JP2014516738A - 二次元撮像プローブを用いる三次元針位置特定 - Google Patents

二次元撮像プローブを用いる三次元針位置特定 Download PDF

Info

Publication number
JP2014516738A
JP2014516738A JP2014515313A JP2014515313A JP2014516738A JP 2014516738 A JP2014516738 A JP 2014516738A JP 2014515313 A JP2014515313 A JP 2014515313A JP 2014515313 A JP2014515313 A JP 2014515313A JP 2014516738 A JP2014516738 A JP 2014516738A
Authority
JP
Japan
Prior art keywords
array
transducers
medical device
transducer
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515313A
Other languages
English (en)
Other versions
JP6053766B2 (ja
JP2014516738A5 (ja
Inventor
アメート クマール ジャイン
フランソワ ギィ ジェラール マリー ヴィニョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2014516738A publication Critical patent/JP2014516738A/ja
Publication of JP2014516738A5 publication Critical patent/JP2014516738A5/ja
Application granted granted Critical
Publication of JP6053766B2 publication Critical patent/JP6053766B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • A61B2090/3929Active markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Robotics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

画像化システム及び方法は、追跡素子106を取り付けられた医療装置102を含む。アレイ109のトランスデューサは、互いから離間され、追跡素子と前記トランスデューサのアレイとの間の対象においてエネルギを交換する。三辺測量モジュール104は、追跡素子と前記トランスデューサのアレイとの間で感知された信号を解釈し、追跡素子の位置が少なくとも二次元において決定されるように前記アレイ内の前記トランスデューサと関連付けられた信号の飛行時間を計算し、視覚的画像において前記医療装置の位置を位置特定する。

Description

本開示は、医療装置及び処置に関し、より具体的には、一又は二次元撮像プローブを使用する三次元における医療装置位置特定に対するシステム及び方法に関する。
超音波ガイダンス下の針挿入は、例えば、生検、体液排出、神経ブロック、血管アクセス等に対して、一般的に実行される。針視覚化技術は、(例えば、針視覚化強化ソフトウェアを使用して)針シャフトにおおよそ垂直のステアリング撮像ビームに基づいて実施するのに成功している。
多くの場合、針は、組織不均一性及びベベル非対称性により撮像面から外れる。面外の針は、前記針が超音波エネルギを全く受けないので、針視覚化強化ソフトウェアがどれだけ高性能であるかにかかわらず、見えなくなる。臨床医は、この場合、前記針を見つけるために撮像トランスデューサを移動しなくてはならず、通常、元の目標面を失う。更に、臨床医は、前記針が前記撮像面に対してどこにあるかを知らず、したがって、前記針を見つけるためにそのようにトランスデューサを移動するかの指標を持たない。
本原理によると、画像化システム及び方法は、追跡素子を取り付けられた医療装置を含む。トランスデューサのアレイは、前記追跡素子と前記トランスデューサのアレイとの間の対象においてエネルギを交換するために互いから離間されたトランスデューサを持つ。三辺測量モジュールは、前記追跡素子と前記トランスデューサのアレイとの間で感知された信号を解釈し、追跡素子の位置が少なくとも二次元において決定されるように前記アレイ内の前記トランスデューサと関連付けられた信号の飛行時間を計算し、視覚画像内の前記医療装置の位置を位置特定するように構成される。
本開示のこれら及び他の目的、フィーチャ及び利点は、添付の図面と併せて読まれる具体的実施例の以下の詳細な説明から明らかになる。
本開示は、以下の図を参照して好適な実施例の以下の説明を詳細に示す。
1つの具体的実施例による医療装置を画像化するシステム/方法を示すブロック/フロー図である。 1つの具体的実施例によるプローブのトランスデューサアレイ素子から発する飛行時間球の側面図を示す図である。 1つの具体的実施例によるプローブのアレイ素子から発する飛行時間球の前面図を示し、真の及び対称的な交点を示す図である。 本原理による三辺測量を示すように交わる3つの球を示す透視図である。 本原理による針の三次元レンダリングを持つ二次元超音波画像である。 一実施例による仮想的送信器素子を形成するように集束/ビーム形成された物理的アレイの素子を示す概略図である。 他の実施例による物理的アレイの後ろに形成された仮想的素子を示す概略図である。 他の実施例による信号遅延に基づく仮想的受信器素子を形成するようにビーム形成された物理的アレイの素子を示す概略図である。 他の具体的実施例による医療装置を画像化するシステム/方法を示すブロック/フロー図である。
本原理によると、目標面、(例えば、前記目標面の目標生体構造に対する)医療装置の相対的位置及び軌道は、処置中に面外針画像を失うことに関連付けられた問題を避けるために同時に撮像される必要がある。一次元(1D)超音波プローブは、幅広い範囲の臨床的介入において生体構造に対する針の二次元(2D)視覚化に対して使用される。しかしながら、前記針又はツールの位置は、撮像面の外側に位置する場合に、評価されることができない。本システム及び方法は、目標生体構造画像を失うことなしに面外の針を追跡及び視覚化するために提供される。一実施例において、これは、(2D撮像に対する)単純な一次元(1D)プローブを使用して、又は3D撮像に対する二次元(2D)プローブを使用して達成される。1Dアレイを使用して前記撮像面に対する針の3D位置を評価する方法も、提供される。
超音波素子(パッシブ又はアクティブ)は、被追跡ツール内に、例えば、前記ツールの先端に埋め込まれる。前記被追跡素子と前記撮像プローブの複数の素子との間の超音波信号飛行時間は、前記被追跡素子の位置を与えるように三次元(3D)三角測量又は三辺測量ルーチンにおいて使用される。結果として、超音波ガイド針介入は、高価な追加機器(例えば、マトリクスアレイ)の必要性なしに、大幅に容易化される。
本発明は、医療機器に関して記載されているが、しかしながら、本発明の教示は、大幅に広く、複雑な生物又は機械系を追跡又は分析する際に使用される如何なる器具にも適用可能であると理解されるべきである。特に、本原理は、生物系の内部追跡処置、肺、胃腸管、排出器官、血管等のような体の全ての領域における処置に適用可能である。図に表現された要素は、ハードウェア及びソフトウェアの様々な組み合わせで実施されることができ、単一の要素又は複数の要素に結合されうる機能を提供することができる。
図に示された様々な要素の機能は、専用ハードウェア及び適切なソフトウェアと関連付けられたソフトウェアを実行することができるハードウェアの使用により提供されることができる。プロセッサにより提供される場合、前記機能は、単一の専用プロセッサにより、単一の共有プロセッサにより、又は一部が共有されることができる複数の個別のプロセッサにより提供されることができる。更に、用語"プロセッサ"又は"コントローラ"の明示的使用は、ソフトウェアを実行することができるハードウェアを排他的に示すと解釈されるべきではなく、限定なしで、デジタル信号プロセッサ(DSP)ハードウェア、ソフトウェアを記憶する読取専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、不揮発性記憶部等を暗示的に含むことができる。
更に、本発明の原理、態様及び実施例、並びにこれらの特定の例をここに列挙する全ての提示は、これらの構造的同等物及び機能的同等物の両方を含むと意図される。加えて、このような同等物が、現在既知である同等物及び未来に開発される同等物(すなわち、構造とは関係なく、同じ機能を実行する開発された要素)の両方を含むことが意図される。このように、例えば、ここに示されるブロック図が、本発明の原理を実施する具体的システムコンポーネント及び/又は回路の概念図を表すことは、当業者により理解される。同様に、フローチャート及びフロー図等が、コンピュータ可読記憶媒体において実質的に表されることができる様々なプロセスを表し、このようなコンピュータ又はプロセッサが明示的に示されているかどうかにかかわらず、コンピュータ又はプロセッサにより実行される。
更に、本発明の実施例は、コンピュータ又は命令実行システムにより又は関連して使用されるプログラムコードを提供するコンピュータ使用可能又はコンピュータ可読記憶媒体からアクセス可能なコンピュータプログラムの形を取ることができる。この記載の目的に対して、コンピュータ使用可能又はコンピュータ可読記憶媒体は、前記命令実行システム、装置又はデバイスにより又は関連して使用されるプログラムを含む、記憶する、通信する、伝搬する又は輸送することができる装置であることができる。前記媒体は、電子、磁気、光、電磁、赤外又は半導体システム(又は装置又はデバイス)又は伝搬媒体であることができる。コンピュータ可読媒体の例は、半導体又は固体メモリ、磁気テープ、着脱可能コンピュータディスケット、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、固い磁気ディスク及び光ディスクを含む。光ディスクの現在の例は、コンパクトディスク‐読取専用(CD−ROM)、コンパクトディスク‐読取/書込(CD−R/W)及びDVDを含む。
ここで同様な数字が同じ又は同様の要素を表す図面、最初に図1を参照すると、医療処置を実行するシステム100が、事例的に表現されている。システム100は、ワークステーション又はコンソール112を含むことができ、ここから、処置が、監督及び管理される。処置は、生検、アブレーション、薬物の注射等を含むが、これらに限定されない如何なる処置をも含むことができる。ワークステーション112は、好ましくは、1つ又は複数のプロセッサ114並びにプログラム及びアプリケーションを記憶するメモリ116を含む。システム100の機能及びコンポーネントが、1つ又は複数のワークステーション又はシステムに一体化されることができると理解されるべきである。
メモリ116は、医療装置102からの電磁、光及び/又は音響フィードバック信号を解釈するように構成された装置感知モジュール115を記憶することができる。感知モジュール115は、医療画像において医療装置102を表現する又は位置を提供するのに前記信号フィードバック(及び他のフィードバック)を使用するように構成される。医療装置102は、例えば、針、カテーテル、ガイドワイヤ、内視鏡、プローブ、ロボット、電極、フィルタ装置、バルーン装置又は他の医療コンポーネント等を含むことができる。ワークステーション112は、撮像システム110を使用して対象の内部画像を見るディスプレイ118を含むことができる。撮像システム110は、超音波、蛍光透視、光音響等のような撮像モダリティを含むことができる。撮像システム110は、例えば、磁気共鳴撮像(MRI)システム、蛍光透視システム、コンピュータ断層撮影(CT)システム、超音波システム又は他のシステムを含むこともできる。ディスプレイ118は、ユーザがワークステーション及びそのコンポーネント及び機能とインタラクトすることを可能にすることもできる。これは、キーボード、マウス、ジョイスティック又はワークステーション112に対するユーザインタラクションを可能にする他の周辺機器又は制御部を含むことができるインタフェース120により更に容易化される。
1つ又は複数のセンサ/トランスデューサ106は、装置102内に一体化されることができ、したがって、エネルギ源125からの追跡情報は、装置102において検出されることができる。
この具体例は、(装置102上の)被追跡素子106が受信器であり、追跡素子又は(撮像アレイ109の)トランスデューサ107が送信器であることに関連して記載され、反対の構成も提供されることができると理解されるべきである。例えば、同じ飛行時間が、送信器として(装置102上の)被追跡素子106を使用することにより測定されることができ、(アレイ109の)追跡素子/トランスデューサは、受信器として動作することができる。
エネルギ源125は、体/対象148に対して外側の線源から提供される必要がなく、内部線源から又は他の撮像装置110からであることができる。一実施例において、前記エネルギ源は、超音波源である。センサ/素子106は、電磁エネルギ又は音響エネルギを検出する(又は前記エネルギを送信する)のに使用されることができる。これは、装置102の位置及び/又は向きを解釈するのに使用されるエネルギの交換を可能にする。前記信号は、調節を行う又は他の形で前記医療処置を実行するのにフィードバックとして使用される。トランスデューサ107は、(プローブ内に配置された)超音波センサ又は他のセンサ又は送信装置を含むことができる。
撮像システム110は、リアルタイム術中撮像データを収集するように設けられることができる。前記撮像データは、ディスプレイ118に表示されることができる。感知モジュール115は、センサ/素子106により測定されたエネルギに基づいて、センサ/素子106、したがってリアルタイム画像内の装置102の位置を決定することができる。これは、ここに記載されるように三辺測量又は三角測量方法/モジュール104を使用することを含みうる。(フィードバック信号を使用する)医療装置102のデジタルレンダリングは、前記リアルタイム画像(追跡)に対する装置102の位置を実現するように表示されることができる。前記デジタルレンダリングは、画像処理モジュール117により生成されることができる。
超音波システムを使用する追跡及び撮像が、同時に又は連続して生じることができることは、理解されるべきである。好適な実施例において、トランスデューサの撮像アレイは、前記トランスデューサの追跡アレイと同じである。追跡するのに撮像ビームを使用すること及びその逆(撮像するのに追跡ビームを使用する)が可能である。しかしながら、ここに記載される追跡ビームは、超音波撮像に適していないかもしれない。このような場合に、撮像フレーム及び追跡フレームは、インタリーブされる(交互にされる)ことができる。前記被追跡素子が、送信器である場合、その帯域幅が、撮像パルスのものと別である必要があるか、又はスキャンが、前記被追跡素子からの信号の受信中に中断されうるかのいずれかである。他の技術は、両方の動作(例えば、追跡及び撮像)がリアルタイムで実行されることを保証するように使用されることもできる。
一実施例において、撮像システム110は、超音波システムを含み、放射は、実際は音響的である。この場合、センサ106は、超音波プローブ111上のアレイ109内に配置された超音波トランスデューサ107により生成された音響信号を検出する超音波センサを含む。このようにして、解剖学的画像及び装置画像の両方が、同時に表示されることができる。
他の有用な実施例において、介入アプリケーションは、対象148の内部の2以上の医療装置の使用を含む。例えば、1つの装置102は、1つの点に配置されるガイドカテーテルを含むことができ、他の装置102は、前記カテーテルの長さに沿った固定された/異なる点においてアブレーション又は生検を実行する針を含むことができる。装置の他の組み合わせも考えられる。
1つの特に有用な実施例において、1つ又は複数の超音波センサ106が、被追跡ツール又は装置102に取り付けられる。ツール102は、装置102の位置を追跡するセンサを使用して追跡される。1D撮像アレイ109は、センサ106によってツール102を撮像するように設けられる。アレイ109は、1D次元アレイ109を形成するトランスデューサ(受信器又は送信器)のラインを含むことができる。前記一次元アレイは、トランスデューサ107の直線配置(ライン)を含むことができるか、又は湾曲経路(アーク)に配置されたトランスデューサ107を含むことができる。
一実施例において、ビーム形成技術を使用する物理的に平面のアレイが、物理的アレイ素子107から発する飛行時間球の原点を空間的にシフトするのに使用される。複数の物理的素子を(適切な時間遅延を使用して)空間内の1つの位置に集束させることにより、焦点位置が、仮想的素子になる。
感知モジュール115は、ツール102に乗った超音波素子106を追跡する三次元(3D)三辺測量ルーチンを含む。一実施例において、ディスプレイ118は、2D超音波画像に重畳された被追跡ツール102の3Dレンダリングを提供する。ツール102の位置は、図2A−2Bを参照して事例的に記載されるように決定される。
図2A及び2Bを参照すると、図は、(送信又は受信に対する)複数の超音波(US)トランスデューサ又は素子222を持つ湾曲アレイ(2Dプローブ又は1Dアレイ)超音波プローブ220の近傍に表現された先端において要素208(例えば、送信又は受信に対する超音波素子)を持つ被追跡ツール206(例えば、針)を示す。本原理によると、撮像面に対するツール206の3D位置は、プローブ220内のトランスデューサ222の1Dアレイを使用して評価される。超音波素子208(パッシブ又はアクティブ)は、被追跡ツール206内に、例えば、先端に埋め込まれる。被追跡素子208と撮像プローブ220の複数のトランスデューサ222との間の超音波信号飛行時間は、被追跡素子208の位置を与えるように3D三角測量又は三辺測量ルーチン(図1の104)において使用される。複数の素子208がツール206において使用されることができると理解されるべきである。各センサの位置は、処置中に位置を記述するために本原理を使用して追跡されることができる。
被追跡素子208と前記撮像アレイの複数のトランスデューサ222との間の超音波信号の飛行時間三辺測量は、使用される撮像アレイトランスデューサ22が素子208に対して共線的でない限り、3D位置を与えることができる。被追跡素子208の位置は、(前記アレイの)追跡トランスデューサ222を中心として被追跡素子208と追跡トランスデューサ222との間の測定された飛行時間により決定される半径を持つ少なくとも3つの球226、228、230の交点にある。3つの球226、228、230の交点は、前記3つの球の中心が被追跡素子208に対して共線的ではない限り、2つの点(例えば、真の交点231及び対称的な交点232)を生じる(2つの球の交線が円であり、前記円との最後の球の交点が2つの点を与える)。
三辺測量は、被追跡素子208、したがって前記針又はツール206の位置を決定するのに使用される。三辺測量は、球又は三角形の幾何学を使用して、距離の測定により点の絶対的又は相対的位置を決定するプロセスである。三角測量とは対照的に、これは、角度の測定を伴わないが、三角測量技術も使用されうる。
二次元空間において、2つの基準点を使用することは、通常、決定された位置に対して2つの可能性のみを残すのに十分であり、第3の基準点又は他の情報を含めることにより均衡が破られる。三次元空間において、3つの基準点を使用することは、同様に、2つの可能性のみを残し、第4の基準点又は他の情報を含めることにより均衡が破られる。
図3を参照すると、3つの球表面226、228及び230に対する方程式を立て、3つの未知数x, y, zについて前記3つの方程式を解くことにより、解が見つけられる。前記3つの球に対する方程式は、以下のように表されうる。
r1 2=x2+y2+z2
r2 2=(x-d)2+y2+z2
r3 2=(x-i)2+(y-j)2+z2
3つ全ての方程式を満たす(x, y, z)に配置された点を見つける必要がある。
第一に、第1の方程式から第2の方程式を減算し、xについて解く。
x=(r1 2-r2 2+d2)/(2d)
最初の2つの球が1より多い点で交わり、すなわちd-r1<r2<d+r1であると仮定する。この場合、xに対する方程式を第1の球に対する方程式に戻して代入することが、円に対する方程式、最初の2つの球の交点に対する解を生じる。
y2+z2=r1 2-(r1 2-r2 2+d2)2/(4d2)
y2+z2=r1 2-x2を第3の球に対する方程式に代入し、yについて解くことは、以下を生じる。
y=(r1 2-r3 2-x2+(x-i)2+j2)/(2j)=(r1 2-r3 2+i2+j2)/(2j)-(i/j)x
ここで、解の点のx及びy座標が得られ、第1の球に対する方程式が、z座標を見つけるように整理されることができる。
z=±√(r1 2-x2-y2)
ここで、x, y, zに対する解を持つ。zは正又は負の平方根として表されるので、これがゼロであることが可能であり、この問題に対して1つ又は2つの解が存在することが可能である。これは、第1の球226及び第2の球230を交差することから見つけられた円234を取り、これを第3の球228と交差すると視覚化されることができる。円234が、全体的に、球228の外側又は内側になる場合、zは、負の数の平方根に等しく、すなわち実の解が存在しない。円234が、正確に一点で球228に触れる場合、zはゼロに等しい。円234が2点で前記球の表面に触れる場合、zは、(図3に表現されるように)正の数のプラス又はマイナスの平方根に等しい。
図2A及び2Bを再び参照すると、ここで、1Dの曲線をなす撮像アレイ(222)を用いて被追跡素子208の3D位置をマッピングすることが可能である。素子が共線的である線形アレイを用いて、送信又は受信集束は、もはや整列されていないアレイ内の仮想的トランスデューサを生成することができ、この技術も、あるビーム形成を持つ線形アレイに適用可能である。ビーム形成は、事実上、送信される信号の原点を新しい位置に移動することにより球の原点を移動する。
三辺測量は、2つの位置(前記撮像面に対して対称的)を与えるので、不確定要素が存在しうる。この不確定要素は、先験的情報を使用して、又は超音波プローブ220を穏やかに揺動し、被追跡素子208の相対的移動(目標面に対して近づく又は離れる)を観測することにより破られることができる。また、単一の追加の撮像センサ、トランスデューサ又は素子236(又は送信器)は、前記不確定要素を破るために撮像アレイ222側で使用されることもできる(タイブレーカ)。
本技術は、素子208が面の厚み238内である、すなわち、撮像面に近い場合、被追跡素子208を検出することができる。(画質と追跡視野との間の妥協を生じるように集束する小さい高度を持つ)カスタマイズされたプローブ設計は、特定の応用例に対するシステムの機能性を拡張するように使用されることができる。
従来のシステムにおいて、一次元(1D)超音波(US)プローブが、針又は他のツールの2D視覚化に対して使用される場合、前記ツールの位置は、前記ツールがUS撮像面239の外側に位置する場合に撮像に対して評価されることができない。二次元(2D)超音波プローブ(1D湾曲アレイ)は、幅広い範囲の臨床的介入において患者の生体構造に対する針の2D視覚化に対して使用されることができる。従来のシステムにおいて、臨床医は、前記針を視覚化するために前記針を完全に前記面内に向けるのに大量の時間をかける。斜め/直交注入から、前記針は、視覚するのが非常に難しい。しかしながら、本原理によると、前記針又はツールは、目標領域を表示しながら三次元において位置特定及び画像化されることができる。このようにして、前記針は、見つけるのが容易であり、その位置は、超音波ガイド針介入、例えば、神経ブロック、生検、血管アクセス、膿瘍ドレナージ、アブレーション等のような如何なるタイプの処置に対しても正確に追跡される。USガイド針介入は、高価な追加の機器(マトリクスアレイ)の必要性なしに、大幅に容易化される。USガイド介入は、(i)より正確に、(ii)より速く、(iii)(2Dプローブを使用することにより)安価になる。
図4を参照すると、一実施例による針246の三次元レンダリングを示す具体的な二次元超音波画像242が表現されている。針246は、画像境界244とともに示されるが、これらの境界244の外側で追跡されることができる。針246のレンダリングは、上記のように三辺測量を使用して生成される。針移動は、リアルタイムで追跡され、周囲の組織に沿って表示される。本原理は、比較的安価なセットアップで速く、正確な画像化を可能にする。
図5A−5Cは、ビーム形成技術を説明する。ビーム形成は、物理的アレイ素子から仮想的アレイ素子に(飛行時間に対する)球の原点を空間的にシフトすることができる。(適切な時間遅延を使用して)複数の物理的素子を空間内の1つの位置に集束させることにより、焦点位置は、仮想的素子になる。
図5Aを参照すると、トランスデューサアレイ302は、集束されたエネルギを送信する物理的素子304を含む。事例的に、ビームは、焦点位置305、306及び307において交差する。これらの焦点位置305、306及び307は、飛行時間三辺測量計算を実行する球中心として使用されることができる。焦点位置305、306及び307は、平面一次元トランスデューサアレイ構成302の使用を可能にすることができる非共線的仮想的素子を有利に提供する。この構成において、医療装置上の追跡センサ310は、記載されたように位置推定を実行するために前記仮想的素子(305、306及び307)からエネルギを受信する受信器として機能する。
図5Bを参照すると、仮想的素子は、物理的アレイ302の後ろから投影されることもできる。例えば、ビーム形成は、前記医療装置に取り付けられたセンサ310とはアレイ302の反対側にある仮想的素子312を統制するのに使用されることができる。
図5Cを参照すると、本実施例において、装置素子320は、送信器として機能し、仮想的素子322、323及び324は、受信器として機能する。仮想的素子322、323及び324は、物理的アレイ328内の物理的素子326と対応する。物理的素子326は、装置素子320から送信された信号を受信する。物理的素子326において測定された信号遅延は、仮想的素子322、323及び324の視点からの測定を可能にするように変換される。そうすることにより、ビーム形成は、物理的素子326間の共線性を除去するのに使用される。
図6を参照すると、ブロック/フロー図が、1つの具体的実施例による医療装置を画像化する方法を示す。ブロック402において、医療装置が、対象内に導入される。前記医療装置は、信号を交換する少なくとも1つの素子を含む。前記医療装置は、針、カテーテル、プローブ、ロボット、フィルタ装置、電極等の少なくとも1つを含むことができる。
ブロック404において、信号が、エネルギ源により生成され、前記医療装置上の前記少なくとも1つの素子とアレイ内に配置された複数のトランスデューサとの間で交換される。前記アレイは、(線形の素子を持つ)一次元アレイ又は湾曲若しくは千鳥配列アレイ(二次元)であることができる。ブロック406において、前記トランスデューサと前記少なくとも1つの素子との間の信号の飛行時間が、決定される。これは、前記トランスデューサからのパルス又は信号が前記少なくとも1つの素子において受信される(又はその逆の)時間を測定することを含むことができる。
ブロック408において、真の交点は、前記飛行時間により規定される半径を持つ球に対して決定される。ブロック410において、前記真の交点は、前記医療装置の位置を追跡するように前記対象に沿って経時的に画像化される。前記三辺測量は、ブロック412において前記真の交点を決定するのに使用される。ブロック414において、前記トランスデューサのアレイは、ライン又は湾曲表面に沿った一次元アレイ内に配置されることができる。前記画像化は、少なくとも3つのトランスデューサに対する前記少なくとも1つの素子の三辺測量を使用して三次元において前記医療装置を画像化することを含むことができる。
ブロック416において、追加の素子/トランスデューサは、前記真の交点及び対称交点を区別するように構成されることができる。これは、前記真の及び対称交点が区別されることができる位置において前記トランスデューサを追加することを含むことができる。前記交点を区別する他の技術も、使用されることができる。
ブロック418において、前記飛行時間球は、好ましくは、前記少なくとも1つのセンサに対して非共線的である中心を持つ。しかしながら、前記球が共線的である場合、ビーム形成は、1つ又は複数の送信器からの送信された信号に対して使用され、前記送信された信号に対して新しい原点を提供し、共線性を除去することができる。
添付の請求項を解釈する際に、以下のことが理解されるべきである。
a)単語"有する"は、所定の請求項に列挙された要素又は動作以外の要素又は動作の存在を除外しない。
b)要素に先行する単語"1つの"は、複数のこのような要素の存在を除外しない。
c)請求項内の参照符号は、その範囲を限定しない。
d)複数の"手段"は、同じアイテム又はハードウェア又はソフトウェア実施構造又は機能により表されてもよい。
e)動作の特定の順序は、特に示されない限り、必要とされることを意図されない。
(説明的であり、限定的ではないことを意図される)二次元撮像プローブを用いる三次元針位置特定に対するシステム及び方法に対する好適な実施例を記載して、修正例及び変形例が、上記の教示を考慮して当業者によりなされることができることに注意されたい。したがって、添付の請求項により概説されるここに開示された実施例の範囲内である変形が、開示された開示の特定の実施例においてなされることができると理解されたい。詳細をこのように記載し、特許法により要求されて、請求され特許証により保護されることを望まれるものは、添付の請求項に記載される。

Claims (25)

  1. 少なくとも1つの追跡素子を取り付けられた医療装置と、
    互いから離間されたトランスデューサのアレイであって、前記少なくとも1つの追跡素子と前記トランスデューサのアレイとの間の対象においてエネルギを交換する前記トランスデューサのアレイと、
    前記少なくとも1つの追跡素子と前記トランスデューサのアレイとの間で感知された信号を解釈し、前記少なくとも1つの追跡素子の位置が少なくとも二次元において決定されるように前記アレイ内の前記トランスデューサと関連付けられた信号の飛行時間を計算し、視覚的画像において前記医療装置の位置を位置特定する三辺測量モジュールと、
    を有する画像化システム。
  2. 前記医療装置が、針、カテーテル、プローブ及び電極の少なくとも1つを含む、請求項1に記載のシステム。
  3. 前記トランスデューサのアレイが、ライン及びアークの一方に沿った一次元アレイ内に配置される、請求項1に記載のシステム。
  4. 前記トランスデューサのアレイが、超音波トランスデューサを含み、前記少なくとも1つの素子が、超音波トランスデューサ素子を含む、請求項1に記載のシステム。
  5. 前記三辺測量モジュールが、前記トランスデューサからの飛行時間により規定される半径を持つ球の間の真の交点を見つけることにより前記少なくとも1つの素子の位置を決定する、請求項1に記載のシステム。
  6. 前記球が、前記少なくとも1つの素子に対して非共線的である中心を持つ、請求項5に記載のシステム。
  7. 真の交点及び対称交点を区別する情報を提供する追加のトランスデューサ素子を有する、請求項1に記載のシステム。
  8. 前記少なくとも二次元が、三次元を含み、前記医療画像の三次元画像が、二次元画像において追跡される、請求項1に記載のシステム。
  9. 前記トランスデューサのアレイが、前記信号の飛行時間に対して共線的な原点を防ぐようにビーム形成された仮想的素子を含む、請求項1に記載のシステム。
  10. 互いから離間され、対象内の追跡される医療装置とエネルギを交換するトランスデューサのアレイを持つ撮像プローブと、
    プロセッサと、
    前記プロセッサに結合されたメモリであって、前記メモリが、信号を受信し、前記プロセッサと併せて、前記追跡される医療装置上の少なくとも1つの追跡素子に対して前記アレイ内の前記トランスデューサに対する信号の飛行時間を計算し、前記少なくとも1つの追跡素子の位置が少なくとも二次元において決定され、前記医療装置の画像及び前記対象が視覚的画像において同時に提供される、前記メモリと、
    を有するワークステーション。
  11. 前記医療装置が、針、カテーテル、プローブ及び電極の少なくとも1つを含む、請求項10に記載のワークステーション。
  12. 前記トランスデューサのアレイが、ライン又はアークに沿った一次元アレイ内に配置される、請求項10に記載のワークステーション。
  13. 前記トランスデューサのアレイが、超音波トランスデューサを含み、前記少なくとも1つの素子が、超音波トランスデューサ素子を含む、請求項10に記載のワークステーション。
  14. 前記三辺測量モジュールが、前記トランスデューサからの飛行時間により規定される半径を持つ球の間の真の交点を見つけることにより前記少なくとも1つの素子の位置を決定する、請求項10に記載のワークステーション。
  15. 前記球が、前記少なくとも1つの素子に対して非共線的である中心を持つ、請求項14に記載のワークステーション。
  16. 真の交点及び対称交点を区別する情報を提供する追加のトランスデューサを有する、請求項10に記載のワークステーション。
  17. 前記少なくとも二次元が、三次元を含み、前記医療装置の三次元画像が、二次元画像において追跡される、請求項10に記載のワークステーション。
  18. 前記トランスデューサのアレイが、前記信号の飛行時間に対して共線的な原点を防ぐようにビーム形成された仮想的素子を含む、請求項10に記載のワークステーション。
  19. 医療装置を画像化する方法において、
    エネルギを交換する少なくとも1つの素子を含む医療装置を対象内に導入するステップと、
    アレイ内に配置された複数のトランスデューサからの信号を前記少なくとも1つの素子と交換するステップと、
    前記トランスデューサと前記少なくとも1つの素子との間の前記信号の飛行時間を決定するステップと、
    前記飛行時間により規定される半径を持つ球の間の真の交点を決定するステップと、
    前記医療装置の位置を追跡するように前記対象とともに前記真の交点を画像化するステップと、
    を有する方法。
  20. 前記医療装置が、針、カテーテル、プローブ及び電極の少なくとも1つを含む、請求項19に記載の方法。
  21. 前記トランスデューサのアレイが、一次元アレイ内に配置され、前記画像化するステップが、少なくとも3つのトランスデューサに対する前記少なくとも1つの素子の三辺測量を使用して三次元において前記医療装置を画像化するステップを含む、請求項19に記載の方法。
  22. 前記三辺測量が、前記真の交点を決定するのに使用される、請求項19に記載の方法。
  23. 前記球が、前記少なくとも1つの素子に対して非共線的である中心を持つ、請求項22に記載の方法。
  24. 前記真の交点及び対称交点を区別する追加のトランスデューサを設けるステップを有する、請求項19に記載の方法。
  25. 送信/受信された信号に対して新しい原点を提供するように1つ又は複数の送信器からの送信された信号をビーム形成するステップを有する、請求項19に記載の方法。
JP2014515313A 2011-06-13 2012-06-06 二次元撮像プローブを用いる三次元針位置特定 Active JP6053766B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161496077P 2011-06-13 2011-06-13
US61/496,077 2011-06-13
PCT/IB2012/052830 WO2012172458A1 (en) 2011-06-13 2012-06-06 Three-dimensional needle localization with a two-dimensional imaging probe

Publications (3)

Publication Number Publication Date
JP2014516738A true JP2014516738A (ja) 2014-07-17
JP2014516738A5 JP2014516738A5 (ja) 2015-07-09
JP6053766B2 JP6053766B2 (ja) 2016-12-27

Family

ID=46331655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515313A Active JP6053766B2 (ja) 2011-06-13 2012-06-06 二次元撮像プローブを用いる三次元針位置特定

Country Status (5)

Country Link
US (1) US11147532B2 (ja)
EP (1) EP2717772B1 (ja)
JP (1) JP6053766B2 (ja)
CN (1) CN103747729B (ja)
WO (1) WO2012172458A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077442A (ja) * 2014-10-15 2016-05-16 日立アロカメディカル株式会社 超音波診断装置
JP2018500997A (ja) * 2014-12-24 2018-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 標的生検の針軌道予測
JP2019513492A (ja) * 2016-04-19 2019-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 体内及び体外超音波プローブの音響的位置合わせ
JP2021514266A (ja) * 2018-02-22 2021-06-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. インターベンション医療デバイスの追跡
JP2021528158A (ja) * 2018-06-29 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生検予測及び超音波撮像によるガイド並びに関連するデバイス、システム、及び方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2770344B1 (en) * 2013-02-21 2015-09-09 Sercel Method and device for estimating a relative position between towed acoustic linear antennas
WO2014138216A1 (en) * 2013-03-05 2014-09-12 Kafiluddi Ronny Compound needle
AU2014231327C1 (en) * 2013-03-15 2019-08-01 Conavi Medical Inc. Active localization and visualization of minimally invasive devices using ultrasound
GB201307551D0 (en) * 2013-04-26 2013-06-12 Ucl Business Plc A method and apparatus for determining the location of a medical instrument with respect to ultrasound imaging and a medical instrument
EP3019088B1 (en) * 2013-07-08 2020-12-02 Koninklijke Philips N.V. Imaging apparatus for biopsy or brachytherapy
WO2015010900A1 (en) * 2013-07-23 2015-01-29 Koninklijke Philips N.V. Method and system for localizing body structures
JP6253787B2 (ja) 2013-09-24 2017-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 介入ツールの音響3dトラッキング
RU2689176C2 (ru) * 2014-01-02 2019-05-24 Конинклейке Филипс Н.В. Ориентация и отслеживание положения инструмента относительно плоскости ультразвукового изображения
JP6378361B2 (ja) * 2014-04-11 2018-08-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 複数センサを有するニードル
US10646201B2 (en) * 2014-11-18 2020-05-12 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
WO2016081023A1 (en) * 2014-11-18 2016-05-26 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US20170258445A1 (en) * 2014-11-25 2017-09-14 Koninklijke Philips N.V. A multi-sensor ultrasound probe and related methods
WO2017108490A1 (en) * 2015-12-22 2017-06-29 Koninklijke Philips N.V. Ultrasound based tracking
JP6668817B2 (ja) * 2016-02-26 2020-03-18 コニカミノルタ株式会社 超音波診断装置、及び制御プログラム
WO2018060499A1 (en) * 2016-09-30 2018-04-05 Koninklijke Philips N.V. Tracking a feature of an interventional device
CN109923432A (zh) * 2016-11-08 2019-06-21 皇家飞利浦有限公司 利用关于跟踪可靠性的反馈跟踪介入仪器的系统和方法
CN110392553B (zh) 2017-03-10 2023-04-04 皇家飞利浦有限公司 用于定位声学传感器的定位设备和系统
WO2018234230A1 (en) * 2017-06-19 2018-12-27 Koninklijke Philips N.V. INTERLACEMENT IMAGING AND CONTINUOUS SEQUENCES FOR ULTRASONIC INSTRUMENT TRACKING
WO2019096599A1 (en) 2017-11-14 2019-05-23 Koninklijke Philips N.V. Ultrasound vascular navigation devices and methods
EP3787520A1 (en) * 2018-05-04 2021-03-10 Hologic, Inc. Biopsy needle visualization
EP3809977A1 (en) * 2018-06-22 2021-04-28 Koninklijke Philips N.V. Intravascular ultrasound position identification
DE102018215470A1 (de) * 2018-09-12 2020-03-12 B. Braun Melsungen Ag Verfahren zur Positionsermittlung einer medizinischen Invasivkomponente sowie medizinisches System zur Ausführung eines solchen Verfahrens
EP3880081A1 (en) * 2018-11-14 2021-09-22 Robeaute System and method for real-time localization
JP7168474B2 (ja) * 2019-01-31 2022-11-09 富士フイルムヘルスケア株式会社 超音波撮像装置、治療支援システム、及び、画像処理方法
WO2021113210A1 (en) * 2019-12-04 2021-06-10 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Surgical guiding probe
US11228469B1 (en) * 2020-07-16 2022-01-18 Deeyook Location Technologies Ltd. Apparatus, system and method for providing locationing multipath mitigation
WO2022123013A1 (en) * 2020-12-11 2022-06-16 Robeaute Micro-device tracking and vizualisation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277040A (ja) * 1997-04-09 1998-10-20 Hitachi Medical Corp 超音波診断装置
JP2002306473A (ja) * 2001-03-28 2002-10-22 Koninkl Philips Electronics Nv カテーテルの位置を決定する方法及び超音波撮像システム
JP2003101861A (ja) * 2001-09-21 2003-04-04 Sanyo Electric Co Ltd ディジタルカメラ
JP2009536856A (ja) * 2006-05-12 2009-10-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 空間コンパウンディングのための遡及的、動的な送信のフォーカシング
JP2011078744A (ja) * 2009-09-10 2011-04-21 Sophia School Corp 変位計測方法及び装置、並びに、超音波診断装置
JP2011101811A (ja) * 2003-05-23 2011-05-26 Boston Scientific Ltd 超音波画像を三次元座標システムに登録するシステム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246898B1 (en) * 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US6216540B1 (en) * 1995-06-06 2001-04-17 Robert S. Nelson High resolution device and method for imaging concealed objects within an obscuring medium
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
GB2329709B (en) 1997-09-26 2001-12-19 Roke Manor Research Catheter localisation system
GB2331365B (en) * 1997-11-15 2002-03-13 Roke Manor Research Catheter tracking system
US6120453A (en) * 1997-11-17 2000-09-19 Sharp; William A. Three-dimensional ultrasound system based on the coordination of multiple ultrasonic transducers
US6592520B1 (en) * 2001-07-31 2003-07-15 Koninklijke Philips Electronics N.V. Intravascular ultrasound imaging apparatus and method
US7207942B2 (en) * 2003-07-25 2007-04-24 Siemens Medical Solutions Usa, Inc. Adaptive grating lobe suppression in ultrasound imaging
US20050062469A1 (en) * 2003-09-23 2005-03-24 Anderson Peter Traneus System and method for hemisphere disambiguation in electromagnetic tracking systems
US7713210B2 (en) * 2004-11-23 2010-05-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for localizing an ultrasound catheter
US20070233185A1 (en) * 2005-10-20 2007-10-04 Thomas Anderson Systems and methods for sealing a vascular opening
US20070167823A1 (en) 2005-12-20 2007-07-19 General Electric Company Imaging catheter and method for volumetric ultrasound
US20070161905A1 (en) 2006-01-12 2007-07-12 Gynesonics, Inc. Intrauterine ultrasound and method for use
US7621169B2 (en) * 2006-10-26 2009-11-24 General Electric Company Systems and methods for integrating a navigation field replaceable unit into a fluoroscopy system
WO2009032421A2 (en) 2007-07-27 2009-03-12 Meridian Cardiovascular Systems, Inc. Image guided intracardiac catheters
US20110112403A1 (en) * 2008-07-11 2011-05-12 Barnev Ltd. Method and a system for monitoring, contractions and/or a birth process and/or the progress and/or position of a fetus
US20100210943A1 (en) * 2009-02-18 2010-08-19 West Virginia University Research Corporation Systems and Methods for Echoperiodontal Imaging
JP4776707B2 (ja) * 2009-03-30 2011-09-21 株式会社東芝 超音波画像化装置
US9282946B2 (en) * 2010-05-03 2016-03-15 Koninklijke Philips N.V. Ultrasonic tracking of ultrasound transducer(s) aboard an interventional tool
WO2012024201A1 (en) * 2010-08-19 2012-02-23 Mayo Foundation For Medical Education And Research Steerable catheter navigation with the use of interference ultrasonography
CN103221148B (zh) * 2010-11-18 2016-04-13 皇家飞利浦电子股份有限公司 具有嵌在挠性箔片内的超声波换能器的医疗设备
US10617374B2 (en) * 2011-01-28 2020-04-14 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
WO2013116807A1 (en) * 2012-02-03 2013-08-08 Los Alamos National Security, Llc Systems and methods for synthetic aperture ultrasound tomography
CN104936517B (zh) * 2013-03-09 2020-06-05 科纳医药股份有限公司 用于聚焦超声波治疗的换能器、系统和制造技术
AU2014231327C1 (en) * 2013-03-15 2019-08-01 Conavi Medical Inc. Active localization and visualization of minimally invasive devices using ultrasound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277040A (ja) * 1997-04-09 1998-10-20 Hitachi Medical Corp 超音波診断装置
JP2002306473A (ja) * 2001-03-28 2002-10-22 Koninkl Philips Electronics Nv カテーテルの位置を決定する方法及び超音波撮像システム
JP2003101861A (ja) * 2001-09-21 2003-04-04 Sanyo Electric Co Ltd ディジタルカメラ
JP2011101811A (ja) * 2003-05-23 2011-05-26 Boston Scientific Ltd 超音波画像を三次元座標システムに登録するシステム
JP2009536856A (ja) * 2006-05-12 2009-10-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 空間コンパウンディングのための遡及的、動的な送信のフォーカシング
JP2011078744A (ja) * 2009-09-10 2011-04-21 Sophia School Corp 変位計測方法及び装置、並びに、超音波診断装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077442A (ja) * 2014-10-15 2016-05-16 日立アロカメディカル株式会社 超音波診断装置
JP2018500997A (ja) * 2014-12-24 2018-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 標的生検の針軌道予測
JP2019513492A (ja) * 2016-04-19 2019-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 体内及び体外超音波プローブの音響的位置合わせ
JP2021514266A (ja) * 2018-02-22 2021-06-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. インターベンション医療デバイスの追跡
JP7299228B2 (ja) 2018-02-22 2023-06-27 コーニンクレッカ フィリップス エヌ ヴェ インターベンション医療デバイスの追跡
JP2021528158A (ja) * 2018-06-29 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生検予測及び超音波撮像によるガイド並びに関連するデバイス、システム、及び方法
JP7357015B2 (ja) 2018-06-29 2023-10-05 コーニンクレッカ フィリップス エヌ ヴェ 生検予測及び超音波撮像によるガイド並びに関連するデバイス、システム、及び方法

Also Published As

Publication number Publication date
US20140094695A1 (en) 2014-04-03
US11147532B2 (en) 2021-10-19
JP6053766B2 (ja) 2016-12-27
WO2012172458A1 (en) 2012-12-20
EP2717772B1 (en) 2021-05-26
EP2717772A1 (en) 2014-04-16
CN103747729B (zh) 2016-07-13
CN103747729A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP6053766B2 (ja) 二次元撮像プローブを用いる三次元針位置特定
US11786318B2 (en) Intelligent real-time tool and anatomy visualization in 3D imaging workflows for interventional procedures
JP7218293B2 (ja) 装置追跡に対する超音波システムにおける経路追跡
JP6938559B2 (ja) ユーザが規定可能な関心領域を含む画像ガイダンスシステム
JP2021049416A (ja) 同時x平面撮像を用いた画像レジストレーション及び誘導
JP6878434B2 (ja) 介入デバイス認識
JP2019533536A (ja) 追跡信頼性に関するフィードバックを用いて介入器具を追跡するシステム及び方法
CN111757704A (zh) 介入医学设备跟踪
US20220241024A1 (en) Ultrasound object point tracking
EP4013310B1 (en) Ultrasound-based device localization
Najafi et al. A closed-form differential formulation for ultrasound spatial calibration
EP3808280A1 (en) Ultrasound-based device localization

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161129

R150 Certificate of patent or registration of utility model

Ref document number: 6053766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250