JP2012230021A - Rotation angle measuring device - Google Patents

Rotation angle measuring device Download PDF

Info

Publication number
JP2012230021A
JP2012230021A JP2011098904A JP2011098904A JP2012230021A JP 2012230021 A JP2012230021 A JP 2012230021A JP 2011098904 A JP2011098904 A JP 2011098904A JP 2011098904 A JP2011098904 A JP 2011098904A JP 2012230021 A JP2012230021 A JP 2012230021A
Authority
JP
Japan
Prior art keywords
rotation angle
measuring device
circuit
angle measuring
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011098904A
Other languages
Japanese (ja)
Inventor
Takashi Matsumura
隆史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011098904A priority Critical patent/JP2012230021A/en
Publication of JP2012230021A publication Critical patent/JP2012230021A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotation angle measuring device having a circuit configuration dispensing with a differential amplifier circuit and an analog/digital conversion circuit, for reducing a circuit cost.SOLUTION: The rotation angle measuring device includes: a rotation angle sensor 2 having sensor element sections 211, 212, 221, 222, 231, 232, 241, and 242 for outputting a magnetic field direction generated by magnetic field generating means rotating synchronously with a rotary shaft, as electric signals having at least two or more different phases; a signal generating circuit 35 for outputting a periodic waveform for driving the sensor element sections to the rotation angle sensor; comparators 31, 32, 33, and 34 in which the outputs obtained from the sensor element sections are input; and an arithmetic circuit 40 in which the output from the comparator is input. The arithmetic circuit has a pulse input terminal for importing a pulse waveform output from the comparator as a digital value and is configured to calculate and output the magnetic field direction that is equivalent to the rotation angle of the rotary shaft on the basis of the value imported by the pulse input terminal.

Description

本発明は、回転体の回転角度の検出に係るものであり、特に非接触的に検出する回転角度計測装置に関するものである。   The present invention relates to detection of a rotation angle of a rotating body, and more particularly to a rotation angle measurement device that detects non-contact.

モータや自動車のステアリングホイールなどのシャフトにおける回転角度の計測装置の一つとして、シャフトなどの回転体に同期して回転するホイールや磁石とその回転角度に応じた物理量を検出する素子を用いた装置がある。このうち、磁石とスピンバルブ型巨大磁気抵抗効果素子(Spin Valve Giant Magnetoresistive素子、以下SVGMR素子と呼ぶ。)によって構成された回転角度計測装置は、素子の特性から低消費電力化が可能であり、また計測原理的に温度依存性を小さくする構成が可能であることから注目されている。このような構成の回転角度計測装置として、例えば以下の特許文献1,2の技術がある。   A device that uses a wheel or magnet that rotates in synchronization with a rotating body such as a shaft and an element that detects a physical quantity according to the rotation angle as one of measuring devices for the rotation angle of a shaft such as a motor or a steering wheel of an automobile. There is. Among these, a rotation angle measuring device constituted by a magnet and a spin valve giant magnetoresistive element (Spin Valve Giant Magnetoresistive element, hereinafter referred to as SVGMR element) can reduce power consumption from the characteristics of the element. In addition, it is attracting attention because it can be configured to reduce temperature dependence in principle. As a rotation angle measuring device having such a configuration, for example, there are techniques disclosed in Patent Documents 1 and 2 below.

WO2008/062778WO2008 / 062778 特開2009−150795号公報JP 2009-150795 A

特許文献1や2に開示された技術は以下の構成となっている。SVGMR素子は一定強度以上の磁界が印加されると、その磁界の方向(回転角度)に応じて抵抗値が変化する素子である。検出する磁界のゼロ点の方向が180°異なる2個のSVGMR素子を直列接続した2組の直列接続回路を互いの方向が逆方向で並列に接続してブリッジ回路を構成する。このブリッジ回路に一定電圧を加え、外部から磁界を与えると、ブリッジ回路出力の差動電圧が磁界の回転角度βに対応して正弦波波形となる。このブリッジ回路を2個用い、90°対向させて出力がcosβ,sinβに対応するように配置して、回転角度センサとする。2個のブリッジ回路出力に対しそれぞれ差動増幅を行い、アナログ・デジタル変換して演算回路に取り込む。演算回路ではarctan演算を行い、角度誤差を補正して回転角度を出力する。しかしながら、上記回路構成では、多数の差動増幅回路やアナログデジタル変換回路が必要となり回路全体としてコストが高くなってしまう。   The techniques disclosed in Patent Documents 1 and 2 have the following configuration. The SVGMR element is an element whose resistance value changes in accordance with the direction (rotation angle) of the magnetic field when a magnetic field having a certain intensity or more is applied. A bridge circuit is configured by connecting two sets of serially connected circuits in which two SVGMR elements differing in the direction of the zero point of the detected magnetic field by 180 ° in series are connected in parallel in opposite directions. When a constant voltage is applied to the bridge circuit and a magnetic field is applied from the outside, the differential voltage of the bridge circuit output becomes a sine wave waveform corresponding to the rotation angle β of the magnetic field. Two bridge circuits are used and arranged so as to face each other by 90 ° so that the outputs correspond to cos β and sin β. Each of the two bridge circuit outputs is differentially amplified, converted from analog to digital, and taken into an arithmetic circuit. The arithmetic circuit performs arctan calculation, corrects the angle error, and outputs the rotation angle. However, the above circuit configuration requires a large number of differential amplifier circuits and analog-digital conversion circuits, which increases the cost of the entire circuit.

そこで、本発明の目的は上記課題に鑑み、回路コストを低減するため差動増幅回路やアナログ・デジタル変換回路が必要のない回路構成を提供することにある。   In view of the above problems, an object of the present invention is to provide a circuit configuration that does not require a differential amplifier circuit or an analog / digital conversion circuit in order to reduce circuit cost.

上記目的を達成するために、本発明では、回転軸と同期して回転する磁界発生手段が発生する磁界方向を少なくとも2以上の位相の異なる電気信号として出力するセンサ素子部を有する回転角度センサと、前記センサ素子部を駆動させる周期波形を前記回転角度センサに出力する信号発生回路と、前記センサ素子部から得られた出力が入力されるコンパレータと、前記コンパレータからの出力が入力される演算回路と、を有し、前記演算回路は、前記コンパレータから出力されるパルス波形をデジタル値として取り込むパルス入力端子を有し、前記パルス入力端子で取り込まれた値に基づき前記回転軸の回転角度と等価である前記磁界方向を演算し出力する構成とした。   In order to achieve the above object, in the present invention, a rotation angle sensor having a sensor element unit that outputs a magnetic field direction generated by a magnetic field generation unit rotating in synchronization with a rotation axis as an electrical signal having at least two or more phases. A signal generation circuit that outputs a periodic waveform for driving the sensor element unit to the rotation angle sensor, a comparator that receives an output obtained from the sensor element unit, and an arithmetic circuit that receives an output from the comparator The arithmetic circuit has a pulse input terminal that captures the pulse waveform output from the comparator as a digital value, and is equivalent to the rotation angle of the rotating shaft based on the value captured at the pulse input terminal. The magnetic field direction is calculated and output.

本発明によるその他の目的及び特徴は、以下に述べる実施例の中で明らかにする。   Other objects and features of the present invention will be made clear in the embodiments described below.

本発明によれば、SVGMR素子を利用した回転角度センサを用いた回転角度計測装置において、回転角度センサから出力される信号を処理する回路を比較的安価な構成で実現できる。   According to the present invention, in a rotation angle measurement device using a rotation angle sensor using an SVGMR element, a circuit for processing a signal output from the rotation angle sensor can be realized with a relatively inexpensive configuration.

本発明に係る回転角度計測装置の回路構成の一例。An example of the circuit structure of the rotation angle measuring device which concerns on this invention. 本発明に係る回転角度計測装置の実装構成の一例。An example of the mounting structure of the rotation angle measuring device which concerns on this invention. 本発明に係る回転角度計測装置の回路構成における信号波形の一例。An example of the signal waveform in the circuit structure of the rotation angle measuring device which concerns on this invention. 本発明に係る回転角度計測装置の演算回路に取り込まれたデジタル値と回転角度計算結果、ならびに検出誤差の一例。An example of the digital value taken in the arithmetic circuit of the rotation angle measuring device which concerns on this invention, a rotation angle calculation result, and a detection error. 本発明に係る回転角度計測装置の回路構成の別の一例。Another example of the circuit structure of the rotation angle measuring device which concerns on this invention. 本発明に係る回転角度計測装置の回路構成の別の一例。Another example of the circuit structure of the rotation angle measuring device which concerns on this invention.

以下、図1乃至図4を用いて、本発明の一実施例である回転角度計測装置の構成について説明する。   Hereinafter, the configuration of a rotation angle measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS.

図1,図2は、それぞれ、本発明に係る回転角度計測装置1の回路構成の一例、ならびに回転角度計測装置1の実装構成の一例を示す図である。   1 and 2 are diagrams showing an example of a circuit configuration of the rotation angle measuring device 1 according to the present invention and an example of a mounting configuration of the rotation angle measuring device 1, respectively.

回転角度計測装置1は主として回転角度センサ2,周辺回路3,回転軸9と同期して回転する磁石8から構成され、磁石8によって発生された磁界の方向、すなわち磁石8と同期して回転する回転軸9の回転角度を計測する装置である。   The rotation angle measuring device 1 is mainly composed of a rotation angle sensor 2, a peripheral circuit 3, and a magnet 8 that rotates in synchronization with the rotation shaft 9, and rotates in synchronization with the direction of the magnetic field generated by the magnet 8, that is, the magnet 8. This is a device for measuring the rotation angle of the rotary shaft 9.

回転角度センサ2は具体的には8個のSVGMR素子211,212,221,222,231,232,241,242により構成され、主として外部磁界により磁化方向が変化しない固定磁性層(ピン磁性層),非磁性導電層,外部磁界により磁化方向が変化するフリー磁性層の多層体構造の素子である。この素子に外部から一定強度以上で多層体構造の面内にベクトルを持つ磁界を与えると、フリー磁性層の磁化方向が外部から与えた磁界の方向に回転し、非磁性導電層の抵抗値が変化する。磁界の回転方向が多層体構造の面内となるように磁石などの磁界発生手段を配置し、固定磁性層の磁化方向と外部から与えられる磁界の方向のなす角度をαとおくと、非磁性導電層の抵抗値変化は(1−cosα)に比例する。抵抗値は固定磁性層の磁化方向とフリー磁性層の磁化方向が同じ、つまり、磁界の方向が固定磁性層の磁化方向と同じ(α=0°)ときに最も小さく、磁界の方向が固定磁性層の磁化方向と正反対(α=180°)のときに最も大きくなる。なお、この抵抗値変化の大きさは10%前後の値をとる。   Specifically, the rotation angle sensor 2 is composed of eight SVGMR elements 211, 212, 221, 222, 231, 232, 241, 242 and a pinned magnetic layer (pinned magnetic layer) whose magnetization direction is not changed mainly by an external magnetic field. , A non-magnetic conductive layer, and an element having a multilayer structure of a free magnetic layer whose magnetization direction is changed by an external magnetic field. When a magnetic field having a certain intensity or higher and a vector in the plane of the multilayer structure is applied to the element from the outside, the magnetization direction of the free magnetic layer rotates in the direction of the magnetic field applied from the outside, and the resistance value of the nonmagnetic conductive layer is reduced. Change. When a magnetic field generating means such as a magnet is arranged so that the direction of rotation of the magnetic field is in the plane of the multilayer structure, and the angle between the magnetization direction of the pinned magnetic layer and the direction of the magnetic field applied from the outside is α, non-magnetic The change in resistance value of the conductive layer is proportional to (1-cos α). The resistance value is the smallest when the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer are the same, that is, when the magnetic field direction is the same as the magnetization direction of the pinned magnetic layer (α = 0 °), and the magnetic field direction is pinned magnetic The maximum value is obtained when the direction is opposite to the magnetization direction of the layer (α = 180 °). Note that the magnitude of this resistance value change takes a value of around 10%.

ここで、2個のSVGMR素子を固定磁性層の磁化方向が正反対となるように非磁性導電層を直列に接続し磁界Bを与えると、磁界の方向による各々のGMR素子の抵抗値変化は正反対となる。よって、この直列接続回路の両端に一定電圧を与えると、中点の電圧は磁界の回転角度に応じて変化する。   Here, when two SVGMR elements are connected in series so that the magnetization direction of the pinned magnetic layer is opposite to each other and the magnetic field B is applied, the change in resistance value of each GMR element depending on the direction of the magnetic field is opposite. It becomes. Therefore, when a constant voltage is applied to both ends of this series connection circuit, the voltage at the midpoint changes according to the rotation angle of the magnetic field.

回転角度センサ2は、8個のSVGMR素子211,212,221,222,231,232,241,242からなる4組の直列接続回路21,22,23,24を90°ごとに配置して構成される。ここで、8個のSVGMR素子211,212,221,222,231,232,241,242に記したそれぞれの矢印は固定磁性層の磁化方向を示し、角度θは磁石8から発生される磁界の方向(回転角度)を示すこととする。   The rotation angle sensor 2 is configured by arranging four sets of series connection circuits 21, 22, 23, 24 each comprising 90 SVGMR elements 211, 212, 221, 222, 231, 232, 241, 242 every 90 °. Is done. Here, the respective arrows on the eight SVGMR elements 211, 212, 221, 222, 231, 232, 241, 242 indicate the magnetization direction of the fixed magnetic layer, and the angle θ is the magnetic field generated from the magnet 8. The direction (rotation angle) is indicated.

周辺回路3は、主として三角波発生回路35,コンパレータ31,32,33,34,演算回路40で構成される。これらの周辺回路3は、回転角度センサ2とともに基板5上に配置される。   The peripheral circuit 3 mainly includes a triangular wave generation circuit 35, comparators 31, 32, 33 and 34, and an arithmetic circuit 40. These peripheral circuits 3 are arranged on the substrate 5 together with the rotation angle sensor 2.

本発明に係る回転角度計測装置1の角度測定原理、および回路の動作について以下に説明する。   The angle measurement principle and circuit operation of the rotation angle measuring apparatus 1 according to the present invention will be described below.

まず、直列接続回路21に着目し、印加する電圧と中点213の出力電圧V(cosθ)の関係について、一例を図3(a)に示す。中点213の出力電圧V(cosθ)は印加する電圧に比例した電圧となる。角度θにより2個のSVGMR素子211,212の抵抗値が正反対に変化するので、角度θによって印加電圧による出力変化の傾きが変化する。この中点213の電圧を閾値Vthのコンパレータ31に入力する。ここで、直列接続回路21に三角波発生回路35により三角波電圧を印加するとコンパレータ31の出力波形f(cosθ)は図3(b)に示す一例のようにパルス波形となる。図3(b)に示すように、角度θを変化させると、パルス波形のデューティー比が変化する。   First, focusing on the series connection circuit 21, an example of the relationship between the applied voltage and the output voltage V (cos θ) at the midpoint 213 is shown in FIG. The output voltage V (cos θ) at the midpoint 213 is a voltage proportional to the applied voltage. Since the resistance values of the two SVGMR elements 211 and 212 change in opposite directions depending on the angle θ, the slope of the output change due to the applied voltage changes depending on the angle θ. The voltage at the midpoint 213 is input to the comparator 31 having a threshold value Vth. Here, when a triangular wave voltage is applied to the series connection circuit 21 by the triangular wave generation circuit 35, the output waveform f (cos θ) of the comparator 31 becomes a pulse waveform as in the example shown in FIG. 3B. As shown in FIG. 3B, when the angle θ is changed, the duty ratio of the pulse waveform changes.

他の直列接続回路22,23,24に関しても同様に中点223,233,243にコンパレータ32,33,34を接続し、角度θを変化させると、各コンパレータ32,33,34の出力f(sinθ),f(−cosθ),f(−sinθ)も同様にデューティー比が変化する。図4(a)に角度θの変化によるコンパレータ31,32,33,34における出力のデューティー比変化の一例を示す。それぞれのデューティー比変化は90°ごとに位相差を持っている。これらの各コンパレータ31,32,33,34の出力を演算回路40のパルス入力端子duty1,duty2,duty3,duty4に接続し、それぞれのデューティー比をデジタル値として取り込み、演算回路40内部でx=f(cosθ)−f(−cosθ),y=f(sinθ)−f(−sinθ)の演算をおこなうと、図4(b)に一例を示すように、ほぼ正弦波,余弦波の波形となる。さらに、arctan(y/x)の計算を行うと、図4(c)に一例を示すように、角度θの変化によって本手法で計測、計算した角度を得ることができる。なお、本手法では、理論上の計測誤差は図4(d)に一例を示すようにゼロとすることはできないが、周期的で再現性のある誤差特性であるため、既知の補正手段にて誤差の補正をすることも可能である。演算回路40で求めた角度は、回転角度計測装置1の出力として、外部へ出力される。   Similarly, when the comparators 32, 33, and 34 are connected to the midpoints 223, 233, and 243 with respect to the other series connection circuits 22, 23, and 24, and the angle θ is changed, the output f ( Similarly, the duty ratio of sin θ), f (−cos θ), and f (−sin θ) also changes. FIG. 4A shows an example of a change in output duty ratio in the comparators 31, 32, 33, and 34 due to a change in the angle θ. Each duty ratio change has a phase difference every 90 °. The outputs of these comparators 31, 32, 33, 34 are connected to the pulse input terminals duty1, duty2, duty3, duty4 of the arithmetic circuit 40, the respective duty ratios are taken in as digital values, and x = f in the arithmetic circuit 40. When the calculation of (cos θ) −f (−cos θ), y = f (sin θ) −f (−sin θ) is performed, the waveforms are almost sinusoidal and cosine waves as shown in FIG. 4B. . Further, when arctan (y / x) is calculated, as shown in FIG. 4C, an angle measured and calculated by this method can be obtained by changing the angle θ. In this method, the theoretical measurement error cannot be set to zero as shown in FIG. 4 (d). However, since it is a periodic and reproducible error characteristic, It is also possible to correct the error. The angle obtained by the arithmetic circuit 40 is output to the outside as the output of the rotation angle measuring device 1.

なお、各コンパレータ31,32,33,34はシュミットトリガ入力となっていても良い。また、三角波発生回路35に変えてのこぎり波発生回路を用いても同じ手法をとることが可能である。さらに、図5に示す回転角度計測装置11のように、図1に示した三角波発生回路35に変えて、三角波電圧と方形波電圧の出力が可能な三角波・方形波発生回路351を用いて、方形波を演算回路41のトリガ端子inに入力してデューティー比取り込みにおけるトリガ信号としても良い。   Each comparator 31, 32, 33, 34 may be a Schmitt trigger input. In addition, the same method can be used even if a sawtooth wave generation circuit is used instead of the triangular wave generation circuit 35. Further, as in the rotation angle measuring device 11 shown in FIG. 5, in place of the triangular wave generating circuit 35 shown in FIG. 1, a triangular wave / square wave generating circuit 351 capable of outputting a triangular wave voltage and a square wave voltage is used. A square wave may be input to the trigger terminal “in” of the arithmetic circuit 41 and used as a trigger signal for taking in the duty ratio.

また、三角波発生回路35の発振周波数は、回転軸9の最大回転速度や角度計測の要求分解能,演算回路40の演算速度により適宜設定される。さらに三角波発生回路35の出力の振幅やオフセット電圧,各コンパレータ31,32,33,34の閾値電圧Vthは、適宜変更可能な構成となっていても良い。   The oscillation frequency of the triangular wave generating circuit 35 is appropriately set according to the maximum rotational speed of the rotating shaft 9, the required resolution for angle measurement, and the calculation speed of the calculation circuit 40. Further, the output amplitude and offset voltage of the triangular wave generation circuit 35 and the threshold voltage Vth of each of the comparators 31, 32, 33, 34 may be appropriately changed.

さらに、角度θによるSVGMR素子の抵抗値変化は温度依存性を持っているため、デューティー比変化の振幅や(xの2乗)+(yの2乗)の値から、回転角度センサ2の温度を求めることも可能である。この温度情報を利用して、既知の補正手段にて温度依存性の誤差の補正をすることも可能である。   Further, since the change in the resistance value of the SVGMR element due to the angle θ has temperature dependence, the temperature of the rotation angle sensor 2 is determined from the amplitude of the duty ratio change and the value of (x squared) + (y squared). Is also possible. Using this temperature information, it is also possible to correct a temperature-dependent error by a known correction means.

以上の方法により、差動増幅回路やアナログ・デジタル変換回路が必要のない低コストな回路構成による回転角度計測装置が実現できる。   By the above method, a rotation angle measuring device having a low-cost circuit configuration that does not require a differential amplifier circuit or an analog / digital conversion circuit can be realized.

次に、図6を用いて本発明に係る回転角度計測装置における回路構成の別の一例を示す。本構成による回転角度計測装置12は、直列接続回路21,23の中点213,233の電圧V(cosθ)と電圧V(−cosθ)、ならびに、直列接続回路22,24の中点223,243の電圧V(sinθ)と電圧V(−sinθ)をそれぞれ差動増幅回路36,37に入力して、V(cosθ)−V(−cosθ)、およびV(sinθ)−V(−sinθ)を検出後に、それぞれの出力を閾値Vthのコンパレータ38,39に入力する。コンパレータ38,39の出力はパルス波形となり、角度θによりデューティー比が変化する。各コンパレータ38,39の出力を演算回路41のパルス入力端子duty5,duty6に接続し、それぞれのデューティー比をデジタル値x′,y′として取り込む。さらに、arctan(y′/x′)の計算を行うと、角度θの変化によって本手法で計測、計算した角度を得ることができる。   Next, another example of the circuit configuration in the rotation angle measuring device according to the present invention will be described with reference to FIG. The rotation angle measuring device 12 according to this configuration includes the voltage V (cos θ) and the voltage V (−cos θ) at the midpoints 213 and 233 of the series connection circuits 21 and 23 and the midpoints 223 and 243 of the series connection circuits 22 and 24. Voltage V (sin θ) and voltage V (−sin θ) are respectively input to the differential amplifier circuits 36 and 37, and V (cos θ) −V (−cos θ) and V (sin θ) −V (−sin θ) are obtained. After detection, the respective outputs are input to comparators 38 and 39 having a threshold value Vth. The outputs of the comparators 38 and 39 are pulse waveforms, and the duty ratio changes depending on the angle θ. The outputs of the comparators 38 and 39 are connected to the pulse input terminals duty5 and duty6 of the arithmetic circuit 41, and the respective duty ratios are taken in as digital values x 'and y'. Further, when arctan (y ′ / x ′) is calculated, the angle measured and calculated by this method can be obtained by the change of the angle θ.

本手法では、差動増幅回路が必要になるものの、演算回路におけるパルス入力端子数を低減することが可能となり、演算回路における演算数を低減することが可能である。   Although this method requires a differential amplifier circuit, the number of pulse input terminals in the arithmetic circuit can be reduced, and the number of operations in the arithmetic circuit can be reduced.

2 回転角度センサ
3 周辺回路
5 基板
8 磁石
9 回転軸
31,32,33,34,38,39 コンパレータ
40 演算回路
211,212,221,222,231,232,241,242 SVGMR素子
2 Rotational angle sensor 3 Peripheral circuit 5 Substrate 8 Magnet 9 Rotating shaft 31, 32, 33, 34, 38, 39 Comparator 40 Arithmetic circuit 211, 212, 221, 222, 231, 232, 241, 242 SVGMR element

Claims (8)

回転軸と同期して回転する磁界発生手段が発生する磁界方向を少なくとも2以上の位相の異なる電気信号として出力するセンサ素子部を有する回転角度センサと、
前記センサ素子部を駆動させる周期波形を前記回転角度センサに出力する信号発生回路と、
前記センサ素子部から得られた出力が入力されるコンパレータと、
前記コンパレータからの出力が入力される演算回路と、を有し、
前記演算回路は、前記コンパレータから出力されるパルス波形をデジタル値として取り込むパルス入力端子を有し、前記パルス入力端子で取り込まれた値に基づき前記回転軸の回転角度と等価である前記磁界方向を演算し出力することを特徴とする回転角度計測装置。
A rotation angle sensor having a sensor element unit that outputs a magnetic field direction generated by a magnetic field generation unit that rotates in synchronization with a rotation axis as at least two electrical signals having different phases;
A signal generation circuit for outputting a periodic waveform for driving the sensor element unit to the rotation angle sensor;
A comparator to which an output obtained from the sensor element unit is input;
An arithmetic circuit to which the output from the comparator is input,
The arithmetic circuit has a pulse input terminal that captures a pulse waveform output from the comparator as a digital value, and the magnetic field direction that is equivalent to the rotation angle of the rotating shaft based on the value captured at the pulse input terminal. A rotation angle measuring device characterized by calculating and outputting.
請求項1に記載の回転角度計測装置において、
前記センサ素子部の出力数は4であり各々90度ごとに位相の異なる電気信号を出力することを特徴とする回転角度計測装置。
In the rotation angle measuring device according to claim 1,
The number of outputs of the sensor element section is 4, and the rotation angle measuring device outputs electrical signals having different phases every 90 degrees.
請求項1または2に記載の回転角度計測装置において、
前記信号発生回路の出力は、三角波またはのこぎり波であることを特徴とする回転角度計測装置。
In the rotation angle measuring device according to claim 1 or 2,
An output of the signal generating circuit is a triangular wave or a sawtooth wave, the rotation angle measuring device.
請求項1乃至3のいずれかに記載の回転角度計測装置において、
前記演算回路は、前記パルス波形のデューティー比を計測してデジタル値に変換する機能を有することを特徴とする回転角度計測装置。
In the rotation angle measuring device according to any one of claims 1 to 3,
The rotation angle measuring device characterized in that the arithmetic circuit has a function of measuring a duty ratio of the pulse waveform and converting it into a digital value.
請求項1乃至4のいずれかに記載の回転角度計測装置において、
前記信号発生回路は、前記周期波形に加えて前記周期波形と同期したトリガ信号を出力し前記演算回路に入力される構成であり、
前記演算回路は、前記トリガ信号を用いて前記パルス波形の取り込みのトリガとする機能を有することを特徴とする回転角度計測装置。
In the rotation angle measuring device according to any one of claims 1 to 4,
The signal generation circuit is configured to output a trigger signal synchronized with the periodic waveform in addition to the periodic waveform and input to the arithmetic circuit,
The rotation angle measuring device, wherein the arithmetic circuit has a function of using the trigger signal as a trigger for capturing the pulse waveform.
回転軸と同期して回転する磁界発生手段が発生する磁界方向を偶数個の位相の異なる電気信号として出力するセンサ素子部を有する回転角度センサと、
前記センサ素子部を駆動させる周期波形を前記回転角度センサに出力する信号発生回路と、
前記センサ素子部から得られた出力が入力される差動回路と、
前記差動回路の出力が入力されるコンパレータと、
前記コンパレータからの出力が入力される演算回路と、を有し、
前記演算回路は、前記コンパレータから出力されるパルス波形をデジタル値として取り込むパルス入力端子を有し、前記パルス入力端子で取り込まれた値に基づき前記回転軸の回転角度と等価である前記磁界方向を演算し出力することを特徴とする回転角度計測装置。
A rotation angle sensor having a sensor element unit that outputs the magnetic field direction generated by the magnetic field generating means rotating in synchronization with the rotation axis as an even number of electrical signals having different phases;
A signal generation circuit for outputting a periodic waveform for driving the sensor element unit to the rotation angle sensor;
A differential circuit to which an output obtained from the sensor element unit is input;
A comparator to which the output of the differential circuit is input;
An arithmetic circuit to which the output from the comparator is input,
The arithmetic circuit has a pulse input terminal that captures a pulse waveform output from the comparator as a digital value, and the magnetic field direction that is equivalent to the rotation angle of the rotating shaft based on the value captured at the pulse input terminal. A rotation angle measuring device characterized by calculating and outputting.
請求項6に記載の回転角度計測装置において、
前記センサ素子部からの出力数を4個有しており、
前記差動回路および前記コンパレータは各々2個から構成されることを特徴とする回転角度計測装置。
In the rotation angle measuring device according to claim 6,
It has four outputs from the sensor element section,
The differential angle circuit and the comparator are each composed of two pieces.
請求項1乃至7にいずれかに記載の回転角度計測装置において、
前記センサ素子は少なくとも外部磁界により磁化方向が変化しない固定磁性層,非磁性導電層,外部磁界により磁化方向が変化するフリー磁性層の多層体構造からなるスピンバルブ型巨大磁気抵抗効果を用いた素子であることを特徴とする回転角度計測装置。
In the rotation angle measuring device according to any one of claims 1 to 7,
The sensor element is an element using a spin valve type giant magnetoresistive effect comprising at least a fixed magnetic layer whose magnetization direction is not changed by an external magnetic field, a nonmagnetic conductive layer, and a free magnetic layer whose magnetization direction is changed by an external magnetic field. The rotation angle measuring device characterized by being.
JP2011098904A 2011-04-27 2011-04-27 Rotation angle measuring device Withdrawn JP2012230021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098904A JP2012230021A (en) 2011-04-27 2011-04-27 Rotation angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098904A JP2012230021A (en) 2011-04-27 2011-04-27 Rotation angle measuring device

Publications (1)

Publication Number Publication Date
JP2012230021A true JP2012230021A (en) 2012-11-22

Family

ID=47431678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098904A Withdrawn JP2012230021A (en) 2011-04-27 2011-04-27 Rotation angle measuring device

Country Status (1)

Country Link
JP (1) JP2012230021A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310448B2 (en) 2013-03-22 2016-04-12 Seiko Epson Corporation Detection circuit, semiconductor integrated circuit device, magnetic field rotation angle detection device, and electronic device
CN107091607A (en) * 2017-05-10 2017-08-25 北京布莱迪测控仪表有限公司 Angle measurement unit and method based on magnetic core logical circuit deflection
US11493362B2 (en) 2020-08-12 2022-11-08 Analog Devices International Unlimited Company Systems and methods for detecting magnetic turn counter errors
US11608109B2 (en) 2020-08-12 2023-03-21 Analog Devices International Unlimited Company Systems and methods for detecting magnetic turn counter errors with redundancy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310448B2 (en) 2013-03-22 2016-04-12 Seiko Epson Corporation Detection circuit, semiconductor integrated circuit device, magnetic field rotation angle detection device, and electronic device
CN107091607A (en) * 2017-05-10 2017-08-25 北京布莱迪测控仪表有限公司 Angle measurement unit and method based on magnetic core logical circuit deflection
US11493362B2 (en) 2020-08-12 2022-11-08 Analog Devices International Unlimited Company Systems and methods for detecting magnetic turn counter errors
US11608109B2 (en) 2020-08-12 2023-03-21 Analog Devices International Unlimited Company Systems and methods for detecting magnetic turn counter errors with redundancy

Similar Documents

Publication Publication Date Title
JP5064492B2 (en) Magnetic rotation angle detector
JP6331177B1 (en) Angle sensor system
JP5105201B2 (en) Angle detection apparatus and angle detection method
US9429632B2 (en) Magnetic position detection device
JP5105200B2 (en) Angle detection apparatus and angle detection method
US10775200B2 (en) Rotary encoder and absolute angular position detection method thereof
US8378664B2 (en) Arrangement comprising a magnetic-field-dependent angle sensor
JP2011038855A (en) Magnetic sensor
US20080186019A1 (en) Arrangement Comprising A Magnetic Field Sensor
JP2011180001A (en) Rotation sensor
CN104062609A (en) Detection Circuit, Semiconductor Integrated Circuit Device, Magnetic Field Rotation Angle Detection Device, And Electronic Device
JP2011158488A (en) Magnetic sensor
JP2020153806A (en) Rotation angle detector
JP2012230021A (en) Rotation angle measuring device
JP2022524488A (en) Electronic circuit that measures the angle and strength of an external magnetic field
JP5762567B2 (en) Rotation angle detector
JP2015049046A (en) Angle detector
JP2019191155A (en) System for determining at least one rotation parameter of rotation member
JP2011158487A (en) Magnetic sensor
JP5434943B2 (en) Rotation sensor
JP2011153916A (en) Look-up table generation method, angle sensor, and scale
JP2010223595A (en) Position detection device
JP2015087113A (en) Data detection method in detection device, and detection device
JP2020153981A (en) System for determining at least one rotation parameter of rotating member
JP5195787B2 (en) Rotation sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701