JP2015013281A - Solar panel cleaning device - Google Patents

Solar panel cleaning device Download PDF

Info

Publication number
JP2015013281A
JP2015013281A JP2014009391A JP2014009391A JP2015013281A JP 2015013281 A JP2015013281 A JP 2015013281A JP 2014009391 A JP2014009391 A JP 2014009391A JP 2014009391 A JP2014009391 A JP 2014009391A JP 2015013281 A JP2015013281 A JP 2015013281A
Authority
JP
Japan
Prior art keywords
main body
receiving surface
cleaning
line
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014009391A
Other languages
Japanese (ja)
Inventor
寛之 宇田
Hiroyuki Uda
寛之 宇田
竹内 晴紀
Harunori Takeuchi
晴紀 竹内
信洋 荒木
Nobuhiro Araki
信洋 荒木
義崇 程野
Yoshitaka Hodono
義崇 程野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2014009391A priority Critical patent/JP2015013281A/en
Priority to PCT/JP2014/064494 priority patent/WO2014196480A1/en
Publication of JP2015013281A publication Critical patent/JP2015013281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To let a main body traveling autonomously on a light receiving surface of a solar panel travel without deviating from a specified cleaning line.SOLUTION: In a solar panel cleaning device, a cleaning line is set as the direction in parallel with a straight line observed at a light receiving surface, and provided are a camera 7 which photographs the light receiving surface in front of a main body 1 traveling autonomously, an image processing device 8 which extracts a straight line as an extraction line from a photographed image photographed by the camera 7 and detects the inclination of the extraction line and steering means which steers the traveling direction of the main body 1 by a right and left pair of crawlers 2. Control is implemented to impart speed difference to the right and left pair of crawlers 2 as steering means so that the main body 1 is returned to the cleaning line on the basis of the change of the inclination of the extraction line detected by the image processing device 8, and thereby the main body 1 traveling autonomously is made capable of traveling without deviating from a specified cleaning line.

Description

本発明は、ソーラーパネルの受光面を清掃するソーラーパネル清掃装置に関する。   The present invention relates to a solar panel cleaning device for cleaning a light receiving surface of a solar panel.

近年、再生可能エネルギを利用する発電システムの1つとして、太陽光エネルギを利用するソーラーシステムの普及が進んでいる。ソーラーシステムはソーラーパネルの受光面を太陽に向けて屋外に設置するものであり、工場、ビル、一般家屋等の屋根や屋上を有効活用して、ソーラーパネルを設置できる利点もある。ソーラーパネルは受光面を太陽の照る方向(日本では南方)へ傾斜させて設置されることが多い。   In recent years, as one of power generation systems that use renewable energy, solar systems that use solar energy have become popular. The solar system is installed outdoors with the light receiving surface of the solar panel facing the sun, and has the advantage that the solar panel can be installed by effectively utilizing the roof and rooftop of factories, buildings, general houses and the like. Solar panels are often installed with the light-receiving surface tilted in the direction in which the sun shines (southern in Japan).

ソーラーパネルは、光起電力効果によって太陽光を即時に電力に変換する太陽電池を組み込んだ複数のセルをパネル状に組み立てたものであり、一般的なソーラーシステムでは複数のパネルユニットを縦横に並べて接続したアレイとして用いられる。大規模なメガソーラーシステムでは、パネルユニットを接続したアレイの全長が数100mに達するものもある。通常、ソーラーパネルの受光面は青黒系の色とされ、セルの境目やセルとセルを結合するリード線が銀白色系の線で縦横の格子状に見えるようになっている。また、パネルユニットを配列したソーラーパネル全体の受光面には、各パネルユニット外周のフレームが銀白色系の線で縦横方向に見える。なお、一部のソーラーパネルには、セルの境目やリード線が見えないものものある。   A solar panel is an assembly of multiple cells that incorporate solar cells that instantly convert sunlight into electric power through the photovoltaic effect. In a typical solar system, multiple panel units are arranged vertically and horizontally. Used as a connected array. In some large-scale mega solar systems, the total length of the array to which the panel units are connected reaches several hundred meters. Usually, the light receiving surface of the solar panel has a blue-black color, and the cell boundaries and the lead wires connecting the cells are seen as vertical and horizontal grids with silver white lines. In addition, on the light-receiving surface of the entire solar panel in which the panel units are arranged, the frame on the outer periphery of each panel unit can be seen in the vertical and horizontal directions with silver white lines. Some solar panels do not show cell boundaries or lead wires.

これらのソーラーパネルは屋外に設置されるので、大気や雨水に含まれる塵埃や、鳥の糞、枯葉等の異物が受光面に付着する。このため、これらの受光面に付着した塵埃や異物によって太陽光が遮断され、発電効率が低下することが、ソーラーシステムの大きな問題となっている。この発電効率の低下を防止するためには、ソーラーパネルの受光面を適宜清掃して、付着した塵埃や異物を除去すればよいが、ソーラーパネルは屋根や屋上等の高所に設置されることが多いので、安全性等の面から人手による清掃は困難である。また、広大な受光面を有するメガソーラーシステムでは、人手による清掃は多大な手間を必要とする。   Since these solar panels are installed outdoors, foreign matter such as dust contained in the atmosphere and rainwater, bird droppings, and dead leaves adhere to the light receiving surface. For this reason, it is a big problem of a solar system that sunlight is interrupted | blocked by the dust and foreign material adhering to these light-receiving surfaces, and electric power generation efficiency falls. To prevent this decrease in power generation efficiency, the light receiving surface of the solar panel should be cleaned as appropriate to remove the adhering dust and foreign matter, but the solar panel should be installed at a high place such as on the roof or rooftop. Therefore, manual cleaning is difficult in terms of safety. Further, in a mega solar system having a vast light receiving surface, manual cleaning requires a great deal of labor.

このようなソーラーパネルの清掃の問題に対して、ソーラーパネルの受光面上に、ブラシ等の清掃手段を搭載した本体を配置し、この本体を受光面上で所定の清掃ラインに沿って移動させながら清掃手段で受光面を清掃するソーラーパネル清掃装置が提案されている(例えば、特許文献1、2参照)。   For such a problem of cleaning the solar panel, a main body equipped with a cleaning means such as a brush is disposed on the light receiving surface of the solar panel, and the main body is moved along a predetermined cleaning line on the light receiving surface. A solar panel cleaning device that cleans the light receiving surface with a cleaning means is proposed (for example, see Patent Documents 1 and 2).

特許文献1に記載されたソーラーパネル清掃装置では、受光面が傾斜するソーラーパネルの上端と下端で水平方向の長手方向に延びる載架レールと、受光面の傾斜方向の上下縦軸方向に延びる上下移動用レールとを設け、清掃手段を搭載した本体を上下移動用レールで傾斜方向の清掃ラインに沿って移動させながら清掃し、上下端の載架レールで傾斜方向と直交方向に次の清掃ラインの位置へ移動させて、ソーラーパネルの受光面全域を清掃するようにしている。   In the solar panel cleaning apparatus described in Patent Document 1, the upper and lower ends of a solar panel whose light receiving surface is inclined extend in the horizontal direction in the horizontal direction, and the vertical direction in which the light receiving surface is inclined in the vertical axis direction. A moving rail is provided, and the main body on which the cleaning means is mounted is cleaned while moving along the cleaning line in the inclined direction with the rail for moving up and down, and the next cleaning line is perpendicular to the inclined direction with the mounting rails at the upper and lower ends. It is moved to the position of, and the entire light receiving surface of the solar panel is cleaned.

特許文献2に記載されたソーラーパネル清掃装置では、清掃手段を搭載した本体に、ソーラーパネルの受光面上で自律走行する自走手段と、ソーラーパネルの大きさや形状を認識する認識手段と、自走手段等を駆動する電源装置とを設け、認識手段の出力に基づいて本体が受光面を所定の清掃ラインに沿って順次移動するように制御するようにしている。認識手段としては超音波センサを用いている。   In the solar panel cleaning device described in Patent Document 2, a main body on which a cleaning means is mounted, a self-propelled means that autonomously travels on the light-receiving surface of the solar panel, a recognition means that recognizes the size and shape of the solar panel, A power supply device for driving the running means and the like is provided, and the main body is controlled to sequentially move the light receiving surface along a predetermined cleaning line based on the output of the recognition means. An ultrasonic sensor is used as the recognition means.

特許文献1、2に記載されたものでは、いずれも本体が移動または自律走行しながら清掃する清掃ラインを受光面の傾斜方向に設定し、傾斜方向と直交方向に本体を横移動させて、平行な次の清掃ラインの位置へ移動させるようにしている。   In those described in Patent Documents 1 and 2, the cleaning line for cleaning while the main body moves or autonomously travels is set in the inclination direction of the light receiving surface, and the main body is moved laterally in the direction orthogonal to the inclination direction to be parallel. To the next cleaning line.

特開2002−273351号公報JP 2002-273351 A 特開2010−186819号公報JP 2010-186819 A

特許文献1に記載されたソーラーパネル清掃装置は、本体を載架レールと上下移動用レールで案内するので、本体を所定の清掃ラインに沿って移動させ、受光面全域を残さず清掃することができるが、載架レールや上下移動用レールを敷設するために設置費用が高価になるとともに、屋根等に必要以上の重量が加わる問題がある。   Since the solar panel cleaning apparatus described in Patent Document 1 guides the main body with the mounting rail and the vertical movement rail, the main body can be moved along a predetermined cleaning line and cleaned without leaving the entire light receiving surface. However, there are problems that the installation cost becomes expensive because the mounting rails and the vertical movement rails are laid, and that the roof and the like are more than necessary.

一方、特許文献2に記載されたソーラーパネル清掃装置は、本体を自律走行させるので案内用のレールを設置する必要はないが、本体の走行方向が所定の清掃ラインからずれることがあり、未清掃の領域が残りやすい問題がある。特に、清掃ラインを受光面の傾斜方向と直交方向に設定した場合は、重力加速度によって本体の走行方向が清掃ラインから傾斜方向の下方側へずれやすくなる。   On the other hand, the solar panel cleaning device described in Patent Document 2 does not need to install a guide rail because the main body travels autonomously. However, the traveling direction of the main body may deviate from a predetermined cleaning line, and is not cleaned. There is a problem that the area of is likely to remain. In particular, when the cleaning line is set in a direction orthogonal to the inclination direction of the light receiving surface, the traveling direction of the main body is likely to shift from the cleaning line to the lower side in the inclination direction due to gravitational acceleration.

そこで、本発明の課題は、ソーラーパネルの受光面を自律走行する本体を所定の清掃ラインからずれないように走行させることである。   Then, the subject of this invention is making it drive | work so that the main body which autonomously travels the light-receiving surface of a solar panel may not slip | deviate from a predetermined cleaning line.

上記の課題を解決するために、本発明は、少なくとも一方向に延びる直線が観察されるソーラーパネルの受光面に配置される本体と、前記本体を前記受光面上で自律走行させる自走手段と、前記本体に搭載され、前記受光面を清掃する清掃手段とを備え、前記本体を所定の清掃ラインに沿って移動させるソーラーパネル清掃装置において、前記清掃ラインを前記受光面で観察される直線と平行方向または直角方向に設定し、前記走行する本体前方の前記受光面を撮影する撮影手段と、前記撮影手段で撮影された撮影画像から前記直線を抽出線として抽出し、この抽出線の傾きを検出する画像処理手段と、前記自走手段による前記本体の走行方向を操舵する操舵手段とを設け、前記画像処理手段で検出される前記抽出線の傾きの変化に基づいて、前記本体を前記清掃ラインに戻すように前記操舵手段を制御する構成を採用した。   In order to solve the above problems, the present invention provides a main body disposed on a light receiving surface of a solar panel where a straight line extending in at least one direction is observed, and a self-propelled means for autonomously running the main body on the light receiving surface. A solar panel cleaning device mounted on the main body and cleaning the light receiving surface, and moving the main body along a predetermined cleaning line; and a straight line observed on the light receiving surface. The straight line is extracted as an extraction line from the photographing means for photographing the light receiving surface in front of the traveling main body and set in a parallel direction or a perpendicular direction, and the inclination of the extraction line is extracted from the photographed image photographed by the photographing means. An image processing means for detecting and a steering means for steering the traveling direction of the main body by the self-propelled means are provided, and based on a change in the inclination of the extraction line detected by the image processing means Adopting a configuration for controlling the steering means to return the body to the cleaning line.

すなわち、清掃ラインを受光面で観察される直線と平行方向または直角方向に設定し、走行する本体前方の受光面を撮影する撮影手段と、撮影手段で撮影された撮影画像から直線を抽出線として抽出し、この抽出線の傾きを検出する画像処理手段と、自走手段による本体の走行方向を操舵する操舵手段とを設け、画像処理手段で検出される抽出線の傾きの変化に基づいて、本体を清掃ラインに戻すように操舵手段を制御することにより、ソーラーパネルの受光面で観察される直線を利用して、受光面を自律走行する本体を所定の清掃ラインからずれないように走行させることができるようにした。   That is, the cleaning line is set in a direction parallel to or perpendicular to the straight line observed on the light receiving surface, the photographing means for photographing the light receiving surface in front of the traveling body, and the straight line as an extraction line from the photographed image photographed by the photographing means. An image processing means for extracting and detecting the inclination of the extraction line and a steering means for steering the traveling direction of the main body by the self-propelling means are provided, and based on the change in the inclination of the extraction line detected by the image processing means, By controlling the steering means so as to return the main body to the cleaning line, the main body that autonomously travels on the light receiving surface travels so as not to deviate from the predetermined cleaning line using the straight line observed on the light receiving surface of the solar panel. I was able to do that.

前記清掃ラインを受光面で観察される直線と平行方向に設定する場合は、後述するように、抽出線は撮影画像の上下方向に直線状に延びるように抽出される。本体が観察される直線上を走行し、撮影手段がこの直線上に位置するときは、抽出線は撮影画像の左右中央で垂直に延びる。また、撮影手段が直線の右側に位置するときは、抽出線は撮影画像の左側で中央側へ右向きに傾くように延び、直線の左側に位置するときは、抽出線は撮影画像の右側で中央側へ左向きに傾くように延びる。本体の走行方向が左右にずれると、これらの抽出線の傾きは変化する。したがって、撮影手段の幅方向位置に応じて抽出されるこれらの抽出線の傾きの変化を検出して、抽出線の傾きが元に戻るように操舵手段を制御することにより、本体を所定の清掃ラインからずれないように走行させることができる。   When the cleaning line is set in a direction parallel to the straight line observed on the light receiving surface, the extraction line is extracted so as to extend linearly in the vertical direction of the captured image, as will be described later. When the main body travels on the observed straight line and the photographing means is located on this straight line, the extraction line extends vertically at the left and right center of the photographed image. Further, when the photographing means is located on the right side of the straight line, the extraction line extends so as to incline to the right on the left side of the photographed image, and when the photographing means is located on the left side of the straight line, the extraction line is centered on the right side of the photographed image. It extends to tilt to the left. When the traveling direction of the main body is shifted to the left and right, the inclination of these extraction lines changes. Therefore, a change in the inclination of these extraction lines extracted according to the position in the width direction of the photographing means is detected, and the steering means is controlled so that the inclination of the extraction lines returns to the original position, whereby the main body is cleaned. The vehicle can be run so as not to deviate from the line.

前記清掃ラインを受光面で観察される直線と直角方向に設定する場合は、後述するように、本体の撮影手段の幅方向位置に関わらず、抽出線は撮影画像の左右方向に湾曲して延びるように抽出される。この左右方向に湾曲して延びる抽出線は、走行方向が左右にずれると、撮影画像の左右端で高さ位置が異なるように左右で傾きが生じる。したがって、抽出線の左右の傾きを検出して、この左右の傾きを零に近づけるように操舵手段を制御することにより、本体を所定の清掃ラインからずれないように走行させることができる。   When the cleaning line is set in a direction perpendicular to the straight line observed on the light receiving surface, the extraction line is curved and extends in the left-right direction of the photographed image regardless of the position in the width direction of the photographing means of the main body, as will be described later. Extracted as follows. When the running direction is shifted left and right, the extraction line that curves and extends in the left and right direction is inclined right and left so that the height position is different at the left and right ends of the captured image. Therefore, by detecting the left / right inclination of the extraction line and controlling the steering means so that the left / right inclination approaches zero, the main body can be run without deviating from a predetermined cleaning line.

前記操舵手段としては、例えば、自走手段をクローラ走行のものとする場合は、左右のクローラに速度差を付与する方法を採用することができ、自走手段をタイヤ走行のものとする場合は、タイヤの向きを変える方法を採用することができる。   As the steering means, for example, when the self-propelled means is a crawler traveling, a method of giving a speed difference to the left and right crawlers can be adopted, and when the self-propelled means is a tire traveling A method of changing the direction of the tire can be employed.

前記受光面で観察される直線は、前記ソーラーパネルのセルの境目、セルとセルを結合するリード線およびパネルユニットの外周の少なくともいずれかとすることができる。   The straight line observed on the light receiving surface may be at least one of a cell boundary of the solar panel, a lead wire connecting the cells, and an outer periphery of the panel unit.

前記自律走行する本体の移動方向を転換する方向転換手段を設け、前記画像処理手段で前記撮影画像から前記受光面の外部との境界を抽出してその位置を検出し、この検出された境界の位置に基づいて、前記本体の移動方向を前記境界に向く方向から転換するように、前記方向転換手段を制御することにより、受光面の境界で本体の移動方向を直角方向に転換して、本体を次の清掃ラインに移動させるとともに、次の清掃ラインの自走方向に向けることができる。また、本体の受光面の境界からの転落を防止することもできる。   Direction changing means for changing the moving direction of the autonomously traveling main body is provided, and the image processing means extracts a boundary with the outside of the light receiving surface from the photographed image and detects the position thereof. Based on the position, the moving direction of the main body is changed to a right angle at the boundary of the light receiving surface by controlling the direction changing means so as to change the moving direction of the main body from the direction facing the boundary. Can be moved to the next cleaning line, and can be directed to the self-running direction of the next cleaning line. Further, it is possible to prevent the main body from falling from the boundary of the light receiving surface.

前記方向転換手段としては、操舵手段をそのまま利用して、本体自身の向きを転換する手段、または操舵手段とは別の横移動手段を設け、この横移動手段で本体を直角方向に横移動させる手段を採用することができる。操舵手段で本体自身の向きを転換する場合は、例えば、クローラ走行では、左右のクローラを互いに逆駆動または片側駆動させて本体の向きを転換する方法等が挙げられる。また、別途の横移動手段としては、例えば、走行方向と直角方向に向けた別途のタイヤやクローラを方向転換時に接地させて駆動する方法等が挙げられる。なお、横移動手段を採用する場合は、本体を後方へも走行可能とし、後側にも撮影手段を設ける必要がある。   As the direction changing means, a steering means is used as it is, a means for changing the direction of the main body itself, or a lateral movement means different from the steering means is provided, and the main body is moved laterally in the right-angle direction by this lateral movement means. Means can be employed. When the direction of the main body itself is changed by the steering means, for example, in crawler running, there is a method of changing the direction of the main body by driving the left and right crawlers in reverse or one side. Further, as the separate lateral movement means, for example, there is a method in which a separate tire or crawler directed in a direction perpendicular to the traveling direction is grounded and driven when the direction is changed. In the case of adopting the lateral movement means, it is necessary to allow the main body to travel rearward and to provide photographing means on the rear side.

前記画像処理手段で前記撮影画像から前記受光面の局部的な汚れを抽出してその位置を検出し、この検出された汚れの位置で前記清掃手段を作動させることにより、清掃手段用の消費エネルギを節約できるとともに、ブラシ等の消耗による清掃手段の交換頻度を減らすことができる。   The image processing means extracts local dirt on the light-receiving surface from the photographed image, detects the position thereof, and operates the cleaning means at the detected dirt position, whereby energy consumption for the cleaning means is obtained. Can be saved, and the replacement frequency of the cleaning means due to wear of the brush or the like can be reduced.

前記受光面が一方向に傾斜するものである場合は、前記清掃ラインを前記受光面の傾斜方向と直交方向に設定することにより、本体を走行させる消費エネルギを低減することができる。   When the light receiving surface is inclined in one direction, energy consumption for running the main body can be reduced by setting the cleaning line in a direction orthogonal to the inclination direction of the light receiving surface.

前記清掃ラインを受光面の傾斜方向に設定すると、本体が傾斜方向へ昇るときに負荷が大きくなるとともに、傾斜方向へ下るときはブレーキかける負荷を必要とし、本体を走行させる消費エネルギが増大する。これに対して、清掃ラインを受光面の傾斜方向と直交方向に設定すれば、清掃ラインが略水平向きとなり、本体を走行させる消費エネルギを大幅に低減することができる。   When the cleaning line is set in the inclination direction of the light receiving surface, a load increases when the main body rises in the inclination direction, and a brake load is required when the main body falls in the inclination direction, so that energy consumption for running the main body increases. On the other hand, if the cleaning line is set in a direction orthogonal to the inclination direction of the light receiving surface, the cleaning line becomes substantially horizontal, and the energy consumption for running the main body can be greatly reduced.

本発明に係るソーラーパネル清掃装置は、清掃ラインを受光面で観察される直線と平行方向または直角方向に設定し、走行する本体前方の受光面を撮影する撮影手段と、撮影手段で撮影された撮影画像から前記直線を抽出線として抽出し、この抽出線の傾きを検出する画像処理手段と、自走手段による本体の走行方向を操舵する操舵手段とを設け、画像処理手段で検出される抽出線の傾きの変化に基づいて、本体を清掃ラインに戻すように操舵手段を制御するようにしたので、受光面を自律走行する本体を所定の清掃ラインからずれないように走行させることができる。   The solar panel cleaning apparatus according to the present invention sets the cleaning line in a direction parallel to or perpendicular to the straight line observed on the light receiving surface, and is photographed by the photographing means for photographing the light receiving surface in front of the traveling body and the photographing means. An image processing means for extracting the straight line from the photographed image as an extraction line and detecting the inclination of the extraction line and a steering means for steering the traveling direction of the main body by the self-propelled means are provided and detected by the image processing means. Since the steering means is controlled so as to return the main body to the cleaning line based on the change in the inclination of the line, the main body that autonomously travels on the light receiving surface can be run without deviating from the predetermined cleaning line.

(a)は本発明に係るソーラーパネル清掃装置の本体を示す外観斜視図、(b)は(a)の側面図(A) is an external appearance perspective view which shows the main body of the solar panel cleaning apparatus which concerns on this invention, (b) is a side view of (a). ソーラーパネルの受光面の例を説明する平面図Plan view illustrating an example of the light receiving surface of a solar panel (a)〜(d)は、それぞれ図2の受光面を走行する図1の本体のカメラで撮影した撮影画像の例(A)-(d) is an example of the picked-up image image | photographed with the camera of the main body of FIG. 1 which each drive | works the light-receiving surface of FIG. (a)〜(c)は、図3(a)の撮影画像から、清掃ラインと平行方向の抽出線の傾きを検出する方法を説明する説明図(A)-(c) is explanatory drawing explaining the method to detect the inclination of the extraction line of a parallel direction with a cleaning line from the picked-up image of Fig.3 (a). (a)〜(c)は、図3(b)の撮影画像から、清掃ラインと平行方向の抽出線の傾きを検出する方法を説明する説明図(A)-(c) is explanatory drawing explaining the method to detect the inclination of the extraction line of a parallel direction with a cleaning line from the picked-up image of FIG.3 (b). 図3(a)、(b)の撮影画像から、清掃ラインと直角方向の抽出線の傾きを検出する方法を説明する説明図Explanatory drawing explaining the method to detect the inclination of the extraction line of the orthogonal | vertical direction with a cleaning line from the picked-up image of Fig.3 (a), (b). 図2の清掃ラインを清掃するときの制御方法を示すフローチャートThe flowchart which shows the control method when cleaning the cleaning line of FIG. 図2の清掃ラインで局部的な汚れを清掃するときの制御方法を示すフローチャートThe flowchart which shows the control method when cleaning a local dirt in the cleaning line of FIG.

以下、図面に基づき、本発明の実施形態を説明する。図1(a)、(b)は、本発明に係るソーラーパネル清掃装置の本体1を示す。この本体1は、後述するソーラーパネルの受光面21を自律走行する自走手段として左右一対のクローラ2を備え、清掃手段として、洗浄液タンク3aの洗浄液を受光面21に噴射する洗浄液ノズル3b、洗浄液が噴射された受光面21をブラッシングする回転ブラシ4、およびブラッシングされた受光面21をワイピングするワイパ5を備え、これらの自走手段と清掃手段を駆動するバッテリ6を搭載している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig.1 (a), (b) shows the main body 1 of the solar panel cleaning apparatus which concerns on this invention. The main body 1 includes a pair of left and right crawlers 2 as self-propelled means that autonomously travels on a light receiving surface 21 of a solar panel, which will be described later, and a cleaning liquid nozzle 3b that injects the cleaning liquid in the cleaning liquid tank 3a onto the light receiving surface 21 as a cleaning means. A rotating brush 4 for brushing the light-receiving surface 21 on which the ink is jetted, and a wiper 5 for wiping the brushed light-receiving surface 21 are mounted, and a battery 6 for driving these self-running means and cleaning means is mounted.

前記本体1の前面側中央には前方の受光面21を撮影する撮影手段としてのカメラ7が、例えば斜め下向きに取り付けられ、このカメラ7の撮影画像31を画像処理する画像処理装置8と、画像処理装置8の検出結果に基づいて、後述するように自走手段と清掃手段の作動を制御するコントローラ9が組み込まれている。   At the center of the front side of the main body 1, a camera 7 as a photographing means for photographing the front light receiving surface 21 is attached, for example, obliquely downward, and an image processing device 8 that performs image processing on a photographed image 31 of the camera 7, and an image Based on the detection result of the processing device 8, a controller 9 for controlling the operation of the self-running means and the cleaning means is incorporated as will be described later.

図2は、ソーラーパネルの受光面21の例を示す。この受光面21は、多数のパネルユニット22を縦横に並べて配列したメガソーラシステムのもので一方向に傾斜しており、この受光面21の傾斜方向と直交方向でのパネル全長は数100mに達する。青黒系の色とされた受光面21には、パネルユニット22の外周22aと、各パネルユニット22のセルの境目22bが銀白色系の直線として、縦横方向に延びるように観察される。図示は省略するが、セルとセルを結合するリード線も直線として観察される。   FIG. 2 shows an example of the light receiving surface 21 of the solar panel. The light receiving surface 21 is of a mega solar system in which a large number of panel units 22 are arranged in rows and columns, and is inclined in one direction. The total length of the panel in the direction perpendicular to the inclined direction of the light receiving surface 21 reaches several hundreds of meters. On the light-receiving surface 21 having a blue-black color, the outer periphery 22a of the panel unit 22 and the cell boundary 22b of each panel unit 22 are observed as silver white lines extending in the vertical and horizontal directions. Although illustration is omitted, the leads connecting the cells are also observed as straight lines.

前記受光面21での本体1のスタート地点は傾斜上端側の左端とされ、本体1が走行しながら清掃する複数の清掃ライン10が受光面21の傾斜方向と直交方向に設定されている。この図では、各清掃ライン10がセルの境目22b上に設定されているが、清掃ライン10はパネルユニット22の外周22aやセルの境目22bの中間に設定してもよい。本体1はスタート地点から右方へ最初の清掃ライン10を走行した後、受光面21の右側の境界21aの直前で傾斜方向を下る方向へ直角に方向転換して、下側の次の清掃ライン10の位置まで移動し、さらに左方向へ直角に方向転換して、次の清掃ライン10を左方へ走行する。本体1の方向転換を行う際には、左右のクローラ2を逆駆動または片側駆動させて本体1の向きを転換する。このような方向転換を受光面21の左右両側の境界21aで行い、順次下側の清掃ライン10を走行して、受光面21の全域を清掃する。   The start point of the main body 1 on the light receiving surface 21 is the left end on the upper end side of the tilt, and a plurality of cleaning lines 10 that are cleaned while the main body 1 travels are set in a direction orthogonal to the tilt direction of the light receiving surface 21. In this figure, each cleaning line 10 is set on the cell boundary 22b, but the cleaning line 10 may be set in the middle of the outer periphery 22a of the panel unit 22 or the cell boundary 22b. The main body 1 travels to the right from the start point on the first cleaning line 10 and then turns rightward in the direction of descending the inclination direction immediately before the right boundary 21a of the light receiving surface 21, so that the next cleaning line on the lower side It moves to the position of 10, and further turns to the left at a right angle, and travels to the next cleaning line 10 to the left. When the direction of the main body 1 is changed, the left and right crawlers 2 are reversely driven or driven on one side to change the direction of the main body 1. Such a direction change is performed at the left and right boundaries 21a of the light receiving surface 21 and sequentially travels along the lower cleaning line 10 to clean the entire area of the light receiving surface 21.

図3(a)〜(d)は、前記走行する本体1のカメラ7で撮影された撮影画像31の例を示す。これらの撮影画像31は、後述する直線32や曲線33、境界34および島状模様35を分かりやすくするために、画像処理装置8によって2値化処理するとともに太陽光の反射等によるノイズを除去した後のものである。   FIGS. 3A to 3D show examples of captured images 31 captured by the camera 7 of the main body 1 that travels. These captured images 31 are binarized by the image processing device 8 and noise due to sunlight reflection is removed in order to make straight lines 32, curves 33, boundaries 34, and island-like patterns 35 described later easier to understand. Later.

図3(a)の撮影画像31は、本体1が清掃ライン10と平行方向に延びるパネルユニット22の外周22aまたはセルの境目22bの線上を走行し、カメラ7がこの線上にあるときに撮影されたものであり、中央にこの外周22aまたは境目22bが縦向きの垂直な直線32として表われ、その両側の清掃ライン10と平行方向の外周22aまたは境目22bが内向きに傾斜した直線32として表われている。また、清掃ライン10と直角方向の外周22aまたは境目22bは、上方へ凹に湾曲した横向きの曲線33として表われている。   The photographed image 31 in FIG. 3A is photographed when the main body 1 runs on the outer periphery 22a of the panel unit 22 or the cell boundary 22b extending in the direction parallel to the cleaning line 10, and the camera 7 is on this line. The outer periphery 22a or boundary 22b appears in the center as a vertical vertical straight line 32, and the outer periphery 22a or boundary 22b parallel to the cleaning line 10 on both sides thereof is expressed as a straight line 32 inclined inward. It has been broken. Moreover, the outer periphery 22a or the boundary line 22b in the direction perpendicular to the cleaning line 10 is represented as a lateral curve 33 that is concavely curved upward.

図3(b)の撮影画像31は、本体1が清掃ライン10と平行方向に延びる2本の外周22aまたは境目22bの間を走行し、カメラ7がこれらの直線間にあるときに撮影されたものであり、これらの2本の外周22aまたは境目22bが内向きに傾斜した縦向きの直線32として表われるとともに、清掃ライン10と直角方向の外周22aまたは境目22bが、上方へ凹に湾曲した横向きの曲線33として表われている。これらの直線32と曲線33は、黒色の撮影画像31中に白色の線として表われる。   The photographed image 31 in FIG. 3B was photographed when the main body 1 traveled between two outer peripheries 22a or borders 22b extending in a direction parallel to the cleaning line 10 and the camera 7 was between these straight lines. These two outer peripheries 22a or borders 22b appear as vertical straight lines 32 inclined inward, and the outer peripheries 22a or borders 22b perpendicular to the cleaning line 10 are concavely curved upward. It is represented as a horizontal curve 33. The straight line 32 and the curved line 33 appear as white lines in the black photographed image 31.

図3(c)の撮影画像31は、走行する本体1が受光面21の境界21aに近づいたときに撮影されたものであり、前方の境界21aが上方へ凹に湾曲するように横たわる黒白の境界34として表われている。また、図3(d)の撮影画像31は、本体1の前方に鳥の糞の汚れがあるときに撮影されたものであり、この汚れが灰白色の島状模様35として表われている。これらの撮影画像31には、上述した白色の直線32と曲線33も表われている。   The captured image 31 of FIG. 3C was captured when the traveling main body 1 approached the boundary 21a of the light receiving surface 21, and the black and white lying so that the front boundary 21a is curved upwardly concavely. Appears as boundary 34. A photographed image 31 in FIG. 3D was taken when there was dirt of bird droppings in front of the main body 1, and this dirt appears as an off-white island pattern 35. In these captured images 31, the above-described white straight line 32 and curve 33 are also shown.

上述した受光面21の清掃ライン10を走行する本体1は、受光面21の傾斜に起因する重力加速度等によって、走行方向が所定の清掃ライン10からずれることがある。以下に、この走行方向のずれを画像処理装置8によって検出する方法を説明する。   The traveling direction of the main body 1 traveling on the cleaning line 10 of the light receiving surface 21 described above may deviate from the predetermined cleaning line 10 due to gravity acceleration caused by the inclination of the light receiving surface 21. Hereinafter, a method for detecting the shift in the traveling direction by the image processing apparatus 8 will be described.

図4および図5は、清掃ライン10と平行方向の直線を抽出して、走行方向のずれを検出する方法を示す。図4は、図3(a)の撮影画像31が撮影されるように、本体1が平行方向の直線上を走行するときの走行方向のずれ検出方法を示す。まず、図4(a)に示すように、画像処理装置8は、図3(a)の撮影画像31から、中央の走行線上にある垂直な直線32を抽出線Lとして抽出する。図4(b)に示すように、本体1の走行方向が右方へずれたときは、抽出線Lは図中に1点鎖線で示す初期の抽出線Lから左側へ傾き、図4(c)に示すように、走行方向が左方へずれたときは抽出線Lは右側へ傾く。 4 and 5 show a method of detecting a shift in the running direction by extracting a straight line parallel to the cleaning line 10. FIG. 4 shows a method of detecting a deviation in the traveling direction when the main body 1 travels on a straight line in the parallel direction so that the captured image 31 in FIG. First, as illustrated in FIG. 4A, the image processing apparatus 8 extracts a vertical straight line 32 on the central travel line as an extraction line L from the captured image 31 illustrated in FIG. 4 (b) as shown in, when the running direction of main body 1 is shifted to the right, the extraction line L is inclined from the initial extraction line L 0 shown by the one-dot chain line in FIG. To the left, FIG. 4 ( As shown in c), when the traveling direction is shifted to the left, the extraction line L is inclined to the right.

図5は、図3(b)の撮影画像31が撮影されるように、本体1が平行方向の直線間を走行するときの走行方向のずれ検出方法を示す。まず、図5(a)に示すように、画像処理装置8は、図3(b)の撮影画像31から、2本の内向きに傾斜した縦向きの直線32の一方を抽出線Lとして抽出する。図5(b)に示すように、本体1の走行方向が右方へずれたときは、抽出線Lは図中に1点鎖線で示す初期の抽出線Lから左側へ傾き、図5(c)に示すように、走行方向が左方へずれたときは抽出線Lは右側へ傾く。図4または図5で検出される抽出線Lの傾き角の変化Δθは、走行方向のずれが大きくなるほど大きくなる。したがって、画像処理装置8で検出されるこれらの抽出線Lの傾き角の変化Δθによって、本体1の走行方向のずれの方向と大きさを検知することができる。 FIG. 5 shows a method of detecting a deviation in the traveling direction when the main body 1 travels between parallel straight lines so that the captured image 31 of FIG. 3B is captured. First, as shown in FIG. 5A, the image processing apparatus 8 extracts one of two inwardly inclined vertical lines 32 as an extraction line L from the captured image 31 of FIG. To do. As shown in FIG. 5 (b), when the running direction of the body 1 is shifted to the right, the extraction line L is inclined from the initial extraction line L 0 shown by the one-dot chain line in FIG. To the left, FIG. 5 ( As shown in c), when the traveling direction is shifted to the left, the extraction line L is inclined to the right. The change Δθ in the inclination angle of the extraction line L detected in FIG. 4 or FIG. 5 increases as the shift in the traveling direction increases. Therefore, the direction and magnitude of the deviation of the traveling direction of the main body 1 can be detected by the change Δθ in the inclination angle of these extraction lines L detected by the image processing device 8.

図6は、清掃ライン10と直角方向の直線を抽出して、走行方向のずれを検出する方法を示す。この場合は、走行する本体1の幅方向位置と無関係に、画像処理装置8は、図3(a)または図3(b)の撮影画像31から、上方へ凹に湾曲した1本の横向きの曲線33を抽出線Lとして抽出する。図中には、走行方向のずれがない初期の抽出線Lを1点鎖線で示すが、走行方向が右方へずれたときは、抽出線Lは左端が右端よりもΔhだけ高くなるように左右方向に傾斜する。図示は省略するが、走行方向が左方へずれたときは、抽出線Lは右端が左端よりも高くなるように傾斜する。これらの高さ位置の差Δhは、走行方向のずれが大きくなるほど大きくなる。したがって、画像処理装置8で検出されるこの抽出線Lの左右端の高さ位置の差Δh、すなわち左右の傾きの変化によって、本体1の走行方向のずれの方向と大きさを検知することができる。 FIG. 6 shows a method of detecting a shift in the running direction by extracting a straight line perpendicular to the cleaning line 10. In this case, regardless of the position in the width direction of the main body 1 that travels, the image processing apparatus 8 is configured to receive a single laterally-curved upwardly curved image from the captured image 31 in FIG. 3A or 3B. The curve 33 is extracted as the extraction line L. In the figure, the initial extraction line L 0 with no shift in the traveling direction is indicated by a one-dot chain line. However, when the traveling direction is shifted to the right, the extraction line L is higher at the left end by Δh than the right end. Tilt to the left and right. Although illustration is omitted, when the traveling direction is shifted to the left, the extraction line L is inclined so that the right end is higher than the left end. The difference Δh between the height positions increases as the shift in the traveling direction increases. Therefore, the direction and magnitude of the deviation of the travel direction of the main body 1 can be detected by the difference Δh in the height position of the left and right ends of the extraction line L detected by the image processing device 8, that is, the change in the left and right inclinations. it can.

図7は、図2の各清掃ライン10を清掃するときのコントローラ9による制御方法を示すフローチャートである。このフローチャートは、上述した清掃ライン10と平行方向の直線を抽出して、走行方向のずれを検出するものである。まず、本体1を各清掃ライン10の清掃開始位置で清掃ライン10に沿う方向に向けてセットする。この状態で、図4(a)または図5(a)に示したような撮影画像31から画像処理装置8によって前方に延びる抽出線Lを検出し、この抽出線Lの傾きを各清掃ライン10での初期値として記憶する。   FIG. 7 is a flowchart showing a control method by the controller 9 when cleaning each cleaning line 10 of FIG. In this flowchart, a straight line in a direction parallel to the cleaning line 10 described above is extracted to detect a shift in the traveling direction. First, the main body 1 is set in the direction along the cleaning line 10 at the cleaning start position of each cleaning line 10. In this state, an extraction line L extending forward is detected by the image processing apparatus 8 from the photographed image 31 as shown in FIG. 4A or 5A, and the inclination of the extraction line L is determined for each cleaning line 10. This is stored as the initial value at.

こののち、前記自走手段と清掃手段を作動して、清掃ライン10に沿った清掃を開始する。本体1が清掃ライン10を走行し始めると、画像処理装置8は撮影画像31から抽出線Lの初期値からの傾き角の変化Δθを刻々検出し、本体1の走行方向がずれて傾き角の変化Δθが検出された場合は、コントローラ9は傾き角の変化Δθに基づいて、本体1を清掃ライン10に戻すように、操舵手段として左右のクローラ2に速度差を付与する制御を繰り返す。傾き角の変化Δθが検出されない場合は、そのまま走行を継続する。   Thereafter, the self-running means and the cleaning means are operated to start cleaning along the cleaning line 10. When the main body 1 starts to travel along the cleaning line 10, the image processing apparatus 8 detects a change Δθ in inclination angle from the initial value of the extraction line L from the captured image 31 every moment, and the traveling direction of the main body 1 shifts to change the inclination angle. When the change Δθ is detected, the controller 9 repeats control for giving a speed difference to the left and right crawlers 2 as steering means so as to return the main body 1 to the cleaning line 10 based on the change Δθ in inclination angle. If the change Δθ in inclination angle is not detected, the vehicle continues running.

前記清掃ライン10上を走行する本体1が受光面21の境界21aに近づき、撮影画像31に図3(c)に示したような黒白の境界34が検出されると、コントローラ9は境界21aの直前で自走手段と清掃手段の作動を停止させ、1本の清掃ライン10の清掃が終了する。   When the main body 1 traveling on the cleaning line 10 approaches the boundary 21a of the light receiving surface 21, and the black and white boundary 34 as shown in FIG. 3C is detected in the photographed image 31, the controller 9 detects the boundary 21a. Immediately before, the operation of the self-running means and the cleaning means is stopped, and the cleaning of one cleaning line 10 is completed.

このように1本の清掃ライン10の清掃が終了すると、図2に示したように、クローラ走行の操舵手段を利用して、左右のクローラ2を逆駆動または片側駆動させ、本体1の向きを受光面21の傾斜方向を下る方向へ直角に方向転換したのち、下側の次の清掃ライン10の位置まで移動させ、さらに直角に方向転換して、次の清掃ライン10の清掃開始位置にセットする。   When the cleaning of one cleaning line 10 is completed in this way, as shown in FIG. 2, the left and right crawlers 2 are driven reversely or unilaterally using the crawler traveling steering means, and the orientation of the main body 1 is changed. After the direction of the light receiving surface 21 is changed to a direction perpendicular to the downward direction, the light receiving surface 21 is moved to the position of the next cleaning line 10 on the lower side, further changed to a right angle, and set to the cleaning start position of the next cleaning line 10. To do.

説明は省略するが、上述した清掃ライン10と直角方向の直線を抽出して、走行方向のずれを検出する場合は、図6に示したように、直角方向の直線の初期の抽出線Lの左右の傾きはないので、初期値を記憶する必要はなく、抽出線Lの左右端の高さ位置の差Δhを検出して、この高さ位置の差Δhを零に近づけるように、左右のクローラ2に速度差を付与すればよい。 Although description is omitted, when a straight line in the direction perpendicular to the cleaning line 10 described above is extracted to detect a shift in the traveling direction, the initial extraction line L 0 of the straight line in the perpendicular direction is detected as shown in FIG. Since there is no left / right inclination, there is no need to store the initial value, and the left / right height difference Δh of the extraction line L is detected, and the height position difference Δh is made close to zero. A speed difference may be given to the crawler 2.

図8は、前記清掃ライン10で局部的な汚れを清掃するときの制御方法を示すフローチャートである。このフローチャートは、本体1の走行方向のずれを戻す制御は、図6に示したものと同じであり、清掃ライン10を走行中に図3(d)の撮影画像31のような島状模様35が局部的な汚れとして検出された場合にのみ、その検出位置で清掃手段を作動させる点のみが異なる。したがって、清掃手段用の消費エネルギを節約できるとともに、回転ブラシ4等の消耗による清掃手段の交換頻度を減らすことができる。なお、局部的な汚れは、カメラ7とは別の受光面21に向けた光センサやサーモグラフィカメラ等で検出することもできる。   FIG. 8 is a flowchart showing a control method for cleaning local dirt in the cleaning line 10. In this flowchart, the control for returning the shift in the traveling direction of the main body 1 is the same as that shown in FIG. 6, and the island pattern 35 such as the photographed image 31 in FIG. However, the only difference is that the cleaning means is operated at the detection position only when it is detected as local dirt. Therefore, energy consumption for the cleaning means can be saved and the frequency of replacement of the cleaning means due to wear of the rotating brush 4 or the like can be reduced. The local contamination can also be detected by an optical sensor or a thermographic camera directed to the light receiving surface 21 different from the camera 7.

上述した実施形態では、ソーラーパネルの受光面が一方向に傾斜したものとし、清掃ラインを受光面の傾斜方向と直交方向に設定したが、受光面は傾斜のないものであってもよく、清掃ラインも任意の方向に設定することができる。   In the above-described embodiment, the light receiving surface of the solar panel is inclined in one direction, and the cleaning line is set in a direction orthogonal to the inclination direction of the light receiving surface. Lines can also be set in any direction.

上述した実施形態では、セルの境目またはパネルユニットの外周を抽出線として抽出したが、セルとセルを結合するリード線を抽出線とすることもできる。また、ソーラーパネルはセルの境目やセルとセルを結合するリード線が見えないものであってもよく、この場合は、パネルユニットの外周のみを抽出線として利用するとよい。   In the above-described embodiment, the cell boundary or the outer periphery of the panel unit is extracted as an extraction line. However, a lead wire that connects cells to each other can also be used as the extraction line. In addition, the solar panel may not be able to see cell boundaries or lead wires connecting cells, and in this case, only the outer periphery of the panel unit may be used as an extraction line.

上述した実施形態では、本体の自走手段をクローラ走行のものとし、その操舵手段を利用して、受光面の境界で左右のクローラを逆駆動または片側駆動して本体の向きを方向転換し、次の清掃ラインに移動させるようにしたが、自走手段はクローラ走行のものに限定されることはなく、タイヤ走行やロボット歩行等のものとすることもできる。また、受光面の境界での方向転換は、別途の横移動手段を設けて行うようにしてもよい。この場合は、本体を後方へも走行可能とし、後側にも撮影手段を設ける必要がある。   In the embodiment described above, the self-running means of the main body is a crawler running, and using the steering means, the left and right crawlers are reversely driven or one-side driven at the boundary of the light receiving surface to change the direction of the main body, Although it moved to the next cleaning line, a self-propelled means is not limited to the thing of a crawler running, It can also be things, such as tire running and robot walking. Further, the direction change at the boundary of the light receiving surface may be performed by providing a separate lateral movement means. In this case, it is necessary to allow the main body to travel rearward and to provide photographing means on the rear side.

1 本体
2 クローラ
3a 洗浄液タンク
3b 洗浄液ノズル
4 回転ブラシ
5 ワイパ
6 バッテリ
7 カメラ
8 画像処理装置
9 コントローラ
10 清掃ライン
21 受光面
21a 境界
22 パネルユニット
22a 外周
22b セルの境目
31 撮影画像
32 直線
33 曲線
34 境界
35 島状模様
DESCRIPTION OF SYMBOLS 1 Main body 2 Crawler 3a Cleaning liquid tank 3b Cleaning liquid nozzle 4 Rotating brush 5 Wiper 6 Battery 7 Camera 8 Image processing device 9 Controller 10 Cleaning line 21 Light-receiving surface 21a Boundary 22 Panel unit 22a Outer periphery 22b Cell boundary 31 Photographed image 32 Straight line 33 Curve 34 Boundary 35 island pattern

Claims (5)

少なくとも一方向に延びる直線が観察されるソーラーパネルの受光面に配置される本体と、
前記本体を前記受光面上で自律走行させる自走手段と、
前記本体に搭載され、前記受光面を清掃する清掃手段とを備え、
前記本体を所定の清掃ラインに沿って走行させるソーラーパネル清掃装置において、
前記清掃ラインを前記受光面で観察される直線と平行方向または直角方向に設定し、
前記走行する本体前方の前記受光面を撮影する撮影手段と、
前記撮影手段で撮影された撮影画像から前記直線の1つを抽出線として抽出し、この抽出線の傾きを検出する画像処理手段と、
前記自走手段による前記本体の走行方向を操舵する操舵手段とを設け、
前記画像処理手段で検出される前記抽出線の傾きの変化に基づいて、前記本体を前記清掃ラインに戻すように前記操舵手段を制御することを特徴とするソーラーパネル清掃装置。
A main body arranged on the light receiving surface of the solar panel where a straight line extending in at least one direction is observed;
Self-running means for autonomously running the main body on the light-receiving surface;
A cleaning means mounted on the main body and cleaning the light receiving surface;
In the solar panel cleaning device that runs the main body along a predetermined cleaning line,
The cleaning line is set in a direction parallel to or perpendicular to a straight line observed on the light receiving surface,
Photographing means for photographing the light receiving surface in front of the traveling main body;
Image processing means for extracting one of the straight lines as an extraction line from a photographed image photographed by the photographing means, and detecting the inclination of the extraction line;
Steering means for steering the traveling direction of the main body by the self-propelled means;
The solar panel cleaning apparatus, wherein the steering means is controlled to return the main body to the cleaning line based on a change in the inclination of the extraction line detected by the image processing means.
前記受光面で観察される直線が、前記ソーラーパネルのセルの境目、セルとセルを結合するリード線およびパネルユニットの外周の少なくともいずれかである請求項1に記載のソーラーパネル清掃装置。   The solar panel cleaning apparatus according to claim 1, wherein the straight line observed on the light receiving surface is at least one of a boundary between cells of the solar panel, a lead wire connecting the cells, and an outer periphery of the panel unit. 前記自律走行する本体の移動方向を転換する方向転換手段を設け、
前記画像処理手段で前記撮影画像から前記受光面の外部との境界を抽出してその位置を検出し、この検出された境界の位置に基づいて、前記本体の移動方向を前記境界に向く方向から転換するように前記方向転換手段を制御する請求項1または2に記載のソーラーパネル清掃装置。
Providing a direction changing means for changing a moving direction of the main body that autonomously travels;
The image processing means extracts a boundary with the outside of the light receiving surface from the photographed image and detects the position thereof, and based on the detected boundary position, the moving direction of the main body is changed from the direction toward the boundary. The solar panel cleaning apparatus according to claim 1, wherein the direction changing means is controlled to change.
前記画像処理手段で前記撮影画像から前記受光面の局部的な汚れを抽出してその位置を検出し、この検出された汚れの位置で前記清掃手段を作動させるようにした請求項1乃至3のいずれかに記載のソーラーパネル清掃装置。   4. The method according to claim 1, wherein the image processing means extracts local dirt on the light receiving surface from the photographed image, detects the position thereof, and operates the cleaning means at the detected dirt position. The solar panel cleaning apparatus in any one. 前記受光面が一方向に傾斜するものであり、
前記清掃ラインを前記受光面の傾斜方向と直交方向に設定した請求項1乃至4のいずれかに記載のソーラーパネル清掃装置。
The light receiving surface is inclined in one direction;
The solar panel cleaning apparatus in any one of Claims 1 thru | or 4 which set the said cleaning line in the orthogonal direction with the inclination direction of the said light-receiving surface.
JP2014009391A 2013-06-03 2014-01-22 Solar panel cleaning device Pending JP2015013281A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014009391A JP2015013281A (en) 2013-06-03 2014-01-22 Solar panel cleaning device
PCT/JP2014/064494 WO2014196480A1 (en) 2013-06-03 2014-05-30 Solar panel cleaning device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013117207 2013-06-03
JP2013117207 2013-06-03
JP2014009391A JP2015013281A (en) 2013-06-03 2014-01-22 Solar panel cleaning device

Publications (1)

Publication Number Publication Date
JP2015013281A true JP2015013281A (en) 2015-01-22

Family

ID=52435488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009391A Pending JP2015013281A (en) 2013-06-03 2014-01-22 Solar panel cleaning device

Country Status (1)

Country Link
JP (1) JP2015013281A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312292A (en) * 2015-09-22 2016-02-10 富韦淇 Intelligent photovoltaic scavenging machine posture adjusting method
CN105964587A (en) * 2016-06-17 2016-09-28 山东豪沃电气有限公司 Solar panel cleaning device capable of cleaning up and down without power thereof
KR101688120B1 (en) * 2016-05-30 2016-12-20 (주) 에코센스 Photovoltaic panel cleaning robot using adsorption force
CN106774346A (en) * 2017-02-10 2017-05-31 苏州瑞得恩光能科技有限公司 For the positioner and its localization method of solar panel sweeping robot
KR101768108B1 (en) * 2016-12-08 2017-08-16 (주) 에코센스 Cleaning robot for solar panels to have the wind speed detection
KR101768113B1 (en) * 2016-12-08 2017-08-22 (주) 에코센스 Cleaning robot for solar panels to have a balanced control
CN107344175A (en) * 2017-07-03 2017-11-14 东莞市万源洁智能清洁设备有限公司 A kind of solar energy photovoltaic panel scavenging machine
CN107598927A (en) * 2017-10-20 2018-01-19 苏州瑞得恩光能科技有限公司 Solar panel sweeping robot straight trip decision maker and its decision method
JP2019500063A (en) * 2016-09-21 2019-01-10 蘇州瑞得恩光能科技有限公司Suzhou Radiant Photovoltaic Technology Co., Ltd Solar panel cleaning robot
CN110270535A (en) * 2019-06-17 2019-09-24 佛山职业技术学院 A kind of anti-skidding cleaning machine for photovoltaic roof
JP2020518072A (en) * 2017-10-20 2020-06-18 蘇州瑞得恩光能科技有限公司Suzhou Radiant Photovoltaic Technology Co., Ltd Edge positioning device for solar panel cleaning robot and positioning method thereof
CN111506053A (en) * 2019-01-30 2020-08-07 北京天诚同创电气有限公司 Motion control method and device and cleaning equipment
CN114178281A (en) * 2021-10-21 2022-03-15 廊坊思拓光伏科技有限公司 Transportation device and method for photovoltaic module cleaning robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158619A (en) * 1986-12-23 1988-07-01 Nec Corp Unmanned vehicle
JPH0351392A (en) * 1989-07-20 1991-03-05 Ishikawajima Harima Heavy Ind Co Ltd Dirt washer of supporting belt-like material in papermaking machine
JP2001134318A (en) * 1999-11-05 2001-05-18 Murata Mach Ltd Unmanned carrier system
JP2003180587A (en) * 2001-12-19 2003-07-02 Sharp Corp Electric cleaner with detachable unit
JP2010186819A (en) * 2009-02-10 2010-08-26 Kowa Co Ltd Device for cleaning solar panel
FR2979840A1 (en) * 2011-09-12 2013-03-15 Sicaseli Device for cleaning upper surface of photovoltaic panel installed on roof of e.g. house, has maintaining unit for maintaining soft brush at predetermined distance such that brush rubs surface of panel by applying predetermined pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158619A (en) * 1986-12-23 1988-07-01 Nec Corp Unmanned vehicle
JPH0351392A (en) * 1989-07-20 1991-03-05 Ishikawajima Harima Heavy Ind Co Ltd Dirt washer of supporting belt-like material in papermaking machine
JP2001134318A (en) * 1999-11-05 2001-05-18 Murata Mach Ltd Unmanned carrier system
JP2003180587A (en) * 2001-12-19 2003-07-02 Sharp Corp Electric cleaner with detachable unit
JP2010186819A (en) * 2009-02-10 2010-08-26 Kowa Co Ltd Device for cleaning solar panel
FR2979840A1 (en) * 2011-09-12 2013-03-15 Sicaseli Device for cleaning upper surface of photovoltaic panel installed on roof of e.g. house, has maintaining unit for maintaining soft brush at predetermined distance such that brush rubs surface of panel by applying predetermined pressure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312292A (en) * 2015-09-22 2016-02-10 富韦淇 Intelligent photovoltaic scavenging machine posture adjusting method
KR101688120B1 (en) * 2016-05-30 2016-12-20 (주) 에코센스 Photovoltaic panel cleaning robot using adsorption force
CN105964587A (en) * 2016-06-17 2016-09-28 山东豪沃电气有限公司 Solar panel cleaning device capable of cleaning up and down without power thereof
JP2019500063A (en) * 2016-09-21 2019-01-10 蘇州瑞得恩光能科技有限公司Suzhou Radiant Photovoltaic Technology Co., Ltd Solar panel cleaning robot
KR101768108B1 (en) * 2016-12-08 2017-08-16 (주) 에코센스 Cleaning robot for solar panels to have the wind speed detection
KR101768113B1 (en) * 2016-12-08 2017-08-22 (주) 에코센스 Cleaning robot for solar panels to have a balanced control
EP3582055A4 (en) * 2017-02-10 2020-12-16 Suzhou Radiant Photovoltaic Technology Co., Ltd Solar panel cleaning robot positioning device and positioning method thereof
CN106774346B (en) * 2017-02-10 2023-11-24 苏州瑞得恩光能科技有限公司 Positioning device and positioning method for solar panel cleaning robot
CN106774346A (en) * 2017-02-10 2017-05-31 苏州瑞得恩光能科技有限公司 For the positioner and its localization method of solar panel sweeping robot
CN107344175A (en) * 2017-07-03 2017-11-14 东莞市万源洁智能清洁设备有限公司 A kind of solar energy photovoltaic panel scavenging machine
JP6995881B2 (en) 2017-10-20 2022-01-17 蘇州瑞得恩光能科技有限公司 Edge positioning device for solar panel cleaning robot and its positioning method
JP2020518072A (en) * 2017-10-20 2020-06-18 蘇州瑞得恩光能科技有限公司Suzhou Radiant Photovoltaic Technology Co., Ltd Edge positioning device for solar panel cleaning robot and positioning method thereof
US11014131B2 (en) 2017-10-20 2021-05-25 Suzhou Radiant Photovoltaic Technology Co., Ltd Edge positioning apparatus for solar panel cleaning robot, and positioning method thereof
CN107598927A (en) * 2017-10-20 2018-01-19 苏州瑞得恩光能科技有限公司 Solar panel sweeping robot straight trip decision maker and its decision method
CN111506053A (en) * 2019-01-30 2020-08-07 北京天诚同创电气有限公司 Motion control method and device and cleaning equipment
CN111506053B (en) * 2019-01-30 2023-06-23 北京天诚同创电气有限公司 Motion control method and device and cleaning equipment
CN110270535A (en) * 2019-06-17 2019-09-24 佛山职业技术学院 A kind of anti-skidding cleaning machine for photovoltaic roof
CN114178281A (en) * 2021-10-21 2022-03-15 廊坊思拓光伏科技有限公司 Transportation device and method for photovoltaic module cleaning robot

Similar Documents

Publication Publication Date Title
JP2015013281A (en) Solar panel cleaning device
WO2014196480A1 (en) Solar panel cleaning device
JP6318675B2 (en) Solar panel cleaning device
JP6179346B2 (en) Solar panel cleaning device
JP6409252B2 (en) Solar panel cleaning device
JP6732230B2 (en) Self-propelled robot
KR102474107B1 (en) Solar module cleaner
KR101623460B1 (en) Solar Panel Auto Cleaning Robot Apparatus
CN104539233B (en) Photovoltaic array component cleans dust pelletizing system automatically
KR101779667B1 (en) Solar cell cleaning robot and cleaning method using the same
US20190009313A1 (en) Robotic waterless cleaning and inspection system with an assistive robotic docking train system and method
JP6355852B2 (en) Solar panel cleaning device
JP3200455U (en) Solar power panel cleaning robot
CN203140336U (en) Solar assembly surface cleaning device
IL222558A (en) Solar panel cleaning system
CN105149253A (en) Solar cell panel cleaning device and system
KR101940378B1 (en) Contamination detection auto cleaning robot using air-motor
KR20190099740A (en) Automatic cleaning apparatus for solar cell panel
JP6299231B2 (en) Solar panel cleaning device
KR20210056033A (en) Apparatus for cleaning panel
CN109773800B (en) Photovoltaic cell panel cleaning system
WO2014203560A1 (en) Cleaning device
CN111687859A (en) Method for acquiring optimal operation path by photovoltaic cleaning robot
JPWO2017171045A1 (en) Self-propelled robot
JP2015138854A (en) Solar panel cleaning device and cleaning method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327