JP2015008578A - 送電装置、非接触給電システム、及び制御方法 - Google Patents

送電装置、非接触給電システム、及び制御方法 Download PDF

Info

Publication number
JP2015008578A
JP2015008578A JP2013132529A JP2013132529A JP2015008578A JP 2015008578 A JP2015008578 A JP 2015008578A JP 2013132529 A JP2013132529 A JP 2013132529A JP 2013132529 A JP2013132529 A JP 2013132529A JP 2015008578 A JP2015008578 A JP 2015008578A
Authority
JP
Japan
Prior art keywords
coil
power transmission
power
resonance
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013132529A
Other languages
English (en)
Other versions
JP6092017B2 (ja
Inventor
市川 勝英
Katsuhide Ichikawa
勝英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2013132529A priority Critical patent/JP6092017B2/ja
Priority to US14/313,617 priority patent/US10177817B2/en
Priority to CN201410289243.1A priority patent/CN104253491B/zh
Publication of JP2015008578A publication Critical patent/JP2015008578A/ja
Application granted granted Critical
Publication of JP6092017B2 publication Critical patent/JP6092017B2/ja
Priority to US16/197,976 priority patent/US11303325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H02J50/502Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • H04B5/24
    • H04B5/263
    • H04B5/266
    • H04B5/72

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】回路規模を抑えつつ、電力の伝送効率を向上させる。【解決手段】本送電装置(1、4、5)は、送電アンテナとしての共鳴コイル(106)及び共振容量(107)を含む共振回路(110)と、前記共鳴コイルと磁気的に結合可能に配置された第1コイル(108、108_1〜108_n、151_1〜151_m、114、115、201〜204)とを含み、前記共振回路の共振結合によって非接触で電力を送電する。本送電装置は、電力の送電を行うとき、前記共振回路の共振周波数が送電電力として出力される送電信号の周波数に近づくように、前記第1コイルの両端を短絡又は開放する制御を行う。【選択図】図1

Description

本発明は、非接触で電力を送電する送電装置、当該送電装置を含む非接触給電システム、及び非接触給電システムの制御方法に係り、例えば、電磁界の共振結合(磁気共鳴)を利用した送電装置に適用して有効な技術に関する。
電源コード等を介さずに非接触で電気機器に電力を供給する非接触電力伝送を用いたシステム(以下、「非接触給電システム」と称する。)の実用化が進みつつある。例えば、離間して配置されたアンテナ(コイル)間の電磁誘導を利用した電磁誘導方式や、電磁界の共振結合を利用した磁気共鳴方式の非接触給電システムが知られている。また、無線により情報の伝送を行う非接触通信技術に関する標準規格としてNFC(Near Field Communication)が知られており、NFC規格に準拠したICカードや小型携帯端末装置も普及し始めている。
磁気共鳴方式の非接触給電システムは、コイルとコンデンサを含む共振回路を用いて実現される。磁気共鳴方式の非接触給電システムは、コイルのQ値を高くすることで従来の電磁誘導方式に比べて、送電用のコイルと受電用のコイルとの間の伝送距離が大きくとれるとともに、送電用のコイルと受電用のコイルの位置ずれに強いといった特長を有する。
効率の良い非接触電力伝送を実現するためには、送電装置から送電電力として出力される送電信号の周波数(以下、「送電周波数」と称する。)と共振回路の共振周波数を一致させて送電を行うことが望ましい。しかしながら、磁気共鳴方式はコイルの周波数特性の狭帯域領域での伝送となるため、例えば送電用のコイルと受電用のコイルのコイル間距離の変動によるコイルの巻き線間の寄生容量の変化や、受電装置の筐体の金属部分の影響等により、共振回路の共振周波数がずれて伝送特性が変動するという問題がある。磁気共鳴方式を用いた非接触給電システムにおいて効率の良い非接触電力伝送を実現するための従来技術として、例えば下記特許文献1、2に開示がある。
特許文献1には、受電側の負荷変動によって共振回路の共振周波数がずれた場合に、高周波電源の送電周波数を変化させることで送電周波数と共振周波数を一致させるとともに、送電側の高周波電源のインピーダンスと高周波電源に接続される送電アンテナの入力インピーダンスとをインピーダンス可変回路により整合させることで共振周波数のずれに対応する技術が開示されている。
特許文献2には、送電アンテナから近い範囲に限られていた送電範囲を変更あるいは拡大するために、ワイヤレス給電装置(送電側装置)において、送電アンテナと、送電アンテナから送電された電力を磁界共鳴関係によって受電して送電可能な複数の中継コイルとをシート状に形成し、それらをシート状の本体に所定の間隔で配置する技術が開示されている。
特開2012−143117号公報 特開2011−151989号公報
特許文献1の構成では、インピーダンス可変回路によりインピーダンスの整合を図っているが、インピーダンス可変回路を挿入することにより、回路規模の増大や伝送効率の低下等の問題がある。例えば、インピーダンス可変回路を構成する可変容量として、機械的に電極間面積を調整することで容量値の調整が可能なバリアブルコンデンサを用いた場合、機械式のため形状も大きいことから回路規模が大きくなるという問題がある。また、インピーダンス可変回路を構成する可変容量として可変容量ダイオードなどの半導体デバイスを用いた場合、半導体デバイスの損失によって伝送効率が低下する虞があり、また、送電電力量によっては半導体デバイスの耐圧が不足するなどの課題もある。
また、特許文献1の構成では、高周波電源の送電周波数を変えることで送電周波数と共振周波数を一致させているが、送電周波数が変わると非接触給電システム以外の他の機器との干渉が生ずる可能性が高くなるため、送電周波数はできるだけ固定の周波数とすることが望ましい。
特許文献2の構成は、中継コイルを介して受電側に電力を送電するものであり、送電アンテナから受電側に直接電力を送電する場合の伝送効率を改善することについて、特に考慮されていない。
このような課題を解決するための手段等を以下に説明するが、その他の課題と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記のとおりである。
本送電装置は、送電アンテナとしての共鳴コイル及び共振容量を含む共振回路と、前記共鳴コイルと磁気的に結合可能に配置された第1コイルとを含み、前記共振回路の共振結合によって非接触で電力を送電する。本送電装置は、電力の送電を行うとき、前記共振回路の共振周波数が送電電力として出力される送電信号の周波数に近づくように、前記第1コイルの両端を短絡又は開放する制御を行う。
本願において開示される実施の形態のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、本送電装置によれば、回路規模を抑えつつ、電力の伝送効率を向上させることが可能となる。
図1は、実施の形態1に係る送電装置を含む非接触給電システムを例示する図である。 図2は、実施の形態1に係る送電装置における各コイルの位置関係を例示する図である。 図3は、切替コイルによって共振周波数のずれを補正したときの伝送特性を例示する図である。 図4は、実施の形態1に係る非接触給電システムにおける送電制御の流れの一例を示すフロー図である。 図5は、実施の形態2に係る送電装置を例示する図である 図6は、実施の形態2に係る送電装置における各コイルの位置関係を例示する図である。 図7は、実施の形態2に係る送電装置を含む非接触給電システムにおける送電制御の流れの一例を示すフロー図である。 図8は、実施の形態3に係る切替コイルの構成例を示す図である。 図9は、実施の形態3に係る切替コイルの他のコイルとの位置関係を例示する図である。 図10は、実施の形態4に係る切替コイルの構成例を示す図である。 図11は、実施の形態4に係る切替コイルの他のコイルとの位置関係を例示する図である。 図12は、実施の形態5に係る送電装置を含む非接触給電システムを例示する。 図13は、実施の形態5に係る送電装置内の平面視における切替コイル114、115の配置例を示す図である。 図14は、実施の形態5に係る非接触給電システムにおける無線通信及び送電の処理の流れを示すフロー図である。 図15は、実施の形態6に係る送電装置を含む非接触給電システムを例示する図である。 図16は、切替コイルの短絡・開放の切替制御を行ったときの伝送特性を例示する図である。 図17は、実施の形態6に係る非接触給電システムにおける送電制御の流れの一例を示すフロー図である。
1.実施の形態の概要
先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕(共振周波数が送電周波数に近づくように、共鳴コイルに磁気結合された切替コイルの短絡・開放を制御する送電装置)
本願の代表的な実施の形態に係る送電装置(1、4、5)は、送電アンテナとしての共鳴コイル(106)及び共振容量(107)を含む共振回路(110)と、前記共鳴コイルと磁気的に結合可能に配置された第1コイル(108、108_1〜108_n、114、115、150_1〜150_m、201〜204)とを含み、前記共振回路の共振結合によって非接触で電力を送電する。本送電装置は、電力の送電を行うとき、前記共振回路の共振周波数が送電電力として出力される送電信号の周波数(fTx)に近づくように、前記第1コイルの両端を短絡又は開放する制御を行う。
例えば、第1コイルの両端を開放した場合、第1コイルには電流が流れないため、第1コイルの共鳴コイルに対する影響を無視することができる。他方、第1コイルの両端を短絡した場合、第1コイルは共鳴コイルの磁束と結合するため、第1コイルに電流が流れる。この電流によって第1コイルから磁束が発生し、その磁束は共鳴コイルの磁束を減らす方向に働く。その結果、共鳴コイルの自己インダクタンスが減少し、共振回路の共振周波数が高くなる方向に変化する。すなわち、本送電装置によれば、第1コイルの両端を短絡又は開放することにより、共鳴コイルから成る共振回路の共振周波数を変化させることができる。また、前述した特許文献1に記載の構成のように、共鳴コイルと直列にインピーダンス可変回路を接続する構成に比べて、損失の発生を抑えることができるので伝送効率の向上に資する。更に、上記のようにインピーダンス可変回路を設ける場合に比べて回路規模を小さくすることができる。
〔2〕(複数の切替コイル)
項1の送電装置は、前記第1コイルを複数(n)含む。本送電装置において、夫々の前記第1コイル(108_1〜108_n、114、115、150_1〜150_m、201〜204)は、その両端の短絡又は開放の接続状態が別個に制御可能にされる。
これによれば、共振周波数の調整幅を細かくすることができ、且つ、共振周波数の調整範囲を広げることができるので、共振周波数の調整精度を更に向上させることができる。
〔3〕(同心円状に配置された長さの異なる複数の切替コイル)
項2の送電装置において、夫々の前記第1コイル(108_1〜108_n)は、夫々の長さが互いに相異し、前記共鳴コイルを囲むように同心円状に配置される。
これによれば、夫々の第1コイルを共鳴コイルと磁気的に結合するように形成することが容易となる。また、夫々の第1コイルは共鳴コイルまでの距離が夫々相異されるので、個々の第1コイルの接続状態を切り替えることによる共振周波数の調整幅が夫々異なるように構成することができる。更に、第1コイルと前記共鳴コイルが同一平面上に配置されるので、送電装置の筺体内にそれらのコイルを形成することが容易となる。
〔4〕(共鳴コイルの少なくとも一部と重なるように配置された複数の切替コイル)
項2の送電装置(4)において、夫々の前記第1コイル(114、115、201〜204)は、前記共鳴コイルの一部と高さ方向に重なりを有するように、同一平面上に離間して配置される。
これによれば、夫々の第1コイルを共鳴コイルと磁気的に結合するように形成することが容易となる。
〔5〕(共鳴コイルと均等に重なるように配置された複数の切替コイル)
項4の送電装置において、夫々の前記第1コイル(201〜204)は、前記共鳴コイルとの重なりが均等になるように配置される。
これによれば、例えば受電側の装置が置かれた位置による共振周波数のずれに対して、より適切に共振周波数を調整することが可能となる。
〔6〕(複数の第1コイルの何れか一つを用いた無線通信)
項4又は5の送電装置において、前記第1コイルの何れか一つをアンテナとした無線によるデータ通信が可能にされる。
これによれば、共振周波数を調整するための第1コイルを無線通信に用いることができるので、無線通信のためのアンテナを別途設ける必要がなく、送電装置の小規模化に資する。
〔7〕(無線通信用のアンテナが選択可能)
項6の送電装置において、前記無線によるデータ通信のためのアンテナとして、前記第1コイルの何れか一つが選択可能にされる。
これによれば、例えば受電側の装置の配置等に応じて、最も通信状態が良好となる第1コイルを用いて無線通信を行うことが可能となる。
〔8〕(NFC通信)
項6又は7の送電装置において、前記データ通信は、NFC規格に準拠した通信である。
〔9〕(反射量が小さくなるように切替コイルの接続状態を選択)
項1乃至8の何れかの送電装置(1、4)は、前記送電電力に応じた交流信号を生成し、前記共振回路に供給する電源部(101、102)と、前記電源部から前記共振回路に供給される交流信号の反射量を検出するための検出部(104)と、制御部(103)と、を更に含む。前記制御部は、前記反射量が最も小さくなるように、前記第1コイルの前記接続状態を切り替える。
これによれば、送電装置において、送電側の共振回路の共振周波数を送電周波数に近づけるように制御することが容易となる。
〔10〕(VSWR)
項9の送電装置において、前記検出部は、前記電源部から前記一次共振回路側に供給される交流信号の入射電力量に対応した第1電圧(Vi)と、当該交流信号の反射電力量に対応した第2電圧(Vr)とを生成する。前記制御部は、前記第1電圧と前記第2電圧とに基づいて電圧定在波比(VSWR)を算出し、その算出結果に基づいて前記反射量の大きさを判断する。
これによれば、交流信号の反射量を推定することが容易となる。
〔11〕(1ターンの巻数の切替コイル)
項2乃至10の何れかの送電装置において、前記第1コイルの巻数が1ターンとされる。
これによれば、共振回路による送電に与える悪影響を抑えることができる。
〔12〕(共鳴コイルと同一平面上に、共鳴コイルを囲むように配置された一個の切替コイル)
項1の送電装置において、前記第1コイルは、前記共鳴コイルと同一平面上に前記共鳴コイルを囲むように配置される。
これによれば、第1コイルを共鳴コイルと磁気的に結合するように形成することが容易となる。また、第1コイルと共鳴コイルが同一平面上に配置されるので、送電装置の筺体内にそれらのコイルを形成することが容易となる。
〔13〕(切替コイルを短絡して送電を行い、その後共振周波数がずれたら切替コイルを開放する)
項12の送電装置は、前記第1コイルの両端を短絡した状態で電力の送電を行い、前記共振周波数がずれたことを検出したら、前記第1コイルの両端を開放して電力の送電を行う。
本送電装置によれば、第1コイルの両端を短絡した状態から開放した状態に変化させることで、共振周波数を低い方にずらすことができる。これにより、例えば、受電装置が送電装置に近づくことによって送電装置の共振周波数が高い方にずれた場合に、より簡単な制御によって、共振周波数のずれを補正することができ、電力の伝送効率を向上させることができる。
〔14〕(非接触給電システム)
本願の代表的な実施の形態に係る非接触給電システム(3)は、項1乃至13の何れかの送電装置(1)と、前記送電装置から供給された電力を、共振回路(120)を利用した電磁界の共振結合によって非接触で受電する受電装置(2)と、を含む。
これによれば、信頼性の高い非接触給電システムを実現することができる。
〔15〕(同一平面上に並べて配置した共鳴コイルと中継コイルの間に切替コイルを配置した送電装置)
本願の代表的な実施の形態に係る別の送電装置(8)は、送電アンテナとしての共鳴コイル(106)及び共振容量(107)を含む共振回路(110)と、共鳴コイルと磁気的に結合可能に配置された第1中継コイル(301)及び第1容量(302)を含む第1中継回路(401)と、共鳴コイルと前記中継コイルの双方に磁気的に結合可能に配置された第1コイル(303)を備える。本送電装置は、前記共振回路及び前記第1中継回路の共振結合によって非接触で電力を送電する。本送電装置において、前記共鳴コイルと前記第1中継コイルは、同一平面上に配置される。前記第1コイルは、前記共鳴コイルと前記第1中継コイルの双方と高さ方向(H)に重なりを有するように配置され、その両端の短絡又は開放が切り替え可能にされる。
本願発明者の検討によれば、第1中継コイルと共鳴コイルとの境界付近には、第1中継コイルの磁束と共鳴コイルの磁束とが打ち消し合って送電電力が極端に低下してしまう場所(所謂ヌル点)が存在する。そのため、その境界付近に受電装置が置かれたとすると、受電装置に十分な電力が送電されない虞がある。本送電装置によれば、第1コイルの両端の接続状態(短絡/開放)を切り替えることによってヌル点の位置をずらすことができるので、上記境界付近に受電装置が置かれた場合であっても、受電装置に十分な電力を送電することが可能となり、電力の伝送効率を向上させることができる。
〔16〕(中継コイル間に配置された切替コイル)
項15の送電装置は、前記第1中継コイルと磁気的に結合可能に配置された第2中継コイル(305)及び第2容量(306)を含む第2中継回路(402)と、前記第1中継コイルと前記第2中継コイルの双方に磁気的に結合可能に配置された第2コイル(307)と、を更に含む。本送電装置において、前記第1中継コイルと前記第2中継コイルは、同一平面上に配置される。前記第2コイルは、前記第1中継コイルと前記第2中継コイルの双方と高さ方向(H)に重なりを有するように配置され、その両端の短絡又は開放が切り替え可能にされる。
これによれば、第2コイルの両端の接続状態(短絡/開放)を切り替えることによって第1中継コイルと第2中継コイルの境界付近に存在するヌル点の位置をずらすことができるので、当該境界付近に受電装置が置かれた場合であっても、受電装置に十分な電力を送電することが可能となり、電力の伝送効率を向上させることができる。
〔17〕(反射量が最も小さくなるように切替コイルの接続状態を制御)
項16の送電装置は、前記送電電力に応じた交流信号を生成し、前記共振回路に供給する電源部(101、102)と、前記電源部から前記共振回路に供給される交流信号の反射量を検出するための検出部(104)と、制御部(103)と、を更に含む。前記制御部は、前記反射量が最も小さくなるように、前記第1コイル及び前記第2コイルの両端の短絡又は開放を夫々切り替える。
これによれば、ヌル点の位置をずらして、電力の伝送効率を上げることが容易となる。
〔18〕(制御方法;共振周波数が送電周波数に近づくように複数の切替コイルの短絡・開放を制御)
本願の代表的な実施の形態に係る制御方法は、送電アンテナとしての共鳴コイル(106)及び共振容量(107)を含む共振回路(110)と、前記共鳴コイルと磁気的に結合可能に配置された複数の第1コイル(201〜204)とを含み、前記共振回路の共振結合によって非接触で電力を送電するための送電装置(4)において、電力の送電を制御するための方法である。夫々の前記第1コイルは、その両端の短絡又は開放の接続状態が別個に制御可能にされる。本制御方法は、送電装置が前記共振回路に供給される交流信号の反射量が最も小さくなるような夫々の前記第1コイルの接続状態の組み合わせを探索する第1ステップ(S210、S211)と、送電装置が前記第1ステップで探索された前記第1コイルの接続状態で電力の送電を行う第2ステップ(S212)と、を含む。
これによれば、送電周波数に対する送電側の共振周波数のずれが最も小さくなる状態を選択して送電を行うことができるので、電力の伝送効率の更に向上させることができる。
〔19〕(低い電力で送電し、その後高い電力で送電する)
項18の制御方法は、前記送電装置が、夫々の前記第1コイルの両端を短絡させた状態で、第1電力よりも低い第2電力で送電を開始する第3ステップ(S202、S103)と、前記送電装置が、夫々の前記第1コイルの両端を短絡した状態において前記第2電力で送電したときの前記反射量を推定する第4ステップ(S104)と、を含む。更に、前記送電装置が、前記第4ステップで推定した前記反射量が所定の基準値からずれているか否かを判断する第5ステップ(S105)と、前記送電装置が、前記第5ステップにおいて前記反射量が前記所定の基準値からずれていると判断した場合に、当該反射量が所定の範囲内であるか否かを判定する第6ステップ(S106)と、を含む。更に、前記送電装置が、前記第6ステップにおいて前記反射量が所定の範囲内であると判定した場合に前記第2電力から前記第1電力に変更して送電を行う第7ステップ(S209)と、前記送電装置が、前記第6ステップにおいて前記反射量が所定の範囲内でないと判定した場合に送電を停止する第8ステップ(S107、S108)とを含む。前記第1ステップは、前記第7ステップの後に実行される。
これによれば、初めに低い電力で送電を開始し、その後電力を大きくして送電を行うことで、送電開始時において既に異物が存在する場合であっても、その異物に与える影響を小さくすることができるから、非接触電力伝送システムにおける送電制御の信頼性を高めることができる。また、推定した反射量の変化の有無の判定と、その変化量を大きさの判定を行うことにより、送電装置の送電範囲に受電装置が置かれたのか否か(送電範囲に異物が侵入したのか否か)を精度良くことを判定することができる。
〔20〕(VSWR)
項18又は19の制御方法において、前記反射量は、前記共振回路に供給される交流信号の入射電力量に応じた第1電圧(Vi)と当該交流信号の反射電力量に応じた第2電圧(Vr)とから算出された電圧定在波比(VSWR)の値に基づいて推定される。
これによれば、送電側の共振回路に供給された交流信号の反射量を、精度良く把握することができる。
〔21〕(一つの切替コイルを用いて無線通信)
項18乃至20の何れかの制御方法において、前記送電装置が、前記複数の第1コイルの何れか一つを用いて無線によるデータ通信を開始する第9ステップを更に含む。
これによれば、無線通信のためのアンテナを別途設けることなく、通信を実現することができる。
〔22〕(無線通信が確立できない場合に、短絡する第1コイルを変更して再試行)
項21の制御方法において、前記第9ステップで無線通信が確立できない場合に、前記送電装置が、両端を短絡させる前記第1コイルを変更して、無線によるデータ通信を開始する第10ステップを、更に含む。
これによれば、より通信状態が良好な無線通信を確立することができる。
〔23〕(高さ方向に重なるように配置された複数の切替コイル)
項2の送電装置(4)において、一つの前記第1コイル(150_1)は、前記共鳴コイルを囲むように前記共鳴コイルと同一平面上に配置され、残りの前記第1コイル(150_2〜150_m)は、前記一つの前記第1コイルと重なりを有するように、高さ方向(H)に夫々離間して配置される。
これによれば、夫々の第1コイルを共鳴コイルと磁気的に結合するように形成することが容易となる。
〔24〕(制御方法;一つの切替コイルの短絡・開放を制御することによって共振周波数を送電周波数に近づくように制御)
本願の代表的な実施の形態に係る別の制御方法は、送電アンテナとしての共鳴コイル(106)及び共振容量(107)を含む共振回路(110)と、前記共鳴コイルと磁気的に結合可能に配置された第1コイル(108)とを含み、前記共振回路の共振結合によって非接触で電力を送電するための送電装置(1)において、電力の送電を制御するための方法である。当該制御方法は、前記送電装置が、前記第1コイルの両端を短絡した状態で電力を送電したときの前記共振回路に供給された交流信号の反射量を推定する第1ステップ(S102〜S110)と、前記送電装置が、前記第1コイルの両端を開放した状態で電力の送電したときの前記共振回路に供給された交流信号の反射量を推定する第2ステップ(S111、S112)と、を含む。当該制御方法は、前記送電装置が、前記第1ステップで推定した前記第1コイルの両端を短絡した状態での前記反射量と、前記第2ステップで推定した前記第1コイルの両端を開放した状態での前記反射量とを比較する第3ステップ(S113)を更に含む。当該制御方法は、前記第1コイルの両端を短絡した状態での前記反射量よりも前記第1コイルの両端を開放した状態での前記反射量の方が小さい場合に、前記送電装置が前記第1コイルの両端を開放した状態での電力の送電を継続する第4ステップと(S115)を更に含む。当該制御方法は、前記第1コイルの両端を短絡した状態での前記反射量よりも前記第1コイルの両端を開放した状態での前記反射量の方が大きい場合に、前記送電装置が前記第1コイルの両端を短絡した状態での電力の送電を継続する第5ステップ(S114、S115)を更に含む。
これによれば、送電周波数に対する送電側の共振周波数のずれがより小さくなる状態を選択して送電を行うことができるので、電力の伝送効率の向上させることができる。
〔25〕(低い電力で送電し、異常がなければ高い電力で送電開始)
項24の制御方法において、前記第1ステップは、前記送電装置が、前記第1コイルの両端を短絡させた状態で、第1電力よりも低い第2電力で送電を開始する第6ステップ(S103)と、前記送電装置が、前記第1コイルの両端を短絡した状態において前記第2電力で送電したときの前記反射量を推定する第7ステップ(S104)と、を含む。前記第1ステップは、更に、前記送電装置が、前記第7ステップで推定した前記反射量が所定の基準値からずれているか否かを判断する第8ステップ(S105)と、前記送電装置が、前記第8ステップにおいて前記反射量が前記所定の基準値からずれていると判断した場合に、当該反射量が所定の範囲内であるか否かを判定する第9ステップ(S106)と、を含む。前記第1ステップは、前記送電装置が、前記第9ステップにおいて前記反射量が所定の範囲内であると判定した場合に前記第2電力から前記第1電力に変更して送電を行う第10ステップ(S109)と、前記送電装置が、前記第9ステップにおいて前記反射量が所定の範囲内でないと判定した場合に送電を停止する第11ステップ(S107、S108)とを更に含む。前記第1ステップは、前記第10ステップの後に、前記送電装置が、前記第1コイルの両端を短絡した状態において前記第1電力で送電したときの前記反射量を推定する第11ステップ(S110)と、を含む。前記第2ステップは、前記第11ステップの後に実行される。
これによれば、初めに低い電力で送電を開始し、その後電力を大きくして送電を行うことで、送電開始時において既に異物が存在する場合であっても、その異物に与える影響を小さくすることができるから、非接触電力伝送システムにおける送電制御の信頼性を高めることができる。また、推定した反射量の変化の有無の判定と、その変化量を大きさの判定を行うことにより、送電装置の送電範囲に受電装置が置かれたのか否か(送電範囲に異物が侵入したのか否か)を精度良くことを判定することができる。
〔26〕(VSWR)
項24又は25の制御方法において、前記反射量は、前記共振回路に供給される交流信号の入射電力量に応じた第1電圧(Vi)当該交流信号の反射量に応じた第2電圧(Vr)とから算出された電圧定在波比(VSWR)の値に基づいて推定される。
これによれば、送電側の共振回路に供給された交流信号の反射量を、精度良く把握することができる。
2.実施の形態の詳細
実施の形態について更に詳述する。なお、発明を実施するための形態を説明するための全図において、同一の機能を有する要素には同一の符号を付して、その繰り返しの説明を省略する。
≪実施の形態1≫
〈非接触給電システムの概要〉
図1に、実施の形態1に係る送電装置を含む非接触給電システムを例示する。同図に示される非接触給電システム3は、送電装置1と受電装置2とを含む。非接触給電システム3では、送電装置1から受電装置2への非接触(ワイヤレス)による電力供給が可能とされる。特に制限されないが、非接触給電システム3は、電磁界の共振結合を利用した磁気共鳴方式によって非接触電力伝送が可能にされる。非接触電力伝送において、送電電力として出力される送電信号の周波数(送電周波数)は、例えば数MHz帯の周波数とされる。
〈送電装置1の構成〉
送電装置1は、例えば、発振器101、送電アンプ102、制御回路(CNT_CIR)103、検出部(PWR_SEN)104、給電コイル105、共鳴コイル106、共振容量107、切替コイル108、切替スイッチ109、及び電源回路(REG_CIR)111を含んで構成される。
発振器101は、送電装置1から送信される電力を送電するための送電信号に応じた周波数の交流信号を生成する。特に制限されないが、発振器101から出力される交流信号の周波数は固定とされ、前記送電信号の周波数(送電周波数)fTxと等しくされる。送電アンプ102は、発振器101から出力された交流信号を増幅して、送電すべき電力の大きさに応じた駆動信号を生成する。送電アンプ102は、その増幅率が可変される可変増幅器である。送電アンプ102は、例えば、電源回路111によって生成された電圧を電源として動作し、送電アンプ102に供給されるバイアス電圧やバイアス電流が調整されることにより、その増幅率が可変される。電源回路111は、例えば電源アダプタやユニバーサルシリアルバス(USB)等から供給された入力電圧VINに基づいて、送電装置1の各機能部の動作電源となる複数の電圧を生成する。例えば、上述したように送電アンプ102の動作電源となる電圧や、制御回路103の動作電源となる電圧を生成する。
送電アンプ102から出力された駆動信号は、給電コイル105に給電される。給電コイル105と共鳴コイル106とは磁気的に結合され、給電コイル105に供給された駆動信号に係る交流電力が、電磁誘導によって共鳴コイル106に供給される。送電用アンテナとしての共鳴コイル106と、共振容量107とは、一次側の共振回路110を構成する。共振回路110は、例えば、共鳴コイル106と共振容量107とが並列に接続された並列共振回路である。共振回路110による共振によって磁界が発生することにより、送電装置1から電力が出力される。
共鳴コイル106と共振容量107によって強い磁界を発生させるためには、共鳴コイル106のQ値を高くする必要がある。ここでコイルのQ値について説明する。コイルのQ値は、先鋭度、選択度などと呼ばれ、コイルのインダクタンスをL、コイルの巻き線抵抗成分をr、送電周波数fTxの角速度をωとすると、次式で表される。
Figure 2015008578
式(1)から理解されるように、Q値を高くするには、コイルの抵抗成分rを小さくして、低損失なコイルを用いればよい。このため、コイルに使う線材としては抵抗成分の小さい銅の線材を用いるとともに線径をなるべく太くすることで低損失化を図ることが好ましい。
共振回路110は、その共振周波数と送電周波数fTxとが等しくなるように、共鳴コイル106と共振容量107の定数が予め設定される。これにより、磁気的結合によって給電コイル105から共振回路110に効率よく給電されるとともに、共鳴コイル106からは効率よく磁界が発生し、受電装置2の共振回路120と強く結合する。
しかしながら、前述したように、送電側の共鳴コイル106と受電側の受電コイル121のコイル間距離の変動によるコイルの巻き線間の寄生容量の変化や、受電装置2の筐体の金属部分の影響等により、共振回路110の共振周波数がずれて電力の伝送効率が低下する虞がある。そこで、本実施の形態に係る送電装置1では、共鳴コイル106と磁気的に結合可能に配置された切替コイル108を設け、切替コイル108の両端の接続状態を切り替えることにより、共振回路110の共振周波数の調整が可能にされる。切替コイル108の詳細については後述する。
検出部104は、送電アンプ102から共振回路110側に供給される駆動信号の反射量を検出するための回路である。具体的に、検出部104は、送電アンプ102から共振回路110側に供給される駆動信号の入射電力量に対応した電圧Viと、駆動信号の反射電力量に対応した電圧Vrとを生成する。検出部104としては、例えば、CM型方向性結合器を用いることができる。
制御回路103は、メモリ等に格納されたプログラムに従ってデータ処理を実行するプログラム処理装置を含んで構成される。制御回路103は、例えばマイクロコントローラであり、例えば公知のCMOS集積回路の製造技術によって1個の単結晶シリコンのような半導体基板に形成された半導体集積回路を含んで実現される。
制御回路103は、送電装置1の統括的な制御を行う。例えば、制御回路103は、非接触電力伝送を行う際に、送電アンプ102の増幅率を制御することにより送電すべき電力量を調整する。また、制御部103は、切替スイッチ109を制御することにより、切替コイル108の接続状態を切り替えて共振回路110の共振周波数を調整する。
制御回路103は、更に、非接触電力伝送時に送電アンプ102から共振回路110側に供給される駆動信号の反射量に基づいて共振回路110の共振周波数のずれを把握し、各種の送電に係る制御を行う。特に制限されないが、送電アンプ102から共振回路110側に供給される駆動信号の反射量は、電圧定在波比VSWRよって推定することができる。電圧定在波比VSWRは、例えば、下記(式2)によって算出される。
Figure 2015008578
具体的に、制御部103は、検出部104によって生成された電圧Vi及びVrに基づいて電圧定在波比VSWRを算出し、前記駆動信号の反射量を推定する。そして、推定した前記駆動信号の反射量(VSWRの算出値)に基づいて、送電に係る各種の制御を行う。具体的な制御内容については後述する。
〈受電装置2の構成〉
受電装置2は、例えば、携帯端末などの小型携帯機器であり、非接触給電によるバッテリVATの充電等が可能にされる。受電装置2は、例えば、受電コイル121、共振容量122、整流回路(RCR_CIR)123、電源回路(REG_CIR)124、充電制御回路(CHGCNT)125、制御回路(CNT_CIR)126、内部回路(EC)127、バッテリVATを含んで構成される。
受電コイル121と共振容量122とは、二次側の共振回路120を構成し、送電装置1の一次側の共振回路110によって発生した磁界の共鳴作用によって、起電力(交流信号)を生ずる。共振回路120の共振周波数が送電周波数fTxと等しくなるように調整されることにより、送電装置1からの磁界を効率よく受信することができる。
整流回路123は、共振回路120によって受電した電力によって発生した交流電圧を直流電圧に変換する。整流回路123は、例えば全波整流回路であって、例えばダイオードブリッジ回路を含んで構成される。電源回路124は、整流回路123によって直流に変換された電圧を、所望の大きさの一定電圧に変換する。電源回路124は、DC/DCコンバータであって、例えば降圧型のスイッチングレギュレータやシリーズレギュレータ(LDO:Low drop out)等を含んで構成される。
電源回路124によって生成された電圧は、受電装置2の各機能部の電源電圧として供給される。例えば、図1には、電源回路124の出力端子に接続される負荷回路128として、内部回路127、充電制御回路125、及びバッテリVATが例示されている。
内部回路127は、受電装置2としての特有の機能(例えば受電装置2が携帯電話であれば、携帯電話として期待される機能)を実現するための電子回路である。バッテリVATは、電源回路124によって生成された直流電圧に基づいて充電が可能にされる二次電池である。特に制限されないが、バッテリVATは、例えば1セルの電池(4.0〜4.2V)とされ、例えばリチウムイオン電池とされる。充電制御回路125は、電源回路124の生成した直流電圧によるバッテリVATの充電を制御する。例えば、充電制御回路125は、バッテリVATの充電電流やバッテリVATの端子電圧を監視することにより、バッテリVATの状態(満充電容量、残量、及び充電状態等)を検知し、充電の実行や停止等を制御する。特に制限されないが、充電制御回路125は、公知のCMOS集積回路の製造技術によって1個の単結晶シリコンのような半導体基板に形成された半導体集積回路から構成され、例えばマイクロコントローラである。
制御回路126は、受電装置2の統括的な制御を行う。例えば、電源回路124の動作制御(イネーブル制御)や充電制御回路125によるバッテリVATの充電制御の実行と停止を制御する。
上述した共振回路120は、20Ω〜30Ω程度の入力インピーダンスを持つ後段の整流回路123と直列に接続されるため、送電装置1の共振回路110よりもQ値が小さくされる。これにより、異物等の侵入により受電装置2の共振回路120の共振周波数がずれた場合であっても、そのずれ幅が送電装置の共振周波数のずれ幅よりも小さくなるため、送電装置1に比べて共振周波数の調整が容易となる。また、図1に示されるように、共振回路120を受電コイル121と共振容量122を直列に接続した直列共振回路とすることにより、後段の回路とのインピーダンス整合を図ることが容易となり、共振回路120の後段に整合回路を別途設けなくても良くなる。仮に、特性を更に改善するために、共振回路120の後段に整合回路を設けたとしても、その整合回路を簡単な回路構成で実現することができる。これにより、受電装置2の小型化を図ることができる。
〈切替コイル108の詳細〉
ここで、送電装置1における切替コイル108について詳細に説明する。
前述したように、切替コイル108は、その両端の接続状態が切替え可能にされる。例えば、切替コイル108の一端と他端の間に切替スイッチ109が接続され、切替スイッチ109がオン・オフされることにより、切替コイル108の両端が短絡状態(Short)又は開放状態(Open)となる。特に制限されないが、切替コイル108は、例えば1ターンの巻数とされる。
図2は、実施の形態1に係る非接触給電システムにおける各コイルの位置関係を例示する図である。同図には、図1におけるX−X’間の断面が模式的に示されている。
同図に示されるように、送電装置1における共鳴コイル106と給電コイル105とは、送電装置1の高さ方向Hに重なりを有するように配置される。切替コイル108は、共鳴コイル106と同一平面上に(高さ方向Hと垂直の方向に)、共鳴コイル106を囲むように(共鳴コイル106の外側に)配置される。受電装置2の受電アンテナ121は、例えば、給電時に共鳴コイル106の上方に配置される。なお、同図では、共鳴コイル106の外側に切替コイル108を同一平面上に配置する場合を例示しているが、共鳴コイル106と切替コイル108が磁気的に結合されるのであれば、切り替えコイル108の配置は同図に限定されない。例えば、切替コイル108を共鳴コイル106に対してH方向(上方又は下方)に配置しても良い。
切替コイル108の両端の接続状態(短絡又は開放)を切り替えることにより、共振回路110の共振周波数を変化させることが可能となる。例えば、送電時に切替コイル108の両端を開放した場合、切替コイル108には電流が流れないため、切替コイル108の共鳴コイル106に対する影響を無視することができる。一方、送電時に切替コイル108の両端を短絡した場合、切替コイル108は共鳴コイル106の磁束と結合するため、切替コイル108に電流が流れる。この電流によって切替コイル108から磁束が発生し、その磁束は共鳴コイル106の磁束を減らす方向に働く。その結果、共鳴コイル106の自己インダクタンスが減少し、共振回路110の共振周波数が高くなる方向に変化する。
図3は、切替コイル108によって共振周波数のずれを補正したときの伝送特性を例示する図である。同図において、横軸は周波数〔MHz〕を表し、縦軸は伝送特性S21〔dB〕を表す。また、同図には、送電コイルの大きさを12cm×8cmとし、切り替えコイルの大きさもほぼ同じ大きさとし、切替コイル108の巻き数を1ターンとし、受電コイル121の大きさを6cm×4cmとし、送電周波数fTxを6.78MHzとした場合の伝送特性が例示される。なお、参照符号300〜302に示される伝送特性のピーク点は、その特性における共振回路110の共振周波数を表す。
同図において、参照符号300は、送電装置1の送電範囲に受電装置2が置かれていない状態(受電装置2の筺体の影響を受けない状態)で切替コイル108を短絡させて、共振回路110の共振周波数を送電周波数fTx(6.78MHz)に合わせたときの伝送特性を示す。参照符号301は、送電装置1に受電装置2が近づいた状態(受電装置2の筺体の影響を受ける状態)で、切替コイル108を短絡したときの伝送特性を示す。参照符号302は、送電装置1に受電装置2が近づいた状態で、切替コイル108を開放したときの伝送特性を示す。
例えば、参照符号300のように、受電装置2の筺体の影響を受けない状態において、切替スイッチ109をオンさせて切替コイル108を短絡させ、共振回路110の共振周波数を送電周波数fTx(=6.78MHz)に合わせたとする。その状態で、受電装置2が送電装置1に近づくと、受電装置2の筺体の金属部分の影響で共鳴コイル106の自己インダクタンスが減少し、参照符号301のように共振周波数が高域側に移動してしまう。そこで、切替スイッチ109をオフさせて、切替コイル108を開放する。これにより、共鳴コイル106の自己インダクタンスが増加するため、参照符号302のように共振周波数が低域側に移動する。このように、切替コイル108の接続状態を切り替えることにより、受電装置2が送電装置1に近づくことによってずれてしまった共振周波数を、再び送電周波数fTxに近づけることが可能となる。
〈非接触給電システム3における送電制御の処理フロー〉
実施の形態1に係る非接触給電システムにおける送電制御の処理の流れについて、図4を用いて詳細に説明する。
図4は、非接触給電システム3における送電制御の流れの一例を示すフロー図である。なお、同図では、送電装置1が受電装置2の筺体の影響を受けない状態において、切替コイル108を短絡させたときに、共振回路110の共振周波数が送電周波数fTxに一致するように共鳴コイル106と共振容量107の定数を予め設定しているものとする。
例えば送電装置1の電源が投入され、送電装置1が動作可能な状態となると、送電制御に係る処理が開始される(S101)。先ず、送電装置1において、制御部103が切替スイッチ109をオンさせて、切替コイル108を短絡させる(S102)。これにより、送電装置1の周辺に受電装置2や異物等がなければ、共振回路110の共振周波数が送電周波数fTxに一致した状態となる。
次に、送電装置1は、通常よりも低い電力で送電を開始する(S103)。具体的には、制御部103が、通常の送電時の電力量よりも低い電力量となるように、送電アンプ102の増幅率を変化させる。これによれば、ステップS102の時点で送電装置1の送電範囲に異物が存在する場合であっても、その異物に与える影響を小さくすることができ、非接触電力伝送システムにおける送電制御の信頼性を高めることができる。
送電装置1は、通常の送電時よりも低い電力量の送電を行いながら、入射電力量に対応する電圧Vi及び反射電力量に対応する電圧Vrを計測し、制御部103によって電圧在波比VSWRを算出する(S104)。そして、送電装置1は、VSWRの値に変化があったか否かを判定する(S105)。具体的には、制御部103が、ステップS104で算出したVSWRの値が予め設定された基準値を下回っているか否かを判断する。あるいは、制御部103が、ステップS104で算出したVSWRの値が、過去に測定したVSWRの値と比較してずれがあるか否かを判断する。このように反射量の変化の有無を検出することで、送電装置1の周辺の電磁界条件が変化したこと、すなわち、受電装置2や異物等が送電装置1に近づいたことを容易に検出することができる。
VSWRの値に変化がなかった場合、制御部103は、通常よりも低い電力での送電を継続する(S102)。VSWRの値に変化があった場合、受電装置2が送電装置1の送電範囲に置かれた可能性があるため、制御部103は、そのVSWRが予め設定した所定範囲内の値であるか否かを判定する(S106)。例えば、受電装置2が送電装置1の送電範囲に置かれた場合にVSWRがどの程度変化するかを送電装置1の製造段階における実験等によって把握しておき、その実験結果に基づいて、判断基準となる上記所定範囲を送電装置1に設定しておく。
送電装置1における制御部103は、ステップS106においてVSWRが上記所定範囲外の値であると判定した場合には、送電範囲に異物が侵入したと判断し、外部にエラー情報を通知する(S107)。そして、エラー情報の通知後、送電装置1は送電を停止し、送電処理を終了する(S108)。一方、VSWRが上記所定範囲内の値である場合には、受電装置2が送電装置1の送電範囲に置かれたと判断し、制御部103は通常の電力で送電を開始させる(S109)。具体的には、制御部103が、ステップ105で設定した電力量よりも大きな電力量となるように、送電アンプ102の増幅率を変化させる。このように、VSWRの変化量を判断することで、送電範囲に受電装置2が置かれたのか、送電範囲に異物が侵入したのかを判別することができる。
送電装置1における制御部103は、通常の電力で送電を行いながら、切替コイル108を短絡した状態での電圧在波比VSWRを算出する(S110)。その後、制御部103は、切替スイッチ109をオフさせて切替コイル108を開放する(S111)。次いで、制御部103は、切替コイル108を開放した状態での電圧在波比VSWRを算出する(S112)。そして、制御部103は、切替コイル108を短絡した状態でのVSWRの値と、切替コイル108を開放した状態でのVSWRの値とを比較する(S113)。比較の結果、切替コイル108を開放した状態でのVSWRの値の方が小さい場合には、制御部103は、切替コイル108を開放した状態で電力の送電を継続する(S115)。一方、切替コイル108を開放した状態でのVSWRの値の方が大きい場合には、制御部103は、切替スイッチ109をオンさせて、切替コイル108を短絡させる(S114)。そして、制御部103は、切替コイル108を短絡した状態で電力の送電を継続する(S115)。
その後、受電装置2におけるバッテリVATの充電が完了したこと等により、受電装置2に対する送電が不要になったら、送電装置1は送電を停止し、送電制御を終了する(S116)。
以上の処理フローによれば、送電周波数fTxに対する送電側の共振周波数のずれがより小さくなる状態を選択して送電を行うことができるので、電力の伝送効率を向上させることができる。
なお、図4の処理フローにおいて、切替コイル108の短絡時と開放時のVSWRを比較する処理(S113)等を行わずに、切替コイル108の接続状態を切り替えるような制御を行っても良い。例えば、初期状態として切替コイル108を予め短絡しておき、受電装置2が近づいたと判断したら、切替コイル108を開放して共振周波数を低い方にずらす。これによれば、受電装置2が近づくことによって共振周波数が高い方にずれた場合に、共振周波数のずれを容易に補正することができる。すなわち、より簡単な制御で共振周波数のずれを補正することが可能となる。
以上、実施の形態1に係る送電装置1によれば、切替コイル108の両端を短絡又は開放することにより、送電周波数fTxに対する共振周波数のずれを補正することができる。また、本送電装置1によれば、特許文献1のように共鳴コイルと直列にインピーダンス可変回路を設ける場合に比べて、共振周波数の調整機能を付加することによる電力の損失を小さくすることができ、送電装置1の回路規模の増大を抑えることができる。すなわち、送電装置1によれば、回路規模を抑えつつ、電力の伝送効率を向上させることが可能となる。
≪実施の形態2≫
図5に、実施の形態2に係る送電装置を例示する。
同図に示される送電装置4は、共振回路110の共振周波数を調整するための切替コイルを複数備える点で、実施の形態1に係る送電装置1と相異する。同図に示される送電装置4において、送電装置1と同様の構成要素には同一の符号を付して、その詳細な説明を省略する。
送電装置4は、複数の切替コイルを備える。同図では、送電装置4が4個の切替コイル201〜204を備える場合を例示するが、切替コイルの個数に特に制限はない。
夫々の切替コイル201〜204は、その両端の短絡又は開放の接続状態が別個に制御可能にされる。具体的には、切替コイル201の一端と他端の間に切替スイッチ205が接続され、切替スイッチ205がオン・オフされることにより、切替コイル201の両端が短絡状態(Short)又は開放状態(Open)となる。同様に、切替コイル202の一端と他端の間に切替スイッチ206が接続され、切替コイル203の一端と他端の間に切替スイッチ207が接続され、切替コイル204の一端と他端の間に切替スイッチ208が接続される。夫々の切替スイッチ205〜208は、別個にオン・オフ制御可能にされる。特に制限されないが、切替コイル201〜204は、例えば1ターンの巻数とされる。
図6は、実施の形態2に係る送電装置4における各コイルの位置関係を例示する図である。同図には、図5におけるX−X’間の断面が模式的に示されている。
図5、6に示されるように、夫々の切替コイル201〜204は、共鳴コイル106の一部と高さ方向Hに重なりを有するように、同一平面上に離間して配置される。また、夫々の切替コイル201〜204は、共鳴コイル106との重なり部分が均等になるように配置される。例えば、図5に示されるように、共鳴コイル106を4つの領域に均等に分けるように、4つの切替コイル201〜204が配置される。
図6に示されるように、送電装置4における共鳴コイル106と給電コイル105とは、送電装置1の高さ方向Hに重なりを有するように配置される。受電装置2の受電アンテナ121は、例えば、給電時に共鳴コイル106の上方に配置される。
このように切替コイル201〜204を配置することで、切替コイル201〜204と共鳴コイル106を磁気的に結合させることができる。なお、図5、6では、共鳴コイル106との重なり部分が均等になるように切替コイル201〜204が配置される場合が例示されているが、共鳴コイル106と切替コイル201〜204が磁気的に結合されるのであれば、同図に示される配置に限定されない。例えば、切替コイル201〜204が高さH方向に相互に重なりを有するように配置されても良い。
次に、送電装置4を含む非接触給電システムにおける送電制御の処理の流れについて、図7を用いて詳細に説明する。
図7は、実施の形態2に係る送電装置4を含む非接触給電システムにおける送電制御の流れの一例を示すフロー図である。なお、同図では、送電装置4が受電装置2の筺体の影響を受けない状態において、切替コイル201〜204を短絡させたときに、共振回路110の共振周波数が送電周波数fTxに一致するように共鳴コイル106と共振容量107の定数を予め設定しているものとする。
例えば送電装置4の電源が投入され、送電装置4が動作可能な状態となると、送電制御に係る処理が開始される(S101)。先ず、送電装置4において、制御部103が切替スイッチ205〜208の全てをオンさせて、切替コイル201〜204の夫々を短絡させる(S202)。これにより、送電装置4の周辺に受電装置2や異物等がなければ、共振回路110の共振周波数が送電周波数fTxに一致した状態となる。
次に、送電装置4は、通常よりも低い電力で送電を開始する(S103)。そして、送電装置4は、実施の形態1に係る送電装置1と同様に、通常時よりも低い電力で送電を行いながら電圧在波比VSWRを算出し、VSWRの変化の有無及びVSWRの変化量に基づいて、送電装置4に対する受電装置2の接近の有無を判別する(S104〜S108)。
送電装置4は、受電装置2が送電装置4に近づいたと判断したら、通常の電力で送電を開始する(S209)。そして、送電装置4は、通常の電力で送電を行いながら、切替コイル201〜204の接続状態の全ての組み合わせにおいてVSWRを算出する(S210)。具体的には、制御部103が、切替スイッチ205〜208のオン・オフを切り替えることにより、切替コイル201〜204の接続状態の組み合わせ(例えば、切替コイル201〜204を全て開放した場合、切替コイル201を短絡し、切替コイル202〜204を開放した場合等)を変更し、夫々の組み合わせにおけるVSWRを算出する。送電装置4における制御部103は、切替コイル201〜204の接続状態の全ての組み合わせのVSWRを算出したら、算出したVSWRのうち最も値の小さい、切替コイル201〜204の接続状態の組み合わせを選択する(S211)。そして、制御部103は、選択した接続状態となるように切替スイッチ205〜208のオン・オフを設定して、通常の電力での送電を継続する(S212)。その後は、受電装置2におけるバッテリVATの充電が完了したこと等により送電が不要になったら、送電装置1は送電を停止し、送電制御を終了する(S213)。
以上、実施の形態2に係る送電装置4によれば、実施の形態1に係る送電装置1と同様に、切替コイル201〜204の夫々の両端を短絡又は開放することにより、送電側の共振周波数を調整することができるので、回路規模を抑えつつ、電力の伝送効率を向上させることが可能となる。更に、切替コイルを複数設けることで、共振周波数の調整幅を細かくすることができ、また、共振周波数の調整範囲を広くすることができるので、共振周波数の調整精度が更に向上する。特に、図5、6のように、共鳴コイル106との重なり部分が均等になるように切替コイル201〜204を配置することで、受電装置2が置かれた位置による共振周波数のずれに対して、より適切に共振周波数を調整することが可能となる。
≪実施の形態3≫
送電側の共振周波数を調整するための切替コイルを複数設ける場合の別の構成例を以下に示す。
図8は、実施の形態3に係る切替コイルの構成例を示す図である。
同図に示されるように、複数の切替コイル108_1〜108_n(nは2以上の整数)が、共鳴コイル106を囲むように配置される。
夫々の切替コイル108_1〜108_nは、その両端の短絡又は開放の接続状態が別個に制御可能にされる。具体的には、切替コイル108_1の一端と他端の間に切替スイッチ109_1が接続され、切替スイッチ109_1がオン・オフされることにより、切替コイル108_1の両端が短絡状態(Short)又は開放状態(Open)となる。同様に、切替コイル108_2の一端と他端の間に切替スイッチ109_2が接続され、切替コイル108_nの一端と他端の間に切替スイッチ109_nが接続される。夫々の切替スイッチ109_1〜109_nは、別個にオン・オフ制御可能にされる。特に制限されないが、切替コイル108_1〜108_nは、例えば1ターンの巻数とされる。
図9は、実施の形態3に係る切替コイルの他のコイルとの位置関係を例示する図である。同図には、図8におけるX−X’間の断面が模式的に示されている。
同図に示されるように、共鳴コイル106と給電コイル105とは、実施の形態1に係る送電装置1と同様に、高さ方向Hに重なりを有するように配置される。切替コイル108_1〜108_nは、共鳴コイル106と同一平面上に(高さ方向Hと垂直の方向の平面上に)、共鳴コイル106を囲むように同心円状に配置される。また、受電装置2の受電アンテナ121は、給電時に、例えば共鳴コイル106の上方に配置される。
図8、9に示されるように、夫々の切替コイル108_1〜108_nは、夫々の長さが互いに相異し、共鳴コイル106を囲むように同心円状に配置される。例えば、切替コイル108_1は、共鳴コイル106の外側に配置され、共鳴コイル106と切替コイル108_1との距離はx1とされる。また、切替コイル108_2は、共鳴コイル106及び切替コイル108_1の外側に配置され、共鳴コイル106と切替コイル108_2との距離はx2(>x1)とされる。更に、切替コイル108_nは、共鳴コイル106及び切替コイル108_1〜108_n−1の外側に配置され、共鳴コイル106と切替コイル108_nとの距離はxn(>x2>x1)とされる。
このように、共鳴コイル106からの距離を相異させて夫々の切替コイル108_1〜108_nを配置することにより、夫々の切替コイル108_1〜108_nと共鳴コイル106間の結合の強さを互いに相異させることができる。これにより、共振周波数の調整幅を可変することができる。例えば、共鳴コイル106に最も近い(共鳴コイル106との結合が最も強い)切替コイル108_1の接続状態を切り替えることにより共振周波数の大きくずらしたり、共鳴コイル106から最も遠い(共鳴コイル106との結合が最も弱い)切替コイル108_nの接続状態を切り替えることにより、共振周波数を小さくずらしたりするなどの制御が可能となる。また、切替コイル108_1〜108_nの接続状態の組み合わせを種々変更することにより、共振周波数をより細かく調整することが可能となる。
例えば、実施の形態2に係る送電装置4において、切替コイル201〜204及び切替スイッチ205〜208の代わりに、切替コイル108_1〜108_n及び切替スイッチ109_1〜109_nを設け、切替コイル201〜204及び切替スイッチ205〜208と同様に制御することが可能である。例えば、図7の処理フローにおいて、ステップS202、ステップS210、及びステップS211等における制御対象を切替コイル201〜204ではなく切替コイル108_1〜108_nとして、各処理を実行する。これによれば、実施の形態2に係る送電装置4と同様に、回路規模を抑えつつ、電力の伝送効率を更に向上させることができる。
≪実施の形態4≫
送電側の共振周波数を調整するための切替コイルを複数設ける場合の更に別の構成例を以下に示す。
図10は、実施の形態4に係る切替コイルの構成例を示す図である。
同図に示されるように、複数の切替コイル150_1〜150_m(mは2以上の整数)が、高さ方向Hに夫々重なるように配置される。特に制限されないが、切替コイル150_2〜150_mは、夫々の長さが互いに等しくされる。また、切替コイル150_1〜150_mは、例えば1ターンの巻数とされる。
夫々の切替コイル150_1〜150_mは、その両端の短絡又は開放の接続状態が別個に制御可能にされる。具体的には、切替コイル150_1の一端と他端の間に切替スイッチ151_1が接続され、切替スイッチ151_1がオン・オフされることにより、切替コイル150_1の両端が短絡状態(Short)又は開放状態(Open)となる。同様に、切替コイル150_2の一端と他端の間に切替スイッチ151_2が接続され、切替コイル150_mの一端と他端の間に切替スイッチ151_mが接続される。夫々の切替スイッチ151_1〜151_mは、別個にオン・オフ制御可能にされる。
図11は、実施の形態4に係る切替コイルと他のコイルとの位置関係を例示する図である。同図には、図10におけるX−X’間の断面が模式的に示されている。
同図に示されるように、共鳴コイル106と給電コイル105とは、実施の形態1に係る送電装置1と同様に、高さ方向Hに重なりを有するように配置される。切替コイル150_1は、共鳴コイル106と同一平面上に(高さ方向Hと垂直の方向の平面上に)、共鳴コイル106を囲むように(共鳴コイル106の外側に)同心円状に配置される。切替コイル150_2〜150_mは、高さ方向Hに切替コイル150_1と重なりを有するように夫々が離間して配置される。夫々の切替コイル150_1〜150_m間の距離は、特に制限されない。例えば、夫々の切替コイル間の距離を等しくしても良い。
このように切替コイル150_1〜150_mを配置することによって、実施の形態3に係る切替コイル108_1〜108_nと同様に、夫々の切替コイル150_1〜150_mと共鳴コイル106間の結合の強さを互いに相異させることができる。これにより、共振周波数の調整幅を可変することができる。また、切替コイル150_1〜150_mの接続状態の組み合わせを種々変更することにより、共振周波数をより細かく調整することが可能となる。
例えば、実施の形態2に係る送電装置4において、切替コイル201〜204及び切替スイッチ205〜208の代わりに、切替コイル150_1〜150_m及び切替スイッチ151_1〜151_mを設け、切替コイル201〜204及び切替スイッチ205〜208と同様に制御することが可能である。例えば、図7の処理フローにおいて、ステップS202、ステップS210、及びステップS211等における制御対象を切替コイル201〜204ではなく切替コイル150_1〜150_mとして、各処理を実行する。これによれば、実施の形態2に係る送電装置4と同様に、回路規模を抑えつつ、電力の伝送効率を更に向上させることができる。
≪実施の形態5≫
実施の形態5に係る送電装置は、無線通信時に送電側の共振周波数を調整するための切替コイルを通信用アンテナとして用いる点で、実施の形態1乃至4に係る送電装置と相異する。
図12に、実施の形態5に係る送電装置を含む非接触給電システムを例示する。
同図に示される非接触給電システム7は、送電装置5と受電装置6とを含む。非接触給電システム7では、送電装置5から受電装置6への磁気共鳴方式での電力供給に加えて、送電装置5と受電装置6との間の無線通信が可能とされる。特に制限されないが、当該無線通信は、NFC規格に準拠した無線通信(NFC通信)である。なお、図12に示される非接触給電システム7において、実施の形態1に係る非接触給電システム3等と同様の構成要素には同一の符号を付して、その詳細な説明を省略する。
送電装置5は、送電装置1の構成要素に加えて、通信部(CMM_CIR)112、無線通信スイッチ113を更に備える。また、送電装置5は、切替コイル108及び切替スイッチ109の代わりに、切替コイル114、115及び切替スイッチ116、117を備える。
通信部112は、切替コイル114又は切替コイル115を介して、受電装置6と無線通信を行う。例えば、受電装置6が送電装置5の送電対象であるか否かを認証するための認証データのやり取りや、送電装置5から送電された電力を受電装置6が受信したか否かを通知する受電通知のやり取り等は、当該無線通信を利用して行われる。その他、非接触電力伝送の制御に必要な受信装置6とのデータのやり取りは、通信部112による無線通信によって実現される。
無線通信スイッチ113は、通信部112の入出力端子とノードND1との間に接続される。無線通信スイッチ113は、例えば制御部103によってオン・オフ制御が可能にされる。例えば、無線通信スイッチ113は、送電装置5が切替コイル114又は115を介して通信を行う場合にオン状態にされ、送電装置5が送電を行う場合にオフ状態にされる。
切替コイル114及び115は、無線通信を行うための通信用アンテナとしての機能と、実施の形態1の切替コイル108等と同様に共振周波数を調整するための機能と、を備える。切替コイル114及び115は、ノードND1とグラウンドノードとの間に直列に接続される。具体的には、切替コイル114の一端がノードND1に接続され、他端がノードND2に接続される。ノードND1とノードND2の間には、切替スイッチ116が接続される。また、切替コイル115の一端がノードND2に接続され、他端がグラウンドノードに接続される。ノードND2とグラウンドノードの間には、切替スイッチ117が接続される。
図13は、実施の形態5に係る送電装置内の平面視における切替コイル114、115の配置例を示す図である。
同図に示されるように、送電装置5における共鳴コイル106と給電コイル105とは、送電装置1と同様に、高さ方向に重なりを有するように配置される。また、受電装置2の受電アンテナ121は、給電時に例えば共鳴コイル106の上方に配置される。
切替コイル114、115は、共鳴コイル106の一部と高さ方向に重なりを有するように(共鳴コイル106の上方に)、同一平面上に離間して配置される。また、夫々の切替コイル114、115は、共鳴コイル106との重なり部分が均等になるように配置される。例えば、図13に示されるように、共鳴コイル106を2つの領域に均等に分けるように、2つの切替コイル114、115が配置される。特に制限されないが、切替コイル114、115は、例えば1ターンの巻数とされる。
このように切替コイル114、115を配置することで、切替コイル114、115と共鳴コイル106を磁気的に結合させることができる。なお、図13では、共鳴コイル106との重なり部分が均等になるように切替コイル114、115が配置される場合が例示されているが、共鳴コイル106と切替コイル114、115が磁気的に結合されるのであれば、切替コイル114、115の配置は同図に限定されない。例えば、切替コイル114、115が、高さ方向に相互に重なりを有するように配置されても良い。
受電装置6は、NFC通信に用いるアンテナと磁気共鳴方式による給電に用いるアンテナとを共用し、電力の送電・受電と情報伝達のための通信とを切り替えて行うことが可能とされる。具体的に、受電装置6は、実施の形態1に係る受電装置2に対して、受電コイル142と共振容量143とからなる共振回路140と、共振回路140に接続される切替回路(SEL)145と、通信部(CMM_CIR)144とを更に備える。
通信部144は、受電コイル142を通信用アンテナとして用いることで、送電装置6と無線通信を行う。具体的には、受電装置6の通信部144と送電装置5の通信部112との間で、通信用アンテナとしての切替コイル114、115と受電コイル142とを介した無線通信によるデータの送受信が可能にされる。
切替回路145は、共振回路140によって受電した交流信号の信号レベルに応じて、受電した信号を通信部144と整流回路123の何れか一方に切り替えて出力する。例えば、初期状態として切替回路145の出力が通信部144側にセットされており、NFC通信時よりも信号レベルの高い信号を受信したら、切替回路145の出力が整流回路123側に切り替わる。
ここで、非接触給電システム7における無線通信と送電に係る処理の流れについて、図14を用いて詳細に説明する。
図14は、実施の形態5に係る非接触給電システム7における無線通信及び送電の処理の流れを示すフロー図である。なお、同図では、送電装置5が受電装置6の筺体の影響を受けない状態において、切替コイル114、115を共に短絡させたときに、共振回路110の共振周波数が送電周波数fTxに一致するように共鳴コイル106と共振容量107の定数を予め設定しているものとする。
例えば送電装置5の電源が投入され、送電装置5が動作可能な状態となると、送電制御に係る処理が開始される(S101)。先ず、送電装置5において、制御部103が無線通信スイッチ113をオンさせて、無線通信が可能な状態に設定する(S302)。次に、送電装置5は、通信用アンテナとして切替コイル114、115の何れか一方を選択する(S303)。例えば、送電装置5における制御部103は、切替スイッチ116、117の一方をオンさせるとともに他方をオフさせる。これにより、ノードND1とグラウンドノードとの間に切替コイル114、115の何れか一方が接続され、通信用アンテナとして機能することができる。これにより、通信部112の入出力端子と切替コイル114、115の何れか一方が接続され、通信部112による無線通信が可能にされる。
次に、送電装置5は無線通信を開始する(S304)。無線通信を開始したにも関わらず通信が確立できない場合には、送電装置5は通信用アンテナを切り替える(S305)。例えば、ステップ303において、通信用アンテナとして切替コイル114を選択(切替スイッチ116をオフ、切替スイッチ117をオン)した場合には、改めて、切替コイル115を通信用アンテナとして選択(切替スイッチ116をオン、切替スイッチ117をオフ)する。そして、再度、無線通信を開始する(S304)。無線通信が確立した場合には、送電装置5は、受電装置6との間で無線通信を継続し、各種のデータのやり取りを行う(S306)。
ステップS306の無線通信において、受電装置6が送電装置5の送電対象であることが確認されたら、送電装置5は電力の送電制御を開始する。先ず、送電装置5における制御部103は、無線通信スイッチ113をオフさせる(S307)。次に、制御部103は、切替スイッチ116、117の全てをオンさせて、切替コイル114、115の夫々を短絡させる(S308)。そして、制御部103は、通常よりも低い電力で送電を開始する(S103)。その後は、実施の形態2に係る送電装置4の処理フロー(図7)と同様に、送電装置5が、送電範囲に受電装置6が存在するか否かの判定処理(S104〜S108)を行った後に、VSWRが最も小さくなる切替コイル114、115の接続状態を探索する処理(S209〜S213)を行うことで、効率の良い送電を実現する。
以上、実施の形態5に係る送電装置5によれば、共振周波数の調整手段としての切替コイル114、115を無線通信のための通信用アンテナとしても用いることで、無線通信のためのアンテナを別途設けることなく、無線通信を実現することができる。また、上記のように、無線通信における通信状態の良否によって通信用アンテナとして用いる切替コイル114、115を切り替えることができるので、より通信状態が良好な無線通信を確立することができる。
≪実施の形態6≫
実施の形態6に係る送電装置は、共鳴コイルによる送電に加えて、共振コイルと磁気的に結合された中継コイルによる送電が可能にされる点で、実施の形態1乃至5に係る送電装置と相異する。
図15に、実施の形態6に係る送電装置を含む非接触給電システムを例示する。
同図に示される非接触給電システム9は、送電装置8と受電装置2とを含む。なお、図15に示される非接触給電システム9において、実施の形態1に係る非接触給電システム3等と同様の構成要素には同一の符号を付して、その詳細な説明を省略する。また、説明の便宜上、同図における受電装置2として、受電コイル121のみを図示し、その他の回路ブロックは図示を省略している。
送電装置8は、実施の形態1に係る送電装置1と同様に、発振器101、送電アンプ102、制御回路103、検出部104、給電コイル105、共鳴コイル106、及び共振容量107を含む。送電装置8は更に、中継コイル及び共振容量からなる複数の中継回路と、複数の切替コイル及び切替スイッチとを含む。図15には、一例として、中継コイル301及び共振容量302を含む中継回路401と、中継コイル305及び共振容量306を含む中継回路402が例示されている。また、同図には、切替コイル303及び切替スイッチ304と、切替コイル307及び切替スイッチ308と、切替コイル309及び切替スイッチ310とが例示されている。
中継コイル301は、共鳴コイル106と磁気的に結合可能に配置され、その両端には共振容量302が接続される。中継コイル305は、中継コイル301と磁気的に結合可能に配置され、その両端には共振容量306が接続される。共鳴コイル106と中継コイル301、305とは、送電装置内に、同一平面上に並んで配置される。同図には、一例として、x方向に一列に並んで配置された場合が例示されているが、y方向に並んで配置されても良いし、x方向及びy方向の双方に並んで配置されても良い。これにより、隣接するコイル同士が磁気的に結合される。
共振回路110の共振周波数が送電周波数fTxと等しくなるように、共鳴コイル106と共振容量107の定数が設定される。これにより、給電コイル105の電力が共鳴コイル106に効率良く送電される。また、中継回路401も、その共振周波数が送電周波数fTxと等しくなるように、中継コイル301及び共振容量302の定数が設定される。中継回路402についても同様である。これにより、給電コイル105の電力を、共鳴コイル106、中継コイル301、中継コイル305の順に効率良く伝えることができる。このような状態において、これらのコイルの上方(高さ方向H)に、共振周波数の等しい受電コイル121が近づくと、受電コイル121は電力を効率良く受電する。例えば、図15において、参照符号Aの位置に受電コイル121が配置された場合、受電コイル121は、共鳴コイル106から効率良く電力を受電することができる。
しかしながら、送電装置において並んで配置された夫々のコイルの境界付近に受電装置2の受電コイル121が置かれた場合、受電装置2に十分な電力が送電されない虞があることを、本願発明者は見出した。これは、上記の境界付近に、隣接する2つのコイルの一方の磁束と他方の磁束とが打ち消し合う場所(ヌル点)が存在することが原因である。例えば、図15に示されるように、中継コイル301と中継コイル305の境界付近(参照符号Bの位置)に受電コイル121が配置された場合、ヌル点の存在により、受電コイル121は十分な電力を受電できない虞がある。そこで、本実施の形態に係る送電装置8は、上記コイルの境界付近に切替コイル303、307、309を夫々配置する。
切替コイル303は、共鳴コイル106と中継コイル301の双方に磁気的に結合可能に配置される。例えば、図15に示されるように、切替コイル303は、共鳴コイル106と中継コイル301の境界付近に、共鳴コイル106と中継コイル301の双方と高さ方向Hに重なりを有するように配置される。同様に、切替コイル307は、中継コイル301と中継コイル305の境界付近に、双方のコイルと高さ方向Hに重なりを有するように配置される。また、切替コイル309は、中継コイル302とそれに隣接する中継コイル(図示せず)の境界付近に、双方のコイルと高さ方向Hに重なりを有するように配置される。特に制限されないが、切替コイル303、307、309は、例えば1ターンの巻数とされる。
切替コイル303、307、309は、その両端の短絡又は開放が切り替え可能にされる。具体的には、切替コイル303の両端に切替スイッチ304が接続され、制御部103によって切替スイッチ304のオン・オフが制御されることにより、切替コイル303の短絡と開放が切替可能にされる。同様に、切替コイル307の両端に切替スイッチ308が接続され、切替コイル309の両端に切替スイッチ310が接続され、制御部103によって切替スイッチ308と切替スイッチ310のオン・オフが制御される。
切替コイルの具体的な制御方法は以下である。先ず、初期状態として切替コイル303、307、309の両端を開放しておき、受電コイル121が共鳴コイル106や中継コイル301、305等の境界付近に配置された場合に、所望の切替コイルの両端を短絡する。例えば、図15において、中継コイル301と中継コイル305の境界付近(参照符号Bの位置)に受電コイル121が配置された場合、切替コイル307の両端を短絡する。これにより、当該境界付近の電磁界条件が変わるので、ヌル点の発生する場所が変化し、受電コイル121が効率良く受電できる可能性が高くなる。
図16は、切替コイルの短絡・開放の切替制御を行ったときの伝送特性を例示する図である。同図において、横軸は周波数〔MHz〕を表し、縦軸は伝送特性S21〔dB〕を表す。参照符号400は、図15の参照符号Aの位置に受電装置2(受電コイル121)が置かれた場合の伝送特性を示す。また、参照符号401は、全ての切替コイルを開放した状態において図15の参照符号Bの位置に受電装置2が置かれた場合の伝送特性を示し、参照符号402は、切替コイル307を短絡し、且つ他の切替コイル303、309を開放した状態において、参照符号Bの位置に受電装置2が置かれた場合の伝送特性を示す。
同図の参照符号400に示されるように、参照符号Aの位置に受電装置2が置かれた場合には、ヌル点が存在せず、比較的良好な特性となる。一方、参照符号401に示されるように、参照符号Bの位置に受電装置2が置かれた場合には、周波数fxの付近にヌル点が存在し、伝送特性が急激に低下することが理解される。この場合に、中継コイル301と中継コイル305の境界の上方に配置された切替コイル307を短絡させる。これにより、参照符号402に示されるように、ヌル点の発生位置が移動し、伝送特性が向上することが理解される。
次に、非接触給電システム9における送電制御の処理の流れについて、図17を用いて詳細に説明する。
図17は、実施の形態6に係る非接触給電システム9における送電制御の流れの一例を示すフロー図である。
例えば送電装置8の電源が投入され、送電装置8が動作可能な状態となると、送電制御に係る処理が開始される(S101)。先ず、送電装置8における制御部103が全ての切替スイッチ304、308、310をオフさせて、全ての切替コイル303、307、309を開放する(S402)。
次に、送電装置8は、通常よりも低い電力で送電を開始する(S403)。具体的には、制御部103が、通常の送電時の電力量よりも低い電力量となるように、送電アンプ102の増幅率を変化させる。送電装置8は、通常よりも低い電力で送電を行いながら、切替コイル303、307、309の接続状態を順次変更してVSWRを算出する(S404)。具体的には、制御部103が、切替スイッチ304、308、310のオン・オフを切り替えることにより、切替コイル303、307、309の接続状態を順次変更する。例えば、切替コイル303、307、309を全て開放したときのVSWRを算出し、次に切替コイル303のみを短絡したときのVSWRを算出し、次に切替コイル307のみを短絡したときのVSWRを算出するというように、短絡する切替コイルを順次変化させたときのVSWRを順次算出する。
制御部103は、全ての組み合わせのVSWRを算出したら、算出したVSWRのうち最も値の小さい、切替コイル303、307、309の接続状態の組み合わせを選択する(S405)。そして、制御部103は、選択した接続状態となるように切替スイッチ304、308、310のオン・オフを設定し、そのときのVSWRを算出する。制御部103は、算出したVSWRが予め設定した所定範囲内の値であるか否かを判定する(S407)。当該ステップにおける判定方法は、前述した図4のステップS106と同様である。
ステップS407において、VSWRが上記所定範囲外の値である場合、送電装置8における制御部103は、送電範囲に異物が侵入したと判断し、外部にエラー情報を通知する(S408)。そして、エラー情報の通知後、送電装置8は送電を停止し、送電処理を終了する(S409)。一方、VSWRが上記所定範囲内の値である場合には、受電装置2が送電装置8の送電範囲に置かれたと判断し、送電装置8は通常の電力で送電を開始する(S410)。具体的には、制御部103が、ステップS403で設定した電力量よりも大きな電力量となるように、送電アンプ102の増幅率を変化させる。
通常の電力で送電を行っている間、送電装置8における制御部103は、適宜、電圧在波比VSWRを算出する(S411)。制御部103は、ステップS407と同様に、算出したVSWRが予め設定した所定範囲内の値であるか否かを判定する(S412)。ステップS412において、VSWRが上記所定範囲外の値である場合、制御部103は、受電装置2が移動したと判断し、最適な切替コイルの接続状態を探索するための処理を再開する(S402〜S411)。一方、ステップS412において、VSWRが上記所定範囲内の値である場合、送電装置8は、受電装置2に対する給電が不要になるまで、送電を継続する(S413)。そして、受電装置2におけるバッテリVATの充電が完了したこと等により送電が不要となったら、送電装置8は送電を停止し、送電制御を終了する(S414)。
以上、実施の形態6に係る送電装置によれば、切替コイルの両端の接続状態(短絡/開放)を切り替えることにより、コイル間の境界付近の電磁界条件を変化させ、境界付近に発生するヌル点の位置をずらすことができる。これにより、コイル間の境界付近に受電装置が置かれた場合であっても、受電装置に十分な電力を送電することが可能となり、電力の伝送効率を向上させることができる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、実施の形態1乃至5において、切替コイルの巻数を1ターンとしたが、これに限定されるものではなく、共振周波数の調整幅等によって巻数を変更しても良い。同様に、実施の形態6に係る切替コイル303、307、309の巻数も、ヌル点の移動量に応じて種々変更可能である。
実施の形態5に係る送電装置5において、2つの切替コイル114、115を設けた場合を例示したが、切替コイルの数を増やしても良い。例えば、実施の形態2に係る送電装置4のように、4つの切替コイルを設け、無線通信時に、そのうちの一つを通信用アンテナとして用いるようにしても良い。
実施の形態6に係る送電装置8において、2つの中継回路401、402を例示したが、並べて配置される中継回路の個数は特に制限されない。また、図15では共振回路110を基点として同図の右方向に一列に中継回路を配置する場合が例示されているが、共振回路110を基点として同図の左方向に一列に中継回路を配置しても良い。更に、図15では、切替コイル及び切替スイッチのセットを3つ配置する場合が例示されるが、当該セットは、中継回路に対応して設ければ良く、その個数の特に制限はない。また、図15には、コイル間の境界の一つに、一個の切替コイルを配置する場合が例示されているが、境界に配置される切替コイルの個数に特に制限はない。例えば、一つの境界付近に、Y方向に2つの切替コイルを並べて配置させても良い。
1 送電装置
2 受電装置
3 非接触給電システム
101 発振器
102 送電アンプ
103 制御回路
104 検出部
105 給電コイル
106 共鳴コイル
107 共振容量
108 切替コイル
109 切替スイッチ
110 共振回路
111 電源回路
121 受電コイル
122 共振容量
123 整流回路
124 電源回路
125 充電制御回路
126 制御回路
127 内部回路
VAT バッテリ
X,Y、X 方向
300〜302、400〜402 伝送特性
4 送電装置
201〜204、108_1〜108_n、150_1〜150_m 切替コイル
205〜208、109_1〜109_n、151_1〜151_m 切替スイッチ
x1〜xn 共鳴コイルと切替コイル間の距離
5 送電装置
6 受電装置
7 非接触給電システム
112、144 通信部
113 無線通信スイッチ
114、115 切替コイル
116、117 切替スイッチ
ND1、ND2 ノード
140 共振回路
142 受電コイル
143 共振容量
145 切替回路
8 送電装置
9 非接触給電システム
401、402 中継回路
301、305 中継コイル
302、306 共振容量
303、307、309 切替コイル
304、308、310 切替スイッチ

Claims (20)

  1. 送電アンテナとしての共鳴コイル及び共振容量を含む共振回路と、前記共鳴コイルと磁気的に結合可能に配置された第1コイルとを含み、前記共振回路の共振結合によって非接触で電力を送電する送電装置であって、
    電力の送電を行うとき、前記共振回路の共振周波数が送電電力として出力される送電信号の周波数に近づくように、前記第1コイルの両端を短絡又は開放する制御を行う、送電装置。
  2. 請求項1において、
    前記第1コイルを複数含み、
    夫々の前記第1コイルは、その両端の短絡又は開放の接続状態が別個に制御可能にされる、送電装置。
  3. 請求項2において、
    夫々の前記第1コイルは、夫々の長さが互いに相異し、前記共鳴コイルを囲むように同心円状に配置される、送電装置。
  4. 請求項2において、
    夫々の前記第1コイルは、前記共鳴コイルの一部と高さ方向に重なりを有するように、同一平面上に離間して配置される、送電装置。
  5. 請求項4において、
    夫々の前記第1コイルは、前記共鳴コイルとの重なりが均等になるように配置される、送電装置。
  6. 請求項5において、
    前記第1コイルの何れか一つをアンテナとした無線によるデータ通信が可能にされる、送電装置。
  7. 請求項6において、
    前記無線によるデータ通信のためのアンテナとして、前記第1コイルの何れか一つが選択可能にされる、送電装置。
  8. 請求項7において、
    前記データ通信は、NFC規格に準拠した通信である、送電装置。
  9. 請求項2において、
    前記送電電力に応じた交流信号を生成し、前記共振回路に供給する電源部と、
    前記電源部から前記共振回路に供給される交流信号の反射量を検出するための検出部と、
    制御部と、を更に含み、
    前記制御部は、前記反射量が最も小さくなるように、前記第1コイルの前記接続状態を切り替える、送電装置。
  10. 請求項9において、
    前記検出部は、前記電源部から前記一次共振回路側に供給される交流信号の入射電力量に対応した第1電圧と、当該交流信号の反射電力量に対応した第2電圧とを生成し、
    前記制御部は、前記第1電圧と前記第2電圧とに基づいて電圧定在波比を算出し、その算出結果に基づいて前記反射量の大きさを判断する、送電装置。
  11. 請求項2において、
    前記第1コイルの巻数が1ターンとされる、送電装置。
  12. 請求項1において、
    前記第1コイルは、前記共鳴コイルと同一平面上に、前記共鳴コイルを囲むように配置される、送電装置。
  13. 請求項12において、
    前記第1コイルの両端を短絡した状態で電力の送電を行い、前記共振周波数がずれたことを検出したら、前記第1コイルの両端を開放して電力の送電を行う、送電装置。
  14. 請求項1の送電装置と、
    前記送電装置から供給された電力を、共振回路を利用した電磁界の共振結合によって非接触で受電する受電装置と、を含む非接触給電システム。
  15. 送電アンテナとしての共鳴コイル及び共振容量を含む共振回路と、前記共鳴コイルと磁気的に結合可能に配置された第1中継コイル及び第1容量を含む第1中継回路と、前記共鳴コイルと前記中継コイルの双方に磁気的に結合可能に配置された第1コイルと、を含み、前記共振回路及び前記第1中継回路による共振結合によって非接触で電力を送電する送電装置であって、
    前記共鳴コイルと前記第1中継コイルは、同一平面上に配置され、
    前記第1コイルは、前記共鳴コイルと前記第1中継コイルの双方と高さ方向に重なりを有するように配置され、その両端の短絡又は開放が切り替え可能にされる、送電装置。
  16. 請求項15において、
    前記第1中継コイルと磁気的に結合可能に配置された第2中継コイル及び第2容量を含む第2中継回路と、
    前記第1中継コイルと前記第2中継コイルの双方に磁気的に結合可能に配置された第2コイルと、を更に含み、
    前記第1中継コイルと前記第2中継コイルは、同一平面上に配置され、
    前記第2コイルは、前記第1中継コイルと前記第2中継コイルの双方と高さ方向に重なりを有するように配置され、その両端の短絡又は開放が切り替え可能にされる送電装置。
  17. 請求項16において、
    前記送電電力に応じた交流信号を生成し、前記共振回路に供給する電源部と、
    前記電源部から前記共振回路に供給される交流信号の反射量を検出するための検出部と、
    制御部と、を更に含み、
    前記制御部は、前記反射量が最も小さくなるように、前記第1コイル及び前記第2コイルの両端の短絡又は開放を夫々切り替える、送電装置。
  18. 送電アンテナとしての共鳴コイル及び共振容量を含む共振回路と、前記共鳴コイルと磁気的に結合可能に配置された複数の第1コイルとを含み、前記共振回路の共振結合によって非接触で電力を送電するための送電装置において、電力の送電を制御するための制御方法であって、
    夫々の前記第1コイルは、その両端の短絡又は開放の接続状態が別個に制御可能にされ、
    送電装置が、前記共振回路に供給される交流信号の反射量が最も小さくなるような夫々の前記第1コイルの接続状態の組み合わせを探索する第1ステップと、
    送電装置が前記第1ステップで探索された前記第1コイルの接続状態で電力の送電を行う第2ステップと、を含む、を含む制御方法。
  19. 請求項18において、
    前記送電装置が、夫々の前記第1コイルの両端を短絡させた状態で、第1電力よりも低い第2電力で送電を開始する第3ステップと、
    前記送電装置が、夫々の前記第1コイルの両端を短絡した状態において前記第2電力で送電したときの前記反射量を推定する第4ステップと、
    前記送電装置が、前記第4ステップで推定した前記反射量が所定の基準値からずれているか否かを判断する第5ステップと、
    前記送電装置が、前記第5ステップにおいて前記反射量が前記所定の基準値からずれていると判断した場合に、当該反射量が所定の範囲内であるか否かを判定する第6ステップと、
    前記送電装置が、前記第6ステップにおいて前記反射量が所定の範囲内であると判定した場合に前記第2電力から前記第1電力に変更して送電を行う第7ステップと、
    前記送電装置が、前記第6ステップにおいて前記反射量が所定の範囲内でないと判定した場合に送電を停止する第8ステップとを含み、
    前記第1ステップは、前記第7ステップの後に実行される、制御方法。
  20. 請求項19において、
    前記反射量は、前記共振回路に供給される交流信号の入射電力量に応じた第1電圧と当該交流信号の反射電力量に応じた第2電圧とから算出された電圧定在波比の値に基づいて推定される、制御方法。
JP2013132529A 2013-06-25 2013-06-25 送電装置、非接触給電システム、及び制御方法 Active JP6092017B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013132529A JP6092017B2 (ja) 2013-06-25 2013-06-25 送電装置、非接触給電システム、及び制御方法
US14/313,617 US10177817B2 (en) 2013-06-25 2014-06-24 Electric power transmitting device, non-contact power supply system, and control method
CN201410289243.1A CN104253491B (zh) 2013-06-25 2014-06-24 电力发送设备、非接触供电系统及控制方法
US16/197,976 US11303325B2 (en) 2013-06-25 2018-11-21 Electric power transmitting device, non-contact power supply system, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013132529A JP6092017B2 (ja) 2013-06-25 2013-06-25 送電装置、非接触給電システム、及び制御方法

Publications (2)

Publication Number Publication Date
JP2015008578A true JP2015008578A (ja) 2015-01-15
JP6092017B2 JP6092017B2 (ja) 2017-03-08

Family

ID=52110303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013132529A Active JP6092017B2 (ja) 2013-06-25 2013-06-25 送電装置、非接触給電システム、及び制御方法

Country Status (3)

Country Link
US (2) US10177817B2 (ja)
JP (1) JP6092017B2 (ja)
CN (1) CN104253491B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463163A (zh) * 2015-10-21 2018-08-28 诺伊斯佩拉医疗有限公司 用于刺激治疗的装置、系统和方法
JP2019502080A (ja) * 2016-01-04 2019-01-24 エルジー エレクトロニクス インコーポレイティド 冷蔵庫
WO2020040410A1 (ko) * 2018-08-23 2020-02-27 삼성전자 주식회사 외부 전자 장치로부터 수신된 식별 정보에 기반하여 안테나와 연결된 스위치를 선택적으로 개방하거나 또는 연결하는 전자 장치 및 방법

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211256B1 (ja) * 2011-12-22 2013-06-12 Necトーキン株式会社 電子機器及びシステム
KR102028112B1 (ko) * 2013-01-14 2019-10-04 삼성전자주식회사 상호 공진을 이용하는 전력 전송 및 데이터 송수신 장치, 상호 공진을 이용하는 전력 수신 및 데이터 송수신 장치 및 이의 방법
JPWO2015177860A1 (ja) * 2014-05-20 2017-04-20 富士通株式会社 無線電力伝送制御方法および無線電力伝送システム
US9991048B2 (en) * 2014-06-24 2018-06-05 The Board Of Trustees Of The University Of Alabama Wireless power transfer systems and methods
US10566843B2 (en) * 2014-07-15 2020-02-18 Qorvo Us, Inc. Wireless charging circuit
US10559970B2 (en) * 2014-09-16 2020-02-11 Qorvo Us, Inc. Method for wireless charging power control
DE102014220978A1 (de) * 2014-10-16 2016-04-21 Robert Bosch Gmbh Spulenanordnung zur induktiven Energieübertragung, induktive Energieübertragungsvorrichtung und Verfahren zum Herstellen einer Spulenanordnung zur induktiven Energieübertragung
KR101730223B1 (ko) * 2014-10-27 2017-04-25 삼성전기주식회사 무선 전력 수신 장치 및 방법, 그를 이용한 무선 전력 제공 시스템
RU2659568C1 (ru) * 2015-04-08 2018-07-03 Ниссан Мотор Ко., Лтд. Блок катушки наземной стороны
US10654365B2 (en) * 2015-04-29 2020-05-19 Aptiv Technologies Limited Bifurcated balanced electromagnetic resonator
KR101950369B1 (ko) * 2015-06-25 2019-02-20 엘지이노텍 주식회사 무선 전력 수신 장치 및 이를 포함하는 무선 전력 전송 시스템
US10333357B1 (en) * 2015-08-15 2019-06-25 Jaber Abu Qahouq Methods and systems for arrangement and control of wireless power transfer and receiving
JP6532357B2 (ja) * 2015-08-31 2019-06-19 キヤノン株式会社 送電装置、制御方法及びプログラム
CN105262513B (zh) * 2015-09-17 2019-02-05 王清斌 一种具有高发射功率的nfc有源通信接口
US10461812B2 (en) 2016-04-01 2019-10-29 Nan Jing Qiwei Technology Limited Near-field communication (NFC) tags optimized for high performance NFC and wireless power reception with small antennas
US10491027B2 (en) * 2016-04-01 2019-11-26 Intel Corporation Wireless power transmission
US10153809B2 (en) 2016-04-01 2018-12-11 Fusens Technology Limited Near-field communication (NFC) reader optimized for high performance NFC and wireless power transfer with small antennas
US10666325B2 (en) 2016-04-01 2020-05-26 Nan Jing Qiwei Technology Limited Near-field communication (NFC) system and method for high performance NFC and wireless power transfer with small antennas
EP3247049A1 (en) * 2016-05-17 2017-11-22 Nxp B.V. Wireless antenna structure
EP3280030B1 (en) * 2016-08-04 2023-08-30 General Electric Company System and method for charging receiver devices
CN106385072B (zh) * 2016-10-11 2019-12-06 赵莹 一种无线电传输系统及其应用装置
JP6784170B2 (ja) * 2016-12-27 2020-11-11 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
EP3576493A4 (en) * 2017-01-27 2020-04-22 Mitsubishi Electric Corporation INDUCTION HEATING COOKER
KR102589437B1 (ko) * 2017-02-14 2023-10-16 삼성전자 주식회사 코일 안테나를 갖는 전자 장치
US10923462B2 (en) * 2018-05-01 2021-02-16 Western Digital Technologies, Inc. Bifurcated memory die module semiconductor device
FR3103977B1 (fr) * 2019-12-03 2021-10-29 Continental Automotive Dispositif de communication en champ proche a haute frequence et de rechargement par induction d’un appareil electronique portable
US11128338B2 (en) * 2020-02-18 2021-09-21 Qualcomm Incorporated Switchable electromagnetic ring
CN112874331B (zh) * 2021-01-26 2023-01-06 华北电力大学 带有可切换中继线圈的电动汽车无线充电磁耦合器
CN116886132A (zh) * 2023-08-04 2023-10-13 维沃移动通信有限公司 近场通信电路和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151989A (ja) * 2010-01-22 2011-08-04 Sony Corp ワイヤレス給電装置およびワイヤレス給電システム
JP2013078166A (ja) * 2011-09-29 2013-04-25 Hitachi Maxell Energy Ltd 非接触電力伝送装置及び非接触電力伝送方法
JP2013085436A (ja) * 2011-09-29 2013-05-09 Hitachi Maxell Ltd 非接触電力伝送装置及び非接触電力伝送方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113600A1 (en) * 2000-12-28 2002-08-22 Swank John D. VSWR monitor and alarm
US7103328B2 (en) * 2003-07-24 2006-09-05 Sige Semiconductor Inc. Power transfer measurement circuit for wireless systems
JP4750463B2 (ja) * 2005-05-11 2011-08-17 ルネサスエレクトロニクス株式会社 高周波電力増幅器およびそれを用いた送信器および移動体通信端末
JP4822850B2 (ja) * 2006-01-16 2011-11-24 株式会社日立製作所 磁気共鳴測定方法
JP4453741B2 (ja) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
JP5203389B2 (ja) * 2007-12-03 2013-06-05 パナソニック株式会社 高周波フィルタ
JP5247214B2 (ja) * 2008-04-04 2013-07-24 株式会社日立製作所 高周波磁場コイル及び磁気共鳴撮影装置
US8965461B2 (en) * 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
JP4911148B2 (ja) * 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
JP2011029799A (ja) * 2009-07-23 2011-02-10 Sony Corp 非接触給電通信装置、非接触受電通信装置、給電通信制御方法および受電通信制御方法
JP5580333B2 (ja) * 2009-11-18 2014-08-27 株式会社東芝 無線電力伝送装置
US8686685B2 (en) * 2009-12-25 2014-04-01 Golba, Llc Secure apparatus for wirelessly transferring power and communicating with one or more slave devices
JP2011142559A (ja) * 2010-01-08 2011-07-21 Sony Corp 給電装置、受電装置、およびワイヤレス給電システム
JP2011167036A (ja) 2010-02-15 2011-08-25 Toyota Industries Corp 車両用給電装置および受電装置
JP5139469B2 (ja) * 2010-04-27 2013-02-06 株式会社日本自動車部品総合研究所 コイルユニットおよび非接触給電システム
KR101222749B1 (ko) * 2010-12-14 2013-01-16 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
US9054544B2 (en) * 2010-12-22 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, power receiving device, and wireless power feed system
JP2012143117A (ja) 2011-01-06 2012-07-26 Toyota Industries Corp 非接触電力伝送装置
US9094055B2 (en) * 2011-04-19 2015-07-28 Qualcomm Incorporated Wireless power transmitter tuning
KR101813131B1 (ko) * 2011-05-11 2017-12-28 삼성전자주식회사 무선 전력 전송 시스템, 무선 전력 전송 시스템의 공진 임피던스 및 공진 주파수의 제어 방법
KR101305579B1 (ko) 2011-09-09 2013-09-09 엘지이노텍 주식회사 무선전력 중계장치 및 무선전력 전송 장치
KR20130028446A (ko) * 2011-09-09 2013-03-19 엘지이노텍 주식회사 무선 전력 송신 장치 및 그 방법
CN103814502A (zh) * 2011-09-21 2014-05-21 丰田自动车株式会社 非接触送电装置、非接触受电装置以及非接触送受电系统
JP2013240246A (ja) * 2012-05-17 2013-11-28 Toshiba Corp 無線給電中継装置
US9466418B2 (en) * 2012-06-12 2016-10-11 Gerogia Tech Research Corporation Multi-band and broadband wireless power transfer through embedded geometric configurations
US8847652B2 (en) * 2012-07-26 2014-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. Reconfigurable and auto-reconfigurable resonant clock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151989A (ja) * 2010-01-22 2011-08-04 Sony Corp ワイヤレス給電装置およびワイヤレス給電システム
JP2013078166A (ja) * 2011-09-29 2013-04-25 Hitachi Maxell Energy Ltd 非接触電力伝送装置及び非接触電力伝送方法
JP2013085436A (ja) * 2011-09-29 2013-05-09 Hitachi Maxell Ltd 非接触電力伝送装置及び非接触電力伝送方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463163A (zh) * 2015-10-21 2018-08-28 诺伊斯佩拉医疗有限公司 用于刺激治疗的装置、系统和方法
US11129985B2 (en) 2015-10-21 2021-09-28 Neuspera Medical, Inc. Devices, systems, and methods for stimulation therapy
US11964151B2 (en) 2015-10-21 2024-04-23 NeuSpera Medical Inc. Devices, systems, and methods for stimulation therapy
JP2019502080A (ja) * 2016-01-04 2019-01-24 エルジー エレクトロニクス インコーポレイティド 冷蔵庫
US10886785B2 (en) 2016-01-04 2021-01-05 Lg Electronics Inc. Refrigerator
US11239702B2 (en) 2016-01-04 2022-02-01 Lg Electronics Inc. Refrigerator
US11532954B2 (en) 2016-01-04 2022-12-20 Lg Electronics Inc. Refrigerator
WO2020040410A1 (ko) * 2018-08-23 2020-02-27 삼성전자 주식회사 외부 전자 장치로부터 수신된 식별 정보에 기반하여 안테나와 연결된 스위치를 선택적으로 개방하거나 또는 연결하는 전자 장치 및 방법
US11450963B2 (en) 2018-08-23 2022-09-20 Samsung Electronics Co., Ltd. Electronic device and method for selectively opening or connecting switch connected to antenna based on identification information received from external electronic device

Also Published As

Publication number Publication date
US11303325B2 (en) 2022-04-12
US20190097686A1 (en) 2019-03-28
US20140375137A1 (en) 2014-12-25
CN104253491B (zh) 2019-04-26
CN104253491A (zh) 2014-12-31
JP6092017B2 (ja) 2017-03-08
US10177817B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
JP6092017B2 (ja) 送電装置、非接触給電システム、及び制御方法
JP6087434B2 (ja) 送電装置、非接触給電システム、及び制御方法
US10493856B2 (en) System, apparatus and method for optimizing wireless charging alignment
US9680336B2 (en) Wireless power repeater and method thereof
WO2012157374A1 (ja) 電磁結合状態検知回路、送電装置、非接触電力伝送システム及び電磁結合状態検知方法
CN105515216A (zh) 无线传输电力的设备和方法
EP3032701B1 (en) Wireless power transmission device
JP5751326B2 (ja) 共鳴型非接触給電システム
US11770027B2 (en) Wireless power transmission device
US20170187245A1 (en) Power receiver and power transmitting system
KR101222137B1 (ko) 자기공진유도 방식 지향성 무선 전력 전송 장치
JP6855878B2 (ja) 受電器、電力伝送システム、及び、受電器の制御方法
KR102235673B1 (ko) 이중 루프 동위상 급전을 이용한 무선 전력 전송 방법 및 장치
KR20150055755A (ko) 공명 전력 신호 및 유도 전력 신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치 및 이를 포함하는 하이브리드 무선 전력 전송 시스템
JP2018143064A (ja) 送電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6092017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250