the rotation center O.
JP-A-2005-089442

図11は、SV−GMR素子の原理的構成と磁気特性の説明図である。SV−GMR素子の感磁面は感磁パターンとなる磁気抵抗効果膜を有する。磁気抵抗効果膜は、強磁性体のピン層と、非磁性体の層と、強磁性体のフリー層とを積層したものである。ピン層の磁化方向は外部磁界Hによらず固定される一方、フリー層の磁化方向は外部磁界Hによって変化する。SV−GMR素子の磁気特性は、外部磁界の方向とピン層磁化方向とが順平行で抵抗変化率(ΔR/R)はマイナス、外部磁界の方向とピン層磁化方向とが反平行で抵抗変化率(ΔR/R)はプラスである。つまり、SV−GMR素子は、外部磁界の方向とピン層磁化方向とが順平行のとき低抵抗、外部磁界の方向とピン層磁化方向とが反平行のとき高抵抗となる。   FIG. 11 is an explanatory diagram of the fundamental configuration and magnetic characteristics of the SV-GMR element. The magnetosensitive surface of the SV-GMR element has a magnetoresistive film that forms a magnetosensitive pattern. The magnetoresistive film is formed by laminating a ferromagnetic pinned layer, a nonmagnetic layer, and a ferromagnetic free layer. The magnetization direction of the pinned layer is fixed regardless of the external magnetic field H, while the magnetization direction of the free layer is changed by the external magnetic field H. The magnetic characteristics of the SV-GMR element are such that the direction of the external magnetic field and the pinned layer magnetization direction are forward parallel and the resistance change rate (ΔR / R) is negative, the direction of the external magnetic field and the pinned layer magnetization direction are antiparallel and the resistance change. The rate (ΔR / R) is positive. That is, the SV-GMR element has a low resistance when the direction of the external magnetic field and the pinned layer magnetization direction are forward parallel, and has a high resistance when the direction of the external magnetic field and the pinned layer magnetization direction are antiparallel.

特許文献1の移動体検出装置では、図10に拡大して示されるように、SV−GMR素子R91及びR93のピン層磁化方向は軟磁性体歯車81の回転方向の略逆方向であり、SV−GMR素子R92及びR94のピン層磁化方向は軟磁性体歯車81の回転方向の略順方向である。   In the moving body detection device of Patent Document 1, as shown in an enlarged view in FIG. 10, the pin layer magnetization direction of the SV-GMR elements R91 and R93 is substantially opposite to the rotation direction of the soft magnetic gear 81, and SV The pinned layer magnetization direction of the GMR elements R92 and R94 is substantially forward of the rotational direction of the soft magnetic gear 81.

軟磁性体歯車81の凸部がSV−GMR素子R91〜R94の感磁面に接近してきた時、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は凸部が接近してくる方向(軟磁性体歯車81の回転方向の略逆方向)を向く。この時、上述の磁気特性よりSV−GMR素子R91及びR93は低抵抗、SV−GMR素子R92及びR94は高抵抗となる。   When the convex portion of the soft magnetic gear 81 approaches the magnetic sensitive surface of the SV-GMR elements R91 to R94, the convex portion approaches the magnetic material rotation tangential component of the magnetic field at the magnetic sensitive surface position of each SV-GMR element. It faces in the direction of coming (substantially opposite to the rotational direction of the soft magnetic gear 81). At this time, the SV-GMR elements R91 and R93 have a low resistance and the SV-GMR elements R92 and R94 have a high resistance due to the magnetic characteristics described above.

他方、軟磁性体歯車81の凸部がSV−GMR素子R91〜R94の感磁面から遠ざかる時、SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は凸部が遠ざかる方向(軟磁性体歯車81の回転方向の略順方向)を向く。この時、上述の磁気特性よりSV−GMR素子R91及びR93は高抵抗、SV−GMR素子R92及びR94は低抵抗となる。   On the other hand, when the convex portion of the soft magnetic gear 81 moves away from the magnetic sensitive surface of the SV-GMR elements R91 to R94, the magnetic material rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of the SV-GMR element is the direction in which the convex portion moves away. (Generally forward direction of the rotation direction of the soft magnetic gear 81). At this time, the SV-GMR elements R91 and R93 have a high resistance and the SV-GMR elements R92 and R94 have a low resistance due to the magnetic characteristics described above.

軟磁性体歯車81の回転に伴って軟磁性体歯車81の各凸部82は順番にSV−GMR素子R91〜R94の感磁面に接近し遠ざかり、それが軟磁性体歯車81の回転に伴い繰り返される。このため各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は軟磁性体歯車81が約45°回転するごとに同じ変化を繰り返す。したがって、図10のようにホイートストンブリッジ接続(フルブリッジ接続)されたSV−GMR素子R91〜R94から、軟磁性体歯車81の回転に伴って変化する出力信号Voutが得られる。出力信号Voutは例えば差動増幅器で増幅された後にシュミットトリガ回路により矩形波信号に変換され、この矩形波信号に基づいて軟磁性体歯車81の回転情報の検出が可能である。   As the soft magnetic gear 81 rotates, the convex portions 82 of the soft magnetic gear 81 sequentially approach and move away from the magnetic sensitive surfaces of the SV-GMR elements R91 to R94, and as the soft magnetic gear 81 rotates. Repeated. For this reason, the magnetic material rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element repeats the same change every time the soft magnetic gear 81 rotates about 45 °. Therefore, an output signal Vout that varies with the rotation of the soft magnetic gear 81 is obtained from the SV-GMR elements R91 to R94 that are Wheatstone bridge connected (full bridge connection) as shown in FIG. The output signal Vout is amplified by, for example, a differential amplifier and then converted into a rectangular wave signal by a Schmitt trigger circuit. Based on this rectangular wave signal, rotation information of the soft magnetic gear 81 can be detected.

特許文献1の移動体検出装置は上述のとおりSV−GMR素子を感磁素子として用いているため、他の磁気抵抗素子を用いる場合と比較して、軟磁性体歯車と感磁素子(回転センサ)との間のギャップが大きくなっても十分な大きさの出力信号を得ることができ、また軟磁性体歯車の凹凸ピッチに依存しないセンサ設計も可能となる。しかし、特許文献1の移動体検出装置においてホイートストンブリッジ接続されたSV−GMR素子R91〜R94から得られる出力信号Voutは、図6(A)及び図7(A)に示されるように、軟磁性体歯車81の凸部82がSV−GMR素子R91〜R94に接近する時と遠ざかる時は大小に振れるものの、凸部82の中央付近がSV−GMR素子R91〜R94の感磁面の上にあるときはゼロとなる。ここで、凸部82及びそのエッジ近傍以外の部分(凸部と凸部の間)がSV−GMR素子R91〜R94の感磁面の上にあるときも出力信号Voutはゼロであるため、特許文献1の移動体検出装置では、軟磁性体歯車81の回転情報は検出できても停止位置情報(特に電源投入時の停止位置情報)は検出できない。このような問題はラック等の直線移動体を検出対象する場合にも同様である。   Since the moving body detection apparatus of Patent Document 1 uses the SV-GMR element as the magnetic sensing element as described above, the soft magnetic gear and the magnetic sensing element (rotation sensor) are compared with the case where other magnetoresistive elements are used. ), A sufficiently large output signal can be obtained, and sensor design that does not depend on the uneven pitch of the soft magnetic gear is also possible. However, the output signal Vout obtained from the SV-GMR elements R91 to R94 connected to the Wheatstone bridge in the moving object detection apparatus of Patent Document 1 is soft magnetic as shown in FIGS. 6 (A) and 7 (A). Although the convex portion 82 of the body gear 81 swings large and small when approaching and moving away from the SV-GMR elements R91 to R94, the vicinity of the center of the convex portion 82 is on the magnetosensitive surface of the SV-GMR elements R91 to R94. Sometimes it becomes zero. Here, the output signal Vout is zero even when the convex portion 82 and the portion other than the vicinity of the edge (between the convex portion and the convex portion) are on the magnetosensitive surface of the SV-GMR elements R91 to R94. In the moving body detection device of Document 1, stop position information (particularly, stop position information when the power is turned on) cannot be detected even if rotation information of the soft magnetic gear 81 can be detected. This problem is the same when a linear moving body such as a rack is to be detected.

本発明はこうした状況を認識してなされたものであり、その目的は、磁界ベクトル検知型のSV−GMR素子を用いて磁性材移動体の移動情報のみならず停止位置情報も検出することの可能な移動体検出装置を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to detect not only movement information of a magnetic material moving body but also stop position information using a magnetic field vector detection type SV-GMR element. Is to provide a simple moving body detection apparatus.

本発明のある態様は、移動体検出装置である。この装置は、
少なくとも1つの凸部又は凹部を有する磁性材移動体と、バイアス磁界発生手段と、前記バイアス磁界発生手段に対して固定配置されたスピンバルブ型巨大磁気抵抗素子とを備え、
前記スピンバルブ型巨大磁気抵抗素子のピン層磁化方向は、前記磁性材移動体の存在する方向又はその逆方向であり、
前記バイアス磁界発生手段は、前記スピンバルブ型巨大磁気抵抗素子と前記磁性材移動体の前記凸部又は前記凹部との位置関係に応じて前記スピンバルブ型巨大磁気抵抗素子の感磁面における磁界のピン層磁化方向成分が変化する配置であることを特徴とする。
One embodiment of the present invention is a moving object detection apparatus. This device
A magnetic material moving body having at least one convex portion or concave portion, a bias magnetic field generating means, and a spin valve type giant magnetoresistive element fixedly arranged with respect to the bias magnetic field generating means,
The pinned layer magnetization direction of the spin-valve giant magnetoresistive element is the direction in which the magnetic material moving body is present or the opposite direction.
The bias magnetic field generating means generates a magnetic field on the magnetosensitive surface of the spin valve giant magnetoresistive element according to a positional relationship between the spin valve giant magnetoresistive element and the convex portion or the concave portion of the magnetic material moving body. The pinned layer magnetization direction component is arranged to change.

ある態様の移動体検出装置において、前記ピン層磁化方向が前記磁性材移動体の前記凸部又は前記凹部の形成面に略垂直であるとよい。   In the moving body detection device of a certain aspect, the pinned layer magnetization direction may be substantially perpendicular to a formation surface of the convex portion or the concave portion of the magnetic material moving body.

ある態様の移動体検出装置において、前記スピンバルブ型巨大磁気抵抗素子が前記磁性材移動体の厚み幅内もしくはその近傍に存在するとよい。   In the mobile object detection device of a certain aspect, the spin valve giant magnetoresistive element may be present within or near the thickness width of the magnetic material mobile object.

ある態様の移動体検出装置において、前記バイアス磁界発生手段の着磁方向が前記スピンバルブ型巨大磁気抵抗素子のピン層磁化方向と略垂直であるとよい。   In the mobile object detection device of a certain aspect, the magnetization direction of the bias magnetic field generation means may be substantially perpendicular to the pinned layer magnetization direction of the spin valve giant magnetoresistive element.

この場合、2つの前記バイアス磁界発生手段が同極対向配置され、前記スピンバルブ型巨大磁気抵抗素子が2つの前記バイアス磁界発生手段の対向面間に固定配置されていてもよい。   In this case, the two bias magnetic field generating means may be disposed opposite to each other with the same polarity, and the spin valve giant magnetoresistive element may be fixedly disposed between the opposing surfaces of the two bias magnetic field generating means.

ある態様の移動体検出装置において、ピン層磁化方向が相互に反平行の近接する前記スピンバルブ型巨大磁気抵抗素子同士がブリッジ回路を成していてもよい。   In a mobile object detection device according to an aspect, the spin valve giant magnetoresistive elements adjacent to each other whose pinned layer magnetization directions are antiparallel to each other may form a bridge circuit.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、スピンバルブ型巨大磁気抵抗素子と磁性材移動体の凸部又は凹部との位置関係に応じて異なる大きさの出力信号が得られるため、磁性材移動体の移動情報のみならず停止位置情報も検出することが可能となる。   According to the present invention, output signals having different magnitudes can be obtained according to the positional relationship between the spin valve type giant magnetoresistive element and the convex portion or concave portion of the magnetic material moving body. It is also possible to detect stop position information.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る移動体検出装置100の例示的な概略斜視図である。移動体検出装置100は、磁性材移動体としての軟磁性体歯車1と、バイアス磁界発生手段としてのバイアス磁石5と、SV−GMR素子R1〜R4とを備える。なお、軟磁性体歯車1との相対関係においてバイアス磁石5とSV−GMR素子R1〜R4を実際よりも大きめに記載している。
(First embodiment)
FIG. 1 is an exemplary schematic perspective view of a moving body detection apparatus 100 according to the first embodiment of the present invention. The moving body detection apparatus 100 includes a soft magnetic gear 1 as a magnetic material moving body, a bias magnet 5 as a bias magnetic field generating means, and SV-GMR elements R1 to R4. Note that the bias magnet 5 and the SV-GMR elements R1 to R4 are shown larger than actual in relation to the soft magnetic gear 1.

板状ないし柱状の軟磁性体歯車1は、少なくとも1つの凸部又は凹部を有し(例えば一定配列ピッチPで凸部2を有し)、図示しない回転軸に取り付けられる。図1では一例として、軟磁性体歯車1は外周面に回転中心Oからの角度で約45°ごとに1つ合計8つの凸部2を有するものとしている。   The plate-like or columnar soft magnetic gear 1 has at least one convex portion or concave portion (for example, has convex portions 2 with a constant arrangement pitch P), and is attached to a rotating shaft (not shown). In FIG. 1, as an example, the soft magnetic gear 1 has a total of eight convex portions 2 on the outer peripheral surface, one at about 45 ° in angle from the rotation center O.

ブリッジ回路(ホイートストンブリッジ)を成すSV−GMR素子R1〜R4は、軟磁性体歯車1の厚み幅W内もしくはその近傍に1列に近接して存在し(あるいは固定配置され)、ピン層磁化方向は軟磁性体歯車1の外周面(つまり凸部2の形成面)に略垂直となっている。ここで、SV−GMR素子R1,R3(第1組)のピン層磁化方向は軟磁性体歯車1の存在する方向の逆方向であり、SV−GMR素子R2,R4(第2組)のピン層磁化方向は軟磁性体歯車1の存在する方向である。また、各SV−GMR素子の配列間隔は軟磁性体歯車1の凸部(又は凹部)の幅に対して無視できるほど小さい。   The SV-GMR elements R1 to R4 forming a bridge circuit (Wheatstone bridge) are present in the vicinity of one row in the thickness width W of the soft magnetic gear 1 or in the vicinity thereof (or are fixedly arranged), and the pin layer magnetization direction Is substantially perpendicular to the outer peripheral surface of the soft magnetic gear 1 (that is, the surface on which the convex portion 2 is formed). Here, the pin layer magnetization direction of the SV-GMR elements R1 and R3 (first set) is opposite to the direction in which the soft magnetic gear 1 exists, and the pin of the SV-GMR elements R2 and R4 (second set). The layer magnetization direction is the direction in which the soft magnetic gear 1 exists. In addition, the arrangement interval of the SV-GMR elements is negligibly small with respect to the width of the convex portion (or concave portion) of the soft magnetic gear 1.

バイアス磁石5は、SV−GMR素子R1〜R4と軟磁性体歯車1の凸部2との位置関係に応じてSV−GMR素子R1〜R4の感磁面における磁界のピン層磁化方向成分が変化する配置である。バイアス磁石5の着磁方向は好ましくはSV−GMR素子R1〜R4のピン層磁化方向と略垂直である。図1の場合、バイアス磁石5は軟磁性体歯車1の回転軸方向に着磁され、バイアス磁石5のN極面とSV−GMR素子R1〜R4の感磁面(ピン層磁化方向)とが略平行となっている。このような配置の場合、バイアス磁石5による磁界は軟磁性体歯車1に引き寄せられるため、図11に示される磁気特性より、SV−GMR素子R1,R3の抵抗変化量ΔRは無磁界時と比較してプラス、SV−GMR素子R2,R4の抵抗変化量ΔRは無磁界時と比較してマイナスとなる。   The bias magnet 5 changes the pin layer magnetization direction component of the magnetic field on the magnetosensitive surface of the SV-GMR elements R1 to R4 according to the positional relationship between the SV-GMR elements R1 to R4 and the convex portion 2 of the soft magnetic gear 1. It is arrangement to do. The magnetization direction of the bias magnet 5 is preferably substantially perpendicular to the pinned layer magnetization direction of the SV-GMR elements R1 to R4. In the case of FIG. 1, the bias magnet 5 is magnetized in the direction of the rotational axis of the soft magnetic gear 1, and the N pole surface of the bias magnet 5 and the magnetic sensitive surfaces (pinned layer magnetization direction) of the SV-GMR elements R1 to R4. It is almost parallel. In such an arrangement, since the magnetic field generated by the bias magnet 5 is attracted to the soft magnetic gear 1, the resistance change ΔR of the SV-GMR elements R1 and R3 is compared with that in the absence of a magnetic field based on the magnetic characteristics shown in FIG. Thus, the resistance change ΔR of the SV-GMR elements R2 and R4 is negative as compared with the case of no magnetic field.

図2は、図1に示される移動体検出装置100を上側から見た場合の磁界の説明図であり、(A)は軟磁性体歯車1の凸部2以外の部分がSV−GMR素子R1〜R4の前に存在する時(以下、「凸部不対向時」)を示し、(B)は軟磁性体歯車1の凸部2がSV−GMR素子R1〜R4の前に存在する時(以下、「凸部対向時」)を示す。図3は、図1に示される移動体検出装置100を横側から見た場合の磁界の説明図であり、(A)は凸部不対向時を示し、(B)は凸部対向時を示す。これらの図に示されるように、SV−GMR素子R1〜R4の感磁ポイントにおける磁界の軟磁性体歯車1存在方向の成分(ピン層磁化方向成分又はその逆方向成分)は、凸部不対向時は小さく、凸部対向時は大きくなる。このため、凸部対向時は凸部不対向時と比較して、SV−GMR素子R1,R3はさらに高抵抗(無磁界時からの抵抗増加量がさらに大)となり、SV−GMR素子R2,R4はさらに低抵抗(無磁界時からの抵抗減少量がさらに大)となる。したがって、ホイートストンブリッジ接続されたSV−GMR素子R1〜R4からの出力信号Voutは、凸部対向時と凸部不対向時とで異なる大きさとなる。以下、これについて図4ないし7を参照して説明する。   FIG. 2 is an explanatory diagram of a magnetic field when the moving body detection device 100 shown in FIG. 1 is viewed from the upper side. FIG. 2A shows a portion other than the convex portion 2 of the soft magnetic gear 1 in the SV-GMR element R1. To (B) when the convex portion 2 of the soft magnetic gear 1 is present in front of the SV-GMR elements R1 to R4 (hereinafter referred to as “when the convex portion is not opposed”). Hereinafter, “when the convex portion is opposed”) is shown. 3A and 3B are explanatory diagrams of the magnetic field when the moving body detection device 100 shown in FIG. 1 is viewed from the side. FIG. 3A shows a case where the convex portion is not opposed, and FIG. Show. As shown in these figures, the component (the pinned layer magnetization direction component or the component in the opposite direction) of the magnetic field at the magnetic sensing points of the SV-GMR elements R1 to R4 in the direction of the magnetic field is not opposed to the convex portion. The time is small, and the time is large when the convex part is opposed. For this reason, the SV-GMR elements R1 and R3 have a higher resistance when the convex portions are opposed than when the convex portions are not opposed (the amount of increase in resistance from when no magnetic field is greater), and the SV-GMR elements R2 and R3 R4 is further reduced in resistance (a further decrease in resistance from the absence of a magnetic field). Accordingly, the output signal Vout from the SV-GMR elements R1 to R4 connected to the Wheatstone bridge has different magnitudes when the convex portion is opposed and when the convex portion is not opposed. Hereinafter, this will be described with reference to FIGS.

図4は、図1のホイートストンブリッジからの出力信号の波形説明図である。図中、V1はSV−GMR素子R1,R2の接続点の電圧を示し、V2はSV−GMR素子R3,R4の接続点の電圧を示す。そして検出信号Vdetは、Vout(=V2−V1)を図示しない差動増幅器にて反転増幅したものである。本図に示されるように、検出信号Vdetは、凸部不対向時は大きく、凸部対向時は小さいものとなっている。なお、参考のためにV1及びV2の実測アナログ波形を図5に示している。   FIG. 4 is a waveform explanatory diagram of an output signal from the Wheatstone bridge of FIG. In the figure, V1 indicates the voltage at the connection point of the SV-GMR elements R1 and R2, and V2 indicates the voltage at the connection point of the SV-GMR elements R3 and R4. The detection signal Vdet is obtained by inverting and amplifying Vout (= V2−V1) with a differential amplifier (not shown). As shown in the figure, the detection signal Vdet is large when the convex portion is not opposed, and is small when the convex portion is opposed. For reference, actually measured analog waveforms of V1 and V2 are shown in FIG.

図6(A)は、特許文献1の移動体検出装置(図10)において軟磁性体歯車の任意の凸部がSV−GMR素子の前を通過した時のVout波形図である。同図(B)は、図1に示される本実施の形態の移動体検出装置において軟磁性体歯車の任意の凸部がSV−GMR素子の前を通過した時のVout波形図である。図7(A)は、特許文献1の移動体検出装置(図10)において軟磁性体歯車(外周面の凸部は3つ)が1周したときのVout波形図である。同図(B)は、図1に示される本実施の形態の移動体検出装置において軟磁性体歯車(外周面の凸部は3つ)が1周したときのVout波形図である。   FIG. 6A is a Vout waveform diagram when an arbitrary convex portion of the soft magnetic gear passes in front of the SV-GMR element in the moving body detection apparatus (FIG. 10) of Patent Document 1. FIG. 5B is a Vout waveform diagram when an arbitrary convex portion of the soft magnetic gear passes in front of the SV-GMR element in the moving body detection apparatus of the present embodiment shown in FIG. FIG. 7A is a Vout waveform diagram when the soft magnetic gear (three convex portions on the outer peripheral surface) makes one turn in the moving body detection device (FIG. 10) of Patent Document 1. FIG. 5B is a Vout waveform diagram when the soft magnetic gear (three convex portions on the outer peripheral surface) makes one turn in the moving body detection device of the present embodiment shown in FIG.

これらの図から明らかなように、特許文献1の移動体検出装置では、上述のとおり凸部がSV−GMR素子に接近してくる時と遠ざかる時はVoutが大小に振れるものの凸部の中央部がSV−GMR素子の前を通過している時はVoutはゼロとなる。これに対し本実施の形態の移動体検出装置では、凸部がSV−GMR素子の前を通過している時(凸部対向時)はそうでない時(凸部不対向時)よりも全体的にVoutは大きく、特に凸部の中央部がSV−GMR素子の前を通過している時はVoutが最大となる。   As is clear from these figures, in the moving body detection device of Patent Document 1, as described above, the Vout swings large and small when the convex portion approaches and moves away from the SV-GMR element. Is passing in front of the SV-GMR element, Vout becomes zero. On the other hand, in the moving body detection device of the present embodiment, when the convex portion passes in front of the SV-GMR element (when the convex portion is opposed), it is more comprehensive than when it is not (when the convex portion is not opposed). Vout is large, especially when the center of the convex portion passes in front of the SV-GMR element.

上述のとおり特許文献1の移動体検出装置では、凸部及びそのエッジ近傍以外の部分(凸部と凸部の間)がSV−GMR素子の感磁面の上にあるときも出力信号Voutはゼロであるため、電源投入時にSV−GMR素子の前に凸部がある場合とそうでない場合との区別がつかない。これに対し本実施の形態の移動体検出装置によれば、凸部がSV−GMR素子の前を通過している時(凸部対向時)はそうでない時(凸部不対向時)よりも全体的にVoutは大きいため、上記のような不都合は解消される。   As described above, in the moving body detection device of Patent Document 1, the output signal Vout is also output when the convex portion and the portion other than the vicinity of the edge (between the convex portion and the convex portion) are on the magnetically sensitive surface of the SV-GMR element. Since it is zero, when the power is turned on, it is impossible to distinguish between the case where there is a convex portion in front of the SV-GMR element and the case where it is not. On the other hand, according to the moving body detection device of the present embodiment, when the convex portion passes in front of the SV-GMR element (when the convex portion is opposed), when it is not (when the convex portion is not opposed). Since Vout is large as a whole, the above disadvantages are eliminated.

本実施の形態によれば、下記のとおりの効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 特許文献1の移動体検出装置では電源投入時にSV−GMR素子の前に凸部がある場合とそうでない場合との区別がつかないため電源投入時の軟磁性体歯車の停止位置情報が検出できないのに対し、本実施の形態の移動体検出装置によれば凸部対向時は凸部不対向時よりも全体的に大きい出力信号Voutが得られるため電源投入時の軟磁性体歯車の停止位置情報が検出可能となる。 (1) In the moving body detection device of Patent Document 1, when the power is turned on, there is no distinction between the case where there is a convex part in front of the SV-GMR element and the case where it is not so, the stop position information of the soft magnetic gear when the power is turned on However, according to the moving body detecting device of the present embodiment, when the convex portion is opposed, an overall larger output signal Vout is obtained than when the convex portion is not opposed. It becomes possible to detect the stop position information.

(2) 磁気抵抗素子としてSV−GMR素子を用いているため、他の磁気抵抗素子を用いる場合と比較して高感度の磁気検出が可能である。このため、SV−GMR素子の配置の自由度が高く、設計の柔軟性が高められる。 (2) Since the SV-GMR element is used as the magnetoresistive element, it is possible to perform magnetic detection with higher sensitivity than in the case of using other magnetoresistive elements. For this reason, the freedom degree of arrangement | positioning of an SV-GMR element is high, and the design flexibility is improved.

(3) ピン層磁化方向が相互に反平行の近接するスピンバルブ型巨大磁気抵抗素子同士がホイートストンブリッジを形成しているため、高感度の磁気検出が可能となる。また、SV−GMR素子の温度特性による影響が低減される。 (3) Since the spin-valve giant magnetoresistive elements adjacent to each other whose pinned layer magnetization directions are antiparallel to each other form a Wheatstone bridge, highly sensitive magnetic detection is possible. In addition, the influence of the temperature characteristics of the SV-GMR element is reduced.

(第2の実施の形態)
図8は、本発明の第2の実施の形態に係る移動体検出装置200の例示的な概略斜視図である。本実施の形態の移動体検出装置200は、同極対向配置された2つのバイアス磁石5A,5Bをバイアス磁界発生手段とし、SV−GMR素子R1〜R4がバイアス磁石5A,5Bの対向面間(図8ではN極面間)に固定配置されている点が図1に示される第1の実施の形態に係る移動体検出装置100と異なり、その他の点は同様である。
(Second Embodiment)
FIG. 8 is an exemplary schematic perspective view of a moving object detection apparatus 200 according to the second embodiment of the present invention. In the moving body detection apparatus 200 of the present embodiment, two bias magnets 5A and 5B arranged opposite to each other with the same polarity are used as bias magnetic field generating means, and the SV-GMR elements R1 to R4 are disposed between opposing surfaces of the bias magnets 5A and 5B ( 8 is different from the moving body detection apparatus 100 according to the first embodiment shown in FIG. 1 in that the fixed arrangement is made between the N pole faces), and the other points are the same.

この第2の実施の形態によれば、同極対向配置された2つのバイアス磁石5A,5Bをバイアス磁界発生手段としているので、第1の実施の形態よりもさらに検出感度を高めることができる。   According to the second embodiment, since the two bias magnets 5A and 5B arranged to face each other with the same polarity are used as the bias magnetic field generating means, the detection sensitivity can be further increased as compared with the first embodiment.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素には請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it will be understood by those skilled in the art that various modifications can be made to each component of the embodiment within the scope of the claims. Hereinafter, modifications will be described.

実施の形態ではSV−GMR素子は軟磁性体歯車の厚み幅内もしくはその近傍に固定配置されたが、変形例ではこれに替えて、SV−GMR素子は軟磁性体歯車端面のエッジに近接するように軟磁性体歯車端面側に存在してもよい(あるいは固定配置されてもよい)。この場合、好ましくは図9に示されるようにSV−GMR素子が軟磁性体歯車の凸部の高さ範囲内もしくはその近傍に位置するとよく、SV−GMR素子のピン層磁化方向は軟磁性体歯車端面と略垂直であるとよい。またバイアス磁石5の着磁方向は好ましくは軟磁性体歯車1の回転軸に向くとよい。本変形例によっても、実施の形態と同様の効果を奏することができる。   In the embodiment, the SV-GMR element is fixedly disposed within or near the thickness width of the soft magnetic gear, but in the modification, the SV-GMR element is close to the edge of the soft magnetic gear end face instead. Thus, it may exist on the soft magnetic gear end face side (or may be fixedly arranged). In this case, it is preferable that the SV-GMR element is located within the height range of the convex portion of the soft magnetic gear, or the vicinity thereof, as shown in FIG. 9, and the pin layer magnetization direction of the SV-GMR element is the soft magnetic material. It may be substantially perpendicular to the gear end face. The magnetizing direction of the bias magnet 5 is preferably directed to the rotation axis of the soft magnetic gear 1. Also according to this modification, the same effects as in the embodiment can be obtained.

実施の形態ではSV−GMR素子をホイートストンブリッジ接続したが、SV−GMR素子の接続形態はこれに限定されず、ハーフブリッジ接続であってもよい。磁気検出感度や温度特性の面ではホイートストンブリッジ接続の方が優れているものの、ハーフブリッジ接続の場合はSV−GMR素子が2つでよいため部品点数の削減が可能となる。さらに、SV−GMR素子と固定抵抗とでハーフブリッジを形成することも可能である。この場合、SV−GMR素子2つでハーフブリッジを形成する場合よりも磁気検出感度は落ちるもののコスト低減が可能となる。このことはホイートストンブリッジ接続についても同様で、4つのSV−GMR素子でホイートストンブリッジを形成するのに替えて2つのSV−GMR素子と2つの固定抵抗とでホイートストンブリッジを形成してもよい。   In the embodiment, the SV-GMR element is connected to the Wheatstone bridge, but the connection form of the SV-GMR element is not limited to this, and may be a half-bridge connection. Although Wheatstone bridge connection is superior in terms of magnetic detection sensitivity and temperature characteristics, in the case of half bridge connection, the number of components can be reduced because only two SV-GMR elements are required. Further, it is possible to form a half bridge with the SV-GMR element and a fixed resistor. In this case, although the magnetic detection sensitivity is lower than that in the case where the half bridge is formed by two SV-GMR elements, the cost can be reduced. This also applies to the Wheatstone bridge connection. Instead of forming a Wheatstone bridge with four SV-GMR elements, a Wheatstone bridge may be formed with two SV-GMR elements and two fixed resistors.

実施の形態では軟磁性体歯車を磁性材移動体の例として示したが、これに限定されず、例えば凹凸を直線状に配列した軟磁性体ラック(直線移動体)を磁性材移動体としてもよい。   In the embodiment, the soft magnetic gear is shown as an example of the magnetic material moving body. However, the present invention is not limited to this. For example, a soft magnetic rack (straight moving body) in which irregularities are linearly arranged can be used as the magnetic material moving body. Good.

実施の形態ではバイアス磁界発生手段を永久磁石としたが、動作原理上、電磁石を用いることも可能である。   In the embodiment, the bias magnetic field generating means is a permanent magnet. However, an electromagnet can be used on the principle of operation.

本発明の第1の実施の形態に係る移動体検出装置の例示的な概略斜視図である。1 is an exemplary schematic perspective view of a mobile object detection device according to a first exemplary embodiment of the present invention. 図1に示される移動体検出装置100を上側から見た場合の磁界の説明図であり、(A)は軟磁性体歯車1の凸部2以外の部分がSV−GMR素子R1〜R4の前に存在する時(以下、「凸部不対向時」)を示し、(B)は軟磁性体歯車1の凸部2がSV−GMR素子R1〜R4の前に存在する時(以下、「凸部対向時」)を示す。It is explanatory drawing of the magnetic field at the time of seeing the mobile body detection apparatus 100 shown by FIG. 1 from the upper side, (A) is a part other than the convex part 2 of the soft magnetic gear 1 before SV-GMR elements R1-R4. (B) shows when the convex portion 2 of the soft magnetic gear 1 is present in front of the SV-GMR elements R1 to R4 (hereinafter referred to as “convex”). "When facing part"). 図1に示される移動体検出装置100を横側から見た場合の磁界の説明図であり、(A)は凸部不対向時を示し、(B)は凸部対向時を示す。It is explanatory drawing of the magnetic field at the time of seeing the mobile body detection apparatus 100 shown by FIG. 1 from the side, (A) shows the time of convex part non-opposing, (B) shows the time of convex part opposing. 図1のホイートストンブリッジからの出力信号の波形説明図である。図中、V1はSV−GMR素子R1,R2の接続点の電圧を示し、V2はSV−GMR素子R3,R4の接続点の電圧を示す。FIG. 2 is a waveform explanatory diagram of an output signal from the Wheatstone bridge in FIG. 1. In the figure, V1 indicates the voltage at the connection point of the SV-GMR elements R1 and R2, and V2 indicates the voltage at the connection point of the SV-GMR elements R3 and R4. 図1に示される移動体検出装置100におけるV1及びV2の実測アナログ波形図である。FIG. 2 is a measured analog waveform diagram of V1 and V2 in the moving object detection apparatus 100 shown in FIG. (A)は、特許文献1の移動体検出装置(図10)において軟磁性体歯車の任意の凸部がSV−GMR素子の前を通過した時のVout波形図である。(B)は、図1に示される本実施の形態の移動体検出装置において軟磁性体歯車の任意の凸部がSV−GMR素子の前を通過した時のVout波形図である。(A) is a Vout waveform diagram when an arbitrary convex portion of the soft magnetic gear passes in front of the SV-GMR element in the moving body detection device (FIG. 10) of Patent Document 1. FIG. (B) is a Vout waveform diagram when an arbitrary convex portion of the soft magnetic gear passes in front of the SV-GMR element in the moving body detection device of the present embodiment shown in FIG. (A)は、特許文献1の移動体検出装置(図10)において軟磁性体歯車(外周面の凸部は3つ)が1周したときのVout波形図である。(B)は、図1に示される本実施の形態の移動体検出装置において軟磁性体歯車(外周面の凸部は3つ)が1周したときのVout波形図である。(A) is a Vout waveform diagram when the soft magnetic gear (three convex portions on the outer peripheral surface) makes one turn in the moving body detection apparatus (FIG. 10) of Patent Document 1. FIG. (B) is a Vout waveform diagram when the soft magnetic gear (three convex portions on the outer peripheral surface) makes one turn in the moving body detection device of the present embodiment shown in FIG. 1. 本発明の第2の実施の形態に係る移動体検出装置の例示的な概略斜視図である。It is an exemplary schematic perspective view of the moving body detection apparatus which concerns on the 2nd Embodiment of this invention. 変形例に係る移動体検出装置の例示的な概略斜視図である。It is an exemplary schematic perspective view of the moving body detection apparatus which concerns on a modification. 特許文献1の移動体検出装置の概略斜視図である。It is a schematic perspective view of the moving body detection apparatus of patent document 1. SV−GMR素子の原理的構成と磁気特性の説明図である。It is explanatory drawing of the fundamental structure and magnetic characteristic of a SV-GMR element.

符号の説明Explanation of symbols

1 軟磁性体歯車
2 凸部
5 バイアス磁石
100 移動体検出装置
R1〜R4 SV−GMR素子
DESCRIPTION OF SYMBOLS 1 Soft magnetic gear 2 Convex part 5 Bias magnet 100 Moving body detection apparatus R1-R4 SV-GMR element

Claims (6)

少なくとも1つの凸部又は凹部を有する磁性材移動体と、バイアス磁界発生手段と、前記バイアス磁界発生手段に対して固定配置されたスピンバルブ型巨大磁気抵抗素子とを備え、
前記スピンバルブ型巨大磁気抵抗素子のピン層磁化方向は、前記磁性材移動体の存在する方向又はその逆方向であり、
前記バイアス磁界発生手段は、前記スピンバルブ型巨大磁気抵抗素子と前記磁性材移動体の前記凸部又は前記凹部との位置関係に応じて前記スピンバルブ型巨大磁気抵抗素子の感磁面における磁界のピン層磁化方向成分が変化する配置であることを特徴とする、移動体検出装置。
A magnetic material moving body having at least one convex portion or concave portion, a bias magnetic field generating means, and a spin valve type giant magnetoresistive element fixedly arranged with respect to the bias magnetic field generating means,
The pinned layer magnetization direction of the spin-valve giant magnetoresistive element is the direction in which the magnetic material moving body exists or the opposite direction.
The bias magnetic field generating means generates a magnetic field on the magnetosensitive surface of the spin valve giant magnetoresistive element according to a positional relationship between the spin valve giant magnetoresistive element and the convex portion or the concave portion of the magnetic material moving body. A moving body detection apparatus, wherein the pin layer magnetization direction component changes.
請求項1に記載の移動体検出装置において、前記ピン層磁化方向が前記磁性材移動体の前記凸部又は前記凹部の形成面に略垂直であることを特徴とする、移動体検出装置。   The moving body detection apparatus according to claim 1, wherein the pinned layer magnetization direction is substantially perpendicular to a surface of the magnetic material moving body on which the convex portion or the concave portion is formed. 請求項1又は2に記載の移動体検出装置において、前記スピンバルブ型巨大磁気抵抗素子が前記磁性材移動体の厚み幅内もしくはその近傍に存在することを特徴とする、移動体検出装置。   3. The moving body detection apparatus according to claim 1, wherein the spin-valve giant magnetoresistive element is present within or near a thickness width of the magnetic material moving body. 4. 請求項1から3のいずれかに記載の移動体検出装置において、前記バイアス磁界発生手段の着磁方向が前記スピンバルブ型巨大磁気抵抗素子のピン層磁化方向と略垂直であることを特徴とする、移動体検出装置。   4. The moving body detection device according to claim 1, wherein a magnetization direction of the bias magnetic field generation unit is substantially perpendicular to a pinned layer magnetization direction of the spin valve giant magnetoresistive element. , Mobile object detection device. 請求項4に記載の移動体検出装置において、2つの前記バイアス磁界発生手段が同極対向配置され、前記スピンバルブ型巨大磁気抵抗素子が2つの前記バイアス磁界発生手段の対向面間に固定配置されている、移動体検出装置。   5. The moving body detection apparatus according to claim 4, wherein the two bias magnetic field generating means are disposed opposite to each other with the same polarity, and the spin valve giant magnetoresistive element is fixedly disposed between the opposing surfaces of the two bias magnetic field generating means. The moving body detection device. 請求項1から5のいずれかに記載の移動体検出装置において、ピン層磁化方向が相互に反平行の近接する前記スピンバルブ型巨大磁気抵抗素子同士がブリッジ回路を成している、移動体検出装置。   6. The moving object detection device according to claim 1, wherein the spin valve giant magnetoresistive elements adjacent to each other whose pinned layer magnetization directions are antiparallel to each other form a bridge circuit. apparatus.
JP2007310757A 2007-11-30 2007-11-30 Moving body detection device Active JP4973869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310757A JP4973869B2 (en) 2007-11-30 2007-11-30 Moving body detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310757A JP4973869B2 (en) 2007-11-30 2007-11-30 Moving body detection device

Publications (2)

Publication Number Publication Date
JP2009133751A true JP2009133751A (en) 2009-06-18
JP4973869B2 JP4973869B2 (en) 2012-07-11

Family

ID=40865764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310757A Active JP4973869B2 (en) 2007-11-30 2007-11-30 Moving body detection device

Country Status (1)

Country Link
JP (1) JP4973869B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112703A (en) * 2010-11-22 2012-06-14 Mitsubishi Electric Corp Magnetic type position detector
US20140292314A1 (en) * 2013-03-29 2014-10-02 Tdk Corporation Magnetic sensor system including two detection circuits
JP2014199184A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Magnetic sensor system
JP2019082445A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Magnetic sensor and position detector
JP2020030103A (en) * 2018-08-22 2020-02-27 Tdk株式会社 Rotation detection system
CN110857847A (en) * 2018-08-22 2020-03-03 Tdk株式会社 Position detection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098942A (en) * 2003-09-26 2005-04-14 Tdk Corp Mobile unit detection device
WO2005081007A1 (en) * 2004-02-19 2005-09-01 Mitsubishi Denki Kabushiki Kaisha Magnetic field detector, current detector, position detector and rotation detector employing it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098942A (en) * 2003-09-26 2005-04-14 Tdk Corp Mobile unit detection device
WO2005081007A1 (en) * 2004-02-19 2005-09-01 Mitsubishi Denki Kabushiki Kaisha Magnetic field detector, current detector, position detector and rotation detector employing it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112703A (en) * 2010-11-22 2012-06-14 Mitsubishi Electric Corp Magnetic type position detector
US9091565B2 (en) 2010-11-22 2015-07-28 Mitsubishi Electric Corporation Magnetic position detection apparatus
US20140292314A1 (en) * 2013-03-29 2014-10-02 Tdk Corporation Magnetic sensor system including two detection circuits
JP2014199182A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Magnetic sensor system
JP2014199184A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Magnetic sensor system
US9200884B2 (en) 2013-03-29 2015-12-01 Tdk Corporation Magnetic sensor system including three detection circuits
US9297635B2 (en) 2013-03-29 2016-03-29 Tdk Corporation Magnetic sensor system including two detection circuits
JP2019082445A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Magnetic sensor and position detector
JP2020030103A (en) * 2018-08-22 2020-02-27 Tdk株式会社 Rotation detection system
CN110857847A (en) * 2018-08-22 2020-03-03 Tdk株式会社 Position detection system
US11099033B2 (en) 2018-08-22 2021-08-24 Tdk Corporation Position detection system

Also Published As

Publication number Publication date
JP4973869B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US7112957B2 (en) GMR sensor with flux concentrators
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
US6559638B1 (en) Magnetic positioning detector using field direction as primary detecting means
CN110231494B (en) Magnetic speed sensor with distributed wheatstone bridge
EP2402719A1 (en) Rotation detection device
US20120194175A1 (en) Sensor
JP4973869B2 (en) Moving body detection device
JP7153012B2 (en) Determining system for determining at least one rotational parameter of a rotating member
JP4582298B2 (en) Magnetic position detector
JP3487452B2 (en) Magnetic detector
JP5013075B2 (en) Magnetic detector
JP2007285741A (en) Rotation detection device
JP2008008699A (en) Rotation detecting apparatus
JP2010133851A (en) Rotation angle sensor
JP4484033B2 (en) Moving body detection device
JP5348009B2 (en) Angle sensor
US9574906B2 (en) Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium
JP4281913B2 (en) Moving body detection device
JP2004109113A (en) Magnetism detection device
JP2005098942A (en) Mobile unit detection device
JP4506960B2 (en) Moving body position detection device
JP4737371B2 (en) Rotation angle detector
JP4917522B2 (en) Position sensor
JP2009300143A (en) Magnetic position detecting apparatus
JP6041959B1 (en) Magnetic detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4973869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3