JP2014534457A - レーザ処理設備においてスペックルを低減させるための装置および方法 - Google Patents

レーザ処理設備においてスペックルを低減させるための装置および方法 Download PDF

Info

Publication number
JP2014534457A
JP2014534457A JP2014533670A JP2014533670A JP2014534457A JP 2014534457 A JP2014534457 A JP 2014534457A JP 2014533670 A JP2014533670 A JP 2014533670A JP 2014533670 A JP2014533670 A JP 2014533670A JP 2014534457 A JP2014534457 A JP 2014534457A
Authority
JP
Japan
Prior art keywords
refractive
energy
laser
lenses
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014533670A
Other languages
English (en)
Other versions
JP6109833B2 (ja
Inventor
スティーヴン モファット,
スティーヴン モファット,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2014534457A publication Critical patent/JP2014534457A/ja
Application granted granted Critical
Publication of JP6109833B2 publication Critical patent/JP6109833B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本明細書において説明される実施形態は、均一なレーザエネルギーで半導体基板を処理するための装置および方法を提供する。レーザパルスまたはレーザビームが、空間均質化装置に送られる。この空間均質化装置は、レーザエネルギー光路に対して垂直な平面に沿って配置された複数のレンズであってもよく、一例は、マイクロレンズアレイである。空間均質化装置により生成された空間的に均質化されたエネルギーは、次いで複数の厚さを有する屈折媒体に送られる。これらの複数の厚さはそれぞれ、レーザエネルギーの少なくとも可干渉長さの分だけ他の厚さと異なる。【選択図】図2D

Description

本明細書において説明する実施形態は、半導体基板の熱処理に関する。より詳細には、本明細書において説明する実施形態は、半導体基板のレーザ熱処理に関する。
半導体製造において、熱処理は、半導体基板中のドーパントを溶融、アニール、結晶化、および活性化させるために一般的に利用される。一般的には、高パワーレベルを利用することによって半導体基板を処理するが、この高パワーレベルは、しばしばレーザを利用することにより実現される。レーザは、エネルギーの空間分布が不均一な可干渉光を生成する。この分布は、レージング媒体の構造に応じて、より高いエネルギー強度およびより低いエネルギー強度を結果的にもたらす極大値および極小値を有することとなるが、このことが、基板処理の不均一性をもたらす。さらに、レーザエネルギーフィールドの形状が、処理領域の所望の形状とはしばしば異なるものとなる。
レーザエネルギーフィールドの均一性を向上させ、その形状を所望の形状寸法に適合させることに向けて、多くの研究がなされており、その改良は、半導体デバイスのスケール縮小と大まかに歩調を合わせてきた。しかし、小型化の流れが継続することにより、さらなる改良が依然として必要とされる。
本明細書において説明される実施形態は、均一なレーザエネルギーで半導体基板を処理するための装置および方法を提供する。レーザパルスまたはレーザビームが、空間均質化装置に送られる。この空間均質化装置は、レーザエネルギー光路に対して垂直な平面に沿って配置された複数のレンズであってもよく、一例は、マイクロレンズアレイである。空間均質化装置により生成された空間的に均質化されたエネルギーは、次いで複数の厚さを有する屈折媒体に送られる。これらの複数の厚さはそれぞれ、レーザエネルギーの少なくとも可干渉長さの分だけ他の厚さと異なる。
いくつかの実施形態においては、屈折媒体は、プリズムなどの一体媒体である。プリズムは、複数の異なる長さのカラムを備えてもよい。屈折媒体は、典型的には、1つの受光表面と複数の透過表面とを有し、これらの表面は全て、レーザエネルギーの光路に対して垂直である。透過表面と受光表面との間の距離が異なることにより、プリズムの複数の厚さが構成される。別の実施形態においては、屈折媒体は、それぞれ異なる長さのロッドの集合体である。別の実施形態においては、屈折媒体は、複数の屈折プレートである。
本発明の上記特徴を詳細に理解することが可能となるように、上記では簡潔な要約として示した本発明のより具体的な説明を、一部が添付の図面に示される実施形態を参照として行う。しかし、添付の図面は、本発明の典型的な実施形態を示すに過ぎず、したがって本発明の範囲を限定するものとして見なされるべきではない点に留意されたい。なぜならば、本発明は、他の同様に有効な実施形態を許容し得るからである。
一実施形態による熱処理装置の概略図である。 一実施形態による均一化装置の平面図である。 別の実施形態による均一化装置の斜視図である。 一実施形態による屈折媒体の斜視図である。 別の実施形態による屈折媒体の斜視図である。 一方法の実施形態を概説する流れ図である。 一実施形態によるコンバイナの平面図である。
理解を容易にするために、可能な場合には、同一の参照数字を使用して、図面間で共通の同一要素を示している。ある実施形態において開示される要素は、具体的に列挙されることなく他の実施形態に有利に利用され得るものとする。
熱処理装置100の一実施形態が、図1に概略的に示される。レーザなどの可干渉光源であり得るエネルギー源102が、筐体114内に配設される。このエネルギー源102は、オプションのコンバイナ104にエネルギーを送出する。このコンバイナ104は、複数のジェネレータが使用される場合に、エネルギー源102の2つ以上のジェネレータからのエネルギービームを結合するために使用される。エネルギービームは、コンバイナ104から均一化装置106に進み、均一化装置106は、このエネルギービームを均一なエネルギービームへと再編成し、この均一なエネルギービームは、開孔116を通されて所望のフィールド形状を形成し、次いでステージ110の作業表面120へと送られる。処理対象の基板が、作業表面120上に配設され、開孔116を通過するエネルギーは、典型的には実質的に垂直な配向で基板に衝突する。エネルギーは、基板の処理エリアに対応するエネルギーフィールドを形成する。第1の処理エリアの処理後に、基板は、次の処理エリアをエネルギーフィールドに曝すために、ステージ110を移動させることにより移動される。一例においては、ステージ110は、精密x−yステージである。コントローラ112が、ステージ110の移動を制御するためにステージ110に対して結合され、作業表面120へのエネルギー送出を制御するためにエネルギー源102およびコンバイナ104に対して結合されてもよい。装置100は、基板上の全ての処理エリアの均一な処理を促進するために、所望の寸法形状および高均一性のエネルギー密度分布を伴うエネルギーフィールドを形成する。
エネルギー源102は、複数のレーザを備えてもよい。典型的には、高出力持続波または高出力パルスレーザが使用される。レーザエネルギーは、本質的に単一モードのエネルギー(M≒1)から何百または何千もの空間モードを有する高モードエネルギー(M>30)までの範囲に及び得る。各ジェネレータからのレーザエネルギーは、エタンデュが大きい場合には、光学処理時の分散性エネルギー損失を防ぐために平行にされ得る。パルスレーザは、フェムト秒範囲からマイクロ秒範囲までのパルス持続時間を有し得る。一実施形態においては、約500〜約1000のMを有し、パルス当たり約5ナノ秒〜約30ナノ秒の範囲に及ぶ、30MW〜50MWの352nmレーザエネルギーをパルスで発する、4つのQスイッチ型2倍周波数Nd:YAGレーザが使用され得る。
エネルギー源102からのエネルギーは、2つ以上のジェネレータがエネルギー源102に含まれる場合には、コンバイナ104へと送られ得る。コンバイナ104は、2つ以上のエネルギービームまたはパルスから1つのエネルギービームまたはパルスを生成する。図4は、一実施形態によるコンバイナ400の平面図であり、このコンバイナ400は、オプションのコンバイナ104として使用し得る。光害を防ぐために筐体499内に収容された光学系を使用する場合には、コンバイナ400は、エネルギー源102から受けた第1の入力424Aとエネルギー源102から受けた第2の入力424Bとを結合して1つの出力438にする。2つの入力424A/Bは、筐体499の開口内に配設された入力レンズ402Aおよび402Bを通りコンバイナ400に進入する。図4の実施形態においては、2つの入力レンズ402A/Bは、筐体499の1つの表面に沿って整列され、入力424A/Bは、実質的に平行な配向で筐体499に進入する。
2つの入力424A/Bは、結合光学系408へと送られ、この結合光学系408は、2つのパルスを1つのパルス238へと結合する。結合光学系は、第1の送込み入力426Aの進入経路に対して垂直に配向された第1の進入表面407Aと、第2の送込み入力426Bの進入経路に対して垂直に配向された第2の進入表面207Bとを有して、結合光学系408への進入時におけるこれらの送込み入力426A/Bのあらゆる屈折を回避する。図2Aの結合光学系408は、第1の送込み入力426Aおよび第2の送込み入力426Bがそれぞれ約45°の角度で選択表面409に到達するように配向された選択表面409を有する水晶である。選択表面409は、光の特性に応じて光と選択的に相互作用する。結合光学系408の選択表面409は、第1の送込み入力426Aを反射し、第2の送込み入力426Bを透過させることにより、結合出力428を生成し得る。これらの入力の結合を容易化するために、各送込み入力426A/Bは、ある特定の様式で選択表面409と相互作用するように調整され得る。
一実施形態においては、選択表面409は、偏光表面である。この偏光表面は、線形偏光軸を有してもよく、これにより、送込み入力426Bを偏光表面の軸に対して平行に偏光することによって、偏光表面は送込み入力426Bを透過させることが可能となり、送込み入力426Aを偏光表面の軸に対して垂直に偏光することによって、偏光表面は送込み入力426Aを反射することが可能となる。2つの送込み入力426A/Bを偏光表面上の同一スポットに整列されることにより、表面407Cに対して垂直な結合光学系408の第1の退出表面407Cから出る結合出力428が生成されて、この結合出力428のあらゆる屈折が回避される。代替的には、選択表面409は、円偏光子であってもよく、送込み入力426Aは、反射については円偏光子の方向とは逆方向に円形に偏光され、送込み入力426Bは、透過については円偏光子と同一方向に円形に偏光される。別の実施形態においては、送込み入力426A/Bは、それぞれ異なる波長を有してもよく、選択表面409は、誘電体ミラーを用いてなど、ある波長の光を反射するようにおよび別の波長の光を透過させるように構成されてもよい。
偏光の一実施形態においては、送込み入力426A/Bの偏光は、偏光フィルタ406A/Bを使用して実現される。偏光フィルタ406A/Bは、入力424A/Bを偏光し、これが、結合光学系408の選択表面409により選択的に反射または透過される。偏光フィルタ406A/Bは、例えば半波長板または1/4波長板などの波長板であってもよく、それらの偏光軸は、選択表面409における選択的な反射および透過のために直交方向に偏光された光を生成するように、相互に対して直交に配向される。各偏光フィルタ406A/Bの軸は、選択表面409の偏光軸に送込み入力426A/Bの偏光を正確に整列させるために、または入力パルス426A/Bの偏光軸と選択表面409の偏光軸との間に所望の偏角をもたらすために、例えば回転アクチュエータ405A/Bなどを用いて個別に調節されてもよい。
送込み入力426A/Bの偏光軸を調節することにより、結合出力428の強度が制御される。なぜならば、偏光フィルタは、マリュスの法則にしたがって入射光を透過させるため、これにより、偏光フィルタを透過した光の強度が、入射強度と、フィルタの偏光軸と入射光の偏光軸との間の角度の余弦の2乗とに比例することが確保されるからである。したがって、偏光フィルタ406Aの偏光軸が選択表面409の偏光軸に対して垂直な配向から偏向するように偏光フィルタ406Aを回転させることにより、送込み入力426Aの一部分が、結果的に選択表面409を透過することとなる。同様に、偏光フィルタ406Bの偏光軸が選択表面409の軸に対して平行な配向から偏向するように偏光フィルタ406Bを回転させることにより、送込み入力426Bの一部分が、結果的に選択表面409から反射されることとなる。各送込み入力426A/Bからのこの「非選択」光は、結合されて不採用エネルギー430となり、これは、結合光学系408から第2の退出表面407Dを通り出て、エネルギーダンプ410内へと進む。このようにすることで、各偏光フィルタは、偏光フィルタを通過するエネルギーの強度を減衰するための調光スイッチとして機能する。
結合光学系408により結合されることとなる2つの送込み入力426A/Bは、選択的な反射および透過のために選択表面409のそれぞれ逆の側に向かって送られる点に留意されたい。したがって、第1の入力402Aは、リフレクタ404により選択表面409の反射側に向かって第1の入力402を運ぶ経路に沿って送られ、第2の入力402Bは、選択表面409の透過側に向かって送られる。当然ながら、リフレクタの任意の組合せを使用して、コンバイナ400内において所望の経路に沿って光を導くことができる。
結合出力428は、結合出力228を出力438およびサンプル432に分波する第1のスプリッタ412と相互作用してもよい。スプリッタ412は、パーシャルミラーまたはパルススプリッタであってもよい。サンプル432は、診断モジュール433に送られてもよく、この診断モジュール433は、サンプル432の特性を分析して出力438の特性を表す。図2Aの実施形態においては、診断モジュール433は、サンプルの時間形状およびサンプルの総エネルギー含量のそれぞれを検出する2つの検出器416および418を有する。第2のスプリッタ414は、これらの各検出器に入力するための第1のサブサンプル436および第2のサブサンプル434を形成する。時間形状検出器416は、非常に短い時間スケールでモニタに当たるエネルギーの強度を合図する強度モニタである。時間形状検出器に入射するエネルギーパルスは、1ピコ秒(psec)から100ナノ秒の総持続時間を有してもよく、そのため、かかる時間スケールで時間形状を記録するのに適したフォトダイオードまたはフォトダイオードアレイであり得る時間形状検出器は、これらの時間スケールの有用な下位区分にて強度信号をもたらす。エネルギー検出器418は、入射電磁放射をサブサンプル434のエネルギー含量を示すために測定し得る電圧へと変換する、熱電対などの焦電デバイスであってもよい。第1のスプリッタ412および第2のスプリッタ414が、第1のスプリッタ412および第2のスプリッタ414の透過割合に基づき既知の割合の入射光をサンプリングするため、出力438のエネルギー含量は、サブサンプル434のエネルギー含量から算出され得る。
診断モジュール433からの信号は、図1のコントローラ112に送られてもよく、このコントローラ112が、所望の結果が達成されるように、エネルギー源102またはコンバイナ400の動作を調節してもよい。コントローラ112は、各レーザのアクティブQスイッチに対して結合された電子タイマーを調節することにより、時間形状検出器416からの結果に応答してパルスタイミングを制御してもよい。アクティブQスイッチをより高速でサイクル動作させることにより、より短いパルスが得られ、逆の場合には、逆の結果が得られる。コントローラ112は、回転アクチュエータ405A/Bに対して結合されることにより、エネルギー検出器418からの結果に基づき、偏光フィルタ406A/Bを通過する光の偏光角度を調節することによって出力438の強度を調節し得る。このようにすることで、出力438の持続期間およびエネルギー含量が、個別に制御され得る。また、コントローラ112は、各レーザへの入力電力を調節するように構成されてもよい。
出力438は、所望に応じてシャッター420により遮断されてもよい。シャッター420は、コンバイナ400から出るレーザエネルギーを遮断してコンバイナ400に続く構成要素に対する調節を行おうとする場合には、安全デバイスとして機能し得る。出力438は、出力レンズ422を通りコンバイナ400から出る。
出力438は、2つの送込み入力426A/Bの結合されたものである。したがって出力438は、2つの送込み入力426A/Bの特性の組合せに相当する特性を有する。上述の偏光の例においては、出力438は、選択表面409における各送込み入力426A/Bの透過度/反射度に応じて異なる強度を有する2つの直交方向に偏光された送込み入力426A/Bの結合したものに相当する楕円偏光を有し得る。選択表面409の入射波長を利用して2つの入力を結合する一例においては、出力438は、2つの送込み入力426A/Bのそれぞれの強度に応じたそれらの入力の結合波長を表す波長を有することになる。
例えば、1,064nm反射誘電体ミラーが、結合光学系408の選択表面409に配設されてもよい。送込み入力426Aは、選択表面409からの反射について強度Aを有する約1,064nmの波長を有してもよく、送込み入力426Bは、選択表面409の透過について強度Bを有する532nmの波長を有してもよい。結合出力428は、送込み入力426A/Bの波長および強度を有する2つのフォトンの共伝播二重パルスとなり、その総エネルギー含量は、2つのパルスエネルギーの和となる。
図4のコンバイナ400は、2つの入力を結合して1つの出力にするために使用され得る。所望に応じて、コンバイナ400からの出力をさらに結合するために、同様の要素を異なる構成において備える光学コンバイナを使用してもよい。例えば、一対のコンバイナ400などのコンバイナが、偏光に基づき4つの入力を2つの中間物へと結合してもよく、第3のコンバイナが、波長に基づきこの2つの中間物を1つの出力へと結合してもよい。
光学コンバイナ104からの(または直接的にエネルギー源102からの)エネルギーは、均一化装置106へと送られる。図2Aは、一実施形態による均一化装置200の平面図であり、この均一化装置200は、図1の装置100において均一化装置106として使用することができる。均一化装置200は、空間デコリレータ202および時間デコリレータ204を備える。これらのデコリレータ202および204は、図2Aにおいて概略的に示され、この図は、空間デコリレータ202が、殆どの実施形態については光路に沿って時間デコリレータ204の前に位置決めされることを示す。デコリレータ202および204は、図2Aに示唆するように物理的に接触状態にあってもよく、または、所望に応じて、デコリレータ202と204との間の一部距離については異なる媒体を通り伝播し得るように離間されてもよい。
空間デコリレータ202は、空間デコリレータ202の受光表面226に入射する断面像の様々なエリアからのエネルギーを混合する。断面像の各構成エリアは、より大きなフィールドへと、いくつかの例では結果的に得られる像フィールド全体に対して投影されて、空間デコリレータ202の透過表面228を透過した構成エリアの合成像を生成する。入射エネルギーに存在する空間モードは、結果的に得られる合成像へと重畳されて、空間的に均一化された像が生成される。強度極大値および強度極小値は、重畳されることにより、空間モードの優勢および空間モードから生じるエネルギー分布不均一性を低減させる。
時間デコリレータ204は、時間デコリレータ204の受光表面230に入射するエネルギーの時間相関性を低減させることにより、時間デコリレータ204の透過表面232を透過する脱相関された像を生成する。この脱相関像は、入射エネルギーに対して位相均一化されることにより、時間可干渉性エネルギーに付随する干渉パターンを低減させる。時間デコリレータ204は、一般的には、屈折媒体内の複数の異なる経路長を通して入射エネルギーを送ることにより、入射エネルギーを脱相関させる。
図2Bは、別の実施形態による均一化装置240の斜視図である。この均一化装置240は、複数のレンズ202Aを有し、これらは、入力エネルギー206の光路と交差するように配置されたマイクロレンズアレイであってもよい。複数のレンズ202Aは、入力エネルギー206の伝播方向に対して実質的に垂直である平面に沿って配設される。複数のレンズ202Aの各レンズ208は、入力エネルギーの一部分を受け、これを入射エネルギーの受けられた部分の面積よりも大きな面積を有する合成像210に投影する。したがって、あるレンズ208からの像の一部分は、全ての他のレンズ208からの各像の一部分と重畳することにより、合成像210を形成する。このように形成された合成像210は、レンズ208の特徴および複数のレンズ202Aの構成によっては、合成像210の周縁領域214よりも高い強度および/または空間均一性を有する中心領域212を有し得る。図2Bにおいては矩形断面が示されるが、実施形態は、円形、楕円形、正方形、六角形、あるいは他の多角形および/または変則的な形状などの、任意の所望の断面形状を有し得る点に留意されたい。さらに、いくつかの実施形態においては、複数のレンズ202Aの平面は、入力エネルギー206の伝播方向に対して角度をつけられてもよい。代替的には、レンズ208は、スタッガ状に配置されてもよい。すなわち、各レンズ208は、基準平面から幾分かの距離をおいて配置されてもよく、この基準平面からの各レンズ208の距離が、異なってもよい。かかる一実施形態は、大半のレンズ208の透過像の一部分を別のレンズに通過させて空間的に均一化された像210を生成することによって、さらなる空間均一化を実現し得る。
複数のレンズ202Aは、図2Bにおいては入力エネルギー206の伝播方向に対して垂直な平面を画定する表面に沿って配設されるように示される。代替的な実施形態においては、複数のレンズ202Aは、複数のレンズ202Aの透過側における入射エネルギー206の伝播軸上に曲率軌跡が位置する曲線を規定する表面に沿って配設されてもよい。かかる構成は、複数のレンズ202Aと時間デコリレータ204Aとの間に空間が存在する場合には、複数のレンズ202Aからの光の分散を低減させるのに有用となり得る。複数のレンズ202Aと時間デコリレータ204Aとの間に空間が存在しない場合には、分散性エネルギーは、時間デコリレータ204Aの屈折エッジにより反射され得るか、または、反射性材料が、複数のレンズ202Aおよび時間デコリレータ204Aの一方または両方を囲んでもよい。
複数のレンズ202Aは、図2Bにおいては単一物体の一部として示される。代替的には、レンズ208の中の1つまたは複数が、所望に応じて他のレンズ208から脱着されてもよい。複数の脱着されたレンズの使用は、レンズの調節により性能を時折向上させる実施形態においては有益となり得る。また、これらのレンズ208は、上述のようにレンズが基準平面からそれぞれ異なる距離に位置する場合には、脱着されてもよい。
複数のレンズ202Aからの合成像210は、時間デコリレータ204Aの受光表面220へと進む。時間デコリレータ204Aは、境界表面214に接触状態の複数の屈折鏡面212を備える屈折媒体である。各屈折鏡面212は、厚さ「t」を有し、これらは同一であってもまたは異なってもよい。屈折媒体の受光表面220に進入するエネルギーは、屈折媒体を通過して第1の境界表面214へと進む。このエネルギーの小部分が、第1の境界表面214において反射されて受光表面220へと戻り、そこでこの小部分の一部分が、反射されて屈折媒体へと戻り、結果的に、入射エネルギーの各部分が、屈折媒体中でそれぞれ異なる経路長を進む。同一の反射/再反射パターンが、全ての境界表面214において生じることにより、非常に多様な種々の経路長が屈折媒体中に結果的に得られる。屈折媒体中でそれぞれ異なる経路長を進む可干渉光は、経路長の差異が可干渉光の波長の整数倍数ではない場合には、位相脱相関されて現れる。これらの異なる経路長が、時として入射エネルギーのpiおよび光学帯域幅で除算した光の速さで表される可干渉長さを上回る量だけ長さに差異がある場合には、脱相関は向上する。
鏡面212は、同一の材料または異なる材料であってもよく、光透過性の任意の屈折性材料であってもよい。鏡面は、固体、液体、または気体であってもよく、例えば内部に屈折性の液体または気体を有する鏡面形状コンテナなどであってもよい。例示的な屈折性材料は、ガラス、石英、およびサファイアである。水などの透明液体、および空気とは比較的異なる屈折率を有し得る空気以外の気体もまた使用し得る。図2Bにおける鏡面212は、境界表面212において接触状態において示されるが、境界表面214の中の1つまたは複数が、空間により分離された2つの隣り合う鏡面212の2つの表面を備えるように、これらの鏡面212の中の1つまたは複数が、他から離間されてもよい。かかる構成は、それらの空間における幾分かのエネルギー損失を犠牲にして時間脱相関を上昇させ得る。いくつかの事例においては、反射性材料を用いて鏡面212のエッジを囲むことにより、かかる損失を低減させることができる。
時間デコリレータ204Aの透過表面222から出る脱相関された像234は、受光表面220に進入するエネルギーと同様の断面形状を有し、中心エリア218は、脱相関された像234の周縁エリア216よりも複数のレンズ202Aからのより重畳した像部分を、およびしたがってより高い空間均一性を有する。
図2Cは、別の実施形態による時間デコリレータ204Bの斜視図である。図2Cの時間デコリレータ204Bは、図2Aの均一化装置200の時間デコリレータ204として使用し得る。図2Cの時間デコリレータ204Bは、図2Bの時間デコリレータ204Aと多数の点において同様であるが、鏡面212が入射エネルギー206の伝播方向に対して横方向へとスタッガ状に配置される点において異なる(図2A)。鏡面212のスタッガ状配置により、入射エネルギーの各部分を通して伝播させるための複数の厚さt〜tを有する屈折媒体が得られる。したがって、入射エネルギーの一部分は、この屈折媒体の厚さtを通り進み、それによりtの光路長に基づく屈折効果を被る。入射エネルギーの別の部分は、屈折媒体の厚さtを通り進み、それによりt>tの光路長に基づく屈折効果を被る。さらにt、t、およびtについても同様となる。鏡面212が、それぞれ異なる厚さを有する場合には、屈折媒体は、最大で2n−1の厚さを有し得る。ここで、nは、鏡面の個数である。特に全ての光路長間の全ての差異が、入射放射の可干渉長さを上回る場合には、異なる光路長の個数を増加させることにより、得られる時間脱相関が増加する。
図2Cの鏡面212は、一方向、例えば「正のx」方向における前の鏡面212に対する各鏡面212の距離またはピッチ「p」が均一な状態で、スタッガ状に配置される。代替的な実施形態においては、いくつかの鏡面が、「負のx」方向および「正のx」方向においてもスタッガ状に配置されることにより、伝播方向に対して直交するある軸の両側へと延在する部分を有する屈折媒体をもたらしてもよい。他の代替的な実施形態においては、いくつかの鏡面が、さらに正および/または負の方向においてy方向に沿ってスタッガ状に配置されてもよい。さらに、図2Cのデコリレータ204Bは、鏡面212の集合体として示されるが、デコリレータ204Bは、溶合された鏡面の集合体などの単体媒体か、または上述のモードのいずれかにしたがって構成された複数の厚さを有するプリズムであってもよい。同一材料の溶合される鏡面は、所望に応じて鏡面同士の間の屈折境界を維持することにより、スタック鏡面の集合体と同様の結果が得られるような方法で溶合されてもよい。
スタッガ状に配置された鏡面のピッチ「p」は、同様のサイズおよび形状を有する鏡面のコンテクストにおいては、全ての鏡面212について一定であってもよく、または異なってもよい。平均ピッチ
Figure 2014534457
が、関係
Figure 2014534457
を満たす場合には(ここで、nは鏡面の個数であり、wはスタック内の第1の鏡面および第2の鏡面の幅の和である)、次いで、スタック内の全ての鏡面がある程度まで重畳することとなる。屈折効果による任意の光路変化がその特定の実施形態に応じて管理される限りにおいては、鏡面212は、全てが同一の形状またはサイズである必要はない点に留意されたい。一実施形態においては、各厚さt〜tは、入射エネルギーフィールドの均等面積が屈折媒体204Bの各厚さを通過するように、均等な面積範囲を有する。当然ながら、他の実施形態においては、厚さt〜tの面積範囲は、それぞれ異なってもよい。
一実施形態においては、デコリレータ204Bは、5個のガラス鏡面の集合体であり、これらのガラス鏡面はそれぞれ、約1cmの厚さを有し、鏡面当たり約1cmのピッチで一方向に均等にスタッガ状に配置される。これらの鏡面は、約1.0cm×0.6cm×1cmであり、それにより、約1cmの断面寸法を有する入射エネルギーの光路に対応する。
図2Dは、別の実施形態による時間デコリレータ204Cの斜視図である。この時間デコリレータ204Cは、図2Aの均一化装置200における時間デコリレータ204として使用し得る。図2Cのデコリレータ204Bにより具現化される同一の一般的原理によれば、デコリレータ204Cは、入射エネルギーフィールドの各部分が通過する複数の光路長を画定することにより、入射エネルギーフィールドの時間脱相関をもたらす、屈折媒体である。図2Cの実施形態においては、複数のカラム224が、結合された像210の光路と交差して配設される(図2B)。これらのカラム224は、殆どの場合には、結合像210の伝播方向に対して平行な軸に沿って延在するように配向される。これらのカラム224は、入射エネルギーフィールドの各部分が通過する複数の厚さを有する屈折媒体226を、一体的に形成する。
カラム224は、図2Cに示すように本質的にランダムな長さを有してもよく、各カラム224は、全ての他のカラム224と異なる長さを有してもよいが、カラムの個数に等しいだけの異なる長さのランダム性もまた数も必要ではない。異なる厚さまたはカラム長の数がより多いほど、結果的により良好な全体的な脱相関が得られ、入射エネルギーの可干渉長さを上回る分だけ他の長さと異なる厚さまたはカラム長がより多いほど、得られる結果はさらに一層向上する。
それぞれ異なる長さを有するカラム224は、受光表面220の対向側に複数の透過表面222を形成する。受光表面220に入射するエネルギーは、様々なカラム224をそれらの長さに応じた分だけ通過して進み、それぞれ異なる時点において各透過表面222から出る。カラム224は、図2Cに示すように平坦受光表面220を有して構成される必要はなく、複数のスタッガ状透過表面222に加えてまたはその代りとして複数のスタッガ状受光表面を形成するように構成されてもよい点に留意されたい。
デコリレータ204Bと同様に、カラム224は、それぞれ同一の材料であってもまたは異なる材料であってもよく、共に溶合されてもまたは他の方法で結合されてもよい。一実施形態においては、個別のカラム224の集合体が、反射性トンネル内のカラムの周囲側部を囲むと共に受光表面220および透過表面222を覆い隠さない状態に残す、反射性結合剤によって物理的接触状態へと共に結合されてもよい。カラム224は、物理的接触を成すそれら同士の間に境界表面を形成し、この境界表面は、モードの脱相関を向上させる反射条件および屈折条件を与える。反射性結合は、あらゆる屈折損失を低減させる。さらに、デコリレータ204Cは、カラム様式で種々の厚さを実現するようになされたプリズムなどの一体媒体であってもよい。
均一化装置200および240は、単一の空間均一化装置および単一の時間均一化装置をそれぞれ有するものとして説明される。代替的な実施形態においては、各空間均一化装置が他の空間均一化装置と同一であるかまたは異なり、各時間均一化装置が他の時間均一化装置と同一であるかまたは異なる、複数の空間均一化装置および/または時間均一化装置が使用されてもよい。他の代替的な実施形態においては、時間均一化装置の透過表面が、例えばこの表面に微細テクスチャを施すことなどにより拡散性を有してもよい。さらに、時間均一化装置の屈折媒体が、任意の度合いまで分散性を有する場合には、時間均一化装置の透過表面は、所望に応じて分散性を相殺するために角度をつけられてもよく、または平行化レンズが、透過したエネルギーに対して適用されてもよい。
上述の実施形態のいずれかにしたがって均一化装置106を透過するエネルギーは、開孔116を通過して、所望の形状およびサイズを有するエネルギーフィールドをもたらす。開孔116は、図2Bのエネルギーフィールド234の周縁エリア216など、所望の均一性を有さないエネルギーフィールドの任意の部分を切り捨てるために使用されてもよい。結果的に得られる均一化されたエネルギーフィールドは、作業表面120上に配設された基板へと送られる。
図2A〜図2Cに関連して説明される光学素子は、入射エネルギー206の伝播方向に対して平行な光軸とほぼ位置合わせされるものとして示される。代替的な実施形態においては、光学素子の中の1つまたは複数が、この伝播方向との間に角度を形成する軸に沿って配向されてもよい。かかる実施形態においては、受光表面および透過表面は、伝播軸に対して垂直であるか、または伝播軸に対して角度をつけられてもよい。当然ながら、ある角度で屈折境界に到達する光は、ある程度まで反射される。例えば可能な場合には内部反射を利用することによって、および屈折媒体の周囲に反射素子を配設することによってなど、反射光学系を使用することによりかかる反射を最小限に抑えてもよい。屈折媒体204A〜204Cなどの光学素子は、所望に応じて、伝播軸を調節するための曲率を有してもよい。
時間デコリレータ204A/B/Cは、時間デコリレータを構成する屈折媒体中においてそれぞれ異なる距離にわたり光を進ませることによって、これらのデコリレータを経由する光の通過に影響を及ぼすものとして図示される。代替的な実施形態においては、光通過時間は、種々の屈折率を有する種々の材料を経由して光を送出することによって影響を被り得る点に、留意されたい。一般的には、時間デコリレータ204A/B/Cは、光の通過について複数の異なる経路を有し、これらの異なる経路は、媒体中の進行距離により、または種々の屈折率を有する種々の材料の通過により、またはそれらの両方により、異なる通過時間を有する。時間デコリレータは、屈折媒体中をそれぞれ異なる距離にわたって進むこと、異なる屈折媒体中を同一距離にわたって進むこと、またはそれらの任意の組合せのいずれかにより、それぞれ異なる速度にて所与の距離にわたり光を進ませることによって実現される。
一実施形態においては、矩形固体などの正規形状を有する一体の媒体またはプリズムが、種々の屈折率を有する多様な材料から作製されることにより、種々の通過時間を有する経路を実現してもよい。いくつかの実施形態においては、2つのみの材料が使用され、これら2つの材料の間の境界は、一体媒体内の種々の位置に位置する。第1の材料が、厚さdおよび屈折率nを有し、第2の材料が、厚さdおよび屈折率nを有する場合には、これらの2つの屈折媒体中の合計光路の有効屈折率は、n+nの加重平均となり、すなわち(n+n)/(d+d)となる。媒体中の種々の経路に対して種々の距離dおよびdを与えることにより、様々な経路に沿った通過時間の差動制御が実現され得る。いくつかの実施形態においては、光路は、全ての他の通過時間とは光の可干渉時間の分だけそれぞれ異なる通過時間を有し得る。
図3は、別の実施形態による方法300を概説した流れ図である。図3の方法300は、基板を熱処理するための均一なエネルギーフィールドを形成するのに有用である。302では、レーザエネルギーが、レーザエネルギーの光路に交差する複数のレンズを通して送られて、合成像を形成する。レーザエネルギーは、レーザエネルギーの単一の伝播であってもよく、または例えば2つの結合ビームまたは2つの結合パルスなど、2つ以上の伝播の結合されたものであってもよい。複数のレンズは、図2A〜図2Cに関連して上述した実施形態のいずれにも適合し得る。各レンズは、入射エネルギーの一部分を、全ての他のレンズの像フィールドに重畳する像フィールドに投影する。典型的には合成像の中心エリアである像フィールドの重畳部分は、空間的に非常に均一であり、合成像の周縁部分は、空間的に均一性がより低い場合がある。
304では、合成像が、合成像の光路に交差する複数の厚さを有する屈折媒体を通して送られることにより、脱相関された像を形成する。屈折媒体は、図2A〜図2Cに関連して上述した実施形態のいずれにも適合し得る。屈折媒体は、合成像の一部分が進む種々の長さを有する複数の光路を形成する。屈折媒体中のそれぞれ異なる経路長により、合成像のある部分の位相変位が別の部分に対して相対的なものとなる。いくつかの実施形態においては、屈折媒体の全ての光路長が、入射エネルギーの可干渉長さを上回る量だけ、全ての他の光路長と異なる。他の実施形態においては、一部の光路長が、入射エネルギーの可干渉長さを上回る量だけ、他の光路長と異なる一方で、他については、入射エネルギーの可干渉長さを下回る量だけ異なり得る。いくつかの実施形態においては、一部の光路長が、他と同一である一方で、一部は、時間脱相関をもたらすように異なり得る。
それぞれ異なる厚さは、均一分布または不均一分布にしたがって、単一軸に沿ってまたは2つの軸に沿って分布してもよい。これらの異なる厚さにより、複数対の受光表面および透過表面が得られ、各受光表面/透過表面対は、少なくとも1つの他の受光表面/透過表面対の距離とは異なる距離だけ離間される。いくつかの実施形態においては、全ての受光表面/透過表面対の離間距離は、異なってもよく、いくつかの実施形態においては、これらの表面対は、それらの離間距離により規定される群へと分類され得る。いくつかの実施形態においては、これらの距離は、受光表面に入射するエネルギーの可干渉長さを上回る分だけ異なる。
306では、基板の処理エリアが、脱相関された像に曝される。この脱相関像は、所望に応じて開孔を通過することにより、像を形状設定、サイズ設定、および/または切り捨てして、例えば所望の均一性に適合しない像フィールドのいかなる部分も除去してもよい。基板全体を処理するために、第1の処理エリアは、典型的には上述のように同定され処理される。次いで、次の処理エリアが、通常は第1の処理エリアに隣接して同定され、いくつかの例においては、第1の処理エリアと境界で重畳するかまたは境界を共有する。基板は、処理対象の次の処理エリアを位置決めするために移動され、次の処理エリアは、302の送込み、304の送込み、および306の曝しを繰り返すことによって処理される。この工程は、基板の全ての所望の処理エリアが処理されるまで、繰り返される。
前述は、本発明の実施形態を対象とするが、本発明の基本範囲から逸脱することなく、本発明の他のおよびさらなる実施形態を考案し得る。

Claims (21)

  1. 可干渉光のエネルギー均一性を向上させるための装置であって、
    合成投影フィールドを生成するために位置決めされた複数のレンズと、
    1つまたは複数の第1の表面および複数の第2の表面を有する屈折媒体であって、各第2の表面は、前記1つまたは複数の第1の表面から複数の距離をおいて配置され、前記屈折媒体は、前記1つまたは複数の第1の表面において前記合成投影フィールドを受けるように、および前記複数の第2の表面からエネルギーフィールドを透過させるように、位置決めされるか、または、前記屈折媒体は、前記複数の第2の表面において前記合成投影フィールドを受けるように、および前記1つまたは複数の第1の表面から前記エネルギーフィールドを透過させるように、位置決めされる、屈折媒体と
    を備える、装置。
  2. 前記複数のレンズは、マイクロレンズアレイである、請求項1に記載の装置。
  3. 前記屈折媒体は、プリズムである、請求項1に記載の装置。
  4. 前記屈折媒体は、複数のプレートである、請求項1に記載の装置。
  5. 前記屈折媒体は、複数のロッドである、請求項1に記載の装置。
  6. 前記屈折媒体は、プリズムである、請求項2に記載の装置。
  7. 前記プリズムは、複数の異なる長さを有する複数のカラムを備える、請求項3に記載の装置。
  8. 各プレートが、前記可干渉光の可干渉長さより大きい厚さを有する、請求項4に記載の装置。
  9. 2つのロッドが、同一の長さを有さない、請求項5に記載の装置。
  10. 前記1つまたは複数の第1の表面および前記複数の第2の表面以外の前記屈折媒体の表面が、反射性材料で被覆される、請求項1に記載の装置。
  11. 前記エネルギーフィールドを透過させる前記屈折媒体の各表面が、拡散性を有する、請求項1に記載の装置。
  12. 均一な照明フィールドを発生させるための装置であって、
    光路に沿って放射を投影するレーザと、
    前記光路に対して垂直な平面に沿って配設された複数のレンズと、
    前記光路に沿って配設された屈折光学系であって、前記屈折光学系は、前記光路に交差する第1の表面および前記光路に交差する第2の表面を有し、前記第1の表面は、前記光路に対して垂直な平面を画定し、前記第2の表面は、前記光路に対して垂直な平面をそれぞれ画定する複数の小面を備え、2つの小面が第1の表面から同じ距離ではなく、前記複数のレンズは、前記レーザと前記屈折光学系との間に配設される、屈折光学系と
    を備える、装置。
  13. 前記第1の表面からの各小面の距離が、前記レーザの可干渉長さより大きい量だけ前記第1の表面からの全ての他の小面の距離と異なる、請求項12に記載の装置。
  14. 前記複数のレンズと前記屈折光学系との間の距離が、前記複数のレンズの中のいずれかの焦点距離よりも大きい、請求項12に記載の装置。
  15. 第2のレーザと、前記第1のレーザおよび前記第2のレーザと前記複数のレンズとの間のビームコンバイナとをさらに備える、請求項12に記載の装置。
  16. 前記屈折光学系により透過された放射を受けるように配設されたパルス成形器をさらに備える、請求項12に記載の装置。
  17. 前記屈折光学系は、複数のエタロンを備える、請求項12に記載の装置。
  18. 前記レーザからの照射により処理されるべき工作物を受けるための作業表面をさらに備え、前記作業表面は、前記レーザの前記光路に対して実質的に垂直に配設される、請求項12に記載の装置。
  19. 可干渉光のエネルギー均一性を向上させるための装置であって、
    合成投影フィールドを生成するために位置決めされた複数のレンズと、
    前記可干渉光用の複数の通過経路を有する屈折媒体であって、前記通過経路は、前記屈折媒体中に複数の通過時間を有する、屈折媒体と
    を備える、装置。
  20. 前記通過経路は、異なる屈折率を有する複数の材料を含む、請求項19に記載の装置。
  21. 前記通過経路は、複数の異なる距離を有する、請求項19に記載の装置。
JP2014533670A 2011-09-28 2012-09-26 レーザ処理設備においてスペックルを低減させるための装置および方法 Expired - Fee Related JP6109833B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161540215P 2011-09-28 2011-09-28
US61/540,215 2011-09-28
PCT/US2012/057246 WO2013049142A2 (en) 2011-09-28 2012-09-26 Apparatus and method for speckle reduction in laser processing equipment

Publications (2)

Publication Number Publication Date
JP2014534457A true JP2014534457A (ja) 2014-12-18
JP6109833B2 JP6109833B2 (ja) 2017-04-05

Family

ID=47911101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014533670A Expired - Fee Related JP6109833B2 (ja) 2011-09-28 2012-09-26 レーザ処理設備においてスペックルを低減させるための装置および方法

Country Status (7)

Country Link
US (3) US9069183B2 (ja)
JP (1) JP6109833B2 (ja)
KR (3) KR20170127574A (ja)
CN (3) CN103843115B (ja)
SG (1) SG2014010763A (ja)
TW (2) TWI582466B (ja)
WO (1) WO2013049142A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069183B2 (en) * 2011-09-28 2015-06-30 Applied Materials, Inc. Apparatus and method for speckle reduction in laser processing equipment
KR20160042434A (ko) * 2013-08-08 2016-04-19 어플라이드 머티어리얼스, 인코포레이티드 디플리션 빔을 이용한 서브-미크론 피쳐 형성을 위한 반응물의 포토닉 활성화
WO2017075285A1 (en) * 2015-10-30 2017-05-04 Seurat Technologies, Inc. Chamber systems for additive manufacturing
CN105866969B (zh) * 2016-03-03 2018-04-24 北京应用物理与计算数学研究所 一种基于光梯的提高激光远场光斑均匀性的方法
DE102017203655B4 (de) * 2017-03-07 2019-08-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Formung von Strahlung für die Laserbearbeitung
CN109581682B (zh) * 2019-01-15 2020-07-07 四川大学 惯性约束聚变装置中基于光束动态干涉图样的快速光束匀滑方法
KR20210035368A (ko) * 2019-09-23 2021-04-01 삼성디스플레이 주식회사 백라이트 장치 및 이를 포함하는 3차원 영상 표시 장치
CN112404706B (zh) * 2021-01-22 2021-04-23 武汉大学 激光加工检测装置及方法、激光加工设备及调焦控制方法
CN113160372B (zh) * 2021-04-28 2023-12-22 中国科学院国家天文台南京天文光学技术研究所 基于模态光照明的材料反射特性表征和渲染方法
CN113721370B (zh) * 2021-09-13 2024-04-30 重庆新宙创镱科技有限公司 激光散斑抑制系统及其形成方法、散斑抑制模块

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217851A (ja) * 1992-01-31 1993-08-27 Nikon Corp 投影露光装置
JP2003124137A (ja) * 2001-10-10 2003-04-25 Fujitsu Ltd 半導体製造装置
JP2003167213A (ja) * 2001-12-04 2003-06-13 Sumitomo Heavy Ind Ltd 可干渉性解消素子およびビームホモジナイザ
JP2004206004A (ja) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
JP2006049656A (ja) * 2004-08-06 2006-02-16 Japan Steel Works Ltd:The 結晶化膜の形成方法及びその装置
JP2006293242A (ja) * 2005-04-15 2006-10-26 Hitachi Ltd 照明装置およびそれを用いた映像表示装置
JP2007027612A (ja) * 2005-07-21 2007-02-01 Sony Corp 照射装置および照射方法
JP2007288219A (ja) * 2007-07-06 2007-11-01 Sumitomo Heavy Ind Ltd レーザ照射装置
JP2008159348A (ja) * 2006-12-22 2008-07-10 Olympus Corp 光源光学システム及びそれを用いたプロジェクションディスプレイシステム
JP2010170606A (ja) * 2009-01-21 2010-08-05 Fujinon Corp プリズムアセンブリの製造方法
JP2010256572A (ja) * 2009-04-23 2010-11-11 Olympus Corp 投射型表示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229067A (en) 1978-11-17 1980-10-21 Corning Glass Works Optical waveguide mode scrambler
US4521075A (en) 1983-03-07 1985-06-04 Obenschain Stephen P Controllable spatial incoherence echelon for laser
JPS60103310A (ja) * 1983-11-11 1985-06-07 Pioneer Electronic Corp マイクロフレネルレンズの製造方法
US4619508A (en) * 1984-04-28 1986-10-28 Nippon Kogaku K. K. Illumination optical arrangement
US5719704A (en) 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
US5892866A (en) 1996-10-01 1999-04-06 Honeywell Inc. Fiber optic mode scrambler
JP2000199872A (ja) * 1998-12-29 2000-07-18 Sony Corp 照明装置及び画像表示装置
JP4182580B2 (ja) * 1999-01-18 2008-11-19 ソニー株式会社 照明装置及び画像表示装置
TW523791B (en) 2000-09-01 2003-03-11 Semiconductor Energy Lab Method of processing beam, laser irradiation apparatus, and method of manufacturing semiconductor device
EP1577697A4 (en) 2002-12-26 2007-12-26 Sanyo Electric Co LIGHTING DEVICE AND PROJECTION TYPE IMAGE PRESENTATION UNIT
CN1732403A (zh) * 2002-12-26 2006-02-08 三洋电机株式会社 照明装置以及投射型图像显示装置
DE10345784A1 (de) * 2003-10-01 2005-04-21 Zeiss Carl Sms Gmbh Kohärenzminderer
US7440654B2 (en) * 2003-11-28 2008-10-21 Mcgill University Wavelength multiplexer/demultiplexer comprising an optically dispersive stratified body
US7586959B2 (en) * 2004-09-27 2009-09-08 Applied Materials, Israel, Ltd. Speckle reduction with transparent blocks
JP2007214527A (ja) * 2006-01-13 2007-08-23 Ihi Corp レーザアニール方法およびレーザアニール装置
US8434909B2 (en) * 2007-10-09 2013-05-07 Flex Lighting Ii, Llc Light emitting display with light mixing within a film
CN101226325B (zh) * 2008-02-03 2010-06-02 李志扬 基于随机相长干涉的三维显示方法及装置
CN201307197Y (zh) * 2008-11-21 2009-09-09 广东工业大学 一种增强激光束均匀化的均束器
US8902506B2 (en) 2010-09-30 2014-12-02 Panasonic Corporation Laser speckle reduction element
US9069183B2 (en) * 2011-09-28 2015-06-30 Applied Materials, Inc. Apparatus and method for speckle reduction in laser processing equipment
WO2013124895A1 (en) * 2012-02-22 2013-08-29 Empire Technology Development Llc Lighting device having a light guide structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217851A (ja) * 1992-01-31 1993-08-27 Nikon Corp 投影露光装置
JP2003124137A (ja) * 2001-10-10 2003-04-25 Fujitsu Ltd 半導体製造装置
JP2003167213A (ja) * 2001-12-04 2003-06-13 Sumitomo Heavy Ind Ltd 可干渉性解消素子およびビームホモジナイザ
JP2004206004A (ja) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
JP2006049656A (ja) * 2004-08-06 2006-02-16 Japan Steel Works Ltd:The 結晶化膜の形成方法及びその装置
JP2006293242A (ja) * 2005-04-15 2006-10-26 Hitachi Ltd 照明装置およびそれを用いた映像表示装置
JP2007027612A (ja) * 2005-07-21 2007-02-01 Sony Corp 照射装置および照射方法
JP2008159348A (ja) * 2006-12-22 2008-07-10 Olympus Corp 光源光学システム及びそれを用いたプロジェクションディスプレイシステム
JP2007288219A (ja) * 2007-07-06 2007-11-01 Sumitomo Heavy Ind Ltd レーザ照射装置
JP2010170606A (ja) * 2009-01-21 2010-08-05 Fujinon Corp プリズムアセンブリの製造方法
JP2010256572A (ja) * 2009-04-23 2010-11-11 Olympus Corp 投射型表示装置

Also Published As

Publication number Publication date
JP6109833B2 (ja) 2017-04-05
KR20140065444A (ko) 2014-05-29
US9904069B2 (en) 2018-02-27
KR20170102072A (ko) 2017-09-06
KR20170127574A (ko) 2017-11-21
CN106825916A (zh) 2017-06-13
CN103843115A (zh) 2014-06-04
US20160252745A1 (en) 2016-09-01
WO2013049142A2 (en) 2013-04-04
CN106825916B (zh) 2019-03-01
WO2013049142A3 (en) 2013-05-23
TWI582466B (zh) 2017-05-11
TW201708885A (zh) 2017-03-01
US9069183B2 (en) 2015-06-30
US20140192533A1 (en) 2014-07-10
CN103843115B (zh) 2017-02-15
TW201319620A (zh) 2013-05-16
TWI620958B (zh) 2018-04-11
SG2014010763A (en) 2014-09-26
US9341858B2 (en) 2016-05-17
US20130077315A1 (en) 2013-03-28
CN106141428B (zh) 2018-08-21
CN106141428A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6109833B2 (ja) レーザ処理設備においてスペックルを低減させるための装置および方法
US10181409B2 (en) Thermal processing apparatus
JP2014525141A5 (ja)
US9953851B2 (en) Process sheet resistance uniformity improvement using multiple melt laser exposures
TWI613464B (zh) 用於減少斑點、伸展脈衝、並使光束均勻化之設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees