JP2015015249A - プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法 - Google Patents

プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法 Download PDF

Info

Publication number
JP2015015249A
JP2015015249A JP2014165867A JP2014165867A JP2015015249A JP 2015015249 A JP2015015249 A JP 2015015249A JP 2014165867 A JP2014165867 A JP 2014165867A JP 2014165867 A JP2014165867 A JP 2014165867A JP 2015015249 A JP2015015249 A JP 2015015249A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
electrode
loop
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014165867A
Other languages
English (en)
Inventor
後藤 哲也
Tetsuya Goto
哲也 後藤
平山 昌樹
Masaki Hirayama
昌樹 平山
須川 成利
Shigetoshi Sugawa
成利 須川
大見 忠弘
Tadahiro Omi
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2014165867A priority Critical patent/JP2015015249A/ja
Publication of JP2015015249A publication Critical patent/JP2015015249A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】プラズマ励起領域の周辺に存在する電極等の部材材料が加速された電子によりスパッタされることを実質的に無くすことができるプラズマ発生装置を提供する。【解決手段】主面および背面を有するプラズマ形成用の電極と、周波数が200MHz以上の高周波電力を前記電極に供給する高周波供給部と、前記電極の前記背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石56とS極が前記背面に対向配置された第2の固定磁石58とを含み、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域LMRを形成する磁場形成機構と、を有し、前記磁場形成機構の形成するループ状の磁場領域LMRは、前記主面に平行な方向に3000ガウス以上の強磁場を有する。【選択図】図3A

Description

本発明は、プラズマ発生装置およびこのプラズマ発生装置を用いたプラズマ処理装置と、プラズマ発生方法およびこのプラズマ発生方法を用いたプラズマ処理方法とに関する。
プラズマCVD(Chemical Vapor Deposition)等のプラズマ処理プロセスでは、シリコンウエハ等の基板の表面に入射するイオン照射エネルギーを低く抑えてイオン照射ダメージを低減するために、電子温度の低いプラズマが求められている。一般に、プラズマ励起周波数を高くすると、プラズマ密度が増加し電子温度が低下する。そこで、通常の高周波電源の周波数である13.56MHzより高い30〜300MHzのVHF(Very High Frequency)帯の高周波をプラズマ処理に用いることが行われている(例えば、特許文献1、2参照)。
特開平9−312268号公報 特開2009−021256号公報
例えば、マイクロ波プラズマ技術においては、上記したようにプラズマ励起周波数を高くすれば、励起されたプラズマが拡散する拡散プラズマ領域におけるイオン照射エネルギーを十分に低下させることができ、シリコンウエハのイオン照射ダメージをほぼなくすことができる段階にきている。しかしながら、プラズマ励起領域においては、強いマイクロ波電界により電子が加速されるため、イオン照射エネルギーが数十eVまで上昇してしまう。その結果、加速された電子より、電界形成用の電極や処理チャンバの内壁面等のプラズマ励起領域の周辺に存在する部材材料がスパッタされ、このスパッタされた材料がシリコンウエハに付着することによるコンタミネーションが発生する。
本発明の目的は、シリコンウエハ等の被処理体のイオン照射ダメージを無くすことができる程度にプラズマの電子温度を低下させることに加えて、プラズマ励起領域の周辺に存在する電極等の部材材料が加速された電子によりスパッタされることを実質的に無くすことができるプラズマ発生装置および方法を提供することにある。また、本発明の目的の一つは、このプラズマ発生装置および方法を用いた、プラズマ処理装置および方法を提供することにある。
本発明のプラズマ発生装置は、主面および当該主面とは反対の背面とを有するプラズマ形成用の電極と、周波数が200MHz以上の高周波電力を前記プラズマ形成用の電極に供給する高周波供給部と、前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含み、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成する磁場形成機構と、を有し、前記磁場形成機構の形成するループ状の磁場領域は、前記主面に平行な方向に3000ガウス以上の強磁場を有する、ことを特徴とする。
本発明のプラズマ処理装置は、上記のプラズマ発生装置を用いて、前記電極の主面に対向して配置される被処理体をプラズマ処理するプラズマ処理装置であって、前記電極は、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給するための原料ガス供給部を、前記ループ状の磁場領域に対応する領域に備えることを特徴とする。
本発明のプラズマ発生方法は、主面および当該主面とは反対の背面とを有するプラズマ形成用の電極に、周波数が200MHz以上の高周波電力を供給し、前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含む磁場形成機構を用いて、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成し、前記ループ状の磁場領域が、前記主面に平行な方向に3000ガウス以上の強磁場を有するように、前記ループ状の磁場領域を形成する、ことを特徴とする。
本発明のプラズマ処理方法は、上記のプラズマ発生方法を用いて、前記電極の主面に対向して配置される被処理体をプラズマ処理するプラズマ処理方法であって、前記電極の前記ループ状の磁場領域に対応する領域に設けられた原料ガス供給部から、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給する、ことを特徴とする。
本発明では、プラズマ形成用の電極に、周波数が200MHz以上の高周波電力を供給してプラズマを励起し、励起されたプラズマを電極の主面に形成したループ状の磁場領域に閉じ込める。そして、ループ状の磁場領域を主面に平行な方向の磁場強度が3000ガウス以上の強磁界を有するものとすることで、プラズマを磁力線に強く巻き付かせてプラズマ密度をさらに高めることができ、その結果、閉じ込められたプラズマの電子温度をプラズマ励起領域周辺に配置されたプラズマ形成用の電極等の部材をスパッタしない程度まで低下させることができる。
本発明の一実施形態に係るプラズマ処理装置の概略を示す断面図。 図1の円IIA内の拡大図。 シャワープレートのガス供給孔の配列を示す図。 図1の装置の磁場形成機構の構成を示す平面図。 磁場形成機構の他の例を示す平面図。 磁場形成機構のさらに他の例を示す平面図。 固定磁石とループ状磁場領域との関係を示す断面図。 主面に形成されるループ状磁場領域の水平磁場強度分布を示すグラフ。 給電部の構造を示す図1のVI-VI線の断面図。
以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
ここで、本発明の基本原理を説明する。本発明では、シリコンウエハ等の被処理体のイオン照射によるダメージを除去するために、従来から実施されてきたプラズマ励起周波数の高周波化を行う。これに加えて、磁場による閉じ込め効果を利用して、供給される高周波電力をプラズマの加速のためではなく、プラズマ密度を増加させるためのエネルギーに転換する。ここで、本発明者らは、プラズマ閉じ込めのための磁場領域が、電極の主面に平行な方向の磁場(以下、水平磁場と呼ぶ。)の強度が3000ガウス以上の強磁場を有するものにすることにより、プラズマが磁力線に強く巻き付くことでプラズマ閉じ込め効果が向上してプラズマ密度が高まり、プラズマ励起領域のプラズマの電子温度をプラズマ形成用の電極やその周辺の部材のスパッタが実質的に発生しない程度まで下げることができることを新たに見出した。プラズマ密度が高まるということは、投入された高周波電力がプラズマ密度の上昇に消費されて、プラズマの電子温度が下がることを意味する。本発明のプラズマ発生装置は、これに限定されるわけではないが、「水平方向強磁界印加高周波励起プラズマ装置」とも呼ぶことができるものである。
本実施形態に係るプラズマ処理装置(以下、装置1という。)は、図1に示すように、例えば、プラズマCVD(Chemical Vapor Deposition)等の各種プラズマ処理に用いられる。装置1は、密閉空間201を画定する金属製の処理チャンバ200、処理チャンバ200内に設置された窒化アルミニウム等から形成されたシリコンウエハ等の基板Wを載置するためのステージ220、ステージ220の上方に設けられたプラズマ形成用の電極10、電極10に設置された磁場形成機構50、電極10に電気的に接続された給電部60、処理チャンバ200の上蓋202上に設けられた整合器70、および、電源100を有する。ステージ220は、回転軸線Cを中心に基板Wを回転可能になっている。
処理チャンバ200は、アルミニウム合金、ステンレス等の導電性材料で形成され、基準電位に接続されている。処理チャンバ200の底部には、処理チャンバ200内の雰囲気を排気するための排気口205が設けられ、この排気口205に処理チャンバ200の外部に設置された図示しない真空ポンプなどの排気装置が接続される。この排気装置により、密閉空間201は減圧される。
電極10は、導電性の板状部材で形成され、非磁性材料、例えば、表面に陽極酸化膜が形成されたアルミニウム合金で形成されている。電極10は、外周部を酸化アルミニウム等の絶縁体で形成された保持部材80で保持され、ステージ220に対向する側に平面からなる主面10aと主面10aとは逆に背面10bを備えている。保持部材80は、処理チャンバ200の上部に固定され、電極10との間はOリング82でシールされ、処理チャンバ200との間はOリング84でシールされている。電極10は、図2Aに示すように、背面10bに、磁場形成機構50の後述する固定磁石56,58を埋め込むための溝11が形成され、主面10a側には、例えば、SiH4、N2、O2、N2O等の原料ガスを供給するためのガス流路12が形成され、内部には電極10の過熱を防ぐための冷却水が通過する冷却水流路14が形成されている。ガス流路12の主面10a側には、シャワープレート20が、主面10aと面一となるように電極10に一体的に設けられている。すなわち、シャワープレート20の表面は、主面10aの一部を構成している。シャワープレート20は、電極10と同じ材料で形成されている。シャワープレート20には、ガス供給孔21が多数形成されており、ガス供給孔21は、図2Bに示すように配列されており、例えば、孔径0.2mm、ピッチ0.5mmで圧力500mTorr,ガス流量1000sccmの条件か5m/sのガス流速でガスを供給可能である。なお、シャワープレート20の配置については後述する。
磁場形成機構50は、平板状に形成されたヨーク52と、ヨーク52の下面に設けられた第1の固定磁石としての磁石56および第2の固定磁石としての磁石58とを有する。ヨーク52は、鉄で形成されており、下面以外の表面がアルミニウム合金等で形成された導電性カバー53で覆われている。これは、抵抗が比較的高い鉄製のヨーク52に高周波電流が流れると発熱によるエネルギー損失が生じることから、アルミニウム合金等の抵抗の低い材料でヨーク52を覆うことで、これを防ぐためである。
磁石56,58は、板状磁石からなり、強い磁界を安定して発生させるために、Sm−Co系焼結磁石、Nd−Fe−B系焼結磁石等の残留磁束密度、保磁力、エネルギー積の高い磁石が用いられる。磁石56,58は、図2Aに示す電極10の背面側に形成された溝11に埋め込まれている。磁石56,58の表面には、フッ化炭素樹脂(商品名:テフロン(登録商標))等の絶縁材料が被覆されており、電極10と磁石56,58との間は電気的に絶縁されている。各磁石56,58はその表面に垂直な方向に磁化されている。磁石56は、N極が電極10の背面10bに対向配置され、図3Aに示すように、Y軸方向に延在するとともにX軸方向に等間隔で配列されている。磁石58は、S極が電極10の背面10bに対向配置され、隣り合う2つの磁石56の間に配置されるとともにY軸方向に沿った複数の長手部58aと、複数の長手部58aの両端部を互いに接続する連結部58bとからなる。磁石56と磁石58の長手部58aとの間は、一定のギャップが形成されている。磁石56と磁石58の連結部58bとの間にも、一定のギャップが形成されている。なお、図3Aにおいて、X軸方向の両端部の2つの長手部58aの幅は、他の長手部58aの幅よりも狭くなっている。磁石56は、例えば、幅が20mm、長さが330mmの寸法を有し、磁石58は、例えば、X軸方向の全幅が410mm、Y軸方向の全幅が390mm、両端以外の長手部58aの幅が20mm、両端の長手部58aの幅が15mm、連結部58bの幅が10mmの寸法を有する。
ここで、図4に概略的に示すように、磁石56のN極から出る磁力線の一部MFLは、磁石56のN極と磁石58のS極とが隣り合わせになっていることから、電極10を透過して電極10の主面10aを通過し、再び、電極10を透過して、隣り合う磁石58のS極に入る。この磁力線MFLは、磁石56の全周囲に形成され、これにより、図3Ani点線で示す領域に、励起されるプラズマを主面10a付近に閉じ込めるためのループ状の磁場領域LMRが形成される。本発明では、磁場領域LMRは、主面10aに平行な方向に3000ガウス以上の強磁場を有するように、磁場形成機構50が構成される。主面10aに平行な方向の磁場を水平磁場と呼ぶ。図5のグラフは、電極10の主面10aから垂直方向に8mm離れた位置のX軸上の水平磁場の強度分布を示している。磁場領域LMRは、水平磁場強度が3000ガウスを越える領域に形成される。ループ状の磁場領域LMRの幅は、例えば、10mm程度である。そして、上記したシャワープレート20は、このループ状の磁場領域LMRに対向する位置に設けられる。これにより、プラズマ化すべき原料ガスをループ状の磁場領域LMRに直接的に供給可能となる。
電源100は、同軸ケーブル101を通じて200MHz以上の高周波電力を整合器70および給電部60を通じて電極10に供給する。本実施形態では、200MHzの高周波電力を供給する。給電部60は、整合器70と電気的に接続された受電ロッド66、受電ロッド66と電気的に接続された導電板62、導電板62に電気的に接続された給電ロッド68、および、位相調整板64を有する。図6に示すように、導電板62は、その中央部に受電ロッド66が接続されるとともに、中央部から八方向に分岐する第1および第2の分岐部62a,62bを有する。各第1および第2の分岐部62a,62bの先端部には、それぞれ給電ロッド68の一端が接続されている。給電ロッド68の他端は、電極10の背面10bに電気的に接続されている。受電ロッド66および導電板62は、例えば、銅合金で形成され、給電ロッド68は、例えば、アルミニウム合金で形成されている。4つの第1の分岐部62aは、電気的に等しい長さを有し、4つの第2の分岐部62aは、電気的に等しい長さを有するとともに、第1の分岐部62aよりも短い。位相調整板64は、例えば、石英等の誘電体で形成され、4つの第2の分岐部62a上に設けられている。位相調整板64は、第2の分岐部62bに供給される高周波電力の位相を調整して、8箇所に設けられた給電ロッド68に同位相の高周波電力を供給するために設けられている。
装置1では、200MHzの高周波電力が整合器70および給電部60を通じて電極10に供給されると、電極10の主面10a付近でプラズマが励起される。主面10a付近のプラズマ励起領域、特に、シャワープレート20上には、ループ状の磁場領域LMRが形成されていることから、励起されたプラズマは、ループ状の磁場領域LMRによってシャワープレート20の表面付近に閉じ込められ、ループに沿って移動する。そして、シャワープレート20のガス供給孔21から供給される原料ガスは、プラズマ化される。このとき、ループ状の磁場領域LMRの水平磁場強度が3000ガウス以上とすることにより、プラズマが磁力線に強く巻き付き、プラズマ閉じ込め効果が向上してプラズマ密度が高まる。その結果、磁場領域LMRに閉じ込められたプラズマの電子温度を、電極10、その周辺に配置された部材、処理チャンバ200の内壁面のスパッタが実質的に発生しない程度まで下げることができることが分かった。これにより、プラズマ処理される基板W上に、スパッタされた材料が付着することがなくなり、成膜品質を改善できることが分かった。
また、本実施形態では、上記したように、ステージ220上の基板Wは、回転軸線Cを中心に回転可能になっている。このとき、図3Aに示すように、円盤状の基板Wの中心を回転軸線Cに対して例えば10mm程度偏心させて回転させると、円盤状の基板Wは円MWの領域内を移動する。これにより、磁場領域LMRを縦長のループ状にしたとしても、基板W上に形成される膜の均一性を確保できる。
上記実施形態では、磁場形成機構50の磁石56,58をラダー状に配置した場合について説明したが、本発明はこれに限定されない。3000ガウス以上の強磁場を形成できるものであればいずれの構成も採用できる。例えば、図3Bに示すように、第1の固定磁石として、円柱状の磁石56Aおよび環状の磁石56B,56Cを同心に配置し、第2の固定磁石として、環状の磁石58Aおよび58Bを磁石56Aと磁石56Bと磁石56Cとの間に配置する構成も採用可能である。また、図3Cに示すように、第1の固定磁石としての磁石156(156a,156b)と、第2の固定磁石としての磁石158とを、酸化アルミニウム等の絶縁体59(59a,59b)で分離することも可能である。具体的には、複数の磁石156aの間、磁石156aと156bとの間、および、複数の磁石158の間に絶縁体59a,59bを挿入する。
上記実施形態では、プラズマ処理としてプラズマCVDを例示したが、本発明はこれに限定されるわけではなく、プラズマエッチング等の他のプラズマ処理にも適用可能である。
上記実施形態では、本発明のプラズマ発生装置をプラズマ処理に用いる場合について説明したが、本発明はこれに限定されるわけではなく、電極等をスパッタしない程度に電子温度が低くかつ高密度のプラズマの発生が必要な状況に応用できる。
以上、添付図面を参照しながら本発明の実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
1 プラズマ処理装置
10 電極
10a 主面
10b 背面
20 シャワープレート
21 ガス供給孔
50 磁場形成機構
56 磁石(第1の固定磁石)
58 磁石(第2の固定磁石)
70 整合器
100 電源
200 処理チャンバ
LMR ループ状の磁場領域
MFL 磁力線
PL プラズマ

Claims (4)

  1. 主面および当該主面とは反対の背面とを有するプラズマ形成用の電極と、
    周波数が200MHz以上の高周波電力を前記プラズマ形成用の電極に供給する高周波供給部と、
    前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含み、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成する磁場形成機構と、を有し、
    前記磁場形成機構の形成するループ状の磁場領域は、前記主面に平行な方向に3000ガウス以上の強磁場を有し、
    前記電極の主面に対向して配置される被処理体を前記ループ状の磁場領域に対して処理中に移動させる移動機構を有する、ことを特徴とするプラズマ処理装置。
  2. 前記電極は、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給するための原料ガス供給部を、前記ループ状の磁場領域に対応する領域に備えることを特徴とする請求項1に記載のプラズマ処理装置。
  3. 主面および当該主面とは反対の背面とを有するプラズマ形成用の電極に、周波数が200MHz以上の高周波電力を供給し、
    前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含む磁場形成機構を用いて、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成し、
    前記ループ状の磁場領域が、前記主面に平行な方向に3000ガウス以上の強磁場を有するように、前記ループ状の磁場領域を形成し、
    前記電極の主面に対向して配置される被処理体を前記ループ状の磁場領域に対して処理中に移動させる、
    ことを特徴とするプラズマ処理方法。
  4. 前記電極の前記ループ状の磁場領域に対応する領域に設けられた原料ガス供給部から、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給する、ことを特徴とする請求項3に記載のプラズマ処理方法。
JP2014165867A 2014-08-18 2014-08-18 プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法 Pending JP2015015249A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014165867A JP2015015249A (ja) 2014-08-18 2014-08-18 プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014165867A JP2015015249A (ja) 2014-08-18 2014-08-18 プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013549460A Division JPWO2014199421A1 (ja) 2013-06-14 2013-06-14 プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法

Publications (1)

Publication Number Publication Date
JP2015015249A true JP2015015249A (ja) 2015-01-22

Family

ID=52436819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165867A Pending JP2015015249A (ja) 2014-08-18 2014-08-18 プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法

Country Status (1)

Country Link
JP (1) JP2015015249A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049230A1 (ja) * 2017-09-06 2019-03-14 東芝三菱電機産業システム株式会社 活性ガス生成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049230A1 (ja) * 2017-09-06 2019-03-14 東芝三菱電機産業システム株式会社 活性ガス生成装置
JPWO2019049230A1 (ja) * 2017-09-06 2020-05-28 東芝三菱電機産業システム株式会社 活性ガス生成装置

Similar Documents

Publication Publication Date Title
JP5610543B2 (ja) イオンソース
EP0184812B1 (en) High frequency plasma generation apparatus
JP3020580B2 (ja) マイクロ波プラズマ処理装置
JP5380464B2 (ja) プラズマ処理装置、プラズマ処理方法、および被処理基板を備える素子の製造方法
US6439154B2 (en) Plasma processing apparatus for semiconductors
JP2001257199A (ja) プラズマ処理方法及び装置
JP2013511812A (ja) プラズマ源デザイン
JPWO2009142016A1 (ja) プラズマ生成装置およびプラズマ処理装置
JP4945566B2 (ja) 容量結合型磁気中性線プラズマスパッタ装置
KR20120005026A (ko) 넓은 리본 이온 빔 발생 및 조절을 위한 콘쥬게이티드 icp 및 ecr 플라즈마 소스
JP3254069B2 (ja) プラズマ装置
JP5934227B2 (ja) 大きなターゲットによる高圧スパッタリングのためのスパッタ源およびスパッタリング方法
JP4762187B2 (ja) マグネトロンスパッタリング装置および半導体装置の製造方法
JP5373903B2 (ja) 成膜装置
KR20090037343A (ko) 자화된 유도결합형 플라즈마 처리장치 및 플라즈마 발생방법
JPH088235B2 (ja) プラズマ リアクタ
JP2015015249A (ja) プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法
KR0166418B1 (ko) 플라즈마 처리장치
WO2014199421A1 (ja) プラズマ発生装置、プラズマ処理装置、プラズマ発生方法およびプラズマ処理方法
JP2007314842A (ja) プラズマ生成装置およびこれを用いたスパッタ源
KR20110006070U (ko) 자화된 유도결합형 플라즈마 처리장치
WO2009048294A2 (en) Magnetized inductively coupled plasma processing apparatus and generating method
JP2009062568A (ja) マグネトロンスパッタリング成膜装置
TW201448677A (zh) 電漿產生裝置、電漿處理裝置、電漿產生方法及電漿處理方法
JP6595335B2 (ja) プラズマ処理装置