JP5159001B1 - Aluminum alloy bonding wire - Google Patents

Aluminum alloy bonding wire Download PDF

Info

Publication number
JP5159001B1
JP5159001B1 JP2012193593A JP2012193593A JP5159001B1 JP 5159001 B1 JP5159001 B1 JP 5159001B1 JP 2012193593 A JP2012193593 A JP 2012193593A JP 2012193593 A JP2012193593 A JP 2012193593A JP 5159001 B1 JP5159001 B1 JP 5159001B1
Authority
JP
Japan
Prior art keywords
aluminum
mass
scandium
aluminum alloy
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012193593A
Other languages
Japanese (ja)
Other versions
JP2014047417A (en
Inventor
裕之 天野
道孝 三上
伸一郎 中島
司 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2012193593A priority Critical patent/JP5159001B1/en
Application granted granted Critical
Publication of JP5159001B1 publication Critical patent/JP5159001B1/en
Priority to KR1020130037348A priority patent/KR101307022B1/en
Priority to SG2013030143A priority patent/SG2013030143A/en
Priority to CN201310181370.5A priority patent/CN103320654B/en
Publication of JP2014047417A publication Critical patent/JP2014047417A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】超音波ボンディング時には柔らかく、チップ割れを防止し、配線後に高温強度を発揮するウエッジボンディングワイヤ。
【解決手段】スカンジウム(Sc)が0.15〜0.5質量%および残部が純度99.99質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に冷間伸線組織を有し、ビッカース硬さが21〜30Hvのアルミニウム合金ボンディングワイヤであって、さらに、ジルコニウム(Zr)を0.01〜0.2質量%添加して強化する。ボンディング時には柔らかいため、チップ割れを生じることなく接合し、その後時効熱処理処理を行って、高温強度を向上する。
【選択図】図1
Wedge bonding wire that is soft during ultrasonic bonding, prevents chip cracking, and exhibits high-temperature strength after wiring.
In an aluminum alloy matrix having a composition comprising scandium (Sc) of 0.15 to 0.5% by mass and the balance of aluminum (Al) having a purity of 99.99% by mass or more, and forcibly dissolved in an aluminum alloy matrix. An aluminum alloy bonding wire having a cold drawn structure and a Vickers hardness of 21 to 30 Hv, and further strengthened by adding 0.01 to 0.2 mass% of zirconium (Zr). Since it is soft at the time of bonding, it joins without generating a chip | tip crack, Then, an aging heat processing is performed and a high temperature strength is improved.
[Selection] Figure 1

Description

本発明は、高温環境下で使用される半導体素子上の電極と外部電極とをアルミニウム合金細線を用いて接合するアルミニウム合金配線材料に関するもので、特に、航空機、電気自動車及び船舶等の高温環境下で使用される半導体装置における高純度のアルミニウム(Al)から時効析出するAlSc粒子による効果を応用したアルミニウム合金ボンディングワイヤに関するものである。 The present invention relates to an aluminum alloy wiring material for joining an electrode on a semiconductor element used in a high temperature environment and an external electrode using an aluminum alloy fine wire, and in particular, in a high temperature environment such as an aircraft, an electric vehicle and a ship. The present invention relates to an aluminum alloy bonding wire to which the effect of Al 3 Sc particles aged from high-purity aluminum (Al) in a semiconductor device used in the above-mentioned semiconductor device is applied.

シリコン(Si)、あるいは、炭化シリコン(SiC)や窒化ガリウム(GaN)などの半導体素子に搭載されたボンディングパッドは、主にアルミニウム(Al)、銅(Cu)、ニッケル(Ni)などの基板が使用される。この基板には、金(Au)や銀(Ag)等の貴金属メッキまたはニッケル(Ni)めっきがされて使用されることがある。これらをまとめて、特に断らなければ、「アルミパッド」と称する。この半導体素子のアルミパッドとリードフレーム等を超音波ボンディングするのに、60数%の高い導電率を示すことから高純度のアルミニウム(Al)を用いたアルミニウム合金細線が使用される。アルミニウム合金細線は、線径が50〜500μmの丸細線が一般的に使用され、線径が50μm未満の極細線や500μmを超えるものも用いられることがまれにあり、また、これらの細線を押しつぶした平角状細線(テープ)もアルミニウム合金細線として半導体装置に使用されることがある。   Bonding pads mounted on semiconductor elements such as silicon (Si) or silicon carbide (SiC) or gallium nitride (GaN) are mainly substrates such as aluminum (Al), copper (Cu), and nickel (Ni). used. The substrate may be used after being plated with a noble metal such as gold (Au) or silver (Ag) or nickel (Ni). These are collectively referred to as “aluminum pads” unless otherwise specified. An aluminum alloy fine wire using high-purity aluminum (Al) is used to ultrasonically bond the aluminum pad of this semiconductor element to a lead frame or the like because of its high conductivity of 60%. As the aluminum alloy fine wire, a round fine wire having a wire diameter of 50 to 500 μm is generally used, and an extra fine wire having a wire diameter of less than 50 μm or a wire having a wire diameter of more than 500 μm is rarely used, and these fine wires are crushed. A flat rectangular wire (tape) may also be used for a semiconductor device as an aluminum alloy thin wire.

このような高純度のアルミニウム(Al)を用いたアルミニウム合金細線を高温環境(雰囲気)下で使用する際、特に、航空機、自動車及び船舶等のための配線材料として使用する際は、高温信頼性の確保が困難になるという課題があった。
そこで、比抵抗が比較的小さく、機械的強度が比較的高く、且つ、耐熱性にも優れた配線材料として、以下のアルミニウム(Al)中にスカンジウム(Sc)を固溶したアルミニウム合金がある。
まず、特開平7−316705号公報(後述する特許文献1)では、「約0.1〜0.3重量%のScを含み、残余がAlと約0.05重量%以下の不純物とから成ることを特徴とする配線材料」が開示され、「純度が99.95%以上の純アルミニウムを使用し、このアルミニウムに合金全体の重量比で約0.1〜約0.3%のスカンジウム(Sc)を添加し(同0012段落)」、「圧下率50%で塑性加工を行ない、400〜500℃で約1時間の熱処理を行なった(同0016段落)」と記載されている。
また、特開2001−348637号公報(後述する特許文献2)では、「純度が99.95%以上の純Alマトリックス中に、重量比で0.05〜0.3%のScおよび0.1〜0.4%のZrを含むことを特徴とするアルミニウム合金材(請求項1、ほか)」が開示され、「断面減少率80%以上の塑性加工(冷間加工)を行」って「300〜400℃×1hr前後の熱処理を施して、(同段落0024)」「導電率が60%IACS以上、引張強度が200MPa以上、280℃での引張強度残存率が90%以上であるもの(同段落0011)」が得られる。
When using such an aluminum alloy fine wire using high-purity aluminum (Al) in a high-temperature environment (atmosphere), particularly when used as a wiring material for aircraft, automobiles, ships, etc., high-temperature reliability There was a problem that it would be difficult to ensure.
Therefore, as a wiring material having a relatively small specific resistance, a relatively high mechanical strength, and excellent heat resistance, there is an aluminum alloy in which scandium (Sc) is dissolved in the following aluminum (Al).
First, in Japanese Patent Laid-Open No. 7-316705 (Patent Document 1 to be described later), “comprising about 0.1 to 0.3% by weight of Sc and the balance being Al and about 0.05% by weight or less of impurities. Wiring material characterized by the above-mentioned is disclosed, and "pure aluminum having a purity of 99.95% or more is used, and about 0.1 to about 0.3% by weight of scandium (Sc ”(Paragraph 0012)” and “plastic processing was performed at a reduction rate of 50% and heat treatment was performed at 400 to 500 ° C. for about 1 hour (paragraph 0016)”.
Further, in Japanese Patent Laid-Open No. 2001-348637 (Patent Document 2 described later), “in a pure Al matrix having a purity of 99.95% or more, 0.05 to 0.3% Sc and 0.1% by weight. An aluminum alloy material containing ˜0.4% Zr (Claim 1, etc.) ”is disclosed, and“ plastic working (cold working) with a cross-section reduction rate of 80% or more ”is performed. (The same paragraph 0024) "" Conductivity of 60% IACS or more, tensile strength of 200MPa or more, and residual tensile strength at 280 ° C of 90% or more " Paragraph 0011) ”is obtained.

しかしながら、このようなアルミニウム合金細線をAlを主成分とするアルミパッド電極に超音波ボンディングしようとすると、機械的強度が高いためチップ割れを起こすためこのようなアルミニウム合金細線は実用化されなかった。特に、ワイヤの線径が50〜500μmと比較的大きい場合に、チップ割れの問題を避けることができなかった。 However, when such an aluminum alloy fine wire is ultrasonically bonded to an aluminum pad electrode containing Al as a main component, since the mechanical strength is high and chip cracking occurs, such an aluminum alloy fine wire has not been put into practical use. In particular, when the wire diameter is relatively large, such as 50 to 500 μm, the problem of chip cracking cannot be avoided.

他方、アルミニウム合金細線は、100〜200℃の耐熱性を必要とする半導体、特にエアコン、太陽光発電システム、ハイブリッド車や電気自動車などに使用するパワー半導体の利用が要望されており、その応用範囲は今後ますます拡大していくものと考えられる。
このようなパワー半導体素子の動作条件は通常の半導体素子よりも高温度になる。 例えば、車載用に使用されるパワー半導体では、アルミニウム合金細線は最大で通常100〜150℃の接合部温度に耐える必要がある。このような温度領域下で軟化しやすい高純度のアルミニウム(Al)だけからなる純アルミニウム合金細線は、高温環境下で使用される装置においては実用化されていなかった。
On the other hand, aluminum alloy thin wires require the use of semiconductors that require heat resistance of 100 to 200 ° C., especially power semiconductors used in air conditioners, solar power generation systems, hybrid vehicles, electric vehicles, and the like. Is expected to expand further in the future.
The operating condition of such a power semiconductor element is higher than that of a normal semiconductor element. For example, in a power semiconductor used for in-vehicle use, an aluminum alloy fine wire needs to withstand a junction temperature of usually 100 to 150 ° C. at the maximum. A pure aluminum alloy fine wire made only of high-purity aluminum (Al) that is easily softened in such a temperature range has not been put into practical use in an apparatus used in a high-temperature environment.

特開平7−316705号公報JP-A-7-316705 特開2001−348637号公報JP 2001-348637 A

本願発明は、配線時には高純度のアルミニウム(Al)だけからなる純アルミニウム合金細線と同じように半導体チップに対して軟らかく、かつ、配線後の高温環境下においては軟化しないアルミニウム合金細線からなるアルミニウム合金配線材料を提供することを解決課題とする。   The present invention relates to an aluminum alloy composed of an aluminum alloy thin wire that is soft to a semiconductor chip and is not softened in a high-temperature environment after wiring, as is the case with a pure aluminum alloy thin wire composed of only high-purity aluminum (Al) during wiring. The problem to be solved is to provide a wiring material.

上記課題を解決するため、本発明者らはスカンジウム(Sc)がアルミニウム(Al)に固溶した状態から時効析出させなければ強度の向上にほとんど寄与しないことを利用すること着想した。
すなわち、スカンジウム(Sc)を所定量含有するアルミニウム(Al)合金配線材料を中間熱処理により微細Sc析出物を全て強制的に固溶させる溶体化処理を行った後、所望の線径まで伸線し、調質熱処理をScが微細析出しない温度・条件で行うことにより、Scによる時効硬化を抑制することができることを確認した。
この状態において、アルミニウム合金配線材料は柔らかく、塑性変形しやすいため、所望の線径に冷間伸線加工をした上記組成のアルミニウム合金細線は、純アルミニウム合金細線と同様にアルミパッドへ超音波ボンディングして所定の回路に配線することができる。
また、スカンジウム(Sc)に加えて、ジルコニウム(Zr)を一定量添加することにより、同様の効果を得ることができることが確認された。ジルコニウム(Zr)添加は、アルミニウム(Al)合金配線材料においてスカンジウム(Sc)と同様の作用を発揮するとともに、時効硬化の温度履歴に対する時間的な安定性を向上する効果がある。
In order to solve the above-mentioned problems, the present inventors have conceived to utilize that scandium (Sc) hardly contributes to improvement in strength unless it is aged from a state of being dissolved in aluminum (Al).
That is, an aluminum (Al) alloy wiring material containing a predetermined amount of scandium (Sc) is subjected to a solution treatment for forcibly dissolving all fine Sc precipitates by an intermediate heat treatment, and then drawn to a desired wire diameter. It was confirmed that age hardening due to Sc can be suppressed by performing the tempering heat treatment at a temperature and a condition in which Sc does not precipitate finely.
In this state, since the aluminum alloy wiring material is soft and easily deformed plastically, the aluminum alloy thin wire having the above composition that has been cold drawn to the desired wire diameter is ultrasonically bonded to the aluminum pad in the same manner as the pure aluminum alloy thin wire. Then, it can be wired to a predetermined circuit.
Further, it was confirmed that the same effect can be obtained by adding a certain amount of zirconium (Zr) in addition to scandium (Sc). Zirconium (Zr) addition exhibits the same effect as scandium (Sc) in an aluminum (Al) alloy wiring material, and has the effect of improving temporal stability against age hardening temperature history.

このように溶体化処理したアルミニウム合金細線を配線後に時効熱処理をすると、前述の特許文献1および2に記載されているとおり、アルミニウム(Al)マトリックスから析出したAlSc粒子によって機械的強度が増加する。しかも、AlSc粒子とアルミニウム(Al)マトリックスとの整合性が良いので、繰り返しの高温環境下でもAlSc粒子の粗大化はほとんど進行しないことがわかった。 When the aluminum alloy thin wire thus solution-treated is subjected to an aging heat treatment after wiring, the mechanical strength is increased by Al 3 Sc particles precipitated from the aluminum (Al) matrix as described in Patent Documents 1 and 2 described above. To do. In addition, since the consistency between the Al 3 Sc particles and the aluminum (Al) matrix is good, it has been found that the Al 3 Sc particles are hardly coarsened even under repeated high-temperature environments.

本発明の高温環境下で使用される半導体装置接続用のアルミニウム合金配線材料の一つは、スカンジウム(Sc)が0.15〜0.5質量%および残部が純度99.99質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有し、ビッカース硬さが21〜30Hvのアルミニウム合金である。 One of the aluminum alloy wiring materials for connecting semiconductor devices used in the high temperature environment of the present invention is aluminum having a scandium (Sc) content of 0.15 to 0.5% by mass and the balance of 99.99% by mass or more. It is an aluminum alloy having a composition made of (Al), having a recrystallized structure in an aluminum alloy matrix forcibly dissolved, and having a Vickers hardness of 21 to 30 Hv.

また、本発明の高温環境下で使用される半導体装置接続用のアルミニウム合金配線材料の他の一つは、スカンジウム(Sc)が0.15〜0.5質量%、ジルコニウム(Zr)が0.01〜0.2質量%(ただし、ジルコニウム(Zr)はスカンジウム(Sc)の半分以下の量)および残部が純度99.998質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有し、ビッカース硬さが21〜30Hvのアルミニウム合金である。 Another example of the aluminum alloy wiring material for connecting a semiconductor device used in the high temperature environment of the present invention is that scandium (Sc) is 0.15 to 0.5 mass% and zirconium (Zr) is 0.00. 01 to 0.2% by mass (however, zirconium (Zr) is less than half the amount of scandium (Sc)) and the balance is aluminum (Al) having a purity of 99.998% by mass or more. It is an aluminum alloy having a recrystallized structure in the formed aluminum alloy matrix and having a Vickers hardness of 21 to 30 Hv.

上記2種類の本発明の高温環境下で使用される半導体装置接続用のアルミニウム合金配線材料は、配線後にその後の処理、加工工程に先立って200℃〜450℃の温度範囲であらかじめ時効熱処理をしておくこともできる。配線後は、アルミニウム合金配線材料の形状が変化しないから、機械的強度が増加しても半導体チップ割れを起こすことがないからである。また、アルミパッドとの熱膨張係数の違いも小さいので、熱膨張・熱収縮の繰り返しによる接合界面でのクラックの進行もない。 The above-mentioned two types of aluminum alloy wiring materials for connecting semiconductor devices used in the high temperature environment of the present invention are subjected to aging heat treatment in the temperature range of 200 ° C. to 450 ° C. in advance of subsequent processing and processing steps after wiring. You can also keep it. This is because after the wiring, the shape of the aluminum alloy wiring material does not change, so that the semiconductor chip is not cracked even if the mechanical strength is increased. In addition, since the difference in thermal expansion coefficient from the aluminum pad is small, there is no progress of cracks at the joint interface due to repeated thermal expansion and contraction.

また、本願発明において、アルミニウム(Al)の純度が99.998質量%以上あると、99.999質量%以上の純度のアルミニウム合金とほぼ同じビッカース硬さを有するので、純度が高いほど好ましい。 In the present invention, when the purity of aluminum (Al) is 99.998% by mass or more, it has almost the same Vickers hardness as an aluminum alloy having a purity of 99.999% by mass or more.

また、本願発明において、スカンジウム(Sc)の添加量が0.3質量%以下であると、アルミニウムマトリックス中にスカンジウム(Sc)が均一に強制固溶できるので、好ましい。均一な強制固溶は、アルミニウム(Al)マトリックスから析出したAlSc粒子の分布から判定することができる。なお、強制固溶は、アルミニウム(Al)の融点近くの580℃〜630℃近傍で数時間かけて行うのが良い。 Moreover, in this invention, since the addition amount of scandium (Sc) is 0.3 mass% or less, since scandium (Sc) can be uniformly forcibly dissolved in an aluminum matrix, it is preferable. Uniform forced solid solution can be determined from the distribution of Al 3 Sc particles precipitated from the aluminum (Al) matrix. In addition, it is good to perform forced solid solution over several hours in 580 to 630 degreeC vicinity near melting | fusing point of aluminum (Al).

また、本願発明において、時効熱処理前の半導体装置接続用のアルミニウム合金配線材料は、50μm〜500μm等の範囲までの所望の線径まで冷間伸線加工をした後、調質熱処理を行うことができる。連続伸線されたアルミニウム合金細線は、一定の張力がかけられたまま調質熱処理される。一定の張力は、基本的に連続伸線における最終ダイヤモンドダイスの出口から巻取りスプールの入口までの間にかかっているが、ダンサローラなどで他工程の振動がアルミニウム合金細に伝わらないようにして、調質熱処理工程と冷却工程の間で特に一定に保たれ、これらの設定された熱処理温度と熱処理区間によって所定の熱エネルギーをアルミニウム合金細線に付与することができる。
この調質熱処理によって、強制固溶後の冷間伸線による冷間伸線組織はワイヤボンディングに適した機械的性質の再結晶組織となる。
調質熱処理の加熱方法としては、電気炉による加熱、通電加熱、光照射による加熱、水蒸気加熱などがある。調質熱処理は、数秒〜数十秒間で行われるため、アルミニウム(Al)マトリックスからAlSc粒子が析出しないからである。同様にして、調質熱処理をしたアルミニウム合金配線材料をアルミパッドへ超音波ボンディングをしても、アルミニウム合金配線材料が硬化して半導体素子がチップ割れを起こすことはない。
In the present invention, the aluminum alloy wiring material for connecting a semiconductor device before aging heat treatment can be subjected to temper heat treatment after cold drawing to a desired wire diameter in a range of 50 μm to 500 μm or the like. it can. The continuously drawn aluminum alloy fine wire is subjected to a tempering heat treatment with a certain tension applied. The constant tension is basically applied between the outlet of the final diamond die and the inlet of the take-up spool in continuous drawing, but the vibration of other processes is not transmitted to the aluminum alloy finely with a dancer roller etc. It is kept particularly constant between the tempering heat treatment step and the cooling step, and a predetermined heat energy can be applied to the aluminum alloy fine wire by the set heat treatment temperature and heat treatment section.
By this tempering heat treatment, the cold drawn structure by cold drawing after forced solid solution becomes a recrystallized structure having mechanical properties suitable for wire bonding.
Heating methods for the tempering heat treatment include heating by an electric furnace, energization heating, heating by light irradiation, and steam heating. This is because the tempering heat treatment is performed for several seconds to several tens of seconds, so that Al 3 Sc particles do not precipitate from the aluminum (Al) matrix. Similarly, even if the aluminum alloy wiring material subjected to the tempering heat treatment is ultrasonically bonded to the aluminum pad, the aluminum alloy wiring material does not harden and the semiconductor element does not crack.

この様にアルミニウムマトリックス中にスカンジウム(Sc)が均一に強制固溶した、アルミニウム合金配線材料は、純アルミニウムの場合と同様にチップ割れを起すことなく、また、容易にループを形成して半導体装置に対する配線を行うことができる。
そして、これらの配線後に時効熱処理を行うことにより、アルミニウム(Al)マトリックスからAlSc粒子が析出して、Al−Sc二元合金としての機械的強度を発揮することができる。これらの時効熱処理は、配線形成後の半導体装置の熱履歴に対する耐性などにより、例えば、樹脂封止前などに行なえばよい。
なお、パッドの材質は、主にアルミニウム(Al)およびアルミニウム(Al)合金であるが、アルミニウム合金配線材料と超音波接合性が良い銅(Cu)やニッケル(Ni)でも良く、金(Au)等の貴金属を被覆することもできる。
As described above, the aluminum alloy wiring material in which scandium (Sc) is uniformly and forcibly dissolved in the aluminum matrix does not cause chip cracking as in the case of pure aluminum, and can easily form a loop to form a semiconductor device. Can be wired.
By performing an aging heat treatment after these wirings, Al 3 Sc particles are precipitated from the aluminum (Al) matrix, and the mechanical strength as an Al—Sc binary alloy can be exhibited. These aging heat treatments may be performed, for example, before resin sealing, due to the resistance to thermal history of the semiconductor device after wiring formation.
The material of the pad is mainly aluminum (Al) and aluminum (Al) alloy, but may be copper (Cu) or nickel (Ni) having good ultrasonic bonding property with the aluminum alloy wiring material, and gold (Au). It is also possible to coat a precious metal such as

本発明のアルミニウム合金配線材料によれば、配線前は純アルミニウム細線のように軟らかく自由に配線でき、超音波接合も純アルミニウム合金細線と同様にアルミパッドと接合することができる。
他方、配線後は、アルミニウム(Al)マトリックスからAlSc粒子を析出させ、配線の機械的強度を強化することができる。スカンジウム(Sc)の添加量は少なく、かつ、析出物とアルミニウム(Al)マトリックスとの整合性が良いことから、AlSc粒子が析出しても接合界面から機械的ひずみによるクラックが発生することはない。しかも、析出したAlSc粒子は、電気自動車等のパワー半導体における繰り返しの高温環境下でもほとんど粗大化することがない。この効果は、4Nアルミニウム合金細線よりも5Nアルミニウム合金細線のほうがよりよく発揮されるが、価格を優先するときは4N8純度のアルミニウム合金細線が良く、パワーサイクル半導体に好適なアルミニウム合金配線材料となる。
According to the aluminum alloy wiring material of the present invention, wiring can be made softly and freely like a pure aluminum thin wire before wiring, and ultrasonic bonding can be performed with an aluminum pad in the same manner as a pure aluminum alloy thin wire.
On the other hand, after wiring, Al 3 Sc particles can be precipitated from an aluminum (Al) matrix, thereby enhancing the mechanical strength of the wiring. Since the amount of scandium (Sc) added is small, and the consistency between the precipitate and the aluminum (Al) matrix is good, even if Al 3 Sc particles are precipitated, cracks due to mechanical strain occur from the bonding interface. There is no. Moreover, the deposited Al 3 Sc particles hardly become coarse even under repeated high-temperature environments in power semiconductors such as electric vehicles. This effect is better exhibited by the 5N aluminum alloy fine wire than the 4N aluminum alloy fine wire, but when priority is given to the price, the 4N8 purity aluminum alloy fine wire is better, and the aluminum alloy wiring material is suitable for power cycle semiconductors. .

図1は、本発明のアルミニウム合金細線と純アルミニウム細線のせん断強度の変化割合を示す。FIG. 1 shows the rate of change in shear strength between the aluminum alloy fine wire and the pure aluminum fine wire of the present invention.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

純度99.99質量%のアルミニウム(Al)と純度99.9質量%のスカンジウム(Sc)からなるAl−Sc 0.15%、Al−Sc 0.2%、Al−Sc 0.3%、Al−Sc 0.5% の4種類のAl-Sc合金を溶融し、連続鋳造により直径300mmアルミニウム合金インゴットを鋳造した。
この鋳塊を溝ロール圧延後、伸線加工して直径5mmのアルミニウム合金素線を作成した。次いで、この素線を630℃×120分の溶体化熱処理後、水中で急冷した。その後、直径0.5mmまで水中でダイヤモンドダイスを用いて連続伸線加工をした後、620℃×1分で調質熱処理をし、水冷した。
この試料を実施例1(サンプル1〜4)とした。この実施例1をアカシ社製型式MVK−G3のマイクロビッカース硬度計で測定した。測定した硬さを表1に示す。
この実施例1をSiチップ(厚さ0.5mm)上のAl−1.0%Si膜(厚さ4μm)上に以下の条件で100個超音波接合をした。
Al-Sc 0.15%, Al-Sc 0.2%, Al-Sc 0.3%, and Al-Sc made of 99.99% pure aluminum (Al) and 99.9% pure scandium (Sc) Four types of Al—Sc alloys with 0.5% Sc were melted, and an aluminum alloy ingot with a diameter of 300 mm was cast by continuous casting.
This ingot was rolled by groove rolling and then drawn to produce an aluminum alloy strand having a diameter of 5 mm. Subsequently, this strand was quenched in water after solution heat treatment at 630 ° C. for 120 minutes. Then, after performing continuous wire drawing using a diamond die in water to a diameter of 0.5 mm, tempering heat treatment was performed at 620 ° C. × 1 minute, followed by water cooling.
This sample was referred to as Example 1 (Samples 1 to 4). This Example 1 was measured with a Micro Vickers hardness meter of model MVK-G3 manufactured by Akashi. Table 1 shows the measured hardness.
100 pieces of Example 1 were ultrasonically bonded on an Al-1.0% Si film (thickness 4 μm) on a Si chip (thickness 0.5 mm) under the following conditions.

(超音波接合条件)
アルミニウム合金細線の線径0.5mm、ループ長は10mmで、ループ高さは1.5mmとした。
超音波工業社製REB07型全自動ボンダを用いて、アルミニウム合金細線をSiチップ上に超音波ボンディングを実施した。
ボンディング条件は、120kHzの周波数で、荷重及び超音波条件については、ファースト接合部のつぶれ幅がワイヤ線径の1.3倍になるように任意に調整を行い、全サンプル100個について同一条件でファーストボンド及びセカンドボンドの超音波ボンディングを実施した。超硬ツール及びボンディングガイドは、ワイヤサイズの合致した超音波工業社製のものを使用した。
次に、この接合されたアルミニウム合金細線の実施例1について、時効処理をした。時効処理条件は、300℃で2時間である。
次に、この接合されたアルミニウム合金細線の実施例1について、以下の試験を行った。
その結果を表1に示す。
(Ultrasonic bonding conditions)
The aluminum alloy fine wire had a wire diameter of 0.5 mm, a loop length of 10 mm, and a loop height of 1.5 mm.
Using an REB07 type fully automatic bonder manufactured by Ultrasonic Industry Co., Ltd., ultrasonic bonding of an aluminum alloy fine wire was performed on a Si chip.
The bonding condition is a frequency of 120 kHz, and the load and ultrasonic conditions are arbitrarily adjusted so that the collapse width of the first joint is 1.3 times the wire diameter, and the same conditions are applied to all 100 samples. First bond and second bond ultrasonic bonding was performed. The carbide tool and the bonding guide used were those manufactured by Ultrasonic Industry Co., Ltd., which matched the wire size.
Next, an aging treatment was performed on Example 1 of the joined aluminum alloy fine wire. The aging treatment condition is 300 ° C. for 2 hours.
Next, the following test was performed on Example 1 of the joined aluminum alloy fine wire.
The results are shown in Table 1.

(熱衝撃試験)
熱衝撃試験装置は、エスペック社製小型冷熱衝撃装置TSE-11を用い、高温側:+200℃、 低温側:−50℃で各々3分間ずつで、1万回繰り返した。
熱衝撃試験によってワイヤ接合部にダメージを与えた結果について、次のせん断強度試験によってダメージの度合いを評価した。
(Thermal shock test)
As the thermal shock test apparatus, a small thermal shock apparatus TSE-11 manufactured by Espec was used, and the test was repeated 10,000 times at high temperature side: + 200 ° C. and low temperature side: −50 ° C. for 3 minutes each.
About the result which gave the damage to the wire junction part by the thermal shock test, the degree of damage was evaluated by the following shear strength test.

(せん断強度試験)
せん断試験は、DAGE社製2400型式を用いてファースト接合部のせん断強度を、一千回、二千回、5千回、および10千回終了後に測定し、0回の初期強度との比較を求めた。このグラフを実施例1(No.4)及び従来例とを対比して図1に示す。
初期のせん断強度と繰り返し後のせん断強度比が初期から20%(0.8)まで低下する回数が従来の2倍未満のものを×、2倍以上のものを○とした。なお、試験高さは、5μm、試験速度は500μm/秒であった。
(Shear strength test)
In the shear test, the DAGE 2400 model was used to measure the shear strength of the first joint after completing 1,000, 2,000, 5,000, and 10,000 times, and compared with the initial strength of 0 times. Asked. This graph is shown in FIG. 1 in comparison with Example 1 (No. 4) and the conventional example.
The number of times that the ratio of the initial shear strength to the shear strength ratio after the repetition is reduced to 20% (0.8) from the initial value is less than twice the conventional number, and x is twice or more. The test height was 5 μm, and the test speed was 500 μm / second.

(チップ割れ観察試験)
ボンディング後の試料を、20%NaOH溶液でAl−0.1%Siパッドを溶解して、光学顕微鏡(オリンパス製測定顕微鏡、STM6)を使用し、100倍の倍率でチップ割れの有無を観察した。10箇所観察を行い、チップ割れが一つでも発生していたら×、一つも発生していなければ○とした。
(Chip crack observation test)
After bonding, the Al-0.1% Si pad was dissolved in a 20% NaOH solution, and the presence of chip cracking was observed at a magnification of 100 using an optical microscope (Olympus measuring microscope, STM6). . Observation was made at 10 locations, and if even one chip crack occurred, it was marked as x, and if none occurred, it was marked as ◯.

純度99.99質量%のアルミニウム(Al)と純度99.9質量%のスカンジウム(Sc)と純度99.9質量%のジルコニウム(Zr)からなるAl−Sc0.2%−Zr0.1%合金、及びAl−Sc0.5%−Zr0.25%合金を実施例1と同様にして、直径0.5mmのアルミニウム合金細線を作成し、実施例2(サンプル5、6)とした。
次いで、これらのサンプルについて、実施例1と同様の条件で、超音波接合し、時効処理を行った。
これらのサンプルについて、実施例1と同様の条件で前記の試験を行った。それらの結果を表1に示す。
Al-Sc 0.2% -Zr 0.1% alloy composed of aluminum (Al) with a purity of 99.99% by mass, scandium (Sc) with a purity of 99.9% by mass and zirconium (Zr) with a purity of 99.9% by mass, And an Al—Sc 0.5% -Zr 0.25% alloy was made in the same manner as in Example 1, and an aluminum alloy fine wire having a diameter of 0.5 mm was prepared as Example 2 (Samples 5 and 6).
Next, these samples were ultrasonically bonded and subjected to an aging treatment under the same conditions as in Example 1.
About these samples, the said test was done on the conditions similar to Example 1. FIG. The results are shown in Table 1.

純度99.99質量%のアルミニウム(Al)と純度99.9質量%のスカンジウム(Sc)からなるAl−Sc0.3%合金から実施例1と同様にして、直径0.1mm及び0.3mmのアルミニウム合金細線を作成し、実施例3(サンプル7、8)とした。
次いで、これらのサンプルについて、実施例1と同様の条件で、超音波接合し、時効処理を行った。
これらのサンプルについて、実施例1と同様の条件で前記の試験を行った。それらの結果を表1に示す。
In the same manner as in Example 1, an Al-Sc 0.3% alloy composed of aluminum (Al) with a purity of 99.99 mass% and scandium (Sc) with a purity of 99.9 mass% has a diameter of 0.1 mm and 0.3 mm. An aluminum alloy fine wire was prepared and used as Example 3 (Samples 7 and 8).
Next, these samples were ultrasonically bonded and subjected to an aging treatment under the same conditions as in Example 1.
About these samples, the said test was done on the conditions similar to Example 1. FIG. The results are shown in Table 1.

純度99.998質量%のアルミニウム(Al)と純度99.9質量%のスカンジウム(Sc)とからなるAl−Sc0.15%合金から、実施例1と同様にして、直径0.5mmのアルミニウム合金細線を作成し、実施例4(サンプル9)とした。
次いで、これらのサンプルについて、実施例1と同様の条件で、超音波接合し、時効処理を行った。
これらのサンプルについて、実施例1と同様の条件で前記の試験を行った。それらの結果を表1に示す。
In the same manner as in Example 1, an aluminum alloy having a diameter of 0.5 mm was prepared from an Al—Sc 0.15% alloy composed of aluminum (Al) having a purity of 99.998% by mass and scandium (Sc) having a purity of 99.9% by mass. A thin line was created and used as Example 4 (Sample 9).
Next, these samples were ultrasonically bonded and subjected to an aging treatment under the same conditions as in Example 1.
About these samples, the said test was done on the conditions similar to Example 1. FIG. The results are shown in Table 1.

比較例Comparative example

純度99.99質量%のアルミニウム(Al)と純度99.9質量%のスカンジウム(Sc)からなるAl−Sc0.1%Al−Sc及び0.8%合金から実施例1と同様にして、直径0.5mmのアルミニウム合金細線を作成し、比較例1及び2とした。
次いで、このサンプルについて、実施例1と同様の条件で、超音波接合し、時効処理を行った。
これらのサンプルについて、実施例1と同様の条件で前記の試験を行った。それらの結果を表1に示す。
〔従来例〕
In the same manner as in Example 1, the diameter was made of Al-Sc 0.1% Al-Sc and 0.8% alloy composed of 99.99% by mass of aluminum (Al) and 99.9% by mass of scandium (Sc). A 0.5 mm aluminum alloy fine wire was prepared and used as Comparative Examples 1 and 2.
Next, this sample was subjected to ultrasonic bonding and aging treatment under the same conditions as in Example 1.
About these samples, the said test was done on the conditions similar to Example 1. FIG. The results are shown in Table 1.
[Conventional example]

純度99.995質量%(5N)高純度Alを溶融し、連続鋳造により、直径300mmアルミニウムインゴットを鋳造し、この鋳塊を溝ロール圧延後に伸線加工して、直径5mmのアルミニウム素線を作成し、この素線を400℃×60分および300℃×1分間の中間熱処理を施した。その後、直径0.5mmまで連続伸線加工をした後、330℃で最終熱処理をした試料を従来例とした。この比較品1も実施例1と同様の試験を行い、その結果を表1に示す。

Figure 0005159001

(注1)Al原材料の純度は実施例1〜3(サンプルNo.1〜8)及び比較例1,2:99.99質量%、実施例5(サンプルNo.9):99.998質量%。
従来例Al原材料の純度は99.995質量%
(注2)実施例の溶体化後の冷却方法:水冷 Purity 99.995 mass% (5N) High-purity Al is melted and cast into a 300 mm diameter aluminum ingot by continuous casting. The ingot is drawn after groove rolling to produce an aluminum strand with a diameter of 5 mm. This strand was subjected to intermediate heat treatment at 400 ° C. for 60 minutes and 300 ° C. for 1 minute. Then, after performing continuous wire drawing to a diameter of 0.5 mm, a sample subjected to a final heat treatment at 330 ° C. was used as a conventional example. This comparative product 1 was also subjected to the same test as in Example 1, and the results are shown in Table 1.
Figure 0005159001

(Note 1) The purity of the Al raw materials is as in Examples 1 to 3 (Sample Nos. 1 to 8) and Comparative Examples 1 and 2: 99.99% by mass, Example 5 (Sample No. 9): 99.998% by mass. .
The purity of conventional Al raw material is 99.995% by mass
(Note 2) Cooling method after solutionization in Examples: Water cooling

表1の試験結果から、実施例のサンプルNo.1〜4は、Scの含有量が0.15質量%から0.5質量%に至るまで、Scの含有量が増加するにつれて調質後のビッカース硬さが大きくなるが、Sc含有量が0.5質量%の最大範囲でもビッカース硬さが27に抑制されており、チップ割れを生じることがない。
また、ワイヤボンディング後の時効処理によって、その硬さが大きく向上し、Sc含有量が最小の0.15質量%でもビッカース硬さは38に達し、熱衝撃試験結果は良好であった。
From the test results in Table 1, sample No. 1-4, the Vickers hardness after tempering increases as the Sc content increases until the Sc content reaches 0.15% by mass to 0.5% by mass, but the Sc content is 0 Even in the maximum range of 5 mass%, the Vickers hardness is suppressed to 27, and chip cracking does not occur.
Further, the aging treatment after wire bonding greatly improved the hardness. Even when the Sc content was 0.15% by mass, the Vickers hardness reached 38, and the thermal shock test result was good.

一方、比較例1、及び2は、Sc含有量がそれぞれ0.1質量%及び0.8質量%であって、比較例1はビッカース硬さが低く、チップ割れを生じていないが、時効処理後の硬さが低く、熱衝撃試験結果は不良であり、比較例2はこれに対して逆にSc含有量が多いためにボンディング後の時効処理による硬さが大きく、熱衝撃試験結果は良好であったが、調質後の硬さが大きいためチップ割れを生じ、使用に耐えないものとなった。   On the other hand, Comparative Examples 1 and 2 have Sc contents of 0.1% by mass and 0.8% by mass, respectively, and Comparative Example 1 has low Vickers hardness and no chip cracking. The hardness after the test is low and the thermal shock test result is poor. On the contrary, in Comparative Example 2, the Sc content is large, so the hardness by aging treatment after bonding is large, and the thermal shock test result is good. However, since the hardness after tempering was large, chip cracking occurred and it became unusable.

さらに、Sc含有量を0.3質量%として、これらのアルミニウム合金細線の太さを変えて、直径0.1mm及び0.3mmとしたサンプル7及び8は、ボンディング時のチップ割れ及びボンディング後の熱衝撃試験結果は良好であって、これらのアルミニウム合金細線の太さを細くしても、これらの効果が変わらないことが示された。 Furthermore, the Sc content was set to 0.3% by mass, and the thicknesses of these aluminum alloy thin wires were changed so that the diameters were 0.1 mm and 0.3 mm. The thermal shock test result was good, and it was shown that these effects were not changed even if the thickness of these aluminum alloy fine wires was reduced.

また、Scに加えてZrを添加したサンプル5及び6から、Zrの添加により調質熱処理後の硬さは大きくなるものの抑制されてチップ割れを生じないが、ボンディング後の時効処理による硬さは著しく向上し、熱衝撃試験結果が良好であることが解かる。
ジルコニウム(Zr)は、スカンジウム(Sc)と同様の時効硬化作用があり、また、時効硬化したアルミニウム合金細線がその使用環境で温度変化にさらされるなどの温度履歴による劣化に対して安定化する作用があり、スカンジウム(Sc)の含有量の半分以下の添加量の範囲であれば、スカンジウム(Sc)と同様に扱うことができる。
Also, from Samples 5 and 6 to which Zr was added in addition to Sc, although the hardness after tempering heat treatment was increased by the addition of Zr, it was suppressed and chip cracking did not occur, but the hardness by aging treatment after bonding was It can be seen that the thermal shock test results are good with significant improvement.
Zirconium (Zr) has the same age-hardening effect as scandium (Sc), and also stabilizes against age-related deterioration due to temperature changes such as the age-hardened aluminum alloy fine wire exposed to temperature changes in its usage environment. If it is within the range of the addition amount of half or less of the content of scandium (Sc), it can be handled in the same manner as scandium (Sc).

さらに、アルミニウム原材料の純度を一桁(99.998質量%)向上し、Sc含有量を最低限に抑制したサンプル9は、調質後の硬さはより低くなるが、時効処理後の硬さは38と高く維持されており、熱衝撃試験結果が良好であることが解かる。 Furthermore, the purity of the aluminum raw material is improved by an order of magnitude (99.998% by mass), and the sample 9 in which the Sc content is minimized is lower in hardness after tempering, but the hardness after aging treatment Is maintained as high as 38, and it is understood that the thermal shock test result is good.

せん断強度試験結果は、実施例1のサンプルNo.4と従来例の純度5Nのアルミニウム細線を対象とした初期のせん断強度と繰り返し後のせん断強度比を示す図1のグラフから明らかなように、初期から20%(0.8)まで低下する回数が実施例4では10千回以上に対して従来例の純度5Nのアルミニウム細線では約3,000回であって、実施例4は、高純度アルミニウム細線の3倍の熱衝撃寿命を有することが解かる。 As is apparent from the graph of FIG. 1 showing the initial shear strength and the repeated shear strength ratio for the sample No. 4 in Example 1 and the 5N purity aluminum thin wire of the conventional example, the shear strength test results are as follows. The number of times of reduction from the initial stage to 20% (0.8) is about 3,000 times in the case of Example 4 with respect to 10,000 times or more in the conventional example, and about 3,000 times in the case of the conventional 5N purity aluminum fine wire. It can be seen that the thermal shock life is three times that of the aluminum wire.

以上の試験結果から、半導体装置用配線として、スカンジウム(Sc)とアルミニウム(Al)とからなるAl−Sc二元合金は、Scが0.15〜0.5質量%の範囲が適し、
また、スカンジウム(Sc)とアルミニウム(Al)とジルコニウム(Zr)とからなるAl−Sc−Zr三元合金の場合は、スカンジウム(Sc)が0.15〜0.5質量%に対して、ジルコニウム(Zr)は第3の添加元素として、前記の含有量より低い微量な範囲においても効果を有し、0.01〜0.25質量%の範囲で好適であった。ただし、ZrはScよりも硬さに対する影響が大きいため、その含有量はScの半分以下とする必要がある。
溶体化処理後のビッカース硬さについては、チップ割れ防止の点から、表1の21Hv
よりも低くても、Sc添加により時効処理によって熱衝撃を向上できるため、その範囲は18Hv〜30Hvまで有効であった。
From the above test results, the Al—Sc binary alloy composed of scandium (Sc) and aluminum (Al) is suitable as the wiring for the semiconductor device, and the range of Sc from 0.15 to 0.5 mass% is suitable.
Further, in the case of an Al—Sc—Zr ternary alloy composed of scandium (Sc), aluminum (Al), and zirconium (Zr), the scandium (Sc) is 0.15 to 0.5 mass% with respect to zirconium. (Zr) was effective as a third additive element even in a minute range lower than the above content, and was suitable in the range of 0.01 to 0.25% by mass. However, since Zr has a greater influence on hardness than Sc, its content needs to be half or less of Sc.
The Vickers hardness after the solution treatment is 21 Hv in Table 1 from the viewpoint of preventing chip cracking.
Even if it is lower, the thermal shock can be improved by the aging treatment by adding Sc, so the range was effective from 18 Hv to 30 Hv.

本発明は、熱衝撃試験を繰り返してもシェア強度の低下が少ないことから、ハイブリッド車や電気自動車、あるいは、電車、風力発電機、産業用ロボットなどに使用されるパワー半導体の接続線として有用である。
The present invention is useful as a connecting line for power semiconductors used in hybrid vehicles, electric vehicles, trains, wind power generators, industrial robots, etc., since the decrease in shear strength is small even after repeated thermal shock tests. is there.

Claims (13)

スカンジウム(Sc)とアルミニウム(Al)とからなるAl−Sc二元合金において、
スカンジウム(Sc)が0.15〜0.5質量%および残部が純度99.99質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有し、時効熱処理前のビッカース硬さが21〜30Hvである、高温環境下で使用されることを特徴とする半導体装置接続用アルミニウムウエッジボンディングワイヤ。
In an Al—Sc binary alloy composed of scandium (Sc) and aluminum (Al),
The composition of scandium (Sc) is 0.15 to 0.5% by mass and the balance is aluminum (Al) having a purity of 99.99% by mass or more, and a recrystallized structure is formed in a forced solid solution aluminum alloy matrix. An aluminum wedge bonding wire for connecting a semiconductor device, characterized by being used in a high-temperature environment having a Vickers hardness of 21 to 30 Hv before aging heat treatment.
スカンジウム(Sc)とアルミニウム(Al)とからなるAl−Sc二元合金において、
スカンジウム(Sc)が0.15〜0.5質量%および残部が純度99.99質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有し、時効熱処理によってAlScの時効析出粒子を形成する、高温環境下で使用されることを特徴とする半導体装置接続用アルミニウムウエッジボンディングワイヤ。
In an Al—Sc binary alloy composed of scandium (Sc) and aluminum (Al),
The composition of scandium (Sc) is 0.15 to 0.5% by mass and the balance is aluminum (Al) having a purity of 99.99% by mass or more, and a recrystallized structure is formed in a forced solid solution aluminum alloy matrix. An aluminum wedge bonding wire for connecting a semiconductor device, characterized in that it is used in a high-temperature environment and has Al 3 Sc aging precipitation particles formed by aging heat treatment.
スカンジウム(Sc)とアルミニウム(Al)とジルコニウム(Zr)とからなるAl−Sc−Zr三元合金において、スカンジウム(Sc)が0.15〜0.5質量%、ジルコニウム(Zr)が0.01〜0.2質量%(ただし、ジルコニウム(Zr)はスカンジウム(Sc)の半分以下の量)および残部が純度99.998質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有し、ビッカース硬さが21〜30Hvのアルミニウム合金であって、高温環境下で使用されることを特徴とする半導体装置接続用アルミニウムウエッジボンディングワイヤ。 In an Al—Sc—Zr ternary alloy composed of scandium (Sc), aluminum (Al) and zirconium (Zr), scandium (Sc) is 0.15 to 0.5 mass%, and zirconium (Zr) is 0.01 0.2% by mass (however, zirconium (Zr) is less than half the amount of scandium (Sc)) and the balance is composed of aluminum (Al) having a purity of 99.998% by mass or more. An aluminum wedge bonding wire for connecting a semiconductor device, wherein the aluminum wedge bonding wire has a recrystallized structure in an aluminum alloy matrix and has a Vickers hardness of 21 to 30 Hv, and is used in a high temperature environment. スカンジウム(Sc)とアルミニウム(Al)とジルコニウム(Zr)とからなるAl−Sc−Zr三元合金において、スカンジウム(Sc)が0.15〜0.5質量%、ジルコニウム(Zr)が0.01〜0.2質量%(ただし、ジルコニウム(Zr)はスカンジウム(Sc)の半分以下の量)および残部が純度99.998質量%以上のアルミニウム(Al)からなる組成を有し、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有し、時効熱処理によってAlScの時効析出粒子を形成するアルミニウム合金であって、高温環境下で使用されることを特徴とする半導体装置接続用アルミニウムウエッジボンディングワイヤ。 In an Al—Sc—Zr ternary alloy composed of scandium (Sc), aluminum (Al) and zirconium (Zr), scandium (Sc) is 0.15 to 0.5 mass%, and zirconium (Zr) is 0.01 0.2% by mass (however, zirconium (Zr) is less than half the amount of scandium (Sc)) and the balance is composed of aluminum (Al) having a purity of 99.998% by mass or more. Aluminum alloy having a recrystallized structure in an aluminum alloy matrix and forming aging precipitation particles of Al 3 Sc by an aging heat treatment, wherein the aluminum wedge is used in a high temperature environment. Bonding wire. 当該アルミニウム合金のアルミニウム(Al)の純度が99.998質量%以上であることを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置接続用アルミニウムウエッジボンディングワイヤ。   5. The aluminum wedge bonding wire for connecting a semiconductor device according to claim 1, wherein the aluminum alloy has an aluminum (Al) purity of 99.998% by mass or more. 当該スカンジウム(Sc)の添加量が0.1〜0.3質量%であることを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置接続用アルミニウムウエッジボンディングワイヤ。 The aluminum wedge bonding wire for connecting a semiconductor device according to any one of claims 1 to 4, wherein an amount of the scandium (Sc) added is 0.1 to 0.3% by mass. 当該再結晶組織が、強制固溶後水冷中で連続伸線加工された冷間伸線組織が調質熱処理により形成されたものであることを特徴とする請求項1〜請求項4のいずれか1項に記載のアルミニウムウエッジボンディングワイヤ。 The recrystallized structure is formed by refining heat treatment of a cold-drawn structure obtained by continuous wire drawing in water cooling after forced solid solution. 2. An aluminum wedge bonding wire according to item 1. 当該アルミニウム合金が超音波接合されたものであることを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置接続用アルミニウムウエッジボンディングワイヤ。   The aluminum wedge bonding wire for connecting a semiconductor device according to any one of claims 1 to 4, wherein the aluminum alloy is ultrasonically bonded. 当該細線の線径が50〜500μm未満であることを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置接続用アルミニウムウエッジボンディングワイヤ。 The aluminum wedge bonding wire for connecting a semiconductor device according to any one of claims 1 to 4, wherein a wire diameter of the fine wire is less than 50 to 500 µm. 当該高温環境が80℃〜300℃であることを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置接続用アルミニウムウエッジボンディングワイヤ。 The aluminum wedge bonding wire for connecting a semiconductor device according to any one of claims 1 to 4, wherein the high-temperature environment is 80 ° C to 300 ° C. 当該高温環境が150℃〜250℃であることを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置接続用アルミニウムエッジボンディングワイヤ。   The said high temperature environment is 150 to 250 degreeC, The aluminum edge bonding wire for a semiconductor device connection of any one of Claims 1-4 characterized by the above-mentioned. スカンジウム(Sc)が0.15〜0.5質量%および残部が純度99.99質量%以上のアルミニウム(Al)からなる組成を有するAl−Sc二元合金細線を溶体化処理によって強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有する細線としてウエッジボンディングを行い、
ボンディング後に時効熱処理を行う、ことを特徴とする高温環境下で使用される半導体装置接続方法。
An Al—Sc binary alloy fine wire having a composition composed of 0.15 to 0.5 mass% of scandium (Sc) and the balance of 99.99 mass% or more of aluminum (Al) is forcibly solidified by solution treatment. Wedge bonding as a fine wire having a recrystallized structure in an aluminum alloy matrix,
A method for connecting a semiconductor device used in a high temperature environment, characterized in that an aging heat treatment is performed after bonding.
スカンジウム(Sc)が0.15〜0.5質量%、ジルコニウム(Zr)が0.01〜0.2質量%および残部が純度99.998質量%以上のアルミニウム(Al)からなる組成を有するスカンジウム(Sc)とアルミニウム(Al)とジルコニウム(Zr)とからなるAl−Sc−Zr三元合金細線を溶体化処理により、強制固溶されたアルミニウム合金マトリックス中に再結晶組織を有する細線としてウエッジボンディングを行い、ボンディング後に時効熱処理を行う、ことを特徴とする高温環境下で使用される半導体装置接続方法。

Scandium having a composition comprising scandium (Sc) of 0.15 to 0.5 mass%, zirconium (Zr) of 0.01 to 0.2 mass%, and the balance of aluminum (Al) having a purity of 99.998 mass% or more. Wedge bonding as a fine wire having a recrystallized structure in an aluminum alloy matrix that is forcibly solidified by solution treatment of an Al—Sc—Zr ternary alloy fine wire composed of (Sc), aluminum (Al), and zirconium (Zr) And a semiconductor device connection method used in a high-temperature environment, characterized in that aging heat treatment is performed after bonding.

JP2012193593A 2012-09-03 2012-09-03 Aluminum alloy bonding wire Expired - Fee Related JP5159001B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012193593A JP5159001B1 (en) 2012-09-03 2012-09-03 Aluminum alloy bonding wire
KR1020130037348A KR101307022B1 (en) 2012-09-03 2013-04-05 Aluminium alloy bonding wire
SG2013030143A SG2013030143A (en) 2012-09-03 2013-04-19 Aluminum alloy bonding wire
CN201310181370.5A CN103320654B (en) 2012-09-03 2013-05-16 Aluminium alloy bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193593A JP5159001B1 (en) 2012-09-03 2012-09-03 Aluminum alloy bonding wire

Publications (2)

Publication Number Publication Date
JP5159001B1 true JP5159001B1 (en) 2013-03-06
JP2014047417A JP2014047417A (en) 2014-03-17

Family

ID=48013553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193593A Expired - Fee Related JP5159001B1 (en) 2012-09-03 2012-09-03 Aluminum alloy bonding wire

Country Status (4)

Country Link
JP (1) JP5159001B1 (en)
KR (1) KR101307022B1 (en)
CN (1) CN103320654B (en)
SG (1) SG2013030143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107312B2 (en) 2018-07-02 2022-07-27 横浜ゴム株式会社 pneumatic tire

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2736047B1 (en) * 2012-11-22 2017-11-08 Heraeus Deutschland GmbH & Co. KG Aluminium alloy wire for bonding applications
CN105274397A (en) * 2015-10-23 2016-01-27 东北大学 High-strength super-heat-resistant aluminum-alloy conductor and preparation method thereof
DE102016107287A1 (en) * 2016-04-20 2017-11-09 Semikron Elektronik Gmbh & Co. Kg Power semiconductor device and method for operating a power semiconductor device
JP6432619B2 (en) * 2017-03-02 2018-12-05 日立金属株式会社 Aluminum alloy conductor, insulated wire using the conductor, and method for producing the insulated wire
JP7126321B2 (en) * 2018-10-10 2022-08-26 日鉄マイクロメタル株式会社 aluminum bonding wire
WO2020184654A1 (en) * 2019-03-13 2020-09-17 日鉄マイクロメタル株式会社 Bonding wire
CN110653517A (en) * 2019-09-27 2020-01-07 桂林理工大学 Aluminum alloy welding wire containing rare earth elements scandium and erbium
CN114467167A (en) * 2019-10-01 2022-05-10 日铁新材料股份有限公司 Al wiring material
KR20220153015A (en) 2020-03-13 2022-11-17 닛데쓰마이크로메탈가부시키가이샤 Al bonding wire
CN115997279A (en) 2020-08-31 2023-04-21 日铁新材料股份有限公司 Al wiring material
US20230299037A1 (en) 2020-08-31 2023-09-21 Nippon Micrometal Corporation Al WIRING MATERIAL
TW202239982A (en) * 2021-02-05 2022-10-16 日商日鐵新材料股份有限公司 Al bonding wire for semiconductor devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179840A (en) * 1985-02-04 1986-08-12 Furukawa Electric Co Ltd:The Aluminum wire rod for semiconductor device bonding
JPS61179839A (en) * 1985-02-04 1986-08-12 Furukawa Electric Co Ltd:The Aluminum wire rod for semiconductor device bonding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316705A (en) * 1994-05-31 1995-12-05 Riyouka Massey Kk Wiring material
JP2001348637A (en) * 2000-06-05 2001-12-18 Hitachi Cable Ltd Aluminum alloy material and method for producing wiring rod using the same
CN102021444B (en) * 2010-12-09 2012-08-22 北京科技大学 High-conductive heat-resistant aluminium alloy conductor and preparation method thereof
CN102364605A (en) * 2011-09-07 2012-02-29 无锡市嘉邦电力管道厂 Method for manufacturing aluminum alloy electric wire
CN102360623A (en) * 2011-09-13 2012-02-22 无锡市嘉邦电力管道厂 Fabrication method for aluminium alloy cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179840A (en) * 1985-02-04 1986-08-12 Furukawa Electric Co Ltd:The Aluminum wire rod for semiconductor device bonding
JPS61179839A (en) * 1985-02-04 1986-08-12 Furukawa Electric Co Ltd:The Aluminum wire rod for semiconductor device bonding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107312B2 (en) 2018-07-02 2022-07-27 横浜ゴム株式会社 pneumatic tire

Also Published As

Publication number Publication date
SG2013030143A (en) 2014-04-28
KR101307022B1 (en) 2013-09-11
CN103320654B (en) 2015-11-18
JP2014047417A (en) 2014-03-17
CN103320654A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5159001B1 (en) Aluminum alloy bonding wire
JP5159000B1 (en) Aluminum alloy thin wires for connecting semiconductor devices
CN102776408B (en) Silver alloy wire and preparation method thereof
US9748186B2 (en) Semiconductor device and method for manufacturing the semiconductor device
EP3363025B1 (en) Cables and wires having conductive elements formed from improved aluminum-zirconium alloys
JP6355092B1 (en) Solder alloy and joint structure using the same
WO2012049893A1 (en) RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE
JP5281191B1 (en) Aluminum alloy wire for power semiconductor devices
JP2013057121A (en) Method of manufacturing soft dilute copper alloy material
TWI599664B (en) Metallic ribbon for power module packaging
JP5680138B2 (en) Corrosion resistant aluminum alloy bonding wire
JPH02170937A (en) Copper alloy having superior direct bonding property
Tseng et al. Microstructure, mechanical and high-temperature electrical properties of cyanide-free Au-coated Ag wire (ACA)
KR20220064974A (en) Al wiring material
JP6579551B2 (en) Bonding layer structure using alloy bonding material and method for forming the same, semiconductor device having the bonding layer structure, and method for manufacturing the same
JP2005194571A (en) Ni-Co ALLOY, CLAD MATERIAL, AND PRODUCTION METHOD THEREFOR
TWI548480B (en) Copper bonding wire and methods for manufacturing the same
WO2022045133A1 (en) Al WIRING MATERIAL
JP3747023B2 (en) Gold bonding wire for semiconductor
TWI581273B (en) Aluminum alloy conductive wire and manufacture method thereof
JPH02170935A (en) Copper alloy having superior direct bonding property
WO2022045134A1 (en) Aluminum wiring material
JP2017001049A (en) Joint layer structure and joint method by alloy joint material, semiconductor device and manufacturing method thereof
JPH0598373A (en) Copper type lead frame material having low coefficient of linear expansion and its production

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5159001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees