JP6107589B2 - Rotation angle sensor - Google Patents

Rotation angle sensor Download PDF

Info

Publication number
JP6107589B2
JP6107589B2 JP2013214999A JP2013214999A JP6107589B2 JP 6107589 B2 JP6107589 B2 JP 6107589B2 JP 2013214999 A JP2013214999 A JP 2013214999A JP 2013214999 A JP2013214999 A JP 2013214999A JP 6107589 B2 JP6107589 B2 JP 6107589B2
Authority
JP
Japan
Prior art keywords
bridge circuit
magnetoresistive
rotation angle
rotation
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013214999A
Other languages
Japanese (ja)
Other versions
JP2015078856A (en
Inventor
孝昌 金原
金原  孝昌
紀博 車戸
紀博 車戸
泰行 奥田
泰行 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013214999A priority Critical patent/JP6107589B2/en
Priority to PCT/JP2014/005195 priority patent/WO2015056439A1/en
Publication of JP2015078856A publication Critical patent/JP2015078856A/en
Application granted granted Critical
Publication of JP6107589B2 publication Critical patent/JP6107589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、回転方向に沿って、回転方向の横幅が互いに相等しい第1磁極部と第2磁極部とが交互に連結され、外側面が円形を成す回転体の回転角を検出する回転角センサに関するものである。   The present invention provides a rotation angle for detecting a rotation angle of a rotating body in which the first magnetic pole portions and the second magnetic pole portions having the same lateral width in the rotation direction are alternately connected along the rotation direction and the outer surface forms a circle. It relates to sensors.

従来、例えば特許文献1に示されるように、N極とS極が交互に配列された磁気部材と、磁気部材の磁極配列面に対向する1対又は複数対のベクトル検知型磁気抵抗効果素子と、を有する磁気式位置検出装置が提案されている。1対又は複数対のベクトル検知型磁気抵抗効果素子は、磁気部材の磁極配列方向に対して略垂直に1列配置されている。この配列により、全てのベクトル検知型磁気抵抗効果素子を透過する磁束の位相が同一となっている。   Conventionally, for example, as shown in Patent Document 1, a magnetic member in which N poles and S poles are alternately arranged, and one or more pairs of vector detection type magnetoresistive effect elements facing the magnetic pole arrangement surface of the magnetic member, Have been proposed. One or a plurality of pairs of vector detection type magnetoresistive elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction of the magnetic member. With this arrangement, the phases of the magnetic fluxes transmitted through all the vector detection type magnetoresistance effect elements are the same.

特開2006−23179号公報JP 2006-23179 A

上記した特許文献1に記載の磁気式位置検出装置では、1対又は複数対のベクトル検知型磁気抵抗効果素子が磁極配列方向に対して略垂直に1列配置されている。そのため、全てのベクトル検知型磁気抵抗効果素子を透過する磁束の位相が同一となっている。しかしながらこの構成の場合、各ベクトル検知型磁気抵抗効果素子と磁気部材との対向間隔が異なるために、各ベクトル検知型磁気抵抗効果素子を透過する磁束の強度が異なる。これを解消するために、1対又は複数対のベクトル検知型磁気抵抗効果素子を、磁極配列方向に対して1列配置した構成も考えられる。しかしながらこの配列の場合、全てのベクトル検知型磁気抵抗効果素子を透過する磁束の位相が異なることとなる。   In the magnetic position detection device described in Patent Document 1 described above, one or a plurality of pairs of vector detection type magnetoresistive elements are arranged in a line substantially perpendicular to the magnetic pole arrangement direction. Therefore, the phases of magnetic fluxes that pass through all the vector detection type magnetoresistive elements are the same. However, in the case of this configuration, since the facing distance between each vector detection type magnetoresistive effect element and the magnetic member is different, the intensity of the magnetic flux passing through each vector detection type magnetoresistive effect element is different. In order to solve this problem, a configuration in which one or more pairs of vector detection type magnetoresistive effect elements are arranged in one row in the magnetic pole arrangement direction is also conceivable. However, in the case of this arrangement, the phases of the magnetic fluxes transmitted through all the vector detection type magnetoresistive elements are different.

以上、示したように、上記した2つのいずれの配列の場合においても、各ベクトル検知型磁気抵抗効果素子を透過する磁束の強度と向きの両方を同一とすることができない。そのため、各ベクトル検知型磁気抵抗効果素子の抵抗値に依存する電気信号に基づいて、磁気部材(回転体)の回転状態を高精度に検出することが困難であった。   As described above, in any of the above two arrangements, both the strength and direction of the magnetic flux transmitted through each vector detection type magnetoresistance effect element cannot be made the same. Therefore, it has been difficult to detect the rotation state of the magnetic member (rotating body) with high accuracy based on the electrical signal that depends on the resistance value of each vector detection type magnetoresistive element.

そこで本発明は上記問題点に鑑み、回転体の回転状態の検出精度が向上された回転角センサを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a rotation angle sensor with improved detection accuracy of the rotation state of a rotating body.

上記した目的を達成するために、本発明は、回転方向に沿って、回転方向の横幅が互いに相等しい第1磁極部(210)と第2磁極部(220)とが交互に連結され、外側面が円形を成す回転体(200)の回転角を検出する回転角センサであって、回転体から発生される回転磁界に応じて磁化方向が変化する自由層と、磁化方向が固定されたピン層と、ピン層と自由層との間に設けられた非磁性の中間層と、を有し、ピン層と自由層それぞれの磁化方向に応じて抵抗値が変動する複数の磁気抵抗効果素子(11〜14,21〜24)を備え、回転体の外側面との離間距離が一定となるように、複数の磁気抵抗効果素子それぞれは回転方向に沿って並んで配置されており、複数の磁気抵抗効果素子それぞれのピン層の磁化方向は、回転体の回転中心(RC)から回転方向に直交するように延びた1つの基準線(BL)と回転方向に沿った磁気抵抗効果素子との離間距離β、および、回転方向において隣接する一対の第1磁極部と第2磁極部それぞれの横幅の合算された長さαによって決定されていることを特徴とする。   In order to achieve the above-described object, according to the present invention, the first magnetic pole part (210) and the second magnetic pole part (220) having the same lateral width in the rotational direction are alternately connected along the rotational direction. A rotation angle sensor for detecting a rotation angle of a rotating body (200) having a circular side surface, a free layer whose magnetization direction changes according to a rotating magnetic field generated from the rotating body, and a pin having a fixed magnetization direction A plurality of magnetoresistive elements having a layer and a nonmagnetic intermediate layer provided between the pinned layer and the free layer, the resistance value of which varies according to the magnetization directions of the pinned layer and the free layer ( 11 to 14, 21 to 24), and the plurality of magnetoresistive elements are arranged along the rotation direction so that the distance from the outer surface of the rotating body is constant, and the plurality of magnetic elements The magnetization direction of the pinned layer of each resistive effect element depends on the rotation of the rotating body. A distance β between one reference line (BL) extending from the center (RC) so as to be orthogonal to the rotation direction and the magnetoresistive effect element along the rotation direction, and a pair of first magnetic pole portions adjacent in the rotation direction And the length α of the total width of each of the second magnetic pole portions.

このように本発明によれば、複数の磁気抵抗効果素子(11〜14,21〜24)が回転方向に沿って並んで配置されている。これによれば、複数の磁気抵抗効果素子が回転方向ではなく、回転方向に対して垂直な基準線(BL)に沿う方向に並んで配置された構成とは異なり、複数の磁気抵抗効果素子(11〜14,21〜24)を透過する磁束の強度が同一となる。ただしこの配置の場合、複数の磁気抵抗効果素子(11〜14,21〜24)を透過する磁束の位相が異なる。換言すれば、基準線(BL)と磁気抵抗効果素子(11〜14,21〜24)の並ぶ回転方向との交点を透過する磁束(以下、基準磁束(BM)と示す)と、基準線(BL)から回転方向に離れた位置を透過する磁束とは位相が異なる。したがって各磁気抵抗効果素子(11〜14,21〜24)の自由層の磁化方向は、自身が基準線(BL)上に位置する場合とは異なることとなる。   Thus, according to this invention, the several magnetoresistive effect element (11-14, 21-24) is arrange | positioned along with the rotation direction. According to this, unlike the configuration in which the plurality of magnetoresistive elements are arranged side by side in the direction along the reference line (BL) perpendicular to the rotational direction instead of the rotational direction, the plurality of magnetoresistive elements ( 11-14 and 21-24), the intensity of the magnetic flux passing through is the same. However, in the case of this arrangement, the phases of magnetic fluxes transmitted through the plurality of magnetoresistance effect elements (11-14, 21-24) are different. In other words, a magnetic flux (hereinafter referred to as a reference magnetic flux (BM)) that passes through the intersection of the reference line (BL) and the rotational direction in which the magnetoresistive elements (11-14, 21-24) are arranged, and a reference line ( BL) is out of phase with the magnetic flux passing through a position away from the rotation direction in BL. Therefore, the magnetization direction of the free layer of each magnetoresistive element (11-14, 21-24) is different from the case where it is located on the reference line (BL).

しかしながら、上記した基準磁束(BM)との位相ズレは、第1磁極部(210)と第2磁極部(220)それぞれの横幅の合算された長さα、および、回転方向に沿った基準線(BL)と磁気抵抗効果素子(11〜14,21〜24)との離間距離βによって決定される。そのため、本発明では複数の磁気抵抗効果素子(11〜14,21〜24)それぞれのピン層の磁化方向を離間距離βと長さαとによって決定することで、複数の磁気抵抗効果素子(11〜14,21〜24)を透過する磁束の基準磁束(BM)との位相ズレを抑制している。これにより複数の磁気抵抗効果素子(11〜14,21〜24)を透過する磁束の強度が同一となるとともに、位相ズレも無くなる。これら複数の磁気抵抗効果素子(11〜14,21〜24)の抵抗値に依存する電気信号に基づくことで、回転体(200)の回転状態の検出精度が向上される。   However, the phase deviation from the reference magnetic flux (BM) described above is the sum of the length α of the lateral widths of the first magnetic pole part (210) and the second magnetic pole part (220) and the reference line along the rotation direction. It is determined by the separation distance β between (BL) and the magnetoresistive effect elements (11-14, 21-24). Therefore, in the present invention, the magnetization directions of the pinned layers of the plurality of magnetoresistive elements (11-14, 21-24) are determined by the separation distance β and the length α, so that the plurality of magnetoresistive elements (11 ˜14, 21 to 24) are prevented from shifting in phase with the reference magnetic flux (BM). As a result, the strength of the magnetic flux passing through the plurality of magnetoresistive elements (11 to 14, 21 to 24) becomes the same, and the phase shift is eliminated. The detection accuracy of the rotational state of the rotating body (200) is improved by using the electrical signals that depend on the resistance values of the plurality of magnetoresistive elements (11-14, 21-24).

なお、上記したように回転体(200)は回転方向の横幅が互いに相等しい第1磁極部(210)と第2磁極部(220)とが交互に連結され、その外側面が円形を成している。そのため回転体(200)の単位回転量は360°/αと表すことができる。また、基準線(BL)と磁気抵抗効果素子(11〜14,21〜24)とは離間距離βだけ離れている。そのため磁気抵抗効果素子(11〜14,21〜24)を透過する磁束は基準磁束(BM)に対して単位回転量360°/αに離間距離βを乗算した(360°/α)×βとなる。以上により、複数の磁気抵抗効果素子(11〜14,21〜24)のピン層の磁化方向を(360°/α)×βだけ回転させれば、複数の磁気抵抗効果素子(11〜14,21〜24)を基準磁束(BM)が透過しているとみなされる。これにより、複数の磁気抵抗効果素子(11〜14,21〜24)の位相ズレが抑制される。   As described above, in the rotating body (200), the first magnetic pole part (210) and the second magnetic pole part (220) having the same lateral width in the rotation direction are alternately connected, and the outer surface forms a circular shape. ing. Therefore, the unit rotation amount of the rotating body (200) can be expressed as 360 ° / α. Further, the reference line (BL) and the magnetoresistive effect elements (11-14, 21-24) are separated by a separation distance β. Therefore, the magnetic flux passing through the magnetoresistive effect elements (11 to 14, 21 to 24) is obtained by multiplying the reference magnetic flux (BM) by a unit rotation amount 360 ° / α by a separation distance β (360 ° / α) × β. Become. As described above, if the magnetization direction of the pinned layer of the plurality of magnetoresistive elements (11-14, 21-24) is rotated by (360 ° / α) × β, the plurality of magnetoresistive elements (11-14, 21 to 24) are regarded as transmitting the reference magnetic flux (BM). Thereby, the phase shift of the several magnetoresistive effect element (11-14, 21-24) is suppressed.

特許請求の範囲に記載の請求項、および、課題を解決するための手段それぞれに記載の要素に括弧付きで符号をつけているが、この括弧付きの符号は実施形態に記載の各構成要素との対応関係を簡易的に示すためのものであり、実施形態に記載の要素そのものを必ずしも示しているわけではない。括弧付きの符号の記載は、いたずらに特許請求の範囲を狭めるものではない。   The elements described in the claims and the means for solving the problems are labeled with parentheses, and the parenthesized numerals are connected to each component described in the embodiment. The elements described in the embodiments themselves are not necessarily shown. The description of the reference numerals with parentheses does not unnecessarily narrow the scope of the claims.

第1実施形態に係る回転角センサと回転体の位置を示す上面図である。It is a top view which shows the position of the rotation angle sensor which concerns on 1st Embodiment, and a rotary body. 回転角センサと回転体の位置を拡大して示す拡大上面図である。It is an enlarged top view which expands and shows the position of a rotation angle sensor and a rotary body. 磁気抵抗効果素子によって組まれたブリッジ回路を示す回路図である。It is a circuit diagram which shows the bridge circuit assembled by the magnetoresistive effect element. 中点電位とパルス信号を示すタイミングチャートである。It is a timing chart which shows a midpoint potential and a pulse signal. ピン層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of a pin layer. 自由層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of a free layer. ピン層と自由層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of a pin layer and a free layer. 比較構成のピン層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of the pinned layer of a comparison structure. 比較構成のピン層と自由層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of the pinned layer and free layer of a comparison structure. 回転角センサの変形例を示す拡大上面図である。It is an enlarged top view which shows the modification of a rotation angle sensor. 図10に示す基準線の場合に定められるピン層の磁化方向を示す模式図である。It is a schematic diagram which shows the magnetization direction of the pin layer defined in the case of the reference line shown in FIG. 磁気抵抗効果素子の配置の変形例を示す拡大上面図である。It is an enlarged top view which shows the modification of arrangement | positioning of a magnetoresistive effect element. 磁気抵抗効果素子の数の変形例を示す拡大上面図である。It is an enlarged top view which shows the modification of the number of magnetoresistive elements. 第1フルブリッジ回路を示す回路図である。It is a circuit diagram which shows a 1st full bridge circuit. 第2フルブリッジ回路を示す回路図である。It is a circuit diagram which shows a 2nd full bridge circuit. 回転角センサと回転体の位置の変形例を示す上面図である。It is a top view which shows the modification of the position of a rotation angle sensor and a rotary body. 回転角センサと回転体の位置の変形例を示す上面図である。It is a top view which shows the modification of the position of a rotation angle sensor and a rotary body.

以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1〜図9に基づいて、本実施形態に係る回転角センサを説明する。なお図5では中心CPを×印で示すが、図6〜図9では図面を簡明とするために中心CPを省略している。また図6,7,9では第1磁気抵抗効果素子11を透過する基準磁束BMを実線矢印で示し、基準磁束BMとの位相ズレを明示するために、他の磁気抵抗効果素子12,21,22それぞれを透過する磁束を実線矢印で示すとともに、基準磁束BMを一点鎖線矢印で示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
The rotation angle sensor according to the present embodiment will be described with reference to FIGS. In FIG. 5, the center CP is indicated by a cross, but in FIGS. 6 to 9, the center CP is omitted in order to simplify the drawing. 6, 7, and 9, the reference magnetic flux BM that passes through the first magnetoresistive effect element 11 is indicated by a solid line arrow, and other magnetoresistive effect elements 12, 21, The magnetic flux passing through each of the lines 22 is indicated by a solid line arrow, and the reference magnetic flux BM is indicated by a one-dot chain line arrow.

以下においては、回転体200と回転角センサ100それぞれが配置された同一の高さ位置における平面を規定平面、規定平面に直交し、回転体200の回転中心RCを貫く方向を軸方向と示す。また、軸方向の周りの方向を回転方向(図1に示す曲線矢印)と示し、規定平面に沿い、回転中心RCから延びる方向を径方向と示す。   In the following, a plane at the same height position where the rotator 200 and the rotation angle sensor 100 are arranged is a specified plane, and a direction perpendicular to the specified plane and passing through the rotation center RC of the rotator 200 is referred to as an axial direction. In addition, a direction around the axial direction is indicated as a rotation direction (curved arrow shown in FIG. 1), and a direction extending from the rotation center RC along the specified plane is indicated as a radial direction.

回転角センサ100は、回転体200の回転に伴って周期的に向きが変動する回転磁界の変化に基づいて、回転体200の回転状態を検出するものである。図1に示すように、回転体200は回転方向に沿って第1磁極部210と第2磁極部220とが交互に連結されて成り、その外側面が円形を成している。第1磁極部210と第2磁極部220は回転方向の横幅が互いに相等しく、径方向から見たそれぞれの外側面が矩形を成している。第1磁極部210はN極であり、第2磁極部220はS極なので、第1磁極部210から第2磁極部220へと磁束が流れる。隣接する磁極部210,220間を流れる磁束は、半円形の軌跡を描くように流れる。回転角センサ100は、この半円形の軌跡を描く回転磁界の回転による周期的な変化を検出する。なお、回転体200は反時計周りに正転し、時計周りに逆転する。   The rotation angle sensor 100 detects the rotation state of the rotating body 200 based on a change in the rotating magnetic field whose direction periodically changes as the rotating body 200 rotates. As shown in FIG. 1, the rotating body 200 is formed by alternately connecting the first magnetic pole portions 210 and the second magnetic pole portions 220 along the rotation direction, and the outer surface thereof has a circular shape. The first magnetic pole part 210 and the second magnetic pole part 220 have the same lateral width in the rotational direction, and the respective outer surfaces viewed from the radial direction are rectangular. Since the first magnetic pole part 210 has an N pole and the second magnetic pole part 220 has an S pole, a magnetic flux flows from the first magnetic pole part 210 to the second magnetic pole part 220. The magnetic flux flowing between the adjacent magnetic pole portions 210 and 220 flows so as to draw a semicircular locus. The rotation angle sensor 100 detects a periodic change caused by rotation of a rotating magnetic field that draws a semicircular locus. The rotating body 200 rotates in the counterclockwise direction and rotates in the clockwise direction.

回転角センサ100は、磁束の向きの変化を電気信号に変換する磁電変換部10,20と、磁電変換部10,20それぞれの出力信号に基づいて回転体200の回転角を算出する算出部50と、を有する。第1磁電変換部10は1組の対を成す磁気抵抗効果素子11,12を有し、第2磁電変換部20は1組の対を成す磁気抵抗効果素子21,22を有する。磁気抵抗効果素子11,12,21,22それぞれは、図1および図2に示すように、回転体200の外側面との離間距離が一定となるように回転方向に沿って並んで配置されている。第1磁気抵抗効果素子11は回転中心RCから径方向に沿って延びる基準線BL(図1および図2において一点鎖線で示す線)上に位置し、他の磁気抵抗効果素子12,21,22それぞれは基準線BLから回転方向に沿って所定距離離れている。詳しく言えば、第2磁気抵抗効果素子12は基準線BLと距離β1だけ離間し、第3磁気抵抗効果素子21は基準線BLと距離β2だけ離間し、第4磁気抵抗効果素子22は基準線BLと距離β3だけ離間している。なお本実施形態では回転体200が正転する場合において最上流に位置する第1磁気抵抗効果素子11と最下流に位置する第4磁気抵抗効果素子22との離間距離が、回転方向にて隣接する一対の第1磁極部210と第2磁極部220それぞれの横幅の合算された長さαと等しくなっている。そして磁気抵抗効果素子11,12,21,22それぞれは、厳密に言えば、回転方向における第1磁気抵抗効果素子11と第4磁気抵抗効果素子22の中点の接線方向に並んでいる。なお、第1磁電変換部10が有する磁気抵抗効果素子11,12が特許請求の範囲に記載の第1磁気抵抗効果素子に相当し、第2磁電変換部20が有する磁気抵抗効果素子が特許請求の範囲に記載の第2磁気抵抗効果素子21,22に相当する。   The rotation angle sensor 100 includes a magnetoelectric conversion unit 10 or 20 that converts a change in the direction of magnetic flux into an electric signal, and a calculation unit 50 that calculates the rotation angle of the rotating body 200 based on the output signals of the magnetoelectric conversion units 10 and 20. And having. The 1st magnetoelectric conversion part 10 has the magnetoresistive effect elements 11 and 12 which make a pair, and the 2nd magnetoelectric conversion part 20 has the magnetoresistive effect elements 21 and 22 which make a pair. As shown in FIGS. 1 and 2, each of the magnetoresistive effect elements 11, 12, 21, and 22 is arranged side by side along the rotation direction so that the distance from the outer surface of the rotating body 200 is constant. Yes. The first magnetoresistance effect element 11 is located on a reference line BL (a line indicated by a one-dot chain line in FIGS. 1 and 2) extending in the radial direction from the center of rotation RC, and the other magnetoresistance effect elements 12, 21, 22 Each is separated from the reference line BL by a predetermined distance along the rotation direction. More specifically, the second magnetoresistance effect element 12 is separated from the reference line BL by a distance β1, the third magnetoresistance effect element 21 is separated from the reference line BL by a distance β2, and the fourth magnetoresistance effect element 22 is separated from the reference line. It is separated from BL by a distance β3. In the present embodiment, when the rotating body 200 rotates in the forward direction, the separation distance between the first magnetoresistive element 11 positioned at the most upstream and the fourth magnetoresistive element 22 positioned at the most downstream is adjacent in the rotation direction. It is equal to the total length α of the lateral widths of the pair of first magnetic pole part 210 and second magnetic pole part 220. Strictly speaking, each of the magnetoresistive effect elements 11, 12, 21, and 22 is arranged in the tangential direction of the midpoint between the first magnetoresistive effect element 11 and the fourth magnetoresistive effect element 22 in the rotation direction. The magnetoresistive elements 11 and 12 included in the first magnetoelectric converter 10 correspond to the first magnetoresistive elements described in the claims, and the magnetoresistive element included in the second magnetoelectric converter 20 is claimed. This corresponds to the second magnetoresistive elements 21 and 22 described in the range.

磁気抵抗効果素子11,12,21,22それぞれは、図示しないが、自由層と、ピン層と、中間層と、を有する。自由層は印加磁界に応じて磁化方向が変化し、ピン層は磁化方向が固定されている。中間層は非磁性材料から成り、ピン層と自由層との間に設けられている。本実施形態では中間層が導電性を有し、磁気抵抗効果素子11,12,21,22それぞれは巨大磁気抵抗効果素子である。磁気抵抗効果素子11,12,21,22それぞれはピン層と自由層それぞれの磁化方向に応じて抵抗値が変動する性質を有する。そのため回転磁界の変動に伴って自由層の磁化方向が変動すると、磁気抵抗効果素子11,12,21,22それぞれの抵抗値が変動する。   Although not shown, each of the magnetoresistive effect elements 11, 12, 21, and 22 includes a free layer, a pinned layer, and an intermediate layer. The magnetization direction of the free layer changes according to the applied magnetic field, and the magnetization direction of the pinned layer is fixed. The intermediate layer is made of a nonmagnetic material and is provided between the pinned layer and the free layer. In the present embodiment, the intermediate layer has conductivity, and each of the magnetoresistive elements 11, 12, 21, and 22 is a giant magnetoresistive element. Each of the magnetoresistive elements 11, 12, 21, and 22 has a property that the resistance value fluctuates according to the magnetization directions of the pinned layer and the free layer. Therefore, when the magnetization direction of the free layer varies with the variation of the rotating magnetic field, the resistance values of the magnetoresistive effect elements 11, 12, 21, and 22 vary.

自由層とピン層それぞれの磁化方向が平行の場合に最も抵抗値が低く変動し、反平行の場合に最も高く変動する。対を成す磁気抵抗効果素子11,12それぞれのピン層の磁化方向はだいたい径方向に沿い、対を成す磁気抵抗効果素子21,22それぞれのピン層は自身が位置する回転方向の接線方向にだいたい沿っている。そのため、対を成す磁気抵抗効果素子11,12のピン層の磁化方向と、対を成す磁気抵抗効果素子21,22のピン層の磁化方向とは略直交の関係となっている。また対を成す磁気抵抗効果素子11,12のピン層の磁化方向は互いに略反平行となり、対を成す磁気抵抗効果素子21,22のピン層の磁化方向も互いに略反平行となっている。そのため、2つの磁気抵抗効果素子の抵抗値の変化が反対となり、2つの磁気抵抗効果素子の内の一方の抵抗値が小さくなる場合、他方の抵抗値が大きくなる。なお、上記のように、ピン層の磁化方向の関係を説明するのにだいたいという単語や略という単語を用いたが、それは後で回転角センサ100の特徴点の説明にて述べるように、正確には磁化方向が径方向、接線方向に沿っていないからである。また、磁化方向は反平行、および、直交の関係ではないからである。上記のように表現したのは、説明を簡便とするために過ぎない。   When the magnetization directions of the free layer and the pinned layer are parallel, the resistance value fluctuates lowest, and when the magnetization direction is antiparallel, the resistance value fluctuates highest. The magnetization directions of the pin layers of the paired magnetoresistive elements 11 and 12 are generally along the radial direction, and the pinned layers of the paired magnetoresistive elements 21 and 22 are generally tangential to the rotational direction in which they are located. Along. Therefore, the magnetization directions of the pinned layers of the magnetoresistive effect elements 11 and 12 forming a pair and the magnetization directions of the pinned layers of the magnetoresistive effect elements 21 and 22 forming a pair are substantially orthogonal to each other. Further, the magnetization directions of the pin layers of the magnetoresistive effect elements 11 and 12 forming a pair are substantially antiparallel to each other, and the magnetization directions of the pin layers of the magnetoresistive effect elements 21 and 22 forming a pair are also approximately antiparallel to each other. Therefore, when the resistance values of the two magnetoresistive elements are opposite to each other, and the resistance value of one of the two magnetoresistive elements decreases, the resistance value of the other increases. As described above, the word “abbreviation” or “abbreviation” is used to describe the relationship between the magnetization directions of the pinned layer. However, as described later in the explanation of the feature points of the rotation angle sensor 100, This is because the magnetization direction is not along the radial direction or the tangential direction. In addition, the magnetization direction is not antiparallel and orthogonal. The above expression is only for the sake of simplicity.

図3に示すように、対を成す磁気抵抗効果素子11,12、および、対を成す磁気抵抗効果素子21,22それぞれによってブリッジ回路が組まれ、その中点電位が回転体200の回転状態に基づく信号として算出部50に入力される。第1磁電変換部10の有する1組の対を成す磁気抵抗効果素子11,12によって第1ハーフブリッジ回路が組まれ、第2磁電変換部20の有する1組の対を成す磁気抵抗効果素子21,22によって第2ハーフブリッジ回路が組まれている。上記したように対を成す磁気抵抗効果素子11,12それぞれが有するピン層の磁化方向と、対を成す磁気抵抗効果素子21,22それぞれが有するピン層の磁化方向とは略直交の関係となっている。そのため、第1ハーフブリッジ回路の中点電位(以下、第1中点電位と示す)と第2ハーフブリッジ回路の中点電位(以下、第2中点電位と示す)とは位相差がだいたい90°(270°)あり、第1中点電位を正弦波とすると、第2中点電位は余弦波となる。   As shown in FIG. 3, a bridge circuit is formed by the magnetoresistive effect elements 11 and 12 forming a pair and the magnetoresistive effect elements 21 and 22 forming a pair, and the midpoint potential is changed to the rotating state of the rotating body 200. A signal based on the input is input to the calculation unit 50. The first half-bridge circuit is assembled by the magnetoresistive effect elements 11 and 12 that form a pair of the first magnetoelectric conversion unit 10, and the magnetoresistive effect element 21 that forms a pair of the second magnetoelectric conversion unit 20. , 22 form a second half bridge circuit. As described above, the magnetization directions of the pinned layers of the magnetoresistive effect elements 11 and 12 forming a pair and the magnetization directions of the pinned layers of the magnetoresistive effect elements 21 and 22 forming a pair are substantially orthogonal to each other. ing. Therefore, the phase difference between the midpoint potential of the first half bridge circuit (hereinafter referred to as the first midpoint potential) and the midpoint potential of the second half bridge circuit (hereinafter referred to as the second midpoint potential) is approximately 90. If the first midpoint potential is a sine wave, the second midpoint potential is a cosine wave.

算出部50は、上記した中点電位に基づいて回転体200の回転角を算出するものである。算出部50は、第1閾値と第2閾値とを有する。図4に示すように、算出部50は第1ハーフブリッジ回路の中点電位と第1閾値とを比較して第1ブリッジ回路の中点電位を第1パルス信号に変換し、第2ハーフブリッジ回路の中点電位と第2閾値とを比較して第2ブリッジ回路の中点電位を第2パルス信号に変換する。算出部50は、第1パルス信号および第2パルス信号の少なくとも一方の立ち上がりエッジ若しくは立ち下がりエッジをカウントし、そのカウント数に基づいて回転体200の回転角を算出する。   The calculation unit 50 calculates the rotation angle of the rotating body 200 based on the above-described midpoint potential. The calculation unit 50 has a first threshold value and a second threshold value. As shown in FIG. 4, the calculation unit 50 compares the midpoint potential of the first half bridge circuit with the first threshold value, converts the midpoint potential of the first bridge circuit into a first pulse signal, and outputs the second half bridge. The midpoint potential of the circuit is compared with the second threshold value to convert the midpoint potential of the second bridge circuit into a second pulse signal. The calculation unit 50 counts at least one rising edge or falling edge of the first pulse signal and the second pulse signal, and calculates the rotation angle of the rotating body 200 based on the count number.

次に、回転角センサ100の特徴点を説明する。上記したように磁気抵抗効果素子11,12,21,22それぞれはピン層を有するが、その磁化方向は、基準線BLと自身との回転方向における離間距離β、および、回転方向にて隣接する一対の第1磁極部210と第2磁極部220それぞれの横幅の合算された長さαによって決定されている。図5に示すように、磁気抵抗効果素子11,12それぞれは、回転体200の回転中心RCと自身の中心CPとを結ぶ径方向に沿う第1仮想直線VL11,VL12から自身の中心CP周りにて(α/360°)×β回転した方向にピン層の磁化方向が沿っている。第1磁気抵抗効果素子11は基準線BL上に位置するので、基準線BLとの離間距離はゼロとなっている。そのため、第1磁気抵抗効果素子11のピン層の磁化方向は第1仮想直線VL11に沿っている。これに対して、第2磁気抵抗効果素子12は基準線BLからβ1離間している。そのため、第2磁気抵抗効果素子12のピン層の磁化方向は第2仮想直線VL12から自身の中心CP周りにてθ1=(α/360°)×β1回転した方向に沿っている。回転体200が正転する場合、図2に示すように第2磁気抵抗効果素子12は基準線BLよりも下流側に位置する。そのため、第2磁気抵抗効果素子12は基準線BLよりも位相が遅い関係となっている。この位相遅れを補うために、第2磁気抵抗効果素子12のピン層の磁化方向は、仮想直線VL12から自身の中心CP周りにて反時計周りにθ1回転している。なお、第1磁気抵抗効果素子11のピン層の磁化方向が上記したように回転していない場合、磁気抵抗効果素子11,12それぞれのピン層の磁化方向は径方向に沿い、互いに反平行の関係となっている。磁気抵抗効果素子11,12それぞれのピン層の磁化方向は180°−θ1異なっている。   Next, characteristic points of the rotation angle sensor 100 will be described. As described above, each of the magnetoresistive effect elements 11, 12, 21, and 22 has a pinned layer, and the magnetization direction thereof is adjacent to the reference line BL in the rotation direction between the reference line BL and itself and in the rotation direction. It is determined by the combined length α of the lateral widths of the pair of first magnetic pole part 210 and second magnetic pole part 220. As shown in FIG. 5, each of the magnetoresistive effect elements 11 and 12 extends from the first virtual straight lines VL <b> 11 and VL <b> 12 along the radial direction connecting the rotation center RC of the rotating body 200 and its own center CP around the center CP thereof. The magnetization direction of the pinned layer is along the direction of (α / 360 °) × β rotation. Since the 1st magnetoresistive effect element 11 is located on the reference line BL, the separation distance with the reference line BL is zero. Therefore, the magnetization direction of the pinned layer of the first magnetoresistance effect element 11 is along the first virtual straight line VL11. On the other hand, the second magnetoresistive element 12 is separated from the reference line BL by β1. Therefore, the magnetization direction of the pinned layer of the second magnetoresistive effect element 12 is along the direction rotated by θ1 = (α / 360 °) × β1 around the center CP of itself from the second virtual straight line VL12. When the rotating body 200 rotates in the forward direction, the second magnetoresistive effect element 12 is positioned downstream of the reference line BL as shown in FIG. For this reason, the second magnetoresistive element 12 has a phase later than the reference line BL. In order to compensate for this phase lag, the magnetization direction of the pinned layer of the second magnetoresistive element 12 is rotated by θ1 counterclockwise around the center CP of the second magnetoresistive element 12 from the virtual straight line VL12. When the magnetization direction of the pinned layer of the first magnetoresistive effect element 11 is not rotated as described above, the magnetization directions of the pinned layers of the magnetoresistive effect elements 11 and 12 are along the radial direction and are antiparallel to each other. It has become a relationship. The magnetization directions of the pinned layers of the magnetoresistive elements 11 and 12 are different from each other by 180 ° −θ1.

磁気抵抗効果素子21,22それぞれは、自身の中心CPを通る回転方向の接線方向に沿う第2仮想直線VL21,VL22から自身の中心CP周りにて(α/360°)×β回転した方向にピン層の磁化方向が沿っている。第3磁気抵抗効果素子21は基準線BLからβ2離間している。そのため、第3磁気抵抗効果素子21のピン層の磁化方向は、仮想直線VL21から自身の中心CP周りにてθ2=(α/360°)×β2回転した方向に沿っている。また第4磁気抵抗効果素子22は基準線BLからβ3離間している。そのため、第4磁気抵抗効果素子22のピン層の磁化方向は第4仮想直線VL22から自身の中心CP周りにてθ3=(α/360°)×β3回転した方向に沿っている。回転体200が正転する場合、図2に示すように磁気抵抗効果素子21,22それぞれは基準線BLよりも下流側に位置する。そのため、磁気抵抗効果素子21,22それぞれは基準線BLよりも位相が遅い関係となっている。この位相遅れを補うために、第3磁気抵抗効果素子21のピン層の磁化方向は、仮想直線VL21から自身の中心CP周りにて反時計周りにθ2回転し、第4磁気抵抗効果素子22のピン層の磁化方向は、仮想直線VL22から自身の中心CP周りにて反時計周りにθ3回転している。なお、磁気抵抗効果素子21,22それぞれのピン層の磁化方向が上記したように回転していない場合、磁気抵抗効果素子21,22それぞれのピン層の磁化方向は反平行の関係となっている。磁気抵抗効果素子11,12それぞれのピン層の磁化方向は180°−(α/360°)×(β3−β2)異なっている。   Each of the magnetoresistive elements 21 and 22 is rotated in the direction rotated by (α / 360 °) × β around the center CP from the second virtual straight lines VL21 and VL22 along the tangential direction of the rotation direction passing through the center CP. The magnetization direction of the pinned layer is along. The third magnetoresistance effect element 21 is separated from the reference line BL by β2. Therefore, the magnetization direction of the pinned layer of the third magnetoresistive effect element 21 is along the direction rotated by θ2 = (α / 360 °) × β2 around its own center CP from the virtual straight line VL21. The fourth magnetoresistive element 22 is separated from the reference line BL by β3. Therefore, the magnetization direction of the pinned layer of the fourth magnetoresistive effect element 22 is along the direction rotated by θ3 = (α / 360 °) × β3 around its center CP from the fourth virtual straight line VL22. When the rotating body 200 rotates forward, the magnetoresistive elements 21 and 22 are positioned on the downstream side of the reference line BL as shown in FIG. For this reason, the magnetoresistive effect elements 21 and 22 are in a relationship of phases later than the reference line BL. In order to compensate for this phase lag, the magnetization direction of the pinned layer of the third magnetoresistive element 21 rotates θ2 counterclockwise around the center CP of the third magnetoresistive element 21 from the virtual straight line VL21. The magnetization direction of the pinned layer rotates θ3 counterclockwise around the center CP of itself from the virtual straight line VL22. When the magnetization directions of the pin layers of the magnetoresistive elements 21 and 22 are not rotated as described above, the magnetization directions of the pin layers of the magnetoresistive elements 21 and 22 are in an antiparallel relationship. . The magnetization directions of the pinned layers of the magnetoresistive elements 11 and 12 are different from each other by 180 ° − (α / 360 °) × (β3−β2).

次に本実施形態に係る回転角センサ100の作用効果を説明する。上記したように、磁気抵抗効果素子11,12,21,22は回転方向に沿って並んで配置されている。これによれば、複数の磁気抵抗効果素子が回転方向ではなく、径方向に並んで配置された構成とは異なり、各磁気抵抗効果素子を透過する磁束の強度が同一となる。ただし上記した配置の場合、各磁気抵抗効果素子11,21,21,22を透過する磁束の位相が異なる。換言すれば、基準線BLと磁気抵抗効果素子11,12,21,22の並ぶ回転方向との交点を透過する磁束(以下、基準磁束BMと示す)と、基準線BLから回転方向に離れた位置を透過する磁束とは位相が異なる。図6に示すように、第1磁気抵抗効果素子11は基準線BL上に位置するので、第1磁気抵抗効果素子11の自由層の磁化方向は、基準磁束BMと同等の向きを向く。しかしながら、他の磁気抵抗効果素子12,21,22それぞれは基準線BLから離れているので、それぞれの自由層の磁化方向は基準磁束BMとは異なる方向を向く。   Next, functions and effects of the rotation angle sensor 100 according to the present embodiment will be described. As described above, the magnetoresistive effect elements 11, 12, 21, and 22 are arranged side by side along the rotation direction. According to this, unlike the configuration in which a plurality of magnetoresistive elements are arranged in the radial direction rather than in the rotational direction, the strength of the magnetic flux transmitted through each magnetoresistive element is the same. However, in the case of the arrangement described above, the phases of the magnetic fluxes transmitted through the magnetoresistive elements 11, 21, 21, 22 are different. In other words, the magnetic flux (hereinafter referred to as the reference magnetic flux BM) that passes through the intersection of the reference line BL and the rotational direction in which the magnetoresistive elements 11, 12, 21, and 22 are arranged is separated from the reference line BL in the rotational direction. The phase is different from the magnetic flux passing through the position. As shown in FIG. 6, since the first magnetoresistance effect element 11 is located on the reference line BL, the magnetization direction of the free layer of the first magnetoresistance effect element 11 faces the same direction as the reference magnetic flux BM. However, since each of the other magnetoresistive elements 12, 21, 22 is away from the reference line BL, the magnetization direction of each free layer faces a direction different from the reference magnetic flux BM.

しかしながら、上記した基準磁束BMとの位相ズレは、第1磁極部210と第2磁極部220それぞれの横幅の合算された長さα、および、回転方向に沿った基準線BLと磁気抵抗効果素子11,12,21,22との離間距離βによって決定される。詳しく言えば、第2磁気抵抗効果素子12は基準線BLよりも下流側にβ1だけ離間しているので、第2磁気抵抗効果素子12の自由層の磁化方向は基準磁束BMを反時計周りにθ1回転した方向に沿っている。同じく、第3磁気抵抗効果素子21は基準線BLよりも下流側にβ2だけ離間しているので、第3磁気抵抗効果素子21の自由層の磁化方向は基準磁束BMを反時計周りにθ2回転した方向に沿っている。また、第4磁気抵抗効果素子22は基準線BLよりも下流側にβ3だけ離間しているので、第4磁気抵抗効果素子22の自由層の磁化方向は基準磁束BMを反時計周りにθ3回転した方向に沿っている。このように、各磁気抵抗効果素子11,12,21,22の自由層の磁化方向は、自身が基準線BL上に位置する場合とは異なるが、その位相ズレはαとβとによって表される。   However, the phase deviation from the reference magnetic flux BM described above is the sum of the width α of the first magnetic pole part 210 and the second magnetic pole part 220, and the reference line BL and the magnetoresistive effect element along the rotation direction. 11, 12, 21, 22 and the separation distance β. More specifically, since the second magnetoresistive element 12 is separated by β1 downstream from the reference line BL, the magnetization direction of the free layer of the second magnetoresistive element 12 makes the reference magnetic flux BM counterclockwise. It is along the direction rotated by θ1. Similarly, since the third magnetoresistive effect element 21 is separated by β2 downstream from the reference line BL, the magnetization direction of the free layer of the third magnetoresistive effect element 21 rotates the reference magnetic flux BM counterclockwise by θ2. Along the direction. Further, since the fourth magnetoresistance effect element 22 is separated by β3 downstream from the reference line BL, the magnetization direction of the free layer of the fourth magnetoresistance effect element 22 rotates the reference magnetic flux BM counterclockwise by θ3. Along the direction. Thus, although the magnetization direction of the free layer of each magnetoresistive effect element 11, 12, 21, 22 is different from the case where it is located on the reference line BL, the phase shift is represented by α and β. The

これに対して、本実施形態では複数の磁気抵抗効果素子11,12,21,22それぞれのピン層の磁化方向を離間距離βと長さαによって決定し、各磁気抵抗効果素子11,21,21,22の位相ズレを抑制している。詳しく言えば、第1磁気抵抗効果素子11は基準線BL上に位置するのでピン層の磁化方向を回転させていないが、第2磁気抵抗効果素子12のピン層の磁化方向は、仮想直線VL12から自身の中心CP周りにて反時計周りにθ1回転している。同じく、第3磁気抵抗効果素子21のピン層の磁化方向は、仮想直線VL21から自身の中心CP周りにて反時計周りにθ2回転し、第4磁気抵抗効果素子22のピン層の磁化方向は、仮想直線VL22から自身の中心CP周りにて反時計周りにθ3回転している。   On the other hand, in this embodiment, the magnetization directions of the pinned layers of the plurality of magnetoresistive elements 11, 12, 21, 22 are determined by the separation distance β and the length α, and the magnetoresistive elements 11, 21, respectively. The phase shift of 21 and 22 is suppressed. Specifically, since the first magnetoresistive element 11 is located on the reference line BL, the magnetization direction of the pinned layer is not rotated. However, the magnetization direction of the pinned layer of the second magnetoresistive element 12 is the virtual straight line VL12. Is rotating around the center CP of its own counterclockwise by θ1. Similarly, the magnetization direction of the pinned layer of the third magnetoresistive effect element 21 rotates θ2 counterclockwise around its center CP from the virtual straight line VL21, and the magnetization direction of the pinned layer of the fourth magnetoresistive effect element 22 becomes In addition, it rotates θ3 counterclockwise around its center CP from the virtual straight line VL22.

これにより、図7に示すように、磁気抵抗効果素子12,21,22それぞれのピン層および自由層の磁化方向は反時計周りにθ1、θ2、θ3回転する。そのため、ピン層の磁化方向が基準線BLからの離間距離βに応じて回転されていない構成(図8および図9に示す比較構成)とは異なり、磁気抵抗効果素子11,12,21,22それぞれが有するピン層と自由層の磁化方向の成す角度が基準線BL上に位置する場合と同一となる。以上により、磁気抵抗効果素子11,12,21,22を透過する磁束の強度が同一となるとともに、位相ズレも無くなる。これら磁気抵抗効果素子11,12,21,22の抵抗値に依存する電気信号(ブリッジ回路の中点電位)に基づくことで、回転体200の回転状態の検出精度が向上される。   Thereby, as shown in FIG. 7, the magnetization directions of the pinned layer and the free layer of the magnetoresistive effect elements 12, 21, and 22 rotate by θ1, θ2, and θ3 counterclockwise. Therefore, unlike the configuration in which the magnetization direction of the pinned layer is not rotated according to the separation distance β from the reference line BL (comparative configuration shown in FIGS. 8 and 9), the magnetoresistive effect elements 11, 12, 21, and 22 are used. The angle formed by the magnetization directions of the pinned layer and the free layer of each is the same as when the angle is located on the reference line BL. As described above, the strength of the magnetic flux transmitted through the magnetoresistive effect elements 11, 12, 21, and 22 becomes the same, and the phase shift is eliminated. Based on the electrical signal (midpoint potential of the bridge circuit) that depends on the resistance values of these magnetoresistive elements 11, 12, 21, and 22, the detection accuracy of the rotating state of the rotating body 200 is improved.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では第1磁気抵抗効果素子11が基準線BL上に位置する例を示した。しかしながら基準線BLと磁気抵抗効果素子11,12,21,22それぞれの位置とは任意に設定することができる。例えば図10に示すように、基準線BLが、磁気抵抗効果素子11,12,21,22の真ん中を通るように決定しても良い。この場合、第1磁気抵抗効果素子11は基準線BLからβ4離間し、第2磁気抵抗効果素子12は基準線BLからβ5離間している。そして第3磁気抵抗効果素子21は基準線BLからβ6離間し、第4磁気抵抗効果素子22は基準線BLからβ7離間している。これにより、図11に示すように、第1磁気抵抗効果素子11のピン層の磁化方向は、仮想直線VL11から自身の中心CP周りにてθ4=(α/360°)×β4回転し、第2磁気抵抗効果素子12のピン層の磁化方向は、仮想直線VL12から自身の中心CP周りにてθ5=(α/360°)×β5回転している。また、第3磁気抵抗効果素子21のピン層の磁化方向は、仮想直線VL21から自身の中心CP周りにてθ6=(α/360°)×β6回転し、第4磁気抵抗効果素子22のピン層の磁化方向は、仮想直線VL22から自身の中心CP周りにてθ7=(α/360°)×β7回転している。回転体200が正転する場合、磁気抵抗効果素子11,12それぞれは基準線BLよりも上流側に位置する。そのため、磁気抵抗効果素子11,12は基準線BLよりも位相が速い関係となっている。これを補うために、第1磁気抵抗効果素子11のピン層の磁化方向は、仮想直線VL11から自身の中心CP周りにて時計周りにθ4回転している。同じく第2磁気抵抗効果素子12のピン層の磁化方向は、仮想直線VL12から自身の中心CP周りにて時計周りにθ5回転している。これとは異なり、磁気抵抗効果素子21,22それぞれは基準線BLよりも下流側に位置する。そのため、磁気抵抗効果素子21,22は基準線BLよりも位相が遅い関係となっている。これを補うために、第3磁気抵抗効果素子21のピン層の磁化方向は、仮想直線VL21から自身の中心CP周りにて時計周りにθ6回転している。同じく第4磁気抵抗効果素子22のピン層の磁化方向は、仮想直線VL22から自身の中心CP周りにて時計周りにθ7回転している。   In the present embodiment, an example in which the first magnetoresistance effect element 11 is located on the reference line BL is shown. However, the reference line BL and the positions of the magnetoresistive elements 11, 12, 21, 22 can be arbitrarily set. For example, as shown in FIG. 10, the reference line BL may be determined so as to pass through the middle of the magnetoresistive effect elements 11, 12, 21, and 22. In this case, the first magnetoresistance effect element 11 is separated by β4 from the reference line BL, and the second magnetoresistance effect element 12 is separated by β5 from the reference line BL. The third magnetoresistive element 21 is separated by β6 from the reference line BL, and the fourth magnetoresistive element 22 is separated by β7 from the reference line BL. As a result, as shown in FIG. 11, the magnetization direction of the pinned layer of the first magnetoresistive effect element 11 is rotated by θ4 = (α / 360 °) × β4 around its center CP from the virtual straight line VL11, 2 The magnetization direction of the pinned layer of the magnetoresistive effect element 12 is rotated by θ5 = (α / 360 °) × β5 around its center CP from the virtual straight line VL12. Further, the magnetization direction of the pinned layer of the third magnetoresistive effect element 21 rotates by θ6 = (α / 360 °) × β6 around its own center CP from the virtual straight line VL21, and the pin of the fourth magnetoresistive effect element 22 The magnetization direction of the layer is rotated by θ7 = (α / 360 °) × β7 around its own center CP from the virtual straight line VL22. When the rotating body 200 rotates forward, each of the magnetoresistive effect elements 11 and 12 is positioned upstream of the reference line BL. Therefore, the magnetoresistive effect elements 11 and 12 are in a phase relationship that is faster than the reference line BL. In order to compensate for this, the magnetization direction of the pinned layer of the first magnetoresistive effect element 11 is rotated by θ4 clockwise around its center CP from the virtual straight line VL11. Similarly, the magnetization direction of the pinned layer of the second magnetoresistive effect element 12 is rotated by θ5 clockwise around its center CP from the virtual straight line VL12. Unlike this, each of the magnetoresistive effect elements 21 and 22 is located downstream of the reference line BL. For this reason, the magnetoresistive effect elements 21 and 22 have a phase later than that of the reference line BL. In order to compensate for this, the magnetization direction of the pinned layer of the third magnetoresistive effect element 21 is rotated by θ6 clockwise around its center CP from the virtual straight line VL21. Similarly, the magnetization direction of the pinned layer of the fourth magnetoresistive effect element 22 is rotated by θ7 clockwise around its center CP from the virtual straight line VL22.

本実施形態では、図1および図2に示すように、回転方向に沿って、第1磁気抵抗効果素子11、第2磁気抵抗効果素子12、第3磁気抵抗効果素子21、第4磁気抵抗効果素子22が順に並ぶ例を示した。しかしながらこれら磁気抵抗効果素子11,12,21,22の並び順は上記例に限定されない。例えば図12に示すように、回転方向に沿って、第1磁気抵抗効果素子11、第3磁気抵抗効果素子21、第4磁気抵抗効果素子22、第2磁気抵抗効果素子12が順に並ぶ構成を採用することもできる。   In the present embodiment, as shown in FIGS. 1 and 2, the first magnetoresistance effect element 11, the second magnetoresistance effect element 12, the third magnetoresistance effect element 21, and the fourth magnetoresistance effect are arranged along the rotation direction. An example in which the elements 22 are arranged in order is shown. However, the arrangement order of these magnetoresistive effect elements 11, 12, 21, 22 is not limited to the above example. For example, as shown in FIG. 12, the first magnetoresistive effect element 11, the third magnetoresistive effect element 21, the fourth magnetoresistive effect element 22, and the second magnetoresistive effect element 12 are arranged in order along the rotation direction. It can also be adopted.

本実施形態では、第1磁電変換部10は1組の対を成す磁気抵抗効果素子11,12を有し、第2磁電変換部20は1組の対を成す磁気抵抗効果素子21,22を有する例を示した。しかしながら、磁電変換部10,20それぞれが有する対を成す磁気抵抗効果素子の組数としては上記例に限定されず、複数でも良い。例えば図13に示すように、第1磁電変換部10が2組の対を成す磁気抵抗効果素子11〜14を有し、第2磁電変換部20が2組の対を成す磁気抵抗効果素子21〜24を有する構成を採用することもできる。この場合、図14および図15に示すように、2組の対を成す磁気抵抗効果素子11〜14によって第1ハーフブリッジ回路が2つ組まれ、これらによって第1フルブリッジ回路が組まれる。また、2組の対を成す磁気抵抗効果素子21〜24によって第2ハーフブリッジ回路が2つ組まれ、これらによって第2フルブリッジ回路が組まれる。算出部50は、これら2つのフルブリッジ回路の中点電位に基づいて、回転体200の回転角を算出する。   In the present embodiment, the first magnetoelectric conversion unit 10 includes a pair of magnetoresistive effect elements 11 and 12, and the second magnetoelectric conversion unit 20 includes a pair of magnetoresistive effect elements 21 and 22. An example is shown. However, the number of pairs of magnetoresistive effect elements forming a pair included in each of the magnetoelectric conversion units 10 and 20 is not limited to the above example, and a plurality may be used. For example, as shown in FIG. 13, the first magnetoelectric conversion unit 10 has two pairs of magnetoresistive effect elements 11 to 14, and the second magnetoelectric conversion unit 20 forms two pairs of magnetoresistive effect elements 21. A configuration having ˜24 can also be adopted. In this case, as shown in FIGS. 14 and 15, two first half-bridge circuits are formed by the magnetoresistive effect elements 11 to 14 forming two pairs, and the first full-bridge circuit is formed by these. In addition, two second half-bridge circuits are formed by the magnetoresistive effect elements 21 to 24 forming two pairs, and the second full-bridge circuit is formed by these. The calculation unit 50 calculates the rotation angle of the rotator 200 based on the midpoint potential of these two full bridge circuits.

本実施形態では、図1および図2に示すように、回転方向における第1磁気抵抗効果素子11と第4磁気抵抗効果素子22との離間距離が、回転方向にて隣接する一対の第1磁極部210と第2磁極部220それぞれの横幅の合算された長さαと等しくなっている例を示した。しかしながら、図16および図17に示すように、第1磁気抵抗効果素子11と第4磁気抵抗効果素子22との離間距離は上記例に限定されない。回転方向における磁気抵抗効果素子11,12,21,22の離間距離は限定されない。   In the present embodiment, as shown in FIGS. 1 and 2, the separation distance between the first magnetoresistive effect element 11 and the fourth magnetoresistive effect element 22 in the rotation direction is a pair of first magnetic poles adjacent in the rotation direction. An example is shown in which the lateral lengths of the portion 210 and the second magnetic pole portion 220 are equal to the combined length α. However, as shown in FIGS. 16 and 17, the distance between the first magnetoresistive element 11 and the fourth magnetoresistive element 22 is not limited to the above example. The separation distance of the magnetoresistive effect elements 11, 12, 21, and 22 in the rotation direction is not limited.

本実施形態では磁気抵抗効果素子11,12,21,22それぞれが回転方向における磁気抵抗効果素子11,12,21,22の中点の接線方向に並んでいる例を示した。しかしながら、図16および図17に示すように、磁気抵抗効果素子11,12,21,22それぞれは回転方向に並んでいても良い。   In the present embodiment, an example is shown in which the magnetoresistive elements 11, 12, 21, and 22 are arranged in the tangential direction of the midpoint of the magnetoresistive elements 11, 12, 21, and 22 in the rotational direction. However, as shown in FIGS. 16 and 17, the magnetoresistive elements 11, 12, 21, and 22 may be arranged in the rotation direction.

本実施形態では、回転体200の全体形状を特に限定しなかった。しかしながら回転体200の全体形状としては円環形状や円盤形状を採用することができる。   In the present embodiment, the overall shape of the rotating body 200 is not particularly limited. However, as the overall shape of the rotating body 200, an annular shape or a disk shape can be adopted.

本実施形態では中間層が導電性を有し、磁気抵抗効果素子11,12,21,22それぞれが巨大磁気抵抗効果素子である例を示した。しかしながら、中間層が絶縁性を有し、磁気抵抗効果素子11,12,21,22それぞれがトンネル磁気抵抗効果素子である構成を採用することもできる。   In the present embodiment, an example is shown in which the intermediate layer has conductivity, and each of the magnetoresistive effect elements 11, 12, 21, and 22 is a giant magnetoresistive effect element. However, it is also possible to adopt a configuration in which the intermediate layer has insulating properties and each of the magnetoresistive effect elements 11, 12, 21, and 22 is a tunnel magnetoresistive effect element.

11〜14,21〜24・・・磁気抵抗効果素子
100・・・回転角センサ
200・・・回転体
210・・・第1磁極部
220・・・第2磁極部
RC・・・回転中心
BL・・・基準線
11-14, 21-24 ... magnetoresistive effect element 100 ... rotation angle sensor 200 ... rotating body 210 ... first magnetic pole part 220 ... second magnetic pole part RC ... rotation center BL ... Reference line

Claims (8)

回転方向に沿って、前記回転方向の横幅が互いに相等しい第1磁極部(210)と第2磁極部(220)とが交互に連結され、外側面が円形を成す回転体(200)の回転角を検出する回転角センサであって、
前記回転体から発生される回転磁界に応じて磁化方向が変化する自由層と、磁化方向が固定されたピン層と、前記ピン層と前記自由層との間に設けられた非磁性の中間層と、を有し、前記ピン層と前記自由層それぞれの磁化方向に応じて抵抗値が変動する複数の磁気抵抗効果素子(11〜14,21〜24)を備え、
前記回転体の外側面との離間距離が一定となるように、複数の前記磁気抵抗効果素子それぞれは前記回転方向に沿って並んで配置されており、
複数の前記磁気抵抗効果素子それぞれのピン層の磁化方向は、前記回転体の回転中心(RC)から前記回転方向に直交するように延びた1つの基準線(BL)と前記回転方向に沿った前記磁気抵抗効果素子との離間距離β、および、前記回転方向において隣接する一対の前記第1磁極部と前記第2磁極部それぞれの横幅の合算された長さαによって決定されていることを特徴とする回転角センサ。
The first magnetic pole portion (210) and the second magnetic pole portion (220) having the same lateral width in the rotation direction are alternately connected along the rotation direction, and the rotation of the rotating body (200) whose outer surface is circular. A rotation angle sensor for detecting an angle,
A free layer whose magnetization direction changes according to a rotating magnetic field generated from the rotating body, a pinned layer whose magnetization direction is fixed, and a nonmagnetic intermediate layer provided between the pinned layer and the free layer And a plurality of magnetoresistive elements (11-14, 21-24) whose resistance values vary according to the magnetization directions of the pinned layer and the free layer,
Each of the plurality of magnetoresistive elements is arranged side by side along the rotation direction so that the distance from the outer surface of the rotating body is constant.
The magnetization direction of the pinned layer of each of the plurality of magnetoresistive elements is aligned with one reference line (BL) extending perpendicularly to the rotation direction from the rotation center (RC) of the rotating body and the rotation direction. It is determined by a separation distance β from the magnetoresistive effect element and a total length α of a lateral width of each of the pair of the first magnetic pole part and the second magnetic pole part adjacent in the rotation direction. A rotation angle sensor.
複数の前記磁気抵抗効果素子として、
前記回転体の回転中心と自身の中心(CP)とを結ぶ第1仮想直線(VL11、VL12)から自身の中心周りにて(α/360°)×β回転した方向に前記ピン層の磁化方向が沿う複数の第1磁気抵抗効果素子(11〜14)と、
前記自身の中心を通る前記回転方向の接線方向に沿う第2仮想直線(VL21、VL22)から自身の中心周りにて(α/360°)×β回転した方向に前記ピン層の磁化方向が沿う複数の第2磁気抵抗効果素子(21〜24)と、を有することを特徴とする請求項1に記載の回転角センサ。
As the plurality of magnetoresistance effect elements,
Magnetization direction of the pinned layer in a direction rotated by (α / 360 °) × β around the center from the first virtual line (VL11, VL12) connecting the rotation center of the rotating body and the center (CP) of the rotating body. A plurality of first magnetoresistive elements (11-14) along which
The magnetization direction of the pinned layer extends along a direction rotated by (α / 360 °) × β around the center of the second virtual straight line (VL21, VL22) along the tangential direction of the rotational direction passing through the center of the self. The rotation angle sensor according to claim 1, comprising a plurality of second magnetoresistive elements (21 to 24).
複数の前記第1磁気抵抗効果素子の内の少なくとも1組は、前記ピン層の磁化方向が180°−(α/360°)×β異なり、これらによって第1ブリッジ回路が組まれ、
複数の前記第2磁気抵抗効果素子の内の少なくとも1組は、前記ピン層の磁化方向が180°−(α/360°)×β異なり、これらによって第2ブリッジ回路が組まれていることを特徴とする請求項2に記載の回転角センサ。
At least one of the plurality of first magnetoresistive elements has a magnetization direction of the pinned layer that differs by 180 ° − (α / 360 °) × β, thereby forming a first bridge circuit,
At least one set of the plurality of second magnetoresistive elements has a magnetization direction of the pinned layer different by 180 ° − (α / 360 °) × β, and the second bridge circuit is formed by these. The rotation angle sensor according to claim 2, wherein:
前記第1ブリッジ回路の中点電位と前記第2ブリッジ回路の中点電位とに基づいて、前記回転体の回転角を算出する算出部(50)を有することを特徴とする請求項3に記載の回転角センサ。   The calculation unit (50) for calculating a rotation angle of the rotating body based on a midpoint potential of the first bridge circuit and a midpoint potential of the second bridge circuit. Rotation angle sensor. 前記算出部は、
第1閾値と第2閾値とを有し、
前記第1ブリッジ回路の中点電位と前記第1閾値とを比較して前記第1ブリッジ回路の中点電位を第1パルス信号に変換し、
前記第2ブリッジ回路の中点電位と前記第2閾値とを比較して前記第2ブリッジ回路の中点電位を第2パルス信号に変換することを特徴とする請求項4に記載の回転角センサ。
The calculation unit includes:
Having a first threshold and a second threshold;
Comparing the midpoint potential of the first bridge circuit with the first threshold to convert the midpoint potential of the first bridge circuit into a first pulse signal;
The rotation angle sensor according to claim 4, wherein the midpoint potential of the second bridge circuit is compared with the second threshold value to convert the midpoint potential of the second bridge circuit into a second pulse signal. .
前記算出部は、前記第1パルス信号および前記第2パルス信号の少なくとも一方の立ち上がりエッジ若しくは立ち下がりエッジをカウントし、そのカウント数に基づいて前記回転体の回転角を算出することを特徴とする請求項5に記載の回転角センサ。   The calculation unit counts at least one rising edge or falling edge of the first pulse signal and the second pulse signal, and calculates a rotation angle of the rotating body based on the count number. The rotation angle sensor according to claim 5. 前記第1ブリッジ回路は、1組の対を成す前記第1磁気抵抗効果素子によって組まれた第1ハーフブリッジ回路を少なくとも1つ有し、
前記第2ブリッジ回路は、1組の対を成す前記第2磁気抵抗効果素子によって組まれた第2ハーフブリッジ回路を少なくとも1つ有することを特徴とする請求項3〜6いずれか1項に記載の回転角センサ。
The first bridge circuit has at least one first half bridge circuit assembled by the first magnetoresistive effect element forming a pair.
The said 2nd bridge circuit has at least 1 2nd half bridge circuit assembled | attached by the said 2nd magnetoresistive effect element which makes a set of pairs, The any one of Claims 3-6 characterized by the above-mentioned. Rotation angle sensor.
前記第1ブリッジ回路は、前記第1ハーフブリッジ回路を2つ有し、これらによって組まれた第1フルブリッジ回路を有し、
前記第2ブリッジ回路は、前記第2ハーフブリッジ回路を2つ有し、これらによって組まれた第2フルブリッジ回路を有することを特徴とする請求項7に記載の回転角センサ。
The first bridge circuit includes two first half-bridge circuits, and includes a first full-bridge circuit formed by these two circuits.
The rotation angle sensor according to claim 7, wherein the second bridge circuit includes two second half-bridge circuits and includes a second full-bridge circuit formed by these two.
JP2013214999A 2013-10-15 2013-10-15 Rotation angle sensor Expired - Fee Related JP6107589B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013214999A JP6107589B2 (en) 2013-10-15 2013-10-15 Rotation angle sensor
PCT/JP2014/005195 WO2015056439A1 (en) 2013-10-15 2014-10-14 Rotation angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013214999A JP6107589B2 (en) 2013-10-15 2013-10-15 Rotation angle sensor

Publications (2)

Publication Number Publication Date
JP2015078856A JP2015078856A (en) 2015-04-23
JP6107589B2 true JP6107589B2 (en) 2017-04-05

Family

ID=52827896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214999A Expired - Fee Related JP6107589B2 (en) 2013-10-15 2013-10-15 Rotation angle sensor

Country Status (2)

Country Link
JP (1) JP6107589B2 (en)
WO (1) WO2015056439A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016111984B4 (en) 2016-06-30 2021-12-23 Infineon Technologies Ag Magnetic sensor components and method for determining a direction of rotation of a magnetic component about an axis of rotation
JP7001513B2 (en) * 2018-03-22 2022-01-19 株式会社東海理化電機製作所 Magnetic sensor
JP7186481B2 (en) * 2018-05-18 2022-12-09 株式会社東海理化電機製作所 Magnetic sensor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338851A (en) * 1995-04-11 1996-12-24 Nippondenso Co Ltd Magnetic detector
JP2002206949A (en) * 2001-01-09 2002-07-26 Mitsubishi Electric Corp Angle detector
JP4582298B2 (en) * 2004-07-08 2010-11-17 Tdk株式会社 Magnetic position detector
JP4288676B2 (en) * 2005-09-30 2009-07-01 日立金属株式会社 Magnetic encoder
JP4820182B2 (en) * 2006-02-14 2011-11-24 アルプス電気株式会社 Magnetic encoder
EP2323189B1 (en) * 2008-09-12 2019-01-30 Hitachi Metals, Ltd. Use of a self-pinned spin valve magnetoresistance effect film
WO2010098472A1 (en) * 2009-02-26 2010-09-02 日立金属株式会社 Angle detector and position detector
JP5218491B2 (en) * 2010-07-29 2013-06-26 株式会社デンソー Rotation angle detector
JP5201493B2 (en) * 2011-09-26 2013-06-05 日立金属株式会社 Position detection device and linear drive device

Also Published As

Publication number Publication date
JP2015078856A (en) 2015-04-23
WO2015056439A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
US8736256B2 (en) Rotating field sensor
JP5590349B2 (en) Magnetic sensor system
US8193805B2 (en) Magnetic sensor
JP5967382B2 (en) Rotating magnetic field sensor and angle determination method using the same
JP5013146B2 (en) Magnetic position detector
JP6197839B2 (en) Rotation detector
JP5822185B2 (en) Rotating magnetic field sensor and angle determination method using the same
JP2011038855A (en) Magnetic sensor
JP5062454B2 (en) Magnetic sensor
US9200884B2 (en) Magnetic sensor system including three detection circuits
US10386169B2 (en) Rotating field sensor
JP5218491B2 (en) Rotation angle detector
JP2011027683A (en) Magnetic sensor
JP4582298B2 (en) Magnetic position detector
JPWO2015136690A1 (en) Magnetic position detection device and magnetic position detection method
JP6107589B2 (en) Rotation angle sensor
JP2014199182A (en) Magnetic sensor system
JP6852906B2 (en) TMR High Sensitivity Single Chip Bush Pull Bridge Magnetic Field Sensor
WO2014141609A1 (en) Current sensor
JP2019095373A (en) Arithmetic processing device, angle sensor and steering device
JP2016166748A (en) Magnetic sensor
JP6455314B2 (en) Rotation detector
JP6064816B2 (en) Rotation sensor
JP5062453B2 (en) Magnetic sensor
JP6070464B2 (en) Rotating body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees