JP2014224283A - Corrosion resistant aluminum alloy bonding wire - Google Patents

Corrosion resistant aluminum alloy bonding wire Download PDF

Info

Publication number
JP2014224283A
JP2014224283A JP2013103262A JP2013103262A JP2014224283A JP 2014224283 A JP2014224283 A JP 2014224283A JP 2013103262 A JP2013103262 A JP 2013103262A JP 2013103262 A JP2013103262 A JP 2013103262A JP 2014224283 A JP2014224283 A JP 2014224283A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum alloy
bonding wire
wire
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013103262A
Other languages
Japanese (ja)
Other versions
JP5680138B2 (en
Inventor
裕之 天野
Hiroyuki Amano
裕之 天野
中島 伸一郎
Shinichiro Nakajima
伸一郎 中島
司 市川
Tsukasa Ichikawa
司 市川
道孝 三上
Michitaka Mikami
道孝 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2013103262A priority Critical patent/JP5680138B2/en
Priority to KR1020140056589A priority patent/KR101588522B1/en
Priority to SG10201402300TA priority patent/SG10201402300TA/en
Priority to CN201410206059.6A priority patent/CN104164591B/en
Publication of JP2014224283A publication Critical patent/JP2014224283A/en
Application granted granted Critical
Publication of JP5680138B2 publication Critical patent/JP5680138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit intergranular corrosion of high-purity aluminum wire for connecting semiconductor elements in a high-temperature and high-humidity environment.SOLUTION: Provided is aluminum alloy bonding wire comprising high-purity aluminum of a purity of 99.99 mass% or more to which is added 10 to 200 mass ppm of rhodium (Rh) and/or palladium (Pd). These added elements are forcibly solid-solubilized and forms a dispersed phase of an intermetallic compound in an aluminum matrix, where a crystal grain size of the aluminum matrix is set at 10 to 100 μm. The rhodium (Rh) and palladium (Pd) converts atomic hydrogen generated on the aluminum surface by a catalytic action into Hto prevent hydrogen from diffusing and permeating into the aluminum matrix. Thus, intergranular corrosion is prevented which occurs by Hformed by bonding of atomic hydrogen.

Description

本発明は、高温環境下で使用される半導体素子上の電極と外部電極とを接続するアルミニウム合金ボンディングワイヤに関し、特に、航空機、電気自動車、或いは船舶などの高温環境下で使用される半導体素子のボンディングワイヤにおいて、使用環境の水分によって発生する粒界腐食を抑制し、その耐久性、信頼性の向上を図るものである。   The present invention relates to an aluminum alloy bonding wire that connects an electrode on a semiconductor element used in a high temperature environment and an external electrode, and more particularly, a semiconductor element used in a high temperature environment such as an aircraft, an electric vehicle, or a ship. In the bonding wire, the intergranular corrosion generated by moisture in the use environment is suppressed, and the durability and reliability are improved.

シリコン(Si)、或いは、炭化シリコン(SiC)や窒化ガリウム(GaN)などの半導体素子上のボンディングパッドやこれらの半導体素子を搭載した基板上の電極、或いはリードフレームには、主としてアルミニウム(Al)、銅(Cu)、ニッケル(Ni)などの素材が使用される。
これらの基板上の電極には金(Au)、銀(Ag)などの貴金属めっき、或いはニッケル(Ni)めっきが施されて使用されることがあるが、以下では特に断らない限りこれらをまとめて「アルミパッド」と称する。
これらの半導体素子のアルミパッドとリードフレームなどの電極を超音波ボンディングにより接続するには、60%以上の高い導電率を有する高純度アルミニウム(Al)を用いたアルミニウム合金細線が使用される。
これらのアルミニウム合金細線として、一般に線径が50〜500μmの丸細線が使用されるが、用途によっては線径が50μm未満の極細線や500μmを超えるものも用いられ、また、これらの細線を押し潰した平角状細線(テープ)が使用されることもある。
Aluminum (Al) is mainly used for bonding pads on semiconductor elements such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), electrodes on a substrate on which these semiconductor elements are mounted, or lead frames. A material such as copper (Cu) or nickel (Ni) is used.
The electrodes on these substrates may be used with precious metal plating such as gold (Au), silver (Ag), or nickel (Ni) plating. This is called “aluminum pad”.
In order to connect the aluminum pads of these semiconductor elements and electrodes such as lead frames by ultrasonic bonding, an aluminum alloy fine wire using high-purity aluminum (Al) having a high conductivity of 60% or more is used.
As these aluminum alloy thin wires, round thin wires having a wire diameter of 50 to 500 μm are generally used, but depending on the application, extra fine wires having a wire diameter of less than 50 μm or those having a wire diameter of more than 500 μm are also used. A crushed flat rectangular wire (tape) may be used.

このような高純度アルミニウム(Al)を用いたアルミニウム(Al)合金細線を高温・高湿度環境(雰囲気)下で使用する場合、特に、航空機、自動車、或いは船舶などで用いられる半導体素子の配線材料として使用する場合は、これらの環境における耐久性、信頼性を維持・確保することが困難となる問題があった。   When using such an aluminum (Al) alloy fine wire using high-purity aluminum (Al) in a high-temperature, high-humidity environment (atmosphere), it is particularly a wiring material for semiconductor elements used in aircraft, automobiles, ships, etc. When used as, there is a problem that it is difficult to maintain and ensure durability and reliability in these environments.

そのような例として、比抵抗が比較的小さく、機械的強度が比較的高いと共に耐熱性に優れた配線材料として、次のアルミニウム(Al)中にニッケル(Ni)を固溶したアルミニウム合金がある。
特開昭59−56737号公報(後述する特許文献1)には、「高純度のAlに、ニッケル(Ni)、銅(Cu)の一又は二つの元素を含有せしめ、その含有量が0.005〜0.2wt%であること、すなわち0.005〜0.2wt%Ni又は0.005〜0.2wt%Cuを含有させ、或いはNi及びCuをその合計量0.005〜0.2wt%含有させたことを特徴とする。」ボンディング用アルミニウム(Al)細線が開示されている。
As such an example, there is an aluminum alloy in which nickel (Ni) is dissolved in the following aluminum (Al) as a wiring material having relatively small specific resistance, relatively high mechanical strength and excellent heat resistance. .
Japanese Patent Laid-Open No. 59-56737 (Patent Document 1 described later) states that “one or two elements of nickel (Ni) and copper (Cu) are contained in high-purity Al, and the content is 0.00. 005 to 0.2 wt%, that is, 0.005 to 0.2 wt% Ni or 0.005 to 0.2 wt% Cu is contained, or the total amount of Ni and Cu is 0.005 to 0.2 wt% It is characterized in that it is contained. ”Aluminum (Al) fine wires for bonding are disclosed.

150℃以上の高温純水中での純度99.99%以上の高純度アルミニウムにおける腐食機構について、アルミニウムと水との化学反応によって、
2Al + 3HO = Al + 6H ↑

という反応の起こることを問題とすべきこと、
「この反応で発生した水素のうち、アルミニウムの表面で分子状となってHガスとして逸出して行くものはこのために容器内のガス圧が上がるだけであるが、「一部は原子状水素としてアルミナを拡散して抜け、アルミニウムの結晶粒界に沿って拡散侵入して、中でH分子を作って圧力をまし、このため、アルミニウムの地に粒界割れを起こさせる。そうすると、この割れに従ってアルミナの被膜も破れるので新しい水が浸入して中でアルミニウムと水との反応が起こり、また、原子状の水素が発生してこれがさらに中に侵入するということが繰り返される。このため、ついに結晶粒界から割れて崩壊するのであるという説明がよく行われている(軽金属協会編、アルミニウムハンドブック、後述する非特許文献1)。」
これらの反応機構に対して、前記特許文献1記載のニッケルを固溶したアルミニウム合金中では、その表面層でニッケルが触媒として作用して結晶組織中を移動しやすい原子状水素(H)をHとするために、原子状水素(H)がアルミニウムの結晶組織中に侵入することが抑止され、耐食性を改善していると考えられる
Regarding the corrosion mechanism in high-purity aluminum with a purity of 99.99% or higher in high-temperature pure water at 150 ° C. or higher, by the chemical reaction between aluminum and water,
2Al + 3H 2 O = Al 2 O 3 + 6H ↑

What should be the problem of this reaction,
“Of the hydrogen generated in this reaction, those that become molecular on the surface of aluminum and escape as H 2 gas only increase the gas pressure in the container for this purpose. Alumina diffuses and escapes as hydrogen, diffuses and penetrates along the grain boundaries of aluminum, creates H 2 molecules therein, and pressurizes, thus causing intergranular cracking in the aluminum ground. As the cracks break the alumina coating, new water enters and the reaction between aluminum and water takes place, and atomic hydrogen is generated and further penetrates into it. It is often explained that it finally breaks and collapses from the crystal grain boundary (edited by the Light Metal Association, Aluminum Handbook, Non-Patent Document 1 described later).
With respect to these reaction mechanisms, in the aluminum alloy in which nickel is dissolved as described in Patent Document 1, atomic hydrogen (H), which is easy to move in the crystal structure because nickel acts as a catalyst in the surface layer, is H. to a 2, it is suppressed that atomic hydrogen (H) is penetrating into the aluminum crystal structure is considered to have improved corrosion resistance

また、このような高純度アルミニウムに添加されたニッケル(Ni)などの効果について、非特許文献1には、「1%前後加えて第2相NiAlが出ていると、はなはだしく、高温水中での耐食性が向上することがわかっている(第1278頁中段)。」ことが記載され、特許文献1では「Ni、Cuは夫々Alのボンディング性および耐食性を高めるもので、・・・(中略)0.2wt%を超えるとAl線が硬くなり超音波接合法においてペレット割れを起こす弊害がある。(第2頁第2〜7行目)」とされている。 In addition, regarding the effect of such nickel (Ni) added to high-purity aluminum, Non-Patent Document 1 states that “If around 2% is added and second-phase NiAl 3 is present, It is known that the corrosion resistance of the material is improved (middle of page 1278) ", and Patent Document 1 states that" Ni and Cu increase the bonding property and corrosion resistance of Al, respectively. If the content exceeds 0.2 wt%, the Al wire becomes hard and there is a problem that pellet cracking occurs in the ultrasonic bonding method (page 2, lines 2 to 7).

しかしながら、近年ニッケル(Ni)は健康などに関して環境に与える影響が懸念される物質として取り上げられるようになって、用途によっては使用に制限が加えられており、今後さらに制限の範囲が拡大されることが予想されている。
他方、アルミニウム合金細線は、100〜200℃の耐熱性を必要とされる半導体、特に、エアコン、太陽光発電システム、ハイブリッド車や電気自動車などに用いられるパワー半導体への利用が要望されており、その応用範囲は今後ますます拡大してゆくものと考えられる。このようなパワー半導体の動作条件は、通常の半導体素子よりも高温度になる。例えば、車載用に使用されるパワー半導体では、アルミニウム合金細線は最大で通常、100〜150℃の接合部温度に耐える必要がある。このような高温環境下において使用される装置においては、軟化しやすい高純度のアルミニウム(Al)だけからなる純アルミニウム細線は実用化されていなかった。
However, in recent years, nickel (Ni) has been picked up as a substance that is concerned about the environmental impact of health, etc., and there are restrictions on the use depending on the application, and the scope of the restriction will be expanded further in the future. Is expected.
On the other hand, aluminum alloy fine wires are required to be used for semiconductors that require heat resistance of 100 to 200 ° C., particularly power semiconductors used in air conditioners, solar power generation systems, hybrid cars, electric cars, etc. Its application range is expected to expand further in the future. Such an operating condition of the power semiconductor is higher than that of a normal semiconductor element. For example, in a power semiconductor used for in-vehicle use, an aluminum alloy fine wire needs to withstand a junction temperature of 100 to 150 ° C. at the maximum. In an apparatus used in such a high temperature environment, a pure aluminum thin wire made only of high-purity aluminum (Al) that is easily softened has not been put into practical use.

このため、これらの分野において、ニッケル(Ni)フリーで、且つ、ニッケル(Ni)添加アルミニウム合金細線以上に高温、高湿度環境下での耐食性を向上したアルミニウム合金細線の開発が要望されていた。   Therefore, in these fields, there has been a demand for the development of an aluminum alloy fine wire that is free of nickel (Ni) and has improved corrosion resistance in a high-temperature and high-humidity environment more than a nickel (Ni) -added aluminum alloy fine wire.

特開昭59−56737号公報JP 59-56737 A

軽金属協会編「アルミニウムハンドブック」、朝倉書店 2003年、p1278〜1280「(a)アルミニウムおよびその合金の水に対する耐食性」“Aluminum Handbook” edited by the Japan Institute of Light Metals, Asakura Shoten 2003, p. 1278-1280

本願発明は、高純度アルミニウム(Al)だけからなる純アルミニウム合金細線と同じように半導体チップに対して軟らかいことにより、ワイヤボンディング時にはチップ割れなどを生じることがなく、かつ、高温・高湿度環境下においては従来のニッケル(Ni)添加アルミニウム合金細線と同等以上の耐食性を発揮して粒界腐食割れを起こさないアルミニウム合金細線を提供することを技術的課題とする。   The present invention is soft against a semiconductor chip like a pure aluminum alloy thin wire made only of high-purity aluminum (Al), so that it does not cause chip cracking at the time of wire bonding, and in a high temperature / high humidity environment. It is a technical problem to provide an aluminum alloy fine wire that exhibits corrosion resistance equal to or higher than that of a conventional nickel (Ni) -added aluminum alloy fine wire and does not cause intergranular corrosion cracking.

本発明は、 純度99.99質量%以上の高純度アルミニウムにロジウム(Rh)、及び/またはパラジウム(Pd)を10〜200質量ppm含有せしめた、アルミニウム合金ボンディングワイヤであって、
これらの添加元素は、強制固溶されてアルミニウムマトリックス中に、アルミニウムとの金属間化合物の分散相を形成していることを特徴とし、
上記アルミニウムマトリックスの結晶粒径は10〜100μmであって、
さらに、上記高純度アルミニウムの純度は、99.998質量%以上であり、
上記アルミニウムとの金属間化合物の分散相は、連続伸線加工後に200〜300℃で熱処理することにより形成されたものであり、
上記ボンディングワイヤが、超音波接合されるものであり、
上記ボンディングワイヤの線径は、50〜500μmであり、
上記ボンディングワイヤが、80℃〜300℃、もしくは150℃〜250℃で使用されるものである。
The present invention is an aluminum alloy bonding wire in which 10 to 200 ppm by mass of rhodium (Rh) and / or palladium (Pd) is contained in high-purity aluminum having a purity of 99.99% by mass or more,
These additive elements are forcibly solid-solved to form a dispersed phase of an intermetallic compound with aluminum in an aluminum matrix,
The crystal grain size of the aluminum matrix is 10-100 μm,
Furthermore, the purity of the high-purity aluminum is 99.998% by mass or more,
The dispersed phase of the intermetallic compound with aluminum is formed by heat treatment at 200 to 300 ° C. after continuous wire drawing,
The bonding wire is to be ultrasonically bonded,
The wire diameter of the bonding wire is 50 to 500 μm,
The said bonding wire is used at 80 to 300 degreeC or 150 to 250 degreeC.

本発明の合金において、微量添加されたロジウム(Rh)、及びパラジウム(Pd)は、後述する実施例に示す一般的なワイヤ製造工程において、アルミニウムマトリックス中に固溶し、アルミニウムマトリックス中の結晶粒界に第2相としてアルミニウムとの金属間化合物の分散相を形成する。
このアルミニウムとの金属間化合物の分散相は、Rh,Pdを所定量添加して溶融後凝固した鋳塊をその融点に近い温度で熱処理することによって合金マトリックス中に強制固溶し、連続伸線加工後に行う調質熱処理において結晶粒界にこれらの金属間化合物として析出させることにより、合金マトリックス中の均一な分散相として形成される(図3参照。)。
この金属間化合物の分散相による高湿度環境下における腐食防止のメカニズムについては、前述の先行技術におけるような表面層で前記の化学反応式で発生した原子状水素(H)をその触媒作用によってHに変換させて表面層から内部のマトリックス中への侵入を阻止するという作用のほか、
さらに、結晶粒界に第2相として分散する金属間化合物がこの結晶粒界を経由して侵入する原子状水素を同じくHに変えることによってさらに結晶粒界内部へ侵入することを効果的に阻止するものと考えられる。
この、アルミニウム合金マトリックス中の結晶粒界に第2相として析出した金属間化合物の状態は、図3を参照。
また、これらRh,Pdを含有しない高純度アルミニウムワイヤにおける、高湿度環境下の腐食状態は、図2に示すとおり表面の肥大したアルミナ膜から内部のアルミニウムマトリックス中に亀裂が形成されて腐食が進行するが、本発明の実施例の場合、図1に示すとおり、表面には薄く一様なアルミナ層が形成された状態のままで、その下のアルミニウム合金マトリックスには腐食による亀裂などは発生していない。
In the alloy of the present invention, rhodium (Rh) and palladium (Pd) added in a small amount are dissolved in an aluminum matrix in a general wire manufacturing process shown in Examples described later, and crystal grains in the aluminum matrix are obtained. A dispersed phase of an intermetallic compound with aluminum is formed as a second phase at the boundary.
The disperse phase of the intermetallic compound with aluminum is forcibly solid-solved in the alloy matrix by heat-treating an ingot that has been melted and solidified after adding a predetermined amount of Rh and Pd at a temperature close to its melting point, and continuous drawing. By precipitating these intermetallic compounds at the grain boundaries in a tempering heat treatment performed after processing, a uniform dispersed phase in the alloy matrix is formed (see FIG. 3).
Regarding the mechanism for preventing corrosion under a high humidity environment by the dispersed phase of this intermetallic compound, the atomic hydrogen (H) generated by the above chemical reaction formula in the surface layer as in the above prior art is converted to H by its catalytic action. In addition to the action of converting to 2 to prevent intrusion from the surface layer into the internal matrix,
Furthermore, it is effective that the intermetallic compound dispersed as the second phase in the crystal grain boundary further penetrates into the crystal grain boundary by changing the atomic hydrogen that enters through the crystal grain boundary to H 2. It is thought to prevent.
Refer to FIG. 3 for the state of the intermetallic compound precipitated as the second phase at the grain boundaries in the aluminum alloy matrix.
In addition, the corrosion state in a high-humidity environment in these high-purity aluminum wires that do not contain Rh and Pd is caused by the formation of cracks in the aluminum matrix inside from the alumina film with a large surface as shown in FIG. However, in the case of the embodiment of the present invention, as shown in FIG. 1, a thin and uniform alumina layer is formed on the surface, and the aluminum alloy matrix under the surface is not cracked by corrosion. Not.

本発明のアルミニウム合金マトリックス中のロジウム(Rh)、及び/またはパラジウム(Pd)を添加した耐食性アルミニウム合金ボンディングワイヤは、高温・高湿度環境下でアルミニウムと反応して形成される原子状水素(H)の合金マトリックス中への侵入・拡散を阻止して、マトリックス中の粒界腐食を防止する。
このため、高温・高湿度環境下における耐食性を発揮すると共に、それらの合金組成によりワイヤの硬さを抑制してチップ割れを防止し、また、高純度アルミニウムと同等の導電性を維持する。
The corrosion-resistant aluminum alloy bonding wire to which rhodium (Rh) and / or palladium (Pd) in the aluminum alloy matrix of the present invention is added is an atomic hydrogen (H) formed by reacting with aluminum in a high temperature / high humidity environment. ) Is prevented from entering and diffusing into the alloy matrix to prevent intergranular corrosion in the matrix.
For this reason, while exhibiting the corrosion resistance in a high temperature and high humidity environment, the alloy composition suppresses the hardness of the wire to prevent chip cracking, and maintains the same conductivity as that of high purity aluminum.

図1は、本発明の実施例3のアルミニウム合金細線の耐食性試験後の断面を示す。FIG. 1 shows a cross section of the aluminum alloy fine wire of Example 3 of the present invention after a corrosion resistance test. 図2は、比較例1のアルミニウム合金細線の耐食性試験後の断面を示す。FIG. 2 shows a cross section of the aluminum alloy fine wire of Comparative Example 1 after a corrosion resistance test. 図3は、本発明の実施例8のアルミニウム合金細線断面の結晶粒界に析出した金属間化合物(矢印)を示すTEM観察写真。FIG. 3 is a TEM observation photograph showing an intermetallic compound (arrow) precipitated at a crystal grain boundary of an aluminum alloy fine wire cross section of Example 8 of the present invention.

本発明の実施例及び比較例として、表1に示す組成のアルミニウム合金を溶融し、連続鋳造により直径300mmのアルミニウム合金インゴットを作成し、このインゴットを溝ロール圧延後、伸線加工して5mm直径のアルミニウム合金素線を作成した。
次いで、この素線を所定の線径まで水中で連続伸線し、最後に200℃〜300で1時間熱処理して調質アニールを行うことによって所定の線径のボンディングワイヤとした。この調質アニールの熱処理によって、強制固溶されたロジウム(Rh)、パラジウム(Pd)は、結晶粒界に合金マトリックスの第2相としてアルミニウムとの金属間化合物として析出し、アルミニウム合金マトリックス中に分散相を形成する。
従来例として同様にして作成したAl−50ppmNi合金ワイヤを採用した。
なお、これらの伸線工程においては必要に応じて中間熱処理を行ってもよく、ワイヤの性質やこれら金属間化合物の形成条件を考慮して適宜調整すればよい。
As an example and a comparative example of the present invention, an aluminum alloy having a composition shown in Table 1 was melted, and an aluminum alloy ingot having a diameter of 300 mm was prepared by continuous casting. An aluminum alloy wire was prepared.
Subsequently, this strand was continuously drawn in water to a predetermined wire diameter, and finally heat-treated at 200 ° C. to 300 hours for 1 hour to perform temper annealing to obtain a bonding wire having a predetermined wire diameter. By this heat treatment of temper annealing, rhodium (Rh) and palladium (Pd), which are forcibly dissolved, precipitate as intermetallic compounds with aluminum as the second phase of the alloy matrix at the grain boundaries, and in the aluminum alloy matrix A dispersed phase is formed.
An Al-50 ppm Ni alloy wire prepared in the same manner as a conventional example was employed.
In these wire drawing steps, an intermediate heat treatment may be performed as necessary, and may be appropriately adjusted in consideration of the properties of the wire and the formation conditions of these intermetallic compounds.


以上の工程で作成した実施例以下のボンディングワイヤについて、以下の条件によって、高温・高湿度環境下における耐食性などの性質を確認した。
(超音波接合条件)
アルミニウム合金細線の線径は、0.05mm、0.3mm、0.5mm、ループ長は8mm、ループ高さは1.3mmとした。
超音波工業社製REBO-7型全自動ボンダを用いて、アルミニウム合金細線をSiチップ(厚さ0.2mm)上のAl−1.0%Si膜(厚さ3μm)上に超音波ボンディングを実施した。
ボンディング条件は、周波数130kHzで、荷重および超音波条件については、ファースト接合部のつぶれ幅がワイヤ線径の1.3倍になるように調整を行い、全サンプル100個について同一条件で、ファーストボンドおよびセカンドボンドの超音波ボンディングを実施した。超硬ツールおよびボンディングガイドは、ワイヤに合致した超音波工業社製のものを使用した。
With respect to the bonding wires prepared in the above-described steps and below, properties such as corrosion resistance under a high temperature / high humidity environment were confirmed under the following conditions.
(Ultrasonic bonding conditions)
The wire diameters of the aluminum alloy thin wires were 0.05 mm, 0.3 mm, and 0.5 mm, the loop length was 8 mm, and the loop height was 1.3 mm.
Using a REBO-7 type fully automatic bonder manufactured by Ultrasonic Industry Co., Ltd., an aluminum alloy fine wire was ultrasonically bonded onto an Al-1.0% Si film (thickness 3 μm) on a Si chip (thickness 0.2 mm). Carried out.
The bonding conditions were a frequency of 130 kHz, and the load and ultrasonic conditions were adjusted so that the crush width of the first bonded portion was 1.3 times the wire diameter. And the second bond ultrasonic bonding was carried out. The carbide tool and the bonding guide used were those manufactured by Ultrasonic Industry Co., Ltd. that matched the wire.

(チップ割れ観察試験)
ボンディング後の試料を、20%NaOH溶液でAl−1.0Siパッドを溶解して、光学顕微鏡(オリンパス社製測定顕微鏡、STM6)を使用し、100倍の倍率でチップ割れの有無を観察した。100カ所観察を行い、チップ割れが一つも発生していなければOK、一カ所以上でチップ割れが観察された場合をNGとした。
(Chip crack observation test)
The sample after bonding was dissolved in an Al-1.0Si pad with a 20% NaOH solution, and the presence or absence of chip cracking was observed at a magnification of 100 using an optical microscope (Olympus measuring microscope, STM6). When 100 chip observations were made and no chip cracking occurred, it was determined to be OK. When chip cracking was observed at one or more spots, NG was determined.

(結晶粒径観察)
断面ミリング装置(日立ハイテクノロジーズ社製型式IM−4000)を使用してワイヤ断面を作製し、組織観察には集束イオンビーム加工観察装置(日本電子社製型式JIB−4000)を使用した。結晶粒径の測定には断面法を使用した。
(Crystal grain size observation)
A cross-section milling device (Hitachi High-Technologies Model IM-4000) was used to produce a wire cross-section, and a focused ion beam processing observation device (JEOL Ltd. Model JIB-4000) was used for tissue observation. A cross-sectional method was used to measure the crystal grain size.

(耐食性試験)
平山製作所製不飽和超加速寿命試験装置(HASTEST modelIPAC-R8D)を使用し、121℃で、100%RH(不飽和)の条件で1000時間まで試験を行った。腐食層厚さ測定は、断面ミリング装置(日立ハイテクノロジーズ社製型式IM−4000)を使用してワイヤ断面を作製した後、FE−SEM(日本電子社製型式JSM−7800F)を使用して腐食層の観察を行った。
(Corrosion resistance test)
The test was conducted up to 1000 hours at 121 ° C. under the condition of 100% RH (unsaturated) using an unsaturated hyperaccelerated life test apparatus (HASTEST model IPAC-R8D) manufactured by Hirayama Seisakusho. Corrosion layer thickness is measured by using a cross-section milling device (Hitachi High-Technologies Model IM-4000) to produce a wire cross-section and then using FE-SEM (JEOL Model JSM-7800F). The layer was observed.

以上の各試験結果を表1に挙げる。
従来例のニッケル合金ワイヤは、耐食性及びチップ割れ抑制について、満足な結果となっている。
本発明は、ロジウム(Rh)およびパラジウム(Pd)のいずれを含有する場合も、含有量10〜200質量ppmの範囲で、高温・高湿度環境下における耐食性およびチップ割れ抑制について従来例のニッケル合金ワイヤと同等以上の好適な効果を達成している。
また、これらロジウム(Rh)およびパラジウム(Pd)を合計で10質量ppm(No.5)、または200質量ppm(No.6)含有する場合でも同様の結果を得ている。
これに対して、比較例とした、ロジウム(Rh)およびパラジウム(Pd)がそれぞれ10質量ppmに足りない5質量ppmの場合は、チップ割れを生じなかったが腐食層の厚さが著しく増大し、また、これらの含有量が200質量ppmを超えて250質量ppmの場合には耐食性は良好であったが硬さが大きく、チップ割れを生じた。
ロジウム(Rh)およびパラジウム(Pd)の含有量が大きくなるにつれて結晶粒径が小さく、また、機械的強度、硬さが大きくなる傾向が見られ、その含有量が本発明範囲を超えると、ボンディングに伴ってチップ割れを生じており、その限界はこれらの含有量とともに結晶粒径が本発明範囲の下限値より低いこととして表れている。
The above test results are listed in Table 1.
The nickel alloy wire of the conventional example has satisfactory results with respect to corrosion resistance and chip crack suppression.
The present invention relates to a conventional nickel alloy for corrosion resistance and chip cracking suppression in a high-temperature and high-humidity environment within a content range of 10 to 200 ppm by mass, regardless of whether rhodium (Rh) or palladium (Pd) is contained. A suitable effect equivalent to or better than that of a wire is achieved.
Similar results were obtained even when these rhodium (Rh) and palladium (Pd) were contained in a total of 10 mass ppm (No. 5) or 200 mass ppm (No. 6).
On the other hand, when rhodium (Rh) and palladium (Pd), which are comparative examples of 5 mass ppm, which is less than 10 mass ppm, did not cause chip cracking, the thickness of the corrosion layer increased remarkably. Moreover, when these contents exceeded 200 ppm by mass and 250 ppm by mass, the corrosion resistance was good, but the hardness was large and chip cracking occurred.
As the rhodium (Rh) and palladium (Pd) contents increase, the crystal grain size tends to decrease, and the mechanical strength and hardness tend to increase. As a result, chip cracking occurs, and the limit is expressed as the crystal grain size is lower than the lower limit of the range of the present invention together with the content.

図1及び2は、耐食性試験を行った本発明実施例および比較例のワイヤ断面を撮影したものであって、図1は実施例3本発明のアルミニウム合金ワイヤ断面であって、淡色のアルミニウム層断面上の濃い灰色の薄い層がワイヤ表面に形成されたアルミナ層であって、アルミニウム合金表面上を均一一様な薄いアルミナ層が覆っており、内部の合金マトリックスには亀裂などは生じていない。
これに対して、図2の比較例1場合は、高純度アルミニウムワイヤを実施例と同様の条件で耐食性試験を行ったものについて、その断面を撮影したものであって、表面に不均一な厚い腐食層が形成されると共に、この腐食層から合金マトリックス中に向けて深いて亀裂が形成されていることが解る。
FIGS. 1 and 2 are photographs of the wire cross sections of the inventive examples and comparative examples subjected to the corrosion resistance test, and FIG. 1 is the cross section of the aluminum alloy wire of the third embodiment of the present invention, which is a light-colored aluminum layer. A dark gray thin layer on the cross section is an alumina layer formed on the wire surface, and the uniform and thin alumina layer covers the surface of the aluminum alloy, and the inner alloy matrix is not cracked. Absent.
On the other hand, in the case of Comparative Example 1 in FIG. 2, a cross section of a high-purity aluminum wire subjected to a corrosion resistance test under the same conditions as in the example was photographed, and the surface was uneven and thick. It can be seen that a corrosion layer is formed and a crack is formed deeply from the corrosion layer into the alloy matrix.

本発明のアルミニウム合金細線は、超音波ボンディングにおいてチップ割れ抑制し、高温・高湿度環境下における耐食性を発揮し、高い導電性を有するため、航空機、自動車、或いは船舶などの広い用途に適用可能であり、かつ、その良好なボンディング性はこれらの用途に向けて普及が期待され、産業上貢献し得るものである。   The aluminum alloy thin wire of the present invention suppresses chip cracking in ultrasonic bonding, exhibits corrosion resistance under high temperature and high humidity environment, and has high conductivity, so it can be applied to a wide range of applications such as aircraft, automobiles or ships. In addition, its good bondability is expected to be widely used for these applications and can contribute to the industry.

Claims (7)

純度99.99質量%以上の高純度アルミニウムにロジウム(Rh)、及び/またはパラジウム(Pd)を10〜200質量ppm含有せしめた、アルミニウム合金ボンディングワイヤであって、
これらの添加元素は、強制固溶されてアルミニウムマトリックス中にアルミニウムとの金属間化合物の分散相を形成し、上記アルミニウムマトリックスの結晶粒径は10〜100μmであることを特徴とする、
高耐食性アルミニウム合金ボンディングワイヤ。
An aluminum alloy bonding wire in which rhodium (Rh) and / or palladium (Pd) is contained in high-purity aluminum having a purity of 99.99% by mass or more, comprising 10 to 200 ppm by mass,
These additive elements are forcibly dissolved to form a dispersed phase of an intermetallic compound with aluminum in an aluminum matrix, and the crystal grain size of the aluminum matrix is 10 to 100 μm,
High corrosion resistance aluminum alloy bonding wire.
上記高純度アルミニウムの純度は、99.998質量%以上であることを特徴とする請求項1記載の高耐食性アルミニウム合金ボンディングワイヤ。   The high-corrosion-resistant aluminum alloy bonding wire according to claim 1, wherein the purity of the high-purity aluminum is 99.998% by mass or more. 上記アルミニウム合金マトリックスの結晶粒径が10〜100μmであることを特徴とする請求項1記載の高耐食性アルミニウム合金ボンディングワイヤ。     2. The high corrosion resistance aluminum alloy bonding wire according to claim 1, wherein the crystal grain size of the aluminum alloy matrix is 10 to 100 [mu] m. 上記分散相は、連続伸線加工後に200〜300℃で熱処理することにより形成されたものであることを特徴とする請求項1記載の高耐食性アルミニウム合金ボンディングワイヤ。     2. The high corrosion resistance aluminum alloy bonding wire according to claim 1, wherein the dispersed phase is formed by heat treatment at 200 to 300 [deg.] C. after continuous wire drawing. 上記ボンディングワイヤが、超音波接合されるものであることを特徴とする請求項1記載の高耐食性ボンディングワイヤ。   2. The highly corrosion-resistant bonding wire according to claim 1, wherein the bonding wire is ultrasonically bonded. 上記ボンディングワイヤの線径は、50〜500μmであることを特徴とする請求項1記載の高耐食性アルミニウム合金ボンディングワイヤ。   2. The high corrosion resistance aluminum alloy bonding wire according to claim 1, wherein the bonding wire has a diameter of 50 to 500 [mu] m. 上記ボンディングワイヤが、80〜300℃、もしくは150〜250℃で使用されるものであることを特徴とする請求項1記載の高耐食性アルミニウム合金ボンディング。
The high corrosion resistance aluminum alloy bonding according to claim 1, wherein the bonding wire is used at 80 to 300 ° C or 150 to 250 ° C.
JP2013103262A 2013-05-15 2013-05-15 Corrosion resistant aluminum alloy bonding wire Expired - Fee Related JP5680138B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013103262A JP5680138B2 (en) 2013-05-15 2013-05-15 Corrosion resistant aluminum alloy bonding wire
KR1020140056589A KR101588522B1 (en) 2013-05-15 2014-05-12 Corrosion resistance aluminum alloy bonding wire
SG10201402300TA SG10201402300TA (en) 2013-05-15 2014-05-14 Corrosion-resistant aluminum alloy bonding wire
CN201410206059.6A CN104164591B (en) 2013-05-15 2014-05-15 Corrosion resistant aluminum alloy closing line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103262A JP5680138B2 (en) 2013-05-15 2013-05-15 Corrosion resistant aluminum alloy bonding wire

Publications (2)

Publication Number Publication Date
JP2014224283A true JP2014224283A (en) 2014-12-04
JP5680138B2 JP5680138B2 (en) 2015-03-04

Family

ID=51908572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103262A Expired - Fee Related JP5680138B2 (en) 2013-05-15 2013-05-15 Corrosion resistant aluminum alloy bonding wire

Country Status (4)

Country Link
JP (1) JP5680138B2 (en)
KR (1) KR101588522B1 (en)
CN (1) CN104164591B (en)
SG (1) SG10201402300TA (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168787A1 (en) 2021-02-05 2022-08-11 日鉄マイクロメタル株式会社 Al bonding wire for semiconductor devices
WO2022168789A1 (en) * 2021-02-05 2022-08-11 日鉄マイクロメタル株式会社 Al wiring material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610519B1 (en) 2014-10-07 2016-04-20 현대자동차주식회사 A cooling system of hev-vehicle and a control method thereof
CN107739919A (en) * 2017-11-02 2018-02-27 陈礼成 A kind of high-strength aluminium-magnesium alloy and preparation method thereof
CN113584355A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Aluminum-based alloy bus for bonding and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928553A (en) * 1982-08-11 1984-02-15 Hitachi Ltd Corrosion resistant aluminum electronic material
JPS60198851A (en) * 1984-03-23 1985-10-08 Hitachi Ltd High corrosion resistant high hardness aluminum alloy wire for semiconductor
JPS6132444A (en) * 1984-07-24 1986-02-15 Hitachi Ltd Ic device
JPH04184945A (en) * 1990-11-20 1992-07-01 Hitachi Chem Co Ltd Semiconductor device
JP2008311383A (en) * 2007-06-14 2008-12-25 Ibaraki Univ Bonding wire, bonding method using the same, and semiconductor device as well as joint construction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956737A (en) 1982-09-25 1984-04-02 Tanaka Denshi Kogyo Kk Aluminum lead wire for bonding of semiconductor element
JPH03148841A (en) * 1990-10-19 1991-06-25 Hitachi Ltd Corrosion resistant aluminum electronic device
JPH0771562B2 (en) * 1992-10-14 1995-08-02 鈴木金属工業株式会社 Dental material
JP2873770B2 (en) * 1993-03-19 1999-03-24 新日本製鐵株式会社 Palladium fine wire for wire bonding of semiconductor devices
JP3542867B2 (en) * 1996-04-04 2004-07-14 新日本製鐵株式会社 Semiconductor device
WO2012011447A1 (en) * 2010-07-20 2012-01-26 古河電気工業株式会社 Aluminium alloy conductor and manufacturing method for same
JP4771562B1 (en) 2011-02-10 2011-09-14 田中電子工業株式会社 Ag-Au-Pd ternary alloy bonding wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928553A (en) * 1982-08-11 1984-02-15 Hitachi Ltd Corrosion resistant aluminum electronic material
JPS60198851A (en) * 1984-03-23 1985-10-08 Hitachi Ltd High corrosion resistant high hardness aluminum alloy wire for semiconductor
JPS6132444A (en) * 1984-07-24 1986-02-15 Hitachi Ltd Ic device
JPH04184945A (en) * 1990-11-20 1992-07-01 Hitachi Chem Co Ltd Semiconductor device
JP2008311383A (en) * 2007-06-14 2008-12-25 Ibaraki Univ Bonding wire, bonding method using the same, and semiconductor device as well as joint construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168787A1 (en) 2021-02-05 2022-08-11 日鉄マイクロメタル株式会社 Al bonding wire for semiconductor devices
WO2022168789A1 (en) * 2021-02-05 2022-08-11 日鉄マイクロメタル株式会社 Al wiring material

Also Published As

Publication number Publication date
JP5680138B2 (en) 2015-03-04
CN104164591B (en) 2017-01-04
KR20140135105A (en) 2014-11-25
SG10201402300TA (en) 2014-12-30
KR101588522B1 (en) 2016-01-25
CN104164591A (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5680138B2 (en) Corrosion resistant aluminum alloy bonding wire
KR101004866B1 (en) Copper bonding or superfine wire with improved bonding and corrosion properties
JP5159001B1 (en) Aluminum alloy bonding wire
JP5399581B1 (en) High speed signal bonding wire
WO2013129253A1 (en) Power semiconductor device, method for manufacturing same, and bonding wire
CN111383935A (en) Bonding wire for semiconductor device
KR101559617B1 (en) Semiconductor device and bonding material for semiconductor device
JP5343069B2 (en) Bonding wire bonding structure
TW201336599A (en) Composite wire of silver-palladium alloy coated with metal thin film and method thereof
WO2012049893A1 (en) RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE
CN107962313B (en) Bonding wire for semiconductor device
JP2017501879A (en) Zinc-based lead-free solder composition
JP2010245390A (en) Bonding wire
JP5281191B1 (en) Aluminum alloy wire for power semiconductor devices
Cho et al. Pd effects on the reliability in the low cost Ag bonding wire
CN115803856A (en) Bonding wire for semiconductor device
WO2022168787A1 (en) Al bonding wire for semiconductor devices
KR20010085422A (en) Lead frame and copper alloy to be used for lead frame
KR20230001011A (en) Bonding wire for semiconductor devices
TWI559417B (en) Bonding wire for power module package and method of manufacturing the same
WO2006134824A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
CN103824833A (en) Copper alloy wire used for packaging of semiconductor
JP5606192B2 (en) Wire bonding structure using Al plated steel wire
WO2019193770A1 (en) Noble-metal-coated silver wire for ball bonding and method for manufacturing same, semiconductor device using noble-metal-coated silver wire for ball bonding, and method for manufacturing said semiconductor device
Murali et al. Interfacial reaction and thermal ageing of ball and stitch bonds

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5680138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees